Extracting Decision Logic from Process Models

Kimon Batoulis! ™), Andreas Meyer!, Ekaterina Bazhenova!, Gero Decker?,
and Mathias Weske?

! Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
{kimon .batoulis,andreas.meyer,ekaterina.bazhenova,mathias. weske}@hpi .de
2 Signavio GmbH, Berlin, Germany
gero.decker@signavio.com

Abstract. Although it is not considered good practice, many process
models from practice contain detailed decision logic, encoded through
control flow structures. This often results in spaghetti-like and complex
process models and reduces maintainability of the models. In this con-
text, the OMG proposes to use the Decision Model and Notation (DMN)
in combination with BPMN in order to reach a separation of concerns.
This paper introduces a semi-automatic approach to (i) identify deci-
sion logic in process models, (ii) to derive a corresponding DMN model
and to adapt the original process model by replacing the decision logic
accordingly, and (iii) to allow final configurations of this result during
post-processing. This approach enables business organizations to migrate
already existing BPMN models. We evaluate this approach by implemen-
tation, semantic comparison of the decision taking process before and
after approach application, and an empirical analysis of industry process
models.

Keywords: Process modeling - Decision modeling - BPMN - DMN

1 Introduction

Business process models are important artifacts in today’s business organizations,
since they provide expressive means to represent business logic. The corner stones
of business process models are work activities, their logical ordering, data, and
organizational responsibilities. With these models, organizations can improve,
control, automatize, and measure their processes effectively [15]. In our studies of
business process models from our project partners, we have also found situations,
in which business process models were misused for modeling decision logic. The
respective process models expose a complex routing structure, consisting of many
exclusive gateways that represent different aspects of a decision. As a result, these
process models are hard to comprehend, to implement, and to maintain.

In this paper, we argue that decision logic should be modeled separately
from the process logic. Following the “separation of concerns” paradigm, this
allows to keep the decision logic in a dedicated decision model and the process
logic in a dedicated process model. To take advantage from existing information,

© Springer International Publishing Switzerland 2015
J. Zdravkovic et al. (Eds.): CAiSE 2015, LNCS 9097, pp. 349-366, 2015.
DOI: 10.1007/978-3-319-19069-3_22

350 K. Batoulis et al.

we introduce an approach to semi-automatically detect decision logic in busi-
ness process models and to generate decision models and corresponding decision
tables from process models’ decision logic. These decision models conform to the
recently published Decision Model and Notation (DMN) [9] standard for deci-
sion modeling. Process models are represented with the industry standard: the
Business Process Model and Notation (BPMN) [8]. The conceptual results are
evaluated by sets of sample business processes from industry.

The paper contains two main contributions shaping its structure. First, we
discuss the need to separate process and decision modeling (Section 2). Second,
we introduce a semi-automatic approach to identify decision logic in business
processes pattern-based (Section 3), to map these patterns into DMN models
and to adapt the process model structure accordingly (Section 4) before we allow
configuration of the results in post-processing (Section 5). Afterwards, Section 6
evaluates our approach and introduces our implementation. Section 7 is devoted
to related work and Section 8 concludes the paper.

2 Process and Decision Modeling

Business process modeling is well established in business organizations and is
highly supported by modern tools. Modeling languages as BPMN [8] are well
suited for process experts as well as — thanks to tool support — end users. Pro-
cess models allow documentation of business operations, enactment of business
processes following the given execution semantics, and (automatic) process analy-
sis regarding correctness, improvement, compliance, etc. In the course of process
execution, multiple decisions are taken that influence the mentioned areas [2].
Analysis of industry processes reveals that such decisions include the assignment
of actual resources to activities answering the question who shall execute a spe-
cific activity or evaluating a given set of data to calculate a decision indicating
which path shall be followed at decision points (branching behavior). Further-
more, exceptional behavior is handled by pre-specified procedures for each case.
Especially, in the insurance and banking domains, regulatory compliance highly
influences process execution by specifying which guidelines must be followed.

Based on the analysis of 956 real world
process models from, amongst others, insur-
ance, banking, and health care, we recog-
nized that part of the logic leading to deci-
sions is often encoded in process models
resulting in models that are hard to read
and to maintain. BPMN allows to represent
decisions and their impact or consequence
respectively. However, BPMN is not meant
to represent the detailed decision logic since
modeling the decision logic often results in
spaghetti like models (see Fig. 1 for an
abstract example) or extensive natural lan- Fig. 1. Misuse of BPMN for decision
guage descriptions explaining the decision logic modeling

Extracting Decision Logic from Process Models 351

taking process that are not analyzable automatically. Thus, decision logic mod-
eling is out of scope for BPMN. Instead, decision tables [14] and further decision
modeling concepts [7,16] are a reasonable and compact method to describe deci-
sion logic in scenarios with many input parameters. There exists the upcoming
OMG standard for modeling decision diagrams: the Decision Model and Notation
(DMN) [9]. DMN is meant to supplement BPMN and allows the “separation of
concerns” [10] between process and decision logic modeling based on the actual
scope of both modeling techniques. BPMN’s scope comprises the business logic
containing information on what activities need to be executed in which order
by which resource utilizing which data objects while DMN covers the decision
logic modeling by specifying which decision is taken based on which informa-
tion, where to find it, and how to process this information to derive the decision
result. Since both worlds existed long without proper integration, organizations
misused BPMN by including decision logic into process models.

