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Abstract. Although recent developments have shown that it is possible
to reason over large RDF datasets with billions of triples in a scalable
way, the reasoning process can still be a challenging task with respect
to the growing amount of available semantic data. By now, reasoner
implementations that are able to process large scale datasets usually use
a MapReduce based implementation that runs on a cluster of comput-
ing nodes. In this paper we address this circumstance by identifying the
resource consuming parts of a reasoner process and providing a solu-
tion for a more efficient implementation in terms of memory consump-
tion. As a basis we use a rule-based reasoner concept from our previous
work. In detail, we are going to introduce an approach for a memory
efficient RETE algorithm implementation. Furthermore, we introduce a
compressed triple-index structure that can be used to identify duplicate
triples and only needs a few bytes to represent a triple. Based on these
concepts we show that it is possible to apply all RDFS rules to more
than 1 billion triples on a single laptop reaching a throughput, that is
comparable or even higher than state of the art MapReduce based rea-
soner. Thus, we show that the resources needed for large scale lightweight
reasoning can massively be reduced.

Keywords: Large scale reasoning · Rule-based reasoning · GPU · RETE
algorithm · Memory efficient · Triple compression

1 Introduction

Semantic data and ontologies are used in a wide area of application like bio-
medical applications, smart environments and of course the Semantic Web. To
be able to fully explore the existing data and for example to ensure a complete
result set for queries, reasoners are used to derive facts that are implicitly given
by the existing data. Thus, the reasoning process is one key feature when using
semantic technologies. Nevertheless, with respect to the growing amount of data
we face the challenge to provide a fast, scalable and efficient reasoning process.
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This problem was already addressed by different approaches, where most of them
use a MapReduce based implementation to distribute the workload to a cluster
of computing nodes [1–3].

While MapReduce based reasoners have turned out to be highly scaleable
and efficient when using an adequate number of computing nodes, they are also
complex and costly to deploy. On the other side, most of the real world datasets
that are used in the scientific community have a size varying from a few million
statements to up to a few billion statements. For example the Bio2RDF1 portal
provides different biomedical datasets with a size varying from less than 100 k
statements to about 5 billion statements. One other often used semantic datasets
is DBpedia [4], which is derived from Wikipedia and contains about 400 million
statements in the English version. The real need resulting from these observations
is to be able to process datasets with up to a few billion triples on a simple and
affordable hardware like a well equipped laptop or a single workstation.

In our previous work [5,6] we introduced a rule-based reasoner that makes
use of the massively parallel hardware of graphic cards (GPUs). The work is
based on the RETE algorithm [7], which was introduced by Charles Forgy and
is a widely used algorithm to implement production systems. Unlike most of the
related work in the area of fast and scalable reasoning, which implements a static
semantics (the semantics describes which implicit given facts shall be derived by
the reasoner), the use of the RETE algorithm allows to define the semantics
using simple rules that are provided by a rule-file and thus can easily be edited.
In [6] we showed that our approach scales in a linear way for simple rulesets
like RDFS on datasets with up to one billion triples on a single computing
node. Nevertheless, the RETE algorithm and thus our implementation was quite
memory consuming which is why we had to use a server with 192 GB of memory
to be able to process one billion triples. This means that even a dataset with
a few hundreds of millions of statements can easily exceed the capabilities of
simple hardware like a laptop.

In this paper we address the aforementioned problems and introduce new
concepts for an efficient reasoning process using the GPU on limited hardware2

in terms of available memory. In detail we provide solutions to reduce the mem-
ory consumption of the RETE algorithm as well as of the data structures that
are needed to efficiently identify duplicate triples. Furthermore, for an efficient
execution, we introduce an approach that generates the source code executed
on the GPU during runtime with respect to the given set of rules. After a short
introduction of the RETE algorithm in Sect. 2 we start with an evaluation of
the memory critical parts for a reasoner implementation. We are going to point
out the aforementioned aspects in more detail and give examples on how much
memory is actually needed to process different datasets. Based on these findings
we introduce an adapted use of the RETE algorithm in Sect. 3, which allows to
make heavy use of the hard disk instead of using the main memory. Section 4

1 http://bio2rdf.org/.
2 Limited hardware in this paper is understood as single computers like laptops or

workstations.

http://bio2rdf.org/
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finally addresses the need to hold all triples in main memory for a fast identifica-
tion of duplicate triples that get inferred during the reasoning process. To reduce
the memory consumption for deduplication, a memory efficient triple represen-
tation based on different approaches like differential encoding and variable byte
coding is introduced.

