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Abstract. Evolution of metamodels can be represented at the finest
grain by the trace of atomic changes: add, delete, and update elements.
For many applications, like automatic correction of models when the
metamodel evolves, a higher grained trace must be inferred, composed
of complex changes, each one aggregating several atomic changes. Com-
plex change detection is a challenging task since multiple sequences of
atomic changes may define a single user intention and complex changes
may overlap over the atomic change trace. In this paper, we propose a
detection engine of complex changes that simultaneously addresses these
two challenges of variability and overlap. We introduce three ranking
heuristics to help users to decide which overlapping complex changes are
likely to be correct. We describe an evaluation of our approach that allow
reaching full recall. The precision is improved by our heuristics from 63%
and 71% up to 91% and 100% in some cases.
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1 Introduction

In the process of building a domain-specific modeling language (DSML) multiple
versions are developed, tried out, and adapted until a stable version is reached.
As by one of our industrial partners in the automotive domain, such intermediate
versions of the DSML are used in product development, where often further needs
are identified. A challenge hereby is that each time the metamodel of the DSML
is changed to a next version, already developed models need to be co-evolved
too. This is not only the case for DSMLs, but also for more generic metamodels,
e.g. the UML officially evolved in the past every two to three years.

To cope with this evolution of metamodels, mechanisms are developed to co-
evolve artifacts, such as models and transformations that may become invalid. A
challenging task herein is to detect all the changes that lead a metamodel from a
version n to a version n+1, called Evolution Trace (ET). Automatically detecting
it, not only helps developers to automatically keep track of the metamodels’
evolution, but also to trigger and/or to apply automatic actions based on these
changes. For instance, models and transformations that are defined based on
the metamodel are automatically co-evolved i.e. corrected based on the detected
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ET (e.g. [7,8]). Here the rate of automatically co-evolved metamodel changes
depends significantly on the precision and accuracy of the ET.

In such a context, it becomes crucial to provide correct and precise detection
of changes. Two types of changes are distinguished: a) Atomic changes that are
additions, removals, and updates of a metamodel element. b) Complex changes
that consist in a sequence of atomic changes combined together. In comparison to
the atomic changes alone, complex changes include additional knowledge on the
interrelation of these atomic changes. For example, move property1 is a complex
change, where a property is moved from one class to another via a reference. This
is composed of two atomic changes: delete property and add property. During
co-evolution of models, the move property provides the valuable information
that instance values of the deleted property are not to be deleted, but moved to
instances of the added property. Many further complex changes [10] are used in
literature to improve co-evolution rate of models and transformations.

Therefore, the detection of complex changes is essential for automating
co-evolution. One approach towards that are operator-based approaches. By
directly applying complex changes in form of operators, the user traces complex
changes himself. However, more than 60 different complex changes are known
to occur in practice [10]. Modelers might not be willing to learn and remember
such a high number of operators, increasing the likelihood of workarounds with
atomic changes. Thus, operator based approaches cannot provide a guarantee
that all complex changes are recorded.

Vision. Consequently, a detection of complex changes needs to work on the
basis of atomic changes. This task has one inherent difficulty that one needs to
be aware of: a guarantee that all identified complex changes are correct is hard to
reach. Existing approaches [4,6,7,11,17] neither reach a 100% recall, nor 100%
precision. This is due to the fact that recovering the user’s intent during an
evolution is never certain. For example, when a property id is removed in one
class and another property id is added to another class. This might be detected
as move property, although it is just a coincidence.

Thus, final decisions can only be made by the user. Two options exist after an
initial list of complex changes has been detected: the user might correct the list
by a) removing incorrectly detected changes (such as [17]) and/or b) manually
forming further complex changes based on found atomic changes (such as [11]).
The later step, however, implies much higher effort for the user than just picking
correct and incorrect complex changes from a complete list.

Therefore, we think that a detection approach should aim at 100% recall,
meaning that all potential complex changes should be detected. To further
increase precision and support the user in making the selection, identified changes
should be prioritized concerning their probability with the help of heuristics.

