
Integration Adapter Modeling

Daniel Ritter(B) and Manuel Holzleitner

Technology Development, SAP SE, Dietmar-Hopp-Allee 16,
Walldorf 69190, Germany

{daniel.ritter,manuel.holzeitner}@sap.com

Abstract. Integration Adapters are a fundamental part of an integra-
tion system, since they provide (business) applications access to its
messaging channel. However, their modeling and configuration remain
under-represented. In previous work, the integration control and data
flow syntax and semantics have been expressed in the Business Process
Model and Notation (BPMN) as a semantic model for message-based
integration, while adapter and the related quality of service modeling
were left for further studies.

In this work we specify common adapter capabilities and derive gen-
eral modeling patterns, for which we define a compliant representation in
BPMN. The patterns extend previous work by the adapter flow, evalu-
ated syntactically and semantically for common adapter characteristics.

Keywords: Business Process Model and Notation (BPMN) · Concep-
tual modeling · Language design · Message endpoints · Quality of service

1 Introduction

Enterprise Application Integration (EAI) continues to receive widespread focus
by organizations offering them as means of integrating their conventional busi-
ness applications with each other, with the growing amount of cloud applications
and with their partners’ systems. In many cases, the integration middleware sys-
tems serve as the enabling technology for distributed, mission-critical business
processes. For that, these systems offer well-defined modeling capabilities to de-
scribe integration semantics (e. g., message creation, transformation, routing) as
well as runtime systems that interpret the definitions for efficient message process-
ing. Figure 1 shows a typical conceptual overview of application-to-application
(A2A) and business-to-business (B2B) integration, which can be found in many
organizations (cf. Reese [12]). The dominating aspects are the many connections
or integration adapters, which are currently under-represented in the (integration)
modeling domain. Integration semantics are generally described based on a com-
prehensive (often graphically depicted) syntax and execution semantics (process
model). In their best practices book Enterprise Integration Patterns (EIP), Hohpe
and Woolf [7] have collected a widely used and accepted collection of integration
patterns that are typical concepts used when implementing a messaging system
and have proven to be useful in practice. However, they do not specify a semantic
c© Springer International Publishing Switzerland 2015
J. Zdravkovic et al. (Eds.): CAiSE 2015, LNCS 9097, pp. 468–482, 2015.
DOI: 10.1007/978-3-319-19069-3 29



Integration Adapter Modeling 469

model for the formalization of the integration syntax and semantics. Most notice-
able, the integration adapter modeling with its manifold characteristics is reduced
to a Channel Adapter icon.

Fig. 1. Conceptual View on integration architecture of organizations

In previous work, we studied and provided a Domain-specific Language (DSL)
with well-defined building blocks for modeling EIPs in the Business Process
Model and Notation (BPMN) [11], which is a “de-facto” standard for modeling
business process semantics and their runtime behavior [14]. We mapped EIPs
to BPMN compatible syntax and defined execution semantics adapted to mes-
sage processing. We extended that notion to end-to-end flows of messages, called
Integration Flow (IFlow) [13]. In a nutshell, an IFlow can be seen as message-
based integration from a sending application (Sender, BPMN Participant) to
one or many receiving applications (Receiver(s), BPMN Participant) via BPMN
Message Flow configurations (denoting the inbound and outbound adapters)
and dedicated participant(s) that specify an integration process (composition of
EIPs). We decided on BPMN for defining a “message-based integration” DSL
due to its sufficient coverage of control flow, data and exception flow, process
modeling capabilities and execution semantics [13,16]. The work on “Data in
Business Processes” [8] shows that besides Configuration-based Release Processes
(COREPRO) [10], which mainly deals with data-driven process modeling, (busi-
ness) object status management, and UML activity diagrams, BPMN achieves
the highest coverage in the categories relevant for our approach. Compared to
BPMN and apart from the topic of “object state” representation, neither Work-
flow Nets [20] nor petri nets support data modeling at all [8]. For instance,
Figure 2 shows an excerpt of an asynchronous integration scenario from the
Internet of Things (IoT) domain, syntactically expressed in BPMN according
to [13]. The encrypted incoming message is of type “TD” (short for Teleme-
try Data), which has to be normalized with respect to its timestamps using a
Message Transformation pattern [7]. The Message Queue Telemetry Transport
(MQTT)1 is used as transport protocol, which is a common, lightweight queu-
ing protocol frequently used in the IoT domain. The approach to specifying
integration semantics and its runtime works well for common integration sce-
narios [13]. More complex scenarios have to deal with non-trivial combinations

1 Message Queue Telemetry Transport: http://mqtt.org/

http://mqtt.org/


470 D. Ritter and M. Holzleitner

of message exchange pattern (MEP) and quality of service (QoS) levels. These
notions are mostly induced during the adapter processing and continued into
the integration process. Currently, integration modeling approaches (a) do not
classify adapter characteristics, (b) leave the default adapter processing (mostly)
hidden in the various runtime implementations, and (c) do not allow for config-
uration or change of the default behavior.