2 Using RETE for a Reasoner Implementation

The RETE algorithm [7] is a pattern matching algorithm which can be used
to implement production systems. Because the semantics that defines which
implicit given facts should be materialized during the reasoning process can
often be expressed in a rule-based way, like RDF Schema (RDFS) and pD* [8],
the RETE algorithm can also be used to implement a reasoner. This not only
results in a semantics independent implementation, but also allows to apply
application specific rules.

2.1 Basic Concept

To introduce the RETE algorithm, we use two rules from the RDFS semantics
that build the ruleset for an example:

(?x ?p ?y) → (?p rdf:type rdf:Property) (R1)

(?x ?p ?y) (?p rdfs:domain ?c) → (?x rdf:type ?c) (R2)

The first step of the algorithm is to build a RETE network. The network consists
of different nodes n ∈ N , which can be alpha or beta nodes. Each unique rule
term is mapped to one alpha node. A beta node in turn always has exactly two
parent nodes (which can be alpha or beta) and may connect for example the
two alpha nodes that are created from the two rule terms of R2. The resulting
RETE network from R1 and R2 is depicted in Fig. 1.

After the network was created, the matching process starts by applying the
alpha matching. This means that all input triples are matched against all alpha
nodes to check if a given triple matches the condition of the alpha node. For α1

in Fig. 1 every triple will match, because the whole rule term consists of variables

α1
(?x ?p ?y)

α2
(?p rdfs:domain ?c)

β1
?pα1 = ?pα2

Fig. 1. RETE network of R1 and R2
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(marked with a “?”). For α2 a matching triple needs to have a predicate equal
to “rdfs:domain”. For every node in the network a working memory W is created
that stores a reference to all matching triples. Based on the working memories of
the alpha nodes, the beta matching can be performed. For β1 this means that all
matches that are stored in theworkingmemory ofα1 are combinedwith allmatches
of α2 to check if the combination of both is a match of β1. That is the case, if the
predicate of the α1 match is equal to the subject of the α2 match (or in other words
if the elements of both matches marked with the variable ?p are equal).

Following up on the matching process, the rules can be fired to create new
facts. For R1 the working memory of α1 is used as a fact basis because α1 is
the terminal node of R1 and completely maps to the rule. Accordingly, for rule
R2, which consists of two rule terms, the working memory of β1 is used to fire
the rule. Using the new inferred facts the process starts again by iterating the
new facts through the network (alpha and beta matching) and firing the rules,
until no new triples are derived. For a more detailed description of how to use
the RETE algorithm to infer new RDF facts we refer to [5] and [6].

2.2 Memory Consumption

After the short introduction of the RETE algorithm, next we are going to make
some observations about the memory consumption of a RETE-based reasoner
implementation. The following subsections introduce the major data structures
that are necessary for such a reasoner implementation, while the last subsection
gives a detailed overview about the particular memory consumption. We further
assume that the triples are dictionary encoded, which means that each string is
replaced by a numerical representation, where two identical strings are mapped
to the same value. Thus, the dictionary encoding can be seen as a preprocessing
of the input data which finally allows to operate on the data using more efficient
numerical operations.

Triples. First of all the dictionary encoded triples need to be stored in memory
for a reasoner implementation like described in [6]. The triples need to be stored
in an array like data structure, where each triple can be addressed using a
simple index, because this index is stored as a reference by the working memories
of the RETE algorithm. Accordingly, using 8 byte datatypes for the numerical
representation of one triple term, the memory footprint of the triple array is
n ∗ 24 byte, where n is the number of triples.

Working Memories. The second data structure is responsible to store all
working memories W for the RETE algorithm. The size of the working memories
highly depends on the used data- and ruleset. Furthermore, a single match in a
working memory may take a single reference (the index of the referenced triple)
like for alpha nodes, or multiple entries for beta nodes which always refer to
multiple triples.
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Table 1. Approximated memory consumption of triples and working memories for ρdf
and RDFS assuming a load factor of 0.7 for the triple HashSet

Dataset Ruleset Total Triple Triple Matches References Size Total

triples (n) size HashSet of W size

LUBM2000 ρdf 333.7M 8009MB 3814MB 287.5M 1022.5M 8180MB 20.0GB

LUBM2000 RDFS 377.1M 9050MB 4310MB 629.1M 2119.1M 16953MB 30.3GB

DBpedia ρdf 400.6M 9614MB 4578MB 123.1M 446.7M 3574MB 17.8GB

DBpedia RDFS 475.1M 11402MB 5430MB 554.1M 1978.5M 15828MB 32.7GB

Triple HashSet. Finally, a third data structure is needed that can be used to
efficiently identify duplicate triples that may get inferred during the rule-firing
of the reasoning process. These triples need to be rejected and should not be
added to the triple list. As a minimal implementation this could be achieved
by using a HashSet, where the value of the set stores the position of a triple in
the triples-array. To check for a duplicate, the hash code of a new triple would
be calculated to find the corresponding position in the HashSet and thus in the
triple array. This would allow to check for a duplicate by one simple lookup in
the HashSet and one more lookup in the triples-array (in case of hash collisions
multiple lookups might be necessary). Because a HashSet should only be filled
up to a specific load factor f (like 0.7) to reduce the number of collisions, an
additional overhead of at least (n

f − n) entries is necessary.