Problem Statement. Automatically detecting complex changes is a dif-
ficult task, mainly because of two reasons: overlap that is ignored so far and
indefinite length.

i) Overlap. Different complex changes might be composed based on overlap-
ping sets of atomic changes. Figure 1 shows an example, two complex changes

1 For sake of readability we refer to metaclass and metaproperty as class and property.
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(a) Original metamodel (b) Evolved metamodel

Fig. 1. An evolution example of a composite pattern

pull property (via the generalization) and move property (via the relation r)
might be formed based on the same set of atomic changes: deleting property id
from the Composite class and adding id to the Component class. Only one of
the changes was intended by the user. However, since we cannot know which
complex change is the correct one, both must be detected. This phenomenon is
reinforced, when a lot of changes are performed on closely related or even the
same metamodel elements.

ii) Indefinite length. Complex change types have variable numbers of involved
atomic changes. For example, in Figure 1 property id is pulled from one subclass
Composite, yet a pull might also be applied when multiple subclasses contain the
same property. Thus, the number of property deletions varies with the number
of involved subclasses. Both issues reduce the recall that can be reached with
existing approaches.

iii) A further issue arises due to the fact that all existing approaches [4,6,7,
11,17] base the detection of complex changes on a set of atomic changes that
has been computed as the difference between the old and the new version of the
metamodel, the so-called difference model (DM). However, relying on the DM
suffers from two main drawbacks:

(1) The first is that the DM cannot detect some changes that are hidden by
other changes during evolution (called masked changes in [17]). Consequently,
information might be lost, which impacts both recall and precision of the detec-
tion approaches. For example, in Figure 1 the move property type from class
Composite to class Information is hidden by the change rename property type
to kind. The DM cannot detect these last two changes, but sees only two inde-
pendent operations: deletion of property type and addition of property kind as
summarized in Table 1.

(2) The second drawback of the difference-based approach is that the DM
returns an unordered sequence of all the detected changes. However, the chrono-
logical order of changes might be relevant during later co-evolution tasks, and
can be used during complex change detection for improving precision.

Contributions. We address these challenges by four contributions:

– First, we propose to record at run-time the trace of atomic changes, by listen-
ing and logging modeler’s editing actions within the modeling tool (editor).
This way drawbacks of the difference-based approaches can be tackled.
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Table 1. Recorded trace VS difference trace: An example of hidden changes

Applied Changes Metamodel Difference Changes
1. addClass(Information) 1. addClass(Information)
2. addProperty(info, Composite, Information) 2. addProperty(info, Composite, Information)
3. deleteProperty(id, Composite) 3. addProperty(id, Component, int)
4. deleteProperty(type, Composite) 4. addProperty(kind, Information, String)
5. addProperty(id, Component, int) 5. deleteProperty(id, Composite)
6. addProperty(type, Information, String) 6. deleteProperty(type, Composite)
7. renameProperty(type, kind, Information)

– Second, we propose a definition for complex changes that respects their vari-
able character. Thus, all variants of a complex change can be detected.

– Third, we introduce a generic detection algorithm that consumes such vari-
able complex change definitions as input together with the ET of atomic
changes. In contrast to existing approaches [4,6,7,11,17], the algorithm
systematically detects all possible candidates, even in case of overlapping
changes, and thus reaching 100% recall. Furthermore, the approach can be
easily extended to new complex changes, by just providing their definitions
as input to the algorithm. We implemented the algorithm as a Complex
Change Detection Engine (CCDE).

– Fourth, we propose to optimize precision by defining three heuristics that
weight the detected overlapping complex changes. Especially, when many
changes have been applied, these heuristics rank them in order of likelihood
of correctness to the user, who can then pick and confirm the correct choice.

In this work, we apply our approach to detect seven complex changes: move
property, pull property, push property, extract super class, flatten hierarchy,
extract class, and inline class [10]. Our evaluation on two real case studies,
including the evolution of GMF and UML Class Diagram metamodels, shows
promising results by always reaching 100% recall of detection, and the precision
is improved by our heuristics from 63% and 77% up to 95% and 100% in some
cases.

In Model-Driven Engineering models are used in order to capture the different
aspects of a system. This covers the system’s architecture, its data structure or
its design and GUI classses. While we focus in this paper on the evolution of
metamodels, our approach for detecting complex changes theoretically applies
on object-oriented models in general.