In this paper, we comprehensively investigate the range of characteristics
of adapters during the integration flow processing and the various ways, in
which they can be addressed. This provides the foundation for a classifica-
tion of the adapter modeling, which we subsequently define in the form of an
adapter flow (AF) and patterns. The pattern-based approach to adapter clas-
sification is a continuation of our previous work on the EIPs and the IFlow.

Fig. 2. IoT: Devices enqueue messages
(asynch.) for time series normalization

The adapter processing patterns have
proven to be intuitive to both prac-
titioners and researchers alike and
have been widely utilized for a variety
of purposes including customer and
partner content development. They
provide the conceptual foundations
for the SAP HANA Cloud Integration
(HCI)2 system, which is an Integra-
tion as a Service (INTaaS) implemen-
tation based on Apache Camel [3], an
open-source integration system. The
motivation for this paper is to provide

a conceptual framework for classifying the adapter processing capabilities of mid-
dleware systems more generally based on the IFlow modeling approach, while
being independent of the specific runtime platforms. The major contributions of
this work are (1) a comprehensive classification of common adapter character-
istics in integration systems and beyond, (2) an extension of the BPMN-based
IFlow model for adapter flows (AFs) that make default processing visible to the
user for all identified categories from (1) and allows for change of the default
behavior, (3) the derivation of common adapter processing patterns and their
representation in BPMN, as well as (4) the application to an existing open source
middleware system, the technical analysis and discussion of the proposed app-
roach as experimental validation in two examples. In a nutshell, we propose an
answer to the underlying questions of the observations (a-c), e. g., “which QoS
does the IFlow in Figure 2 have?” and “how can the default handling be adapted
to custom requirements?”.

Section 2 discusses adapter modeling characteristics, before we derive adapter
processing patterns as an extension to the IFlow in Section 3, which we prototypi-
cally applied in two examples in Section 4. Section 5 summarizes our experiences,
Section 6 discusses related work, and Section 7 concludes.

2 SAP HANA Cloud Integration: http://help.sap.com/cloudintegration

http://help.sap.com/cloudintegration


Integration Adapter Modeling 471

2 Adapter Modeling Characteristics

In this section, we introduce a generalized integration system architecture, clas-
sify adapter characteristics and formulate them as modeling requirements. The
adapter type classification is based on [7], supported by an analysis of 151 mes-
sage endpoints, contributed to Apache Camel [3], and an integration expert
workshop with 20 experienced integration experts from 7 different companies
(cf. Suppl. Material [15]). As illustrated in Figure 3 conventional integration
systems consist of a set of event-based or polling consumer adapters, an integra-
tion process engine, which executes sets of routing and message transformation
tasks, and a set of producer adapters. The adapters represent the Message End-
point pattern [7] and have to deal with security concerns and (possibly) format
conversions from the sender format Fs(msg) to an internal format Fcdm(msg)
(i. e., Canonical Data Model (CDM) [7]) that is used for the integration process-
ing, and eventually conversions from the CDM to the target format Fr(msg)
understood by the receiver.

The internal messages are either distributed to Message Queues (asynchrono-
usly) or directly sent to the integration system process engine (synchronously).
This engine uses a set of outbound adapters to actively interact with exter-
nal systems. During the whole integration process, the recoverability should be
ensured; thus, the internal message representations have to be stored locally
using an operational data store or are queued for cross-process or cross-system
message exchange. The execution environment of the consumer and producer
adapters is an adapter runtime, which is part of the application server for con-
ventional integration systems, however, can be an arbitrary software stack. The
connections to related parts of the system (e. g., Messaging System, Data Store)
are discussed subsequently as part of the classification. We consider five main
categories, which allow to comprehensively describe adapters. Hence we discuss
common capabilities from these categories and derive requirements (R-X) for a
general adapter modeling approach.