Thereby, data-based decisions are most common. A data-based decision is
represented by a decision structure consisting of single and compound decision
nodes we refer to as split gateways representing exclusive or inclusive alternatives
based on external information. These decisions can be classified into three types:
(i) An explicit decision task with succeeding branching behavior, e.g., in a task,
the decision about a customer’s loyalty is taken and based on the result, different
actions (e.g., give or deny discount) are taken. (ii) Branching behavior is encoded
in decision points, e.g., split gateways with decision logic (about the customer’s
loyalty) encoded in annotations to the gateways or to edges originating from
such gateway. (iii) There exists a decision task without succeeding branching
behavior, e.g., set discount for a customer based on her loyalty.

BPMN
Identification
of decision Model Post-processing
BPMN logic patterns refactoring (Section 5)
(Section 4)

(Section 3)

DMN

Fig. 2. Semi-automatic three step approach for process and decision logic separation

Fig. 2 visualizes the three main steps of our approach and the corresponding
input and output. Given a BPMN model, we first identify decision logic pat-
terns based on the specifications of Section 3. From the industry process model
collections, we identified the three most often occurring patterns. We consider
control-flow based decision structures only. Based on our insights into the indus-
try process models, we defined three decision structures based on the occurrence
of activities and gateways. However, we allow utilization of such information
in the refactoring or the post-processing steps which follow in this order upon
identification completion. The identification step is completed if a stakeholder
approved the found patterns to be decision structures. Thereby, multiple pat-
terns may match for parts of the process model such that the stakeholder also

352 K. Batoulis et al.

must decide which is the appropriate pattern. The refactoring is presented in
Section 4 and comprises the translation of the identified patterns into a DMN
model and the adaptation of the process model. The post-processing step, see
Section 5, enables configuration of the resulting BPMN and DMN model. Two
configuration options and their automatic application are discussed in the cor-
responding section. Finally, both models, the BPMN process model and DMN
decision model are the outputs of our semi-automatic approach.

3 Patterns for Control-Flow-Based Decision Identification

We analyzed seven industry process model collections from the domains of insur-
ance, banking, healthcare, energy, and information technology with each collec-
tion containing between 14 and 334 process models summing up to 956 process
models in total. From these process models, the majority, 63%, contain data-
based decisions. Note, that some process models contain multiple types of deci-
sions. So, in total we observed 1,074 decision occurrences. Following the empirical
results, in this paper, we focus on process models with data-based decisions that
are taken within tasks directly preceding a split gateway where this gateway
only routes the process flow based on the taken decision: branching behavior
with explicit decision task. Fig. 3 presents such decision structure consisting of
a single gateway in an insurance environment.

Each decision structure is a fragment of the process model the decision is
taken in. We formally define the concepts of process model and process fragment
as follows.

Definition 1 (Process model). Process model m = (N, D, X ,C, F,a,§) con-
sists of a finite non-empty set N of control flow nodes, a finite set D of data
nodes, a finite set X' of conditions, a finite set C' of directed control flow edges,
and a finite set F' of directed data flow edges. The set of control flow nodes
N = AU E UG consists of mutually disjoint sets A C T'U S of activities being
tasks T or subprocesses S, set E of events, and set G of gateways. C C N x N
is the control flow relation such that each edge connects two control flow nodes.
F C (DxA)U(Ax D) is the data flow relation indicating read respectively write
operations of an activity with respect to a data node. Let Z be a set of control
flow constructs. Function o : G — Z assigns to each gateway a type in terms of
a control flow construct. Function £ : (G x N) N C - X assigns conditions to
control flow edges originating from gateways with multiple outgoing edges. ¢

Definition 2 (Process fragment). Let m = (N, D, X, C, F, «, £) be a process
model. A process fragment pf = (N', D', X' C’', F’',~, o) is a connected subgraph
of process model m such that N C N, D' C D, Y C X C'" CC,and F' C
F. Functions v and o are restrictions of functions a and £ respectively with
corresponding new domains. o

We use subscripts, e.g., Ap, am, and Ny, to denote the relation of sets and
functions to process model m or process fragment pf and omit the subscripts

Extracting Decision Logic from Process Models 353

where the context is clear. The set of process fragments of process model m is
denoted as PF,,. In this paper, we consider XOR and IOR as possible control
flow constructs referring to an exclusive choice and an inclusive choice respec-
tively. An XOR or IOR gateway with two or more outgoing edges is called split
and an XOR or IOR gateway with two or more incoming edges is called join,
whereby we assume that such gateway is either a split or a join. A gateway with
multiple incoming and outgoing edges is transformed in two succeeding gateways
with one representing the join and the other the split in this order.

As usual, we assume the process model to be structurally sound, i.e., m
contains exactly one start and one end event and every node of m is on a path
from the start to the end event. Further, we require each process fragment pf to
consist of a single start node being an activity, multiple end nodes being activities
(one for each alternative), each node is on a path from the start to some end
node, and all nodes must not be a join gateway. We assume that decisions are
taken in distinct tasks such that a split gateway only routes the process flow
based on pre-calculated decision values, since it is good modeling practice to do
s0. “Omission of this decision task is a common mistake made by inexperienced
BPMN users” [14].

We chose the top-three patterns in terms of occurrences in the industry pro-
cess models as most prominent examples to show feasibility of combining BPMN
and DMN automatically. A generalization of these patterns is out of scope for
this paper due to the diverse nature of decision modeling. Next, we introduce
these three identified patterns. Each pattern is represented as process fragment.
Thereby, we utilize a fragment of a process model from the insurance domain
dealing with assigning the correct discount for a customer. In the examples, for
clarity reasons, we sometimes visualize two outgoing edges only for a split gate-
way. However, in practice, there can be any number of edges as covered by the
corresponding formalisms.