The rest of the paper is structured as follows. Section 2 illustrates our app-
roach for detecting Complex changes. Sections 3 and 4 present the implemen-
tation and the evaluation of our approach. Sections 5 and 6 present the related
work, discussion and conclude this paper.

2 An Approach for Complex Change Detection

This section presents an extensible approach to detect complex changes. We first
describe how we obtain atomic changes, and then we introduce how a complex
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Fig. 2. Overall approach

change is defined, and what should be considered for its detection. After that, we
present our detection algorithm, before applying it for seven complex changes.

Figure 2 depicts our overall approach. The atomic change trace is first
recorded. Complex change patterns are then matched to it in order to generate a
complex change trace. Based on the discussion of challenges in the introduction
of this paper, we formulate four requirements for our approach:

– R1. No changes must be hidden from the detection to not decrease the recall.
– R2. Detection must be able to cope with the variability to cover all possible

variants of a complex change.
– R3. Detect all potential complex changes, i.e. high recall (100%). It means

that no complex change is missed during the detection.
– R4. Prioritizing between overlapping complex changes to support the user in

choosing those changes that conform to her intention.

2.1 Atomic Change Detection

We propose a tracking approach that records at run-time all changes applied by
users within a modeling tool without changing its interface. Thus, no changes are
hidden or lost in the ET that serves for the detection of complex changes. This
answers to the requirement R1, in contrast to the difference-based approaches.
In order to implement the tracking mechanism we reuse an existing tool, Praxis
[3] developed by our team. Praxis tool interfaces with a modeling editor to
record all the changes that occur during an evolution. Existing works based on
Praxis already provided good performances and scalability results [1–3,5].

Definition 1. We consider the following set of atomic changes that can be used
during a metamodel evolution: add, delete, and update metametamodel elements.
An update, changes the value of a property of an element, such as type, name,
upper/lower bounds properties etc. The list of metametamodel elements that
are considered in this work is: package, class, attribute, reference, operation,
parameter, and generalization. Those elements represent the core feature of a
metamodel, as in EMF/Ecore [15], MOF [13] metamodels.
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2.2 Complex Change Definition

As mentioned previously, complex changes can be defined as a sequence of atomic
changes [7,11,17]. However, this definition is not sufficient, mainly because: 1)
The variability of a complex change is not part of the definition. 2) Some con-
ditions have to be checked on the sequence of atomic changes that compose a
complex change before to be considered as valid. For instance, for a move prop-
erty p from Source to Target, a reference must exist from Source to Target.

Definition 2. We define a complex change as a pattern, each one comprising:

1. A set of atomic change types (SOACT ) allowed to appear in the pattern,
each with its multiplicity constraint. The multiplicity is a range between a
minimum and a maximum [Min..Max]. For undefined Max value, a star is
put instead, e.g. [1..*].

2. Conditions relating pairs of change type elements that additionally have to
be satisfied for the pattern to match. Four types of conditions are used in
our current approach:
(a) Name equality between two named elements e1 and e2: e1.name == e2.name
(b) Type equality between two typed elements e1 and e2: e1.type == e2.type
(c) Equality between two typed elements e1 and e2: e1 == e2 ⇔ e1.name ==

e2.name ∧ e1.type == e2.type
(d) Presence of a generalization relationship (Inheritance) between two classes c1

and c2: c1.inheritance.from == c2
(e) Presence of a Reference relationship between two classes c1 and c2:

c1.reference.type == c2

The above definition of a complex change answers to the requirement R2 of
variability by explicitly specifying a multiplicity for each change.

2.3 Detection Algorithm of Complex Changes

The detection Algorithm 1 takes as input the pattern definitions of the complex
changes that have to be detected and search for all their occurrences. In par-
ticular, our algorithm works in two passes. The first pass, (lines 1-11) generates
all complex changes candidates, i.e. collects sets of atomic changes that might
together form a complex change based on type and multiplicity of the pattern
only. At each iteration, the algorithm browses through the evolution trace of
n atomic changes, and if the current atomic change is part of a definition of
a certain complex change, then a candidate is created with the current atomic
change. After that, for all already existing candidates that might include this
atomic change, we add a candidate instance that includes the current atomic
change. The second pass (lines 12-13) scans the candidate set and only keeps
those that satisfy the pattern, i.e. whether enough atomic changes could be
identified and the conditions are fulfilled.