Adapter Type. Adapters can be canonically differentiated by their type: con-
sumer or producer (as seen before). A consumer adapter allows the message

Fig. 3. Conceptual view on a conventional integration system with a slight emphasis
on the consumer and producer adapters



472 D. Ritter and M. Holzleitner

sender applications to connect to the integration system. Message consumers are
further sub-devided by their behavior into polling and event-based adapters. The
polling adapter (e. g., File, (S)FTP) is configured to actively check for messages
to read and process them (R-1 : Model Polling Consumer). Hereby, settings like
the polling interval, location, (initial) delay and format, can be specified. In con-
trast, an event-based consumer specifies an endpoint configuration (e. g., Servlet
URI), on which it registers a “passive” listener that waits for events or callbacks
from the sender (R-2 : Model Event-based Consumer). A producer adapter for-
wards the messages to their receivers (R-3 : Model Producer). The analysis of the
119 Apache Camel component bundles supports this differentiation (cf. [15]), by
showing ten “consumer only” (6.6%), 33 “producer only” (22%) and 108 “con-
sumer+producer” adapters. Despite the difficult task of determining “active”
adapters, at least 34% of the sender adapters are “polling”.

Configuration Complexity. The analysis of 119 component bundles resulted to
151 single components, or adapters. In other words, components like mail encap-
sulate multiple endpoints represented by protocols like smtp, pop3, imap (R-4 :
Model Multi-Component Adapter). Another outcome of the analysis showed that
30/151 components require more complex configurations, e. g., for the param-
eterization of connection and credential details like Java bean, key/trust store
references as shown in Figure 3 (R-5 : Allow for complex model references).
Complementarily the user study resulted into a strong vote for scenario specific
adaptations of the adapter’s behavior. That means, an adapter shall provide
extension points to hook in one or more custom processors, which can be mod-
eled similar to an IFlow [13]. Evidence for such a requirement can be found
in concepts like “channel modules” in SAP’s Process Integration3 middleware
system. This is an extension to adapters, which can be combined to the notion
of “message channel” modeling, similar to the integration process (R-6 : Model
Message Channels). Hence a message channel consists of consumer/producer
adapters and arbitrarily many ordered processors.

Integration Styles. The Message Exchange Pattern (MEP) defines whether a
message is sent inOnly (i. e., one-way) or inOut (i. e., two-way). A “two-way”
message requires an (a)synchronously sent response, while a “one-way” mes-
sage will never result to a response (R-7 : Model MEP). A synchronous mes-
sage exchange requires an immediate response during the initiated communi-
cation (i. e., mostly by event-based adapters), while an asynchronous exchange
allows for an early close of the initiated communication and the response will
be sent via mechanisms like “function/method callback” (R-8 : Model Mes-
sage Synch/Asynch communication). In this context, persistent adapters like
“Web Service-Reliable Message” that receive and store the message, send an
immediate response and then start a transactional redelivery, which represents
“synch/asynch bridge” adapters (R-9 ): Model Message Synch/Asynch or Asynch/Synch
communication). These adapters are necessary to “bridge” asynch. communica-
tion to synch. endpoints and vice versa.
3 SAP Process Integration: http://help.sap.com/nwpi

http://help.sap.com/nwpi


Integration Adapter Modeling 473

Quality of Service. The most common service qualities of an integration system,
which can be induced or supported by adapters are abbreviated as BE, ALO,
EO, EOIO (sorted by the increasing quality level). The Best Effort (BE) messag-
ing can be summarized as “fire-and-forget”, which means that no guarantee for
the delivery of a message is given. If a message shall be delivered At Least Once
(ALO), it has to be persistently stored and redelivered from an adapter or the
integration process (R-10 : Model Message Redelivery (from a Message Store)).

Fig. 4. Adapter Micro-Architecture

In case the message shall be
delivered Exactly Once (EO),
ALO has to be enhanced
by the Idempotent Receiver
[7], which stores the primary
identifier of a message and
filters out known messages
(R-11 : Model an Idempo-
tent Receiver). Although the
receiver itself should behave
idempotent, producer ada-
pters or the integration pro-
cess can try to act in its place.
For some integration cases,
the strict adherence to a mes-
sage sequence is important
(e. g., create business object,

before update). That means, messages shall be send Exactly Once In Order
(EOIO). Therefore, EO is extended by a Resequencer pattern [7], which collects
messages to emit them in the correct order (R-12 : Model Resequencer).