3.1 P1 — Single Split Gateway

A fragment matching pattern P1 contains a
decision structure of a task preceding a sin-
gle split gateway with at least two outgoing
control flow edges. On each path, an activity
directly succeeds the split gateway. Thereby,
pattern P1 subsumes optionality decisions as
special case; paths directly connecting split
and join gateways get automatically extended
by 7-transitions. We assume, the decision is
taken in the task preceding the gateway. Fig. 3
presents a corresponding process fragment
with three alternative paths at the split gateway; depending on the modeling
style, the bottom activity assign no discount might not have been modeled such
that it would have been added as 7-transition instead. Since, the gateway is
of type XOR, only one alternative can be chosen. Based on the result of task

assign 12%
discount

assign 5%
discount
assign no
discount
Fig. 3. Process fragment repre-

senting a split gateway with more
than 2 outgoing edges

manage
discount

354 K. Batoulis et al.

manage discount, i.e., the taken decision about the customer’s loyalty, the dis-
count assigned to the customer is set to 12%, 5%, or 0% respectively. Possible
results of the decision are fixed by the annotations on the edges originating from
the split gateway.

Formally, we specify pattern P1 as follows.

Definition 3 (Pattern P1). Let pf be a process fragment of process model
m and let X, denote the conditions assigned to control flow edges. Then, pf
represents P1 if
o |Gprl=1A]ge| >2A(v(9) = XORV~(g9) =IOR), g € Gpy (the fragment
contains exactly one split gateway),
o |Ap¢| =|ge|+1 (the number of activities of pf equals the number of outgoing
edges! of the split gateway g plus 1),
o eg=tA|eg| =1,t € Ty (task t is the only predecessor of the split gateway),
o | et| =0 (task t is the start node of pf),
o Va € A,f\t : ea = g (all activities other than the one preceding the split
gateway g directly succeed g),
o Va € Apr\t : |ae| =0 (all activities other than the one preceding the split
gateway ¢ are end nodes of pf), and
o Va € A,p\t,c € Cpy such that (g,a) = c: o(c) € X,y (all outgoing edges of
the split gateway are annotated with a condition). o

3.2 P2 — Sequence of Split Gateways (Decision Tree)

A fragment matching pattern P2 contains
a decision structure of a task preceding a
split gateway with at least two outgoing con-
trol flow edges. On each path, an activity
or another split gateway with at least two
outgoing control flow edges directly succeeds
the split gateway. In case of a gateway, this
proceeds iteratively until all paths reach an
activity; i.e., on each path from the first split
gateway to some end node of the fragment, Fig.4. Process fragment repre-
there exists exactly one activity — the end senting a sequence of split gate-
node. We assume, all decisions are taken in the ~Wways that represents a decision tree
task preceding the first split gateway. Fig. 4

presents a corresponding process fragment with altogether four alternative paths
after the first split gateway. Since, all gateways are of type XOR, only one alterna-
tive can be chosen. The actual routing based on the taken decisions is distributed
over two split gateways. Based on the result for the customer loyalty, the second
routing decision is either taken based on the longevity of the customer rela-
tionship (loyal customer) or the age of the customer (non-loyal customer). Due

assign 12%
discount

25 years

assign 5%
discount

manage
discount

assign 3%
discount

<65 years

! The number of outgoing (incoming) edges directly translates to the number of direct
successors (predecessors) and vice versa.

Extracting Decision Logic from Process Models 355

to the dependency of a routing decision on the ones taken before, this pattern
represents a decision tree. Analogous to pattern P1, the possible results of the
decision are fixed by the annotations on the edges originating from some split
gateway.

Formally, we specify pattern P2 as follows.

Definition 4 (Pattern P2). Let pf be a process fragment of process model
m and let 3, denote the conditions assigned to control flow edges. Then, pf
represents P2 if

o Vg € Gpr:lge| >2A(v(9) = XORV v(g) = IOR) (all gateways of the
fragment are split gateways),
JteAps:|ot]=0AVa € App\t: ea =1 (tis the start node of pf),
Va € App\t : |a ®| =0 (activities other than the start node ¢ are end nodes
of pf),
Vg € Gpy : Vn € go : n € App UGpy (all successors of a gateway are an
activity or a gateway), and
Va € Apf\t,g € Gpy,c € Cpy such that (g,a) =cV (9,9) =c:0(c) € Dy
(all outgoing edges of a split gateway are annotated with a condition).