The main advantage of Algorithm 1 is its time complexity: it runs one time
through the n atomic changes, and not k times for each complex change. The
algorithm is designed to be extensible to detect other complex changes by defin-
ing additional definitions, the core detection remains unchanged. Its main draw-
back is the memory complexity, since it may create k candidates of complex
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Algorithm 1. The Algorithm of Detection for Complex Changes.
Input: ET: The recorded evolution trace of atomic changes

LDef: List of definitions of the complex changes
Output: L: List of detected complex changes
1: CCC : CandidateComplexChanges ← {}; � List of candidates of complex

changes.
2: while Not end of ET do

current ← ET.current;
3: for all c ∈ CCC do
4: if c.isItPossibleToAdd(current) then c.add(current);

5: for all d ∈ LDef do
6: if current ∈ d then x ← d.createCandiate();

x.add(current); CCC.add(x); � add the atomic change to the created
candidate and then to the list of candidates

7: for all c ∈ CCC do
List < ComplexChanges >= c.validate(); � validate the candidate complex

changes to confirm and return only the valid ones

changes at each iteration, in the worst case at the end, n ∗ k candidates need to
be validates. We evaluate the practical occurrence of this worst case in section 4.

Algorithm 1 answers to the requirement R3 by systematically creating in
pass 1 all complex changes candidates that match the type and multiplicity
of the pattern. Thus, the algorithm achieves full recall by construction. It is
guaranteed to always return all complex changes, However, it may return false
positives by returning multiple overlapping complex changes reusing the same
atomic changes occurrences. Thus, we propose heuristics to rank the overlapping
complex changes to help users to decide which ones are correct. These heuristics
are discussed in section 2.5.

2.4 Application to Concrete Complex Changes

In the literature, over sixty complex changes are proposed [10]. We apply the
detection algorithm for a list of seven complex changes: move property, pull
property, push property, extract super class, flatten hierarchy, extract class, and
inline class [10]. A study of the evolution of GMF2 in practice, showed that
these seven changes constitute 72% of all the complex changes used during the
evolution of GMF [9,11]. Table 2 lists the seven complex changes and their
definitions as a set of atomic changes following the Definition 2.

2.5 Prioritizing Between Overlapping Complex Changes.

We define three optional heuristics to rank overlapping changes and help the
user to quickly choose which ones to keep. The input of each heuristic is just the
list of overlapping complex changes. The output is the same list of changes but
prioritized from most probable correct complex change to the least probable.

2 Graphical Modeling Framework http://www.eclipse.org/modeling/gmf.

http://www.eclipse.org/modeling/gmf
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Table 2. Definitions of seven complex changes

Complex Changes Set of Atomic Changes

Move Property
SOACT = {delete property p[1..1], add property p’[1..1]}
Conditions: (p == p′ )∧ (∃ reference ∈ p.class : reference.type = p′.class)

Pull Property
SOACT = {delete property p [1..*], add property p’ [1..1]}
Conditions: (∀ p : p == p′)∧
(∀ p : ∃ inheritance ∈ p.class : inheritance.from == p′.class)

Push Property
SOACT = {add property p [1..*], delete property p’ [1..1]}
Conditions: (∀ p : p == p′)∧
(∀ p : ∃ inheritance ∈ p.class : inheritance.from == p′.class)

Extract Class
SOACT = {add class c [1..1], add property p [1..*], delete property p’ [1..*]}
Conditions: (∃!p, ∃!p′ : p == p′)∧ (∀p, p.class == c)∧
(∀p′, ∃ reference ∈ p′.class : reference.type == c)

Inline Class
SOACT = {add property p [1..*], delete property p’ [1..*], delete class c [1..1]}
Conditions: (∃!p, ∃!p′ : p == p′)∧, (∀p′, p′.class == c)∧
(∀p, ∃ reference ∈ p.class, reference.type == c)

Extract Superclass

SOACT = {add class c [1..1], delete property p [1..*], add property p’ [1..*]}
Conditions: (∀ p : ∃!p′ : p == p′)∧ (∀ p′ : p′.class == c)∧
(∀ p : ∃ inheritance ∈ p.class : inheritance.from == c)∧
(∀ p′