Adapter Architecture and Tasks. Figure 4 draws a conceptional view on the
internal architecture of a common adapter. Each adapter specifies a Connec-
tor or connection handler. The connector establishes a physical connection to
the message endpoints (R-13 : Model Physical Connection). For secure connec-
tions (e. g., user/password, certificates), a Security Handler is used (R-14 : Model
Security Relevant Configurations). Polling consumers might require a Scheduler
for the configuration of the polling interval (cf. similar to R-1 ). For the QoS and
monitoring support (e. g., message and channel monitoring), an operational data
store or a message queue has to be used (R-15 : Model (Queued-) Persistence,
similar to R-10). The counterpart to the transport protocol handling connector
(e. g., HTTP, FTP, JMS) is the Format Conversion (e. g., XML, JSON, CSV).
An adapter shall be able to transform the sender format Fs(msg) to the internal
representation Fcdm(msg) and eventually to the receiver format Fr(msg) (R-16 :
Model Control and Data Flow). The modeled adapter shall be re-used in different
adapter instances/configurations (R-17 : Approach shall allow for re-use).



474 D. Ritter and M. Holzleitner

3 Adapter Modeling Approach

Following the IFlow modeling approach of Ritter [13,14] adapters are repre-
sented as message flows in BPMN (cf. Figure 2). To model integration processes
with “simple” adapter configuration this approach is sufficient, although it over-
defines BPMN message flows, makes the characteristics of an adapter implicit
and does not allow for modeling of complex logic other than on second-level
property sheets. For more complex adapter processing (cf. R-6 ), we subsequently
define an explicitly modeled Adapter Flow similar to integration processes and
discuss basic processing capabilities. We then derive more complex patterns from
the requirements to model capabilities such as (secure) communication patterns
(e. g., request/response and “bridging”) and QoS patterns (e. g., reliable messag-
ing with (transactional) redelivery, idempotent receiver, message resequencer).

3.1 Adapter Flow

An AF replaces the currently used BPMN message flow by an additional BPMN
pool outside the integration process for more complex adapters with the need to
specify an own control-, data- and exception flow. Thus, all messaging capabili-
ties as described in the EIPs can be expressed within AFs. However, the physi-
cal connections to the sender/receiver (R-13 ) are represented by message flows.

Fig. 5. AF message processing patterns

The AF of adapters with several
selectable transport protocols (R-4 ),
represented by connector and proto-
col handler (cf. Figure 4), remain sta-
ble, while the entering message flow
of consumer and the leaving message
flow of producer adapters changes
based on selections. Basic “process-
ing capabilities / patterns”, as mod-
eled in Figure 5, can be used within
AFs, including skipping of processing
steps based on conditions or errors
(top-right) and message redelivery

(bottom-right; R-10 ). These mechanisms are explicitly modeled using BPMN
Exclusive Gateway elements. An adapter can decide to terminate the process-
ing of one message (top-left) or the whole process (bottom-left) in exceptional
situations or through other events. In case of synch. communication, a response
is returned to the sender. When the basic processing capabilities are combined,
more complex “adapter processing” can be expressed. To avoid re-occurring,
complex adapter modeling patterns for communication and QoS support are
required (cf. R-17 ).

3.2 Communication Patterns

The (adapter) communication patterns specify several more complex interactions
of adapters and integration processes within and outside an organization.



Integration Adapter Modeling 475

Communication Styles and Bridge Patterns. Common (business) applications
support interfaces for synchronous (synch) and/or asynchronous (asych) commu-
nication styles. Synch. communication means applications respond to requests
(e. g., with error codes or resulting data), while the requesting application is
blocking in order to get the response (RPC-style). In asynch. communication,
the sending application sends requests without waiting for responses from other
applications and immediately continues with its processing after sending a mes-
sage (non-blocking). However, the sending application may offer callback inter-
faces for getting responses back for it’s previously and asynchronously sent
requests. Integrating applications that do not share the same communication
style requires an adapter that bridges/translates between both communication
styles. Such a bridging adapter is modelled in Figure 6(a), which shows the

(a) Synch-Asynch Bridge (b) Asynch-Synch Bridge

Fig. 6. Adapter Bridge Patterns

modeled data and control flow for a synch to asynch bridge (cf. R-16, R-8 ), in
which the synchronous call follows the inOut message exchange pattern (R-7 ).
The Synch. Call in the integration process is modelled as BPMN Service Task
which connects with a message flow to the Synch-Asynch Bridge BPMN Pool.
The message is forwarded to an Async. Call represented as a BPMN Inter-
mediate Message End Event that connects via a message flow to the External
Participant. It continues with asynch. processing that reacts to Callback mes-
sages in an BPMN Intermediate Message Start Event and forwards the response
to the Synch. Call service task. Following the same pattern, Figure 6(b) shows
a model for a asynch to synch bridge (cf. R-9 ) and includes the handling of
responses and forwarding them to callback interfaces. Both bridge adapter mod-
eling patterns can be reused, applied and adjusted in other IFlows (cf. R-17 ) or
“inlined” to the integration process of an IFlow.