Total Memory Consumption. Table 1 gives a detailed overview of the size
of the different data structures for different datasets that were processed with
the ρdf [9] and RDFS ruleset. ρdf is a simplified version of the RDFS vocabu-
lary and contains all RDFS rules with at least two rule terms. For the evalua-
tion we used the Lehigh University Benchmark (LUBM) [10], which is an often
used synthetic benchmark dataset that can easily be scaled to different sizes by
defining the number of universities that shall be generated. To show the mem-
ory consumption, we generated 2000 universities which is why the dataset is
called LUBM2000. Furthermore, we used DBpedia [4] (version 3.9) including all
datasets of the English language as a real world dataset.

The size of the triples is directly calculated by the number of total triples
(parsed and inferred). The number of matches and references are derived by an
execution of the RETE algorithm using the given data- and ruleset. Note that
the total memory consumption is only an approximation. Using Java, further
overheads for example resulting from instantiating objects, may occur. Never-
theless, it can be seen that the total memory consumption for datasets with
an input size of 270 M (LUBM2000) to 400 M (DBpedia) triples easily exceeds
17.8 to 32.7 GB, depending on the dataset and ruleset that was applied. In con-
sequence, an adequate hardware like a workstation or server providing a large
memory is necessary to be able to process datasets with the given size.
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3 RETE on the GPU with an Adapted Working-Memory
Concept

Modern GPUs provide a massively parallel hardware that may have much more
computing power than modern CPUs if they are used in an appropriate way and
are faced with a problem that can be highly parallelized. Thus, the challenge
is to parallelize a problem in a way such that an optimal performance can be
achieved when executed on a GPU.

The parallelization of the RETE algorithm for a rule-based reasoner imple-
mentation was already introduced in [5] and [6]. For alpha matching this means
to create a thread on the GPU for every input triple (a thread or work item
on the GPU is much more lightweight than on a CPU). Each thread is respon-
sible for one triple and checks the match condition for every alpha node. If
the triple does match an alpha node, it creates an entry in the correspond-
ing working memory. During beta matching, all matches of one parent node
(mparent1 ∈ Wparent1) need to be matched against all matches of the second par-
ent node (mparent2 ∈ Wparent2). Therefore, a thread for every entry in Wparent1

is created that iterates through all matches in Wparent2 and checks if the com-
bination of both matches meet the conditions of the beta node. This operation
is performed for every beta node in the RETE network.

One disadvantage of the RETE algorithm is the high memory usage, which
is caused by maintaining the working memories. Considering large datasets, a
working memory can easily contain millions of entries (in the case of beta nodes
the number of entries in a working memory can easily exceed the number of
triples within the input dataset) that are references to the actual data. One way
to reduce the amount of used memory would be to swap the working memories to
the hard disk. Because the working memories are only accessed in bulks and no
access to single entries is required, this would not cause much overhead in terms
of load time. Nevertheless, this approach would still require to hold all triples in
the main memory to be able to resolve the references contained in the working
memories before the data can be processed. This is because for processing not
only the references, but also the triples itself are needed.

Based on the previous considerations and in contrast to our previous work, an
approach is needed that allows to fully swap the matches to the hard disk without
the need to hold any additional data like the triples in main memory. To achieve
this, we extend the use of the working memories to not hold a reference to the
corresponding triples, but the matching elements of the triples itself. For α2 from
Fig. 1 for example the working memory would contain all values that correspond
to the variables ?p and ?c from the matching triples. The working memory of β1

in turn would hold four elements, which correspond to ?x, ?p, ?y and ?c. Note
that neither static elements of matches (like the rdfs:domain of α2) nor double
elements like the ?p in Wβ1 are stored. A comparison of both approaches using
working memories storing references and using working memories storing the
actual data is depicted in Fig. 2.

While the resulting working memories will need more storage space than
working memories storing only references, they can completely be swapped to



110 M. Peters et al.

55 79 35

22 55 104

55 79 82

... ... ...

s p o

0

1

2

3

α1 α2

0

1

2

0

2

β1

1 0

1 2

α1 α2

55 79 35

22 55 104

55 79 82

?x ?p ?y

55 35

55 82

?p ?c

β1

22 55 104 35

22 55 104 82

?x ?p ?y ?c

dictionary:

78 ...

79 rdfs:domain

80 ...

Fig. 2. RETE network with working memories using references (left) and