o O

o

o

<&

3.3 P3 — Sequence of Split Gateways Separated by an Activity

A fragment matching pattern P3 contains a decision structure of a task preceding
a split gateway with at least two outgoing control flow edges. On each path, an
activity or another split gateway with at least two outgoing control flow edges
directly succeeds the split gateway. A
task — a specific type of activity —
that succeeds a split gateway may be
succeeded by another split gateway.
Otherwise, it is an end node of the
process fragment. Activities of type ,-i assign 5%
subprocess are also end nodes of the

fragment. Iteratively, this proceeds Fig.5. Process fragment representing a
until all paths reach an activity that Sequence of split gateways separated by an
is not succeeded by some split gate- 2ctvity

way. Fig. 5 presents a corresponding

process fragment with altogether three alternative paths after the first split gate-
way. Since, all gateways are of type XOR, only one alternative can be chosen.
Each task of this process fragment that is succeeded by a split gateway (tasks
manage discount and check longevity in Fig. 5) takes the actual decisions for the
subsequent routing decisions. In case there exist multiple split gateways (see deci-
sion tree in pattern P2), the task takes the decisions for the whole decision tree.
This means, this pattern can be composed of multiple decision trees as well as
single split gateways. Since multiple decisions are arranged in sequence, we con-
sider this structure as additional pattern to preserve the decision dependencies
instead of handling each decision separately. In Fig. 5, the choice between 12%

manage
discount

356 K. Batoulis et al.

and 6% discount is taken based on two decisions (loyalty and longevity) while
granting 5% discount is clear after the first decision for non-loyal customers.
Formally, we specify pattern P3 as follows.

Definition 5 (Pattern P3). Let pf be a process fragment of process model
m and let X,y denote the conditions assigned to control flow edges. Then, pf
represents P38 if
o Vg € Gpr:lge| >2A(v(g) = XORV v(g) = IOR) (all gateways of the
fragment are split gateways),
o JteAyp:|et]=0AVaec Ayp\t:ea =1 (tis the start node of pf),
o Va € Apy such that [ae | =1:a € T,y (all activities being no end node are
a task),
o Vg € Gpy:¥n € ge:n e Ay UG, (all successors of a gateway are an
activity or a gateway),
o Vn € Nps such that [lne| =0:n € A, (all end nodes are activities),
o Va € Apf\t,g € Gps,c € Cpy such that (g,a) =cV (9,9) =c:0(c) € Ty
(all outgoing edges of a split gateway are annotated with a condition).
o

3.4 Pattern Identification Procedure

Given a process model, we check for the existence of decision logic by following
the steps as shown in Fig. 6. For pattern identification, we first determine for all
pairs of directly succeeding control flow nodes where the first one is a task, the
decision task, and the second one is a split gateway. For each such pair of nodes,
we traverse forward the process model and check for existence of a control flow
structure aligning to the patterns defined above.

vf check for further pattern required \
Identify pairs | for |Determine fragment wrt. . checked for |Select decision
of task + split | each termination condition Assign patterniy patterns fragments

Fig. 6. Visualization of pattern identification process

For pattern P1, we check whether each path originating from the split gate-
way proceeds with an activity; such fragment is referred to pattern P1. Otherwise,
P1l-identification is stopped. For pattern P2, we traverse forward on each path
until we identify a non-split-gateway control flow node, e.g., an activity or a join
gateway, directly succeeding some split gateway. The initial split gateway must
be followed by at least one other split gateway. Otherwise, P2-identification is
stopped. For pattern P3, we traverse forward on each path until we identify a
task that is directly succeeded by some control flow node that is no split gateway
or until we identify a subprocess directly succeeding a split gateway. In case a
split gateway is not succeeded by an activity or another split gateway or if a
task is not succeeded by a split gateway, P3-identification is stopped.

Extracting Decision Logic from Process Models 357

After fragment determination, the fragment is referred to the pattern it was
checked for if it was not stopped. Otherwise, the assignment is skipped. After
checking each determined pair, the stakeholder gets presented all fragments that
refer to some pattern and is required to decide which actually represent a decision.
Thereby, process fragments indicating some decision may overlap. This needs
to be resolved by the stakeholder resulting in non-overlapping fragments. For
instance, consider the fragment f represented in Fig. 5. It refers to pattern P3.
But there also exist two other fragments f1, fs referring to pattern P1 and both
are part of f — tasks manage discount and check longevity represent start nodes
of fragments f; and fo. The specification of non-overlapping fragments that
actually represent a decision structure concludes the first step as visualized in
Fig. 2.

4 Translation of BPMN Decision Logic to DMN

This section discusses the translation of a given process fragment referring to
one of the introduced patterns to a DMN model. Before detailing the algorithm,
we briefly introduce the Decision Model and Notation (DMN) and provide an
example.

4.1 Decision Model and Notation

DMN defines two levels for modeling decision logic, the decision requirements
level and the decision logic level. The first one represents how decisions depend
on each other and what input data is available for the decisions. Therefore,
these nodes are connected with each other through information requirement
edges. A decision may additionally reference the decision logic level where its
output is determined through an undirected association. The decision logic level
describes the actual decision logic applied to take the decision. Decision logic
can be represented in many ways, e.g., by an analytic model or a decision table.
In this paper, we utilize decision tables.
Fig. 7 shows an exam-

ple decision model; decisions

are rectangles, input data are manage discount table
. _ ‘ check ‘

ellipsis, information require ‘ Loyalty ‘ ‘ longevity |

ment edges are solid, and the oyaiy tabie < check longevity table
decision table association is ("clentinfo

dashed. The example is based Longevity table

on the fragment in Fig. 5 from

the insurance domain. The Fig. 7. Example decision model referring to Fig. 5
decision to be taken refers to

the discount given to a customer. The corresponding logic is defined in the
associated decision table manage discount table. The decision cannot be taken
directly, since it depends on second level decisions. Information about Loyalty
and Longevity needs to be considered and the results of these decisions are

358 K. Batoulis et al.

referenced in the manage discount table. Loyalty can directly be derived from
the input data client info while check longevity requires the result of Longevity.