Processing Patterns. The AFs can be modeled to adapt between two integration
processes across tenant or network boundaries (A2A and B2B), for which an



476 D. Ritter and M. Holzleitner

integration process is associated to one tenant or network. In the case of cross-
tenant integration, the IFlow of tenant Ta can adapt to an IFlow in another
tenant Tb by representing the IFlow Tb as an delegate in IFlow Ta and vice
versa. As such, IFlows are either “local” to one tenant, which means that they
are locally visible and modifiable or they are “remote” which means that they
can only be connected from “local” IFlows but not made visible or modified.
Hereby, for synch. communication the “remote” IFlow could be represented as a
collapsed BPMN Pool (which cannot be expanded) and connected to the “local”
integration process with request/response BPMN message flows. For (reliable)
asynchronous communication a shared data store is used to make the necessary
queuing step explicit. As a representative pattern, this “remote” IFlow delegate
can be used to model across networks or IFlows, by changing its type.

3.3 Quality of Service Patterns

The QoS levels (R-10–R-12 ) denote more complex configuration building blocks.
Subsequently, the necessary patterns are defined and mapped to BPMN.

Reliable Messaging. To guarantee that a message is not lost in asynchronous
scenarios the message must be stored into a message store (e. g., database) or
enqueued to a messaging system (e. g., JMS brokers), before the reception is
explicitly or implicitly acknowledged via ack to the sender. As such, an inte-
gration system aims to store the message in the consumer adapter, sending the
ack messages to unblock the sender waiting for a response and to minimize the

Fig. 7. Adapter modeling with message
queuing via data-stores and transactional
subprocess in consumer adapter

possibilities for errors before the per-
sistency step. Similarily, there are
adapters that access a data store/
queue for cross-applications and soft-
ware systems (e. g., JDBC, JMS). AFs
could connect to BPMN data store to
model key and trust stores (cf. R-5 ).
For instance, Figure 7 uses AFs to
model JMS adapters and the access
to queues in a message broker, which
is represented as a BPMN Data Store
(cf. R-15 ). This allows to attach con-
figurations to the data store (such as
connection details) and to the BPMN
Data Association (cf. R-16 ), and the
enqueue/dequeue tasks in the pro-

ducer adapter (cf. R-3 ) to the data store (such as queue/topic names). Through
BPMN Timer Event, the polling behavior of a consumer adapter can be modeled
(R-1 ). For instance, Figure 7 (bottom, right) shows the periodical, transactional
dequeue of messages using a BPMN Task within a transactional subprocess,
which specifies the transactional boundaries. In case of exceptions during the
task processing within these boundaries, the message is not dequeued from the



Integration Adapter Modeling 477

queue. A message redelivery would be attempted in the next polling interval
(cf. R-10 ). Although Topics for publish/subscribe scenarios could be modeled
similarly, they could be represented by BPMN signal end/start events (cf. Section
3.5 in [15]). The transferred message would be determined by the associated
BPMN Data Object and the corresponding events would be identifiable by their
matching names. Clearly this would make the inner mechanics implicit, but
would allow for the modeling of an event-based consumer adapter (cf. R-2 ). For
(reliable) asynchronous, inOut messaging (cf. Figure 8), we assume a “reply-to”
header field attached to the req-msg indicating that the AF (right JMS Adapter)
should reply to the specified queue. The (queued) response is correlated to the
waiting integration process instance by using the identifier of the req-msg.

Fig. 8. Adapter modeling with message queuing via data-stores and explicit modeling
of request/reply via response queues

Idempotency Repository. To support AMO and EO (in combination with Reliable
Messaging), the integration system needs to take care that messages are not sent
twice to the receiver (cf. R-11 ). This is modeled by a flow step the integration
process (or AF) that filters already sent messages, which is preferably executed
just before the message is sent to the receiving application in a producer AF.
Figure 10 shows the filter processing as part of a producer AF (bottom) by
accessing an Idempotency Repository [7], which is represented as a BPMN data
store, storing the identifiers of already processed messages against it checks the
current message identifier.