1, p
′
2 ∈ p′, ∀ p1 ∈ p : p′

1 == p1, ∃ p2 ∈ p : p′
2 == p2 ∧ p1.class == p2.class)

∧(∀ p′
1, p

′
2 ∈ p′, ∀ p : (p == p′

1 ∧ p == p′
2) ⇒ p′

1 == p′
2)

Flatten Hierarchy

SOACT = {add property p [1..*], delete property p’ [1..*], delete class c [1..1]}
Conditions: (∀ p : ∃!p′ : p == p′)∧ (∀ p′ : p′.class == c)∧
(∀ p : ∃ inheritance ∈ p.class : inheritance.from == c)∧
(∀ p′

1, p
′
2 ∈ p′, ∀ p1 ∈ p : p′

1 == p1, ∃ p2 ∈ p : p′
2 == p2 ∧ p1.class == p2.class)

∧(∀ p′
1, p

′
2 ∈ p′, ∀ p : (p == p′

1 ∧ p == p′
2) ⇒ p′

1 == p′
2)

The first case of overlap between complex changes is when the first one is
fully contained into the second one. The following heuristic handles this case.

Containment Level (h1). This heuristic assigns a containment level to
each member of an overlapping complex change set. A complex change of higher
containment level is ranked higher than one of lower containment level. For
example, an extract class of one property p from class Source to class Target,
contains the complex change move property p from Source to Target that is
also detected. The former gets a higher priority than the latter. Figure 3a shows
an example of containment between n complex changes.

The second case of overlap, is when several complex changes share only part
of their atomic changes. The following two heuristics handle this case.

Distance of a complex change (h2). The atomic changes making up a
complex change can be contiguous or not within the atomic change trace. A user
who pulls a property p from half of the sub classes, then performs other actions,
before coming back to pull p from the rest of the sub classes is an example
of complex change composed of non-contiguous atomic changes. Heuristic 2:
Distance = SCC−1

EP −SP , is the Size of the Complex Change divided by the difference
between the End Position and the Start Position of the complex change in the
ET. The distance is between 1 and 0. The higher is the distance value, the likelier
the complex change to be the intended one among overlapping candidates.

Solving Overlapping Rate (h3). Our third heuristic ranks higher complex
changes which removal from the candidate list minimizes the number of over-
lapping changes in this list. Users can rely on this heuristic to remove the least
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(a) Containment heuristic h1 (b) Distance and Solving rate heuristics h2 and h3

Fig. 3. Three prioritizing heuristics

possible complex changes. Heuristic 3: SolvingOverlappingRate = 1 − NLOCC

NOCC
,

where NLOCC is the Number of Left Overlapping Complex Changes and NOCC is
the Number of Overlapping Complex Changes. The fraction represents the rate
of the remaining overlapping complex changes when the current one is removed.

Examples of heuristics 2 and 3 are presented in Figure 3b. The three above
heuristics answer the requirement R4.

3 Implementation

We extended the Praxis prototype [3] to support the detection of complex
changes out of the recorded atomic changes. The algorithm and heuristics pre-
sented in Section 3 have been implemented as the Complex Change Detection
Engine (CCDE) component and integrated within Praxis. It detects in the trace
of atomic changes the seven most used complex changes we addressed in this
paper based on their definitions in Table 2 (Other complex changes can easily
be considered). The core functionalities of this component is implemented with
Java (4946 LoC) and are packaged into an Eclipse plug-in that interfaces with
the existing Praxis plug-ins.

Figure 4 displays a screenshot of this integration. Window (1) shows a meta-
model drawn with EMF Ecore tool editor. Praxis builds the evolution trace of
atomic changes while the user is evolving the metamodel as shown in Window
(2). In Window (3) the CCDE detects complex changes over the atomic changes
evolution trace and our heuristics can be used as a support for users. The final
evolution trace contains both atomic and complex changes.

4 Evaluation

This section presents the evaluation of our approach. We first describe an experi-
ment in which we use our tool to detect complex changes. After that we evaluate
the quality of the approach based on the quality metrics in [14]: precision, recall,
and f-score. Time performance and memory consumption are evaluated as well.