4.2 Decision Model Extraction Algorithm

Next, we discuss the derivation of decision models from a process fragment satis-
fying one of the patterns described above. This means that the decision encoded
in the fragment is partitioned into a top-level decision connected to sub-decisions
with optional input data in DMN. If the decision logic is visible in the process
model, we also provide associated decision tables. For this purpose, we devised
Table 1 of corresponding model elements that dictates how both the decision
requirements level and the decision logic level are constructed.

Table 1. Mapping of BPMN constructs to DMN constructs and the corresponding
formalism representations. The black-lined constructs are affected by some mapping
while the gray-lined constructs set the context where required.

BPMN DMN ‘ BPMN DMN

& - | @ T

A > 1 N c 1
B A [D
A B E output
C X g ol
X h 02
A
Y .

A —».-—> B T

The left part of row one shows that data-based split gateways are mapped
to DMN decision elements because often the data on which the routing is based
results from a decision. For example, in Fig. 5, the value of Loyalty may need
to be inferred from other data such as the number of purchases made so far.
Contrarily, note that the value of Longevity in Fig. 5 can be observed directly so
that in this case the gateway does not need to be mapped to any DMN element.
However, since it is hard to differentiate these two situations automatically, the
default is to map gateways to independent decision elements. The stakehold-
ers can then decide during post-processing whether or not this is necessary, as
described in Section 5.

The right part of row one shows that each BPMN decision task (tasks pre-
ceding a gateway) is mapped to a DMN decision element, which is additionally
associated with a decision table. Notice that we are able to specify decision tables
for decision tasks (right part of row one) but not for gateways (left part). This is
because the concrete value of the variable on which the gateway routing is based

Extracting Decision Logic from Process Models 359

usually is set by the task preceding it, and we cannot derive how this is done by
only looking at the process model. In case of decision tasks, the situation is dif-
ferent since we can follow each path starting from task A and ending at another
task and thereby construct a decision table, as will be explained below for the
right part of row three. Because the decision table associated with a decision
task will contain the value of the gateway variable, we map the connection of a
decision task A and a succeeding gateway B in BPMN to a decision dependency
between A and B in DMN. This is shown in the left part of row two.

The right part illustrates how BPMN data nodes are represented in DMN
models, if they are available. As just mentioned, we assume that the decision
task sets the following gateway’s variable. If a data node is connected to this
decision task, we assume that the data node is used to arrive at this value. Con-
sequently, in the decision model, the data node is mapped to a DMN input data
element providing input to the decision element corresponding to the gateway.
The mapping shown in the left part of row three is similar to the one directly
above. Decision task B succeeds A without further decision tasks in-between
them. Then, in the decision model, decision A uses the output of B as input.

Finally, the right part of row three indicates how decision tables are derived.
In general, decision tables consist of rules (represented as rows) having one or
more conditions and one conclusion, the columns. Each decision table is associ-
ated with one decision element (as can be seen in the right part of the first row).
The decision table belonging to decision task E will be made up of all gateways
that either follow E or another gateway. The gateway labels are mapped to col-
umn headers, and the edge annotations to corresponding column values. There
will be as many rows as there are individual paths starting from task E and
ending at another task. If any of the gateways on the paths is of type IOR, the
decision table’s hit policy is set to multi since several paths (or rows) can be
chosen; otherwise, single hit is chosen. The header of the conclusion column is
derived from the decision task’s label and placeholders are used for its cell values.
They are used directly in the refactored process model and can be concretized
by the process stakeholders during post-processing.

4.3 Exemplary Decision Model Extraction

This section gives an example for the decision model extraction step described
in the previous section using the process fragment satisfying pattern P3 intro-
duced in Section 3. The extraction procedure is best explained with the help
of a figure that illustrates the correspondences shown in Table 1 using concrete
process and decision models. On the left side of Fig. 8, one can see the process
fragment, whereas on the right side the decision model is shown. The latter
can be divided into the decision requirements level (top) and the decision logic
level (bottom) consisting of decision tables. Also, we inserted arrows to point
out the correspondences of the two models’ elements. For the sake of clarity, we
omitted arrows when the correspondence was already shown by another arrow.
For example, arrow 1 shows that the process model’s decision task manage dis-
count corresponds to the decision element manage discount in the decision model

360 K. Batoulis et al.

manage discount table

check longevity table

client _Tcheck Tongevity
. Longevit
BV output 5
T 25 a
I ‘ assign 6% <5 b
discount check Tongevit manage
manage 6 || Loyalty sevity . 8
discount ; output discount output
yes a c
yes b d
no - e

Fig. 8. Exemplary mapping for pattern P3: 1 — from BPMN activity to DMN decision;
2 — from BPMN gateway to DMN decision; 3 — from BPMN data node to DMN input
data; 4 — from DMN decision table reference to actual DMN decision table; 5 — from
DMN rule conclusions of sub-decision to DMN rule conditions; 6 — from BPMN gateway
to DMN rule conditions

(right part of row one in Table 1). Consequently, we did not draw an arrow for
the decision task check longevity.

Arrow 2 illustrates the left part of row one of Table 1 by mapping the gateway
labeled Loyalty? to an equivalent decision element. The correspondence between
BPMN data nodes and DMN input data elements (right part of row two in
Table 1) is demonstrated by arrow 3. Note that the connections between the data
node and the tasks in the process model result in connections between the gate-
way decision elements and the input data in the decision model. Furthermore,
the mapping of the left part of row two in Table 1 is demonstrated by the fact
that the manage discount decision has the Loyalty decision as an input require-
ment. Similarly, corresponding to the left part of row three of that table, since
the task check longevity succeeds manage discount, the DMN decision manage
discount also requires check longevity as an input.