Message Resequencing. The resequencer (cf. [14]) can be used for In-Order (IO)
scenarios, for which the messages have to be ordered according to a sequence num-
ber. Alternatively, order preserving queues (e. g., specified in JMS) are used to
keep messages in sequence. The EOIO processing additionally requires the com-
bination of Reliable Messaging with redelivery semantics and a filter step using
the Idempotency Repository to guarantee that the messages are sent exactly once
and in order (cf. R-12 ).



478 D. Ritter and M. Holzleitner

4 Examples

Let us apply the rather abstract BPMN AF definitions and integration patterns
to two intriguing integration scenarios, which cover secure, reliable messaging as
well as most difficult QoS configurations. Coming back to the motivating exam-
ple and questions around the visualization (2) and re-configuration (3) of the
expected default exception handling and compensation in the “Reliable Time
Series Normalization” scenario (Section 1) Figure 9 shows the syntax proposal

Fig. 9. “Time Series Normalization” Scenario: Reliable, secure messaging

following our mapping to BPMN. The devices enqueue an encrypted TD mes-
sage to the telemetry queue in the messaging system using an MQTT adapter
(cf. R-6 ). The integration process listens to the queue using a JMS adapter,
which decrypts the received messages (cf. R-14 ) and passes them to the integra-
tion process, where the message content is normalized.

The QoS support is crucial for integration systems. When sending a message
synchronously to a receiver, BE is applied (i. e., delivery will be attempted other-
wise the sender will receive an exception message). In case of asynchronous, reli-
able, in-order messaging this is not sufficient. The message has to be persistently
stored and a retry has to be started to guarantee its delivery (cf. R-10 ), e. g.,
in a message queue, since the sender cannot be notified. In addition, the order
of the messages according to a Message Sequence [7] has to be guaranteed using
a Resequencer pattern (cf. R-12 ). If in addition, duplicate messages are filtered
out during the processing (cf. R-11 ), the QoS is called EOIO, syntactically in
Figure 10. The consumer AF starts with a synchronous part by storing the mes-
sage and sending a response. Hereby, the “Redelivery on Exception” sub-process
acts as a combined ALO, synch/asynch bridge pattern, which then starts the
asynchronous delivery of the message to the integration process, which collects
messages and orders them along defined sequences using a “Resequencer” sub-
process pattern and synchronously emits the messages to the producer adapter.
The producer adapter checks whether a message has already been processed and
synchronously sends it to the receiver. The receiver’s response (i. e., acknowl-
edgement or exception) is passed to the integration process, which triggers a
message redelivery on exception.



Integration Adapter Modeling 479

5 Qualitative Analysis and Experiences

This section discusses “ex-post”, practical experiences with the defined adapter
modeling based on an evaluation with integration experts from different enter-
prises as interviews, workshops and surveys (cf. Suppl. Material [15]). The

Fig. 10. “EOIO”: message redelivery in the consumer
adapter, resequencer in the integration process, and idem-
potent message handling in the producer adapter

evaluation of the app-
roach can be sum-
marized to the topics
subsequently discus-
sed. In general, the
integration models
with an explicit AF
are experienced as
more complex (i. e.,
contradicting the ai-
med usage of BPMN
by business experts
[11]), however, the
visibility of the de-
fault adapter char-
acteristics allow for
better insights into
the integration flow
modeling, ease of use,
a more intuitive and
faster modeling thro-
ugh the identified
patterns.

Modeling Complexity. Some BPMN syntax elements are not applicable to the
integration environment in an useful way. For example, the lane element has no
semantic meaning and could only be used to structure certain aspects of the
integration systems, such as distinguishing normal logic from AF logic. Though
this would increase the size of the diagram leading to a confusing model. Addi-
tionaly, in Figure 7, for queuing with a message broker the data association to
the message broker is denoted with the queue name to/from messages should be
enqueued/dequeued. Although this was rated as complex (e. g., the adapter on
top-left communicates with the adapter on bottom-right, while the adapter on
top-right seems more related to the adapter on top-left), it was favored over the
BPMN Signal approach proposed for topics. In case of many connections to the
message broker, a partitioning of the IFlow into several smaller diagrams would
help to make the single parts more understandable (cf. “in-context” editing),
while tool support would be needed to show the complete IFlow on demand.
The alternative of modeling several instances of one broker in one IFlow, which
are then connected to related adapters only, was not seen as desirable solution.