4.1 Experiment Set/Scenario

In our evaluation, we have chosen two real case studies. We first evaluate a real
case study: UML Class Diagram (CD) evolution, in particular from version 1.5
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Fig. 4. Screenshot of the Tool

to 2.0, which contains significant changes. We manually analyzed beforehand the
238 atomic changes that leads UML CD 1.5 to 2.0 in order to know what are
the expected complex changes. Without doing this analysis, we cannot assess the
quality of detection of our tool, i.e. comparing what is expected against what
is detected. In the UML CD case study, we expect 10 complex changes: 2 pulls
properties, 4 pushes properties, 2 inlines class, and 2 extracts super class. The
size of the UML CD metamodel 1.5 is of 143 elements.

For the second real case study we take the GMF graphical metamodel, GMF
mapping metamodel, and GMF generator metamodels, all three making up the
GMF metamodel. For the sake of simplicity, we will denote these three meta-
models as ”The GMF metamodel” in the rest of this paper. We thus consider
the evolution of GMF metamodel from version 1.29 to version 1.74 that is inves-
tigated in [9,11]. After we manually analyzed the 220 atomic changes that leads
GMF 1.29 to 1.74, we expect in the GMF case study 10 complex changes: 1
move property, 2 pull properties, 3 push properties, 3 extracts super class, and
1 flatten hierarchy. The size of the GMF metamodel 1.29 is of 2339 elements.

To run the experiment, we take the UML CD 1.5 and the GMF 1.29 meta-
models and we manually evolve them until versions UML CD 2.0 and GMF 1.74
are reached, while our tool records the modeling actions.

In this experiment, we measure the accuracy of our tool by using the three
metrics [14] precision = CorrectFoundChanges

TotalFoundChanges , recall = CorrectFoundChanges
TotalCorrectChanges , f −

score = 2∗Recall∗Precision
Recall+Precision . The values of these metrics are between 0% and 100%.

The higher the precision value, the smaller is the set of wrong detections (i.e.
false positives). The higher the recall value, the smaller is the set of the complex
changes that have not been detected (i.e. false negatives). f -score combines
precision and recall into a single evaluation measure of the best trade-off between



Detecting Complex Changes During Metamodel Evolution 273

minimizing false positives and negatives. It is a useful metric since in most cases,
methods manage to reach high precision with low recall and vice-versa. The
higher the f-score the better the overall quality of our detection algorithm.

We measure the three quality metrics on the detected complex changes for
the following cases: 1) without using the ranking heuristics defined in section
2.5, 2) using the heuristics separately. In our approach we do not remove com-
plex changes from the overlapping list, but we only prioritize them with our
heuristics, so that the user still has the chance to indicate that lower prioritized
changes are correct instead of higher prioritized changes. While this prioritiza-
tion supports the user, it does not impact the recall and precision. However, to
nonetheless measure the quality of the heuristics, we simulate in this evaluation
the situation that the user decides to keep only the highest prioritized changes.
For the resulting list of complex changes we recalculate precision and recall. The
whole process is performed once per heuristic.

Finally, we also measure the overall time of detection and memory consump-
tion. We ran these experiments on a PC VAIO with i7 1.80 GHz Processor and
8GB of RAM with Windows 7 as OS.

4.2 Results

A. Without using heuristics. Figure 5 shows the results of the evaluation
performed by our tool. Figure 5a shows the quality metrics on the raw detected
complex changes without using heuristics. It shows 100% recall for both case
studies UML CD and GMF metamodels evolutions without using any heuristics.
This confirms the ability of our detection algorithm to reach our goal of a full
recall that is essential in this paper.

In the UML CD case study, we detected 14 complex changes whereas we
expected only 10. Three additional detected complex changes are due to the
full overlapping issue when a change is contained in another one. In fact, each
extract class, extract super class and flatten hierarchy respectively contain move,
pull and push properties. Thus, in the UML CD case study, for each of the two
applied extract super class, one of one reference and one of two references, we
also detect three pulls of the same references that are incorrect.

One case of partly overlapping complex changes occurred in the UML CD
case study, between one pull property visibility from sub classes Feature and
AssociationEnd to super class ModelElement, and one unexpected inline class
from ElementOwnership to ModelElement that contains the property visibility.
They share only the add property visibility to the same class ModelElement.
In this case, only the pull property visibility is correct and not the inline class.
Thus, the precision is 10/14 that represents 71%.