Arrow 4 shows that decisions are connected to decision tables if the decision
logic is visible in the process model and arrow 5 shows that the output column
of the sub-decision is used as input column of the dependent decision. Arrow 6
visualizes that the headers of the condition columns correspond to the labels
of the gateways following the decision task and the cell values equal the edge
conditions (cf. right part of row three in Table 1).

4.4 Adaptation of BPMN Models

After extracting the decision logic from a process model to a decision model, the
process model needs to be adapted in order to be usable together with the deci-
sion model. Basically, the entire decision logic is hidden inside of the first deci-
sion task of the pattern. For that purpose, BPMN offers business rule tasks that
can be linked to decision models and that will output the value of the top-level
decision of the decision model. Thus, for the adaptation we transform the task
corresponding to this top-level decision to a business rule task. Since this decision

Extracting Decision Logic from Process Models 361

potentially subsumes the decisions corresponding to following decision tasks, these
tasks will not be required anymore in the adapted process model. Consequently,
we delete each decision task other than the first from the process fragment. Basi-
cally, this means that also the gateways succeeding the deleted decision tasks can
be removed, such that only the first decision task, the gateway succeeding it and
the end nodes of the process fragment are kept. For each end node the gateway

has an outgoing edge connected to it and the conditions with which the edges are
annotated equal the row conclusions of the top-level decision table.
. This 51tuat10r.1 is illustrated in Flg. .9. It is ~ e
important to assign the correct conditions to
the different edges originating from the split 'nf? asoign 6%
gateway. For example, the end node assign
12% discount in Fig. 9 is connected to an edge discount e
annotated with c¢. This is because in the orig-

inal process fragment in Fig. 8 the conjunc- pig. 9. Refactored process frag-
tion of the conditions leading from the start ment for pattern P3

node to this end node equals yesA (> 5 years)

and the table row representing this conjunc-

tion has ¢ as its output value.

manage
discount
output?

5 Post-Processing

The outcome of the model refactoring step is an adapted process model and cor-
responding DMN models, one for each decision. On a case basis, these resulting
models are not finalized, because, for instance, decisions have been separated
which are indeed taken collectively. Thus, we allow to configure the results in
two directions: (i) activities taken based on a decision can be combined into sin-
gle actions such that the branching behavior is replaced and (ii) two connected
decisions in the DMN model can be combined. Considering the adapted process
fragment shown in Fig. 9, the activities following on each path represent the
same action assign discount based on some data input representing the actual
discount value. In this paper, we require the stakeholder to explicitly specify
that such decision shall be reduced with respect to configuration option (i). In
future work, we plan to provide this configuration based on, for instance, label
analysis. Choice of this option adapts a process fragment as follows: First, the
initial split gateway and all succeeding control flow nodes are replaced by a sin-
gle activity whose label the stakeholder has to specify. Secondly, we add a data
node that is written by the decision task and read by the newly added activity.
This data node represents the information transferred from the decision to the
action taken based on the decision. For the fragment in Fig. 9, the correspond-
ing adapted process fragment is shown in Fig. 10a. The added activity is labeled
assign discount and the data node is labeled discount.

Referring to option (ii) and the DMN model presented in Fig. 8, decisions can
be merged. For instance, decisions Longevity and check longevity can be merged
since the first bases on information directly given in the customer information

362 K. Batoulis et al.

AN -
client manage . manage discount
info discount] discount : Loyalty |Longevity output
manage discount
table yes 25 c
i / N\ yes <5 d
manage assign it
[discount discount] Loyalty $|I€nt info ’/‘ no - e
(a) Decision task (b) Adapted DMN (c) Merged decision table.

without branching model.
behavior.

l

Fig. 10. Results of post-processing for the example given in Section 4.3

(time being a customer) and requires no computation. In contrast, the Loyalty
decision requires computation whether a customer is considered loyal and may
not be merged with the manage discount decision. Furthermore, decisions man-
age discount and check longevity could be merged since both contribute to the
decision which actual discount shall be awarded to a customer. Fig. 10b shows
the adapted DMN model based on the discussed decision mergers for the out-
come of the pattern P3 fragment given in Fig. 9. Merging decisions requires a
merge of the corresponding decision tables, i.e., the dependent decision’s table
is inserted into the higher level decision’s table. The resulting table of merging
decisions manage discount and check longevity is shown in Fig. 10c.

After configuring the output models, the stakeholder may adapt the deci-
sion tables and the process model a final time. The annotations on the edges
originating from a split gateway are intentionally abstract in our approach. The
stakeholder may manually add more descriptive annotations by changing the
corresponding edge labels or the corresponding rows in the decision task output
column.

6 Evaluation

The evaluation is separated into two parts. First, we argue about the benefits of
separating process logic and decision logic before we discuss the feasibility of our
approach supported by some proof-of-concept implementation. With respect to
Parnas [10], system and software design shall follow the concept of “separation
of concerns” to utilize specialized concepts and especially one concept per prob-
lem resulting in easier maintenance, less complex systems, reusability, flexibility,
shortened development time, comprehensibility, and reduced inter-dependencies.
Transferring this concept to the process and decision modeling domains, both shall
be separated resulting in the same advantages. In detail, a separation provides
the following advantages. The complexity of the process model is reduced while,
at the same time, precision, readability, and maintainability (of both the decision
and the process model) get improved. Additionally, business logic and decision
logic can be changed individually resulting in reduced changing costs and changing
times, e.g., compliance experts can tune specific decision points without changing
the process structure. Process models are considered stable and only to be adapted
if the business changes while decision models are considered dynamic to react fast

Extracting Decision Logic from Process Models 363

and flexible on temporary situations. Furthermore, separating the decision logic
from process model logic allows reusability of the decision model in multiple
decisions occurring in the same as well as different process models.