480 D. Ritter and M. Holzleitner

Modeling Preferences. The modeling of AFs was very well received, while the
participants differentiated between producer and consumer adapter modeling.
The producer adapter modeling allows for adding scenario-specific “pre-
processing” capabilities to the system, before entering the integration process
(e. g., especially for bridges). The consumer AFs were seen limited to the QoS
support, while potential “post-processing” logic could be executed in the inte-
gration process. However, from a modularity and resource consumption point of
view, a clear separation of adapter and integration process logic was received
well. The explicit modeling of security related topics like key stores was con-
troversially discussed. While participants with a more technical background like
the proposed approach (e. g., helping them to be precise in the security aspect
modeling), more business related participants complaint about the additional
complexity. Both parties agreed that a more explicit modeling of the inner work-
ings of a message broker is not necessary and the transactional de-queuing with
the BPMN Transactional Sub-Process was rated intuitive.

6 Related Work

Recently, the topics of “integration adapter” and QoS were mainly discussed in
the areas of “Service-oriented Architectures” (SOA) and connectivity to “Data
Warehouses” (DW). However, the closest related work can be found in the Enter-
prise Integration Pattern (EIP) icon notation collected by Hophe et al. [7]. The
EIP notation defines modeling building blocks for core integration aspects (e. g.,
resequencer, publish/subscribe, durable (topic) subscriber and channel adapter).
In addition, to these pattern, our approach has a representation of an idempo-
tent receiver, a messaging system for “store-and-forward” processing (guaranteed
message delivery) and different levels of service quality can be modeled.

Quality of Service. Most of the QoS definitions, from this work, can be found in
standard industry middleware systems, too. For instance, the WebLogic system
[9] knows EO, ALO as “duplicates only mode”, and “At-Most Once” (AMO),
which can be modeled by our approach through an idempotent receiver pattern.
From a modeling point of view, adapters are reduced to one icon and a property
sheet, similar to the EIP icon notation. Closer to our approach, Gönczy et al
[5] define a proprietary meta-model for reliable messaging with acknowledge-
ments for some QoS (i. e., ALO, EO) and target to apply verification approaches
using graph transformations [6]. However, other service qualities, e. g., IO, AMO,
EOIO, are currently undefined.

Model-driven Adapter Development and Re-configuration. There are some app-
roaches for automatic adapter generation and re-configuration from the SOA
domain, to which we aligned our terminology, however, they do not define a
(conceptual) modeling approach for integration adapters. Nezhad [4] summa-
rizes work on model-driven development of web services, while highlighting the
importance of a QoS support. Other approaches target the self-adapting adapters



Integration Adapter Modeling 481

in terms of signature-/protocol-level and quality related re-configurations and
planning (e. g., [19]). We consider these approaches complementary to our work.

Data-Intensive Adapter Modeling. Through data warehouse connectivity scenar-
ios, the Extract-Transform-Load (ETL) domain gained interest in the conceptual
modeling of more “data-intensive” adapters (e. g., [17]). Although characteris-
tics like QoS are not relevant for data warehouse connectivity, these modeling
approaches can be seen as domain-specific, complementary work. For instance,
Akkaoui et al. mapped ETL processes to BPMN [1] and provided a mainte-
nance framework for [2], which can be seen as subset of our approach. There are
several UML-based approaches, e. g., for modeling data mining with time-series
data [21] or ETL data flows [18], which mostly define new icon notations, similar
to the EIP notation. Their focus on the data flow limits the modeling to data
transformation.

7 Concluding Remarks

In this paper, we (a) define common adapter types within integration systems
(starting from literature and small empirical studies), (b) extend our BPMN-
based definition of IFlows [13,14] by AF constructs and patterns to make the
default adapter behavior visible, and thus (c) provide a basis for a scenario-
specific adapter configuration. We started with a systematical analysis of com-
mon adapter characteristics (cf. R-1–9, R-13–17), spanning to edge cases like
QoS modeling (cf. R-10-12).

The mapping of these adapter characteristics to BPMN allowed us to link
them to the integration flows and define common integration adapter processing
capabilities and patterns. We applied our approach to the real-world “inter-
net of things” integration scenario and the “exactly-once-in-order” QoS case.
The evaluation exclusively targets the syntactical feasibility and applicability of
the approach. The presented examples show some minor shortcomings due to
BPMN’s focus on control over data flow and advice to change the proposed,
which we solved by explicit modeling of AFs as separate BPMN pools.