In the GMF case study, we detected 16 complex changes whereas we expected
only 10. All the six additional complex changes are due to the full overlapping
issue. In the GMF evolution, we applied one extract super class of one reference
that explains one additional pull reference. We also applied two extracts super
class of two properties each that explain the four additional pull properties. For
the one flatten hierarchy of one reference, we detect an additional push reference.
Thus, the precision is 10/16, i.e. 63% as shown in Figure 5a. The overall f-score
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for the GMF and the UML CD case studies respectively reaches 78% and 87%.
B. Using only heuristic h1. Figure 5b shows the quality metrics after using
the heuristic h1. For the GMF case study, h1 allows us to reach 100% of precision.
This is possible since the case study contains only complex changes that overlap
completely. The heuristic h1 ranks the additional push and pulls properties with
a lower priority than the flatten hierarchy and the extracts super class, which
are in our case study indeed the expected complex changes.

For the UML CD case study, h1 allows to reach 91% of precision (10/11),
since the three additional pulls of a reference get a lower priority from h1 than
the two expected extracts super class of the same references. Since the expected
complex changes are ranked with the highest priority by h1, the recall thus
stays 100% for both case studies. The f-score is improved to 95% and to 100%
respectively for the UML CD and the GMF case studies.
C. Using only heuristic h2. Figure 5c shows the quality metrics after using
the heuristic h2. For the GMF case study, h2 does not change the precision since
there was no case of partly overlapping changes. However, for the UML CD case
study, h2 allows to reach 77% of precision (10/13) by giving the highest priority
to the pull property visibility that occurred at once in contrast to the unexpected
inline class. Again, the recall stays unchanged for both case studies. The f-score
reaches 87% for UML CD and stays unchanged for the GMF case study.
D. Using only heuristic h3. Figure 5d shows the results of the heuristic
h3. It gives similar results as those when no heuristic is used, because h3 is
useful when more than two complex changes partly overlap over different atomic
changes, which is a situation that did not occur in our case studies. Note that
for the UML CD case study, h3 fails to improve the precision by giving the same
priority 1 that represents the rate of solving the overlap issue, to the two partly
overlapping changes: the pull property visibility and the unexpected inline class.
E. Discussion. The results of the overall evaluation show that the recall is
always 100% that denotes the completeness of our detection. The results also
show that the heuristics h1 and h2 in some cases allow to improve the precision
and thus the f-score. In the UML CD case study, we noticed five cases on hid-
den changes each by a rename action. Three properties in the two inlines class
and two properties in the two extracts super class were all renamed afterward.
One hidden change was noticed in the GMF case study regarding the one move
property. Thus results of our detection engine would have been distorted if we
have retrieved the atomic changes from the difference model.

In both case studies, the situation when a complex change partly overlap
with other complex changes over different atomic changes, did not occur. Even
though, it seems to be seldom in practice, we cannot exclude it. Heuristic h3 still
could be useful in other case studies.

The evaluation experiments runs returned instantly and used insignificant
memory. They detected all complex changes in less than 470 milliseconds over a
trace of 220 atomic changes, while consuming less than 7.6 megabytes.
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(a) Metrics without any heuristics (b) Metrics after using heuristic h1

(c) Metrics after using heuristic h2 (d) Metrics after using heuristic h3

Fig. 5. Evaluation Results

4.3 Threats to Validity

Internal Validity: We had to apply the evolution of the metamodels our-
selves to retrieve the ETs. We applied each complex change at once, i.e all its
atomic changes were applied in sequence without being interrupted by other
atomic changes. In consequence, the ET does not include cases where the actual
expected change has a lower probability than 1 due to the distance between
the involved atomic changes, which might lead to an over-estimation of the effi-
ciency of the results for heuristic h2. However, we assume that only in seldom
cases such a separate application at different timestamps happens. Therefore,
this threat to validity is acceptable here. Yet, more experiments are needed to
further evaluate the ranking heuristics. Furthermore, to be able to evaluate the
benefit of the heuristics, we simulated the user choice by keeping only highest
prioritized changes. Indeed a user might also decide differently. However, since
we can assume that the user knows his intent, these deviating user decision can
in practice only improve the precision compared to this evaluation.