While separation of both worlds is easy for newly modeled processes, the
existing ones need to be kept usable as well. Otherwise, the migration over-
head is too large and organizations retain their BPMN misuse. For utilizing the
advancements of simplicity, easy maintainability, high precision, and automatic
analyzability, the original process model gets adapted to replace the decision
logic fragment with a reference to the DMN model after its creation. Based on
the assumption that the concept of separation of concerns can be transferred to
the process and decision domains, the usefulness of the presented approach for
stakeholders is directly given.

The ultimate goal with respect to separation of concerns of process and deci-
sion logic is to remove the decision logic entirely from the process model. This
results in a transformation of a decision — simple ones as represented by pattern
P1 as well as most complex decision structures — into a single activity as shown
in Fig. 10a.

To reason about applicability of our approach introduced in this paper, we
generically compare the decision logic of both the original and the adapted pro-
cess model fragments. As mentioned in Section 4, decision tables consist of rules
made up of conjunctions of conditions and one conclusion. The conjuncts of a rule
are equal to the conditions annotated to the edges originating from the split gate-
ways that are on an individual path from start to end node of a fragment, while
the conclusion is a placeholder to be used as an edge condition in the adapted frag-
ment. Consequently, both the original and the adapted fragment together with the
extracted decision tables represent the same decision logic. This directly shows
that the same end node is reached in both process fragments.

We also implemented the introduced approach. We utilized an open source
platform for research on process model repositories [4] that is based on the
pipe and filter technique principle. Our implementation extending the platform
with further modules, their documentation, and some example process models
are available at http://bpt.hpi.uni-potsdam.de/Public/BpmnDmn. We used this
implementation to validate the impact of our approach to the process model
repositories of our project partners from the domains of insurance, banking,
healthcare, energy, and information technology.

In total, we received 956 process models
from them with 566 being syntactically cor-
rect. Applying our implementation on these
syntactically correct industry process models
reveals that pattern P1 occurs in 59%, pat-
tern P2 in 16%, and pattern P3 in 32% of [.
all process models as visualized in Fig. 11. In o oy
total, we observed 680 occurrences of pattern
P1 fragments, 113 occurrences of pattern P2 Fig. 11. Pattern occurrence in real
fragments, and 362 occurrences of pattern P3 world process models

Percentage of process
models containing
the corresponding pattern
20 40 60 80 100

0

P1

364 K. Batoulis et al.

fragments our set of 566 models. These numbers show that the identified pat-
terns are frequently used in practice and thus, we already provide high impact
by handling them.

7 Related Work

It is not considered good practice to model the detailed decision paths in the
business process model. Thus, there is a demand for finding a good integration
between decision and process modeling both in industry and academia. In order
to deal with the changes which can arise from run-time contextual changes or
the change of user requirements and preferences, different approaches on decision
services modeling are used and proposed.

Similarly to our point of view, separation of decision from process logic is
discussed in [3,6,14]. [6] presents a tool chain for creation of both models relying
on concrete infrastructure and business rules. In contrast, we introduce generic
means based on two standards of the OMG — BPMN and DMN. [14] and [3] also
utilize these standards but do not provide the next step — as [6] also does not —
that is important for practical usage: migration of existing process models into
the new separated structure.

Apart from the DMN approach, there are other outlooks dedicated to model
the separation of decision-making from application process logic. For instance,
n [16], the authors come up with an approach which supports an asynchronous
interaction such that the decision service can notify the process about new
changes at any time and not only at predefined decision points. [7] presents a deci-
sion ontology for supporting decision-making in information systems. Another
decision ontology is proposed in [1] as a “domain-specific modeling method that
is integrated with an existing enterprise modeling method for describing and
communicating decision processes”. There are some industrial solutions for sepa-
ration of decision from process logic, e.g., SAP Decision Service Management [13].
In contrast to our approach, these do not use standards; especially not those that
have been designed to solve the advancement of logic separation. Here, BPMN
provides rule-tasks that reference a DMN model allowing proper integration of
both worlds. Thus, we decided to consider the DMN standard for exploiting the
decision logic alongside BPMN for exploiting the process logic.

Another direction of extracting decision logic from process models is “deci-
sion mining” [11,12]. Though decision mining helps with the analysis of the
dependencies within a process model, the advantage of our approach is that it
is purely model-based and does not require additional information such as exe-
cution logs. Further, the existing approaches do not cover automatic refactoring
of process models.

In [5], the authors state that declarative modeling approaches lead to more
design- and run-time flexibility, better compliance guarantees, and higher ex-
pressibility. Since decision models are declarative in nature [14], combining them
with business process models will provide these benefits as well and additionally
preserves the benefits from the concept of separation of concerns.