The brief discussion of the experiences from the presented and many more
real-world case studies as well as integration expert and partner interviews show
the value of the modular, pattern-based and explicit modeling approach, how-
ever, highlights topics for further (quantitative) analysis. A solution for some of
the mentioned issues with BPMN can be found in further investigations of the
possibilities to use BPMN extensions. However, as pre-existing elements may not
be modified and the syntax of BPMN models (such as conditional data flows)
may not be changed, the mitigations might go beyond the current BPMN syntax.

References

1. El Akkaoui, Z., Mazón, J.-N., Vaisman, A., Zimányi, E.: BPMN-Based Conceptual
Modeling of ETL Processes. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2012.
LNCS, vol. 7448, pp. 1–14. Springer, Heidelberg (2012)



482 D. Ritter and M. Holzleitner

2. Akkaoui, Z.E., Zimányi, E., Mazón, J., Trujillo, J.: A bpmn-based design and
maintenance framework for ETL processes. IJDWM 9(3), 46–72 (2013)

3. Anstey, J., Zbarcea, H.: Camel in Action. Manning (2011)
4. Benatallah, B., Casati, F., Toumani, F., Ponge, J., Nezhad, H.R.M.: Service mosaic:

A model-driven framework for web services life-cycle management. IEEE Internet
Computing 10(4), 55–63 (2006)

5. Gnczy, L., Varr, D.: Modeling of reliable messaging in service oriented architec-
tures. In: International Workshop on Web Services Modeling and Testing (2006)

6. Gönczy, L., Kovács, M., Varró, D.: Modeling and verification of reliable messaging
by graph transformation systems. Electr. Notes Theor. Comput. Sci. 175(4), 37–50
(2007)

7. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley, Boston (2003)

8. Meyer, A., Smirnov, S., Weske, M.: Data in business processes. EMISA Forum
31(3), 5–31 (2011)

9. Mountjoy, J., Chugh, A.: WebLogic - the definitive guide. O’Reilly (2004)
10. Müller, D.: Management datengetriebener Prozessstrukturen. PhD thesis (2009)
11. O. M. G. (OMG). Business process model and notation (bpmn) version 2.0. Tech-

nical report (January 2011)
12. Reese, G.: Cloud Application Architectures: Building Applications and Infrastruc-

ture in the Cloud. O’Reilly Media Inc. (2009)
13. Ritter, D.: Experiences with Business Process Model and Notation for Modeling

Integration Patterns. In: Cabot, J., Rubin, J. (eds.) ECMFA 2014. LNCS, vol. 8569,
pp. 254–266. Springer, Heidelberg (2014)

14. Ritter, D.: Using the business process model and notation for modeling enterprise
integration patterns. CoRR, abs/1403.4053 (2014)

15. Ritter, D., Holzleitner, M.: Qualitative Analysis of Integration Adapter Modeling.
CoRR, abs/1503.02007 (2015)

16. Ritter, D., Sosulski, J.: Modeling exception flows in integration systems. In: 18th
IEEE International Enterprise Distributed Object Computing Conference, EDOC
2014, Ulm, BW, Germany, September 3–5 (2014)

17. Simitsis, A., Vassiliadis, P.: A methodology for the conceptual modeling of ETL
processes. In: The 15th Conference on Advanced Information Systems Engineering
(CAiSE 2003), Klagenfurt/Velden, Austria, 16–20 June, Workshops Proceedings,
Information Systems for a Connected Society (2003)

18. Trujillo, J., Luján-Mora, S.: A UML Based Approach for Modeling ETL Processes
in Data Warehouses. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuermann, P.
(eds.) ER 2003. LNCS, vol. 2813, pp. 307–320. Springer, Heidelberg (2003)

19. van den Heuvel, W., Weigand, H., Hiel, M.: Configurable adapters: the substrate
of self-adaptive web services. In: 9th International Conference on Electronic Com-
merce: The Wireless World of Electronic Commerce, Minneapolis, USA (2007)

20. van der Aalst, W.M.P.: The application of petri nets to workflow management.
Journal of Circuits, Systems, and Computers 8(1), 21–66 (1998)

21. Zubcoff, J.J., Pardillo, J., Trujillo, J.: A UML profile for the conceptual mod-
elling of data-mining with time-series in data warehouses. Information & Software
Technology 51(6), 977–992 (2009)


	Integration Adapter Modeling
	1 Introduction
	2 Adapter Modeling Characteristics
	3 Adapter Modeling Approach
	3.1 Adapter Flow
	3.2 Communication Patterns
	3.3 Quality of Service Patterns

	4 Examples
	5 Qualitative Analysis and Experiences
	6 Related Work
	7 Concluding Remarks
	References