External validity: The quality of the presented approach depends on the
quality of the recorded trace, i.e. the logging mechanism of the underlying
framework. This concerns correctness and granularity of the provided atomic
changes. Thus, it is difficult to generalize the measured precisions, recalls, and
f-scores for other modeling frameworks. However, since Ecore is one of the most
used modeling frameworks, we think that this limitation is acceptable for now.
In future work, we plan to evaluate on other modeling frameworks as well.
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Conclusion validity: Finally, from a statistical point of view it would surely
be better to evaluate more case studies in order to gain a more precise measure
of the actual precision, recall and f-score. However, results gained herein are
sufficient to show the strength of our approach concerning recall and to get an
idea of the potential impact of our heuristics on the precision. For a more detailed
measures and also comparisons of performances to approaches from related work,
we plan to identify and use more case studies on real metamodel evolution.

5 Related Work

Concerning related work, surprisingly, and to the best of our knowledge, we
found only delta i.e. differencing-based approaches in the literature.

Differencing approaches[12,16,18] compute the so-called difference model
(DM) between two (meta) model versions.The DM contains atomic changes add,
delete and updates element, and one complex change move property only.

Cicchetti et al. [4] address the dependency ordering problem of atomic
changes in order to ease the detection of complex changes. In contrast, Garces
et al. [6] propose to compute the difference model using several heuristics imple-
mented as transformations in the Atlas Transformation Language (ATL) to
detect atomic and also complex changes. Langer et al. [11] use graph-based
transformation to define a complex change with the left-hand side (LHS) and
the right-hand side (RHS). Garcia et al. [7] detect complex changes with predi-
cates that check occurrences of atomic change class instances. The predicates are
implemented as ATL transformation scripts for each complex change. However,
neither [12] nor [17] address the complex changes of variable length. Vermolen
et al. [17] propose to detect complex changes over a manually ordered sequence
of atomic changes returned from a difference model. However, in contrast to
[4,6,7,11], [17] consider the issue of variability inside a complex change.

All the previous approaches [4,6,7,11,17] are based on differencing
approaches such as [12,16,18] or implement themselves a differencing app-
roach as in [4,6]. Thus, they suffer from the drawbacks of non ordered, and
potentially hidden changes. Only [4,17] considers the issue of atomic changes
order in a difference model, by defining strategies to reorder the atomic changes.
Only [17] considers the issue of hidden changes in a difference model by propos-
ing to the user with some changes to add so that the effect of the evolution
trace remains the same. In this paper, we overcome those two issues by relying
on Praxis and recording the evolution trace at run-time.

No related work addresses the issue of overlapping changes. They thus cannot
reach full recall in the general case. We tackle the overlap issue by proposing
prioritization heuristics. To the best of our knowledge, we are the first to consider
the overlap issue, to address it by proposing three ranking heuristics, and to cope
simultaneously with the four above issues.

6 Conclusion and Future Works

In this paper, we addressed the topic of complex change detection when a meta-
model evolves. We detect precisely complex changes by relying on the real evo-
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lution trace that is recorded by a user editing action observer. This approach
has the advantage to preserve the evolution i.e. no changes are hidden from the
detection. It thus supports full complex change recall, as shown in our evalua-
tion. Relying on our tool, (meta) modelers are able to increase and to optimize
the co-evolution percentage of artifact that relates to a metamodel, such as mod-
els. As mentioned previously, our approach can be applicable for object-oriented
models in general, which can represent (1) the architecture of the system, (2)
the design patterns on which it is based and (3) its data structures.

In a future work, we first aim to further improve the precision by optimizing
the prioritizing heuristics and to propose new ones. In this paper, we applied the
heuristics separately. Thus, we will assess how the precision is impacted by the
different combinations of the heuristics.

Moreover, when recording the ET, there is a risk to record changes that
cancel previous recorded changes. When there are ctrl-z events that undo the
last changes, we can remove the last added changes from our ET. In case users
perform a manual ctrl-z, we cannot deal with it. Yet, this does not impact the
recall that remains 100%, but may lead to false positives. To cope with this issue,
we will process the ET before the detection, searching for opposite changes that
cancel each other and removing them from the ET.
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