Extracting Decision Logic from Process Models 365

8 Conclusion

In this paper, we elaborated on the advantages to separate process and decision
logic resulting in simpler models with easy maintainability, high precision, and
automatic analyzability. The separation especially fosters the differentiation of
stable process models to be changed if the business model changes and dynamic
decision models allowing flexible configuration of the currently applied business
models. Since organizations long misused BPMN as decision modeling languages
although it is not meant to capture these aspects, organizations require migra-
tion capabilities from misused, spaghetti like process models to a separation
that we build of an adapted BPMN model and a DMN model. We provide a
semi-automatic approach that allows identification of decision logic in process
models, derivation of corresponding DMN models, adaptation of the original pro-
cess model by replacing the decision logic accordingly, and final configuration
of the result during post-processing. The identification is pattern-based derived
from an intensive analysis of 956 real world process models provided by our
project partners. We implemented this semi-automatic approach and provided
statistical insights about pattern utilization in the industry process models. Since
AND gateways do not influence decisions (neither AND forks nor merges) and
since explicitly considering them would significantly increase the complexity of
our approach and its formalization, we disregard AND gateways in this paper.
Although not stated explicitly in the patterns, we also support loops like WHILE
z DO vy, since in these cases, the same decision is taken multiple times with vary-
ing input data values until the looping condition evaluates to false.

In future work, we will analyze further process model collections and reduce
the assumption of control flow decision structures to identify more patterns and
to provide a complete overview about decision logic modeling in process models.
We also aim on pattern generalization. The mapping will be adjusted accordingly.
Furthermore, we extend the configuration capabilities by, e.g., including label
analysis. Finally, we plan to publish best practice guidelines on how to model
processes and decisions separately.

Acknowledgments. The research leading to these results has been partly funded by
DFG under grant agreement WE 1930/8-1. We thank Kristina Kirsten, Tobias Rohloff,
and Thomas Zwerg for the support in analyzing the industry process repositories.

References

1. Bock, A., Kattenstroth, H., Overbeek, S.: Towards a modeling method for support-
ing the management of organizational decision processes. In: Modellierung, vol. 225,
pp- 49-64. Gesellschaft fiir Informatik (2014)

2. Catalkaya, S., Knuplesch, D., Chiao, C., Reichert, M.: Enriching business process
models with decision rules. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM
2013 Workshops. LNBIP, vol. 171, pp. 198-211. Springer, Heidelberg (2014)

3. Debevoise, T., Taylor, J.: The MicroGuide to Process Modeling and Decision in
BPMN/DMN. CreateSpace Independent Publishing Platform (2014)

366

4.

11.

12.

13.

14.

15.

16.

K. Batoulis et al.

Eid-Sabbagh, R.-H., Kunze, M., Meyer, A., Weske, M.: A platform for research
on process model collections. In: Mendling, J., Weidlich, M. (eds.) BPMN 2012.
LNBIP, vol. 125, pp. 8-22. Springer, Heidelberg (2012)

. Goedertier, S., Vanthienen, J., Caron, F.: Declarative business process modelling;:

principles and modelling languages. Enterprise Information Systems 9(2), 161-185
(2015)

. Kluza, K., Kaczor, K., Nalepa, G.J.: Integration of business processes with visual

decision modeling. Presentation of the HaDEs toolchain. In: Fournier, F., Mendling,
J. (eds.) BPM 2014 Workshops. LNBIP, vol. 202, pp. 504-515. Springer, Heidelberg
(2015)

. Kornyshova, E., Deneckere, R.: Decision-making ontology for information system

engineering. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER
2010. LNCS, vol. 6412, pp. 104-117. Springer, Heidelberg (2010)

. OMG: Business Process Model and Notation (BPMN), Version 2.0 (January 2011)
. OMG: Decision Model and Notation (February 2014)
. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.

Communications of the ACM 15(12), 1053-1058 (1972)

Petrusel, R.: Using markov decision process for recommendations based on aggre-
gated decision data models. In: Abramowicz, W. (ed.) BIS 2013. LNBIP, vol. 157,
pp. 125-137. Springer, Heidelberg (2013)

Rozinat, A.; van der Aalst, W.M.P.: Decision mining in ProM. In: Dustdar, S.,
Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 420-425.
Springer, Heidelberg (2006)

SAP: SAP Decision Service Management. http://scn.sap.com/docs/DOC-29158
(accessed: November 13, 2014)

Von Halle, B., Goldberg, L.: The Decision Model: A Business Logic Framework
Linking Business and Technology. Taylor and Francis Group (2010)

Weske, M.: Business Process Management: Concepts, Languages, Architectures,
2nd edn. Springer, Heidelberg (2012)

Zarghami, A., Sapkota, B., Eslami, M.Z., van Sinderen, M.: Decision as a service:
separating decision-making from application process logic. In: EDOC, pp. 103-112.
IEEE (2012)

http://scn.sap.com/docs/DOC-29158

	Extracting Decision Logic from Process Models
	1 Introduction
	2 Process and Decision Modeling
	3 Patterns for Control-Flow-Based Decision Identification
	3.1 P1 -- Single Split Gateway
	3.2 P2 -- Sequence of Split Gateways (Decision Tree)
	3.3 P3 -- Sequence of Split Gateways Separated by an Activity
	3.4 Pattern Identification Procedure

	4 Translation of BPMN Decision Logic to DMN
	4.1 Decision Model and Notation
	4.2 Decision Model Extraction Algorithm
	4.3 Exemplary Decision Model Extraction
	4.4 Adaptation of BPMN Models

	5 Post-Processing
	6 Evaluation
	7 Related Work
	8 Conclusion
	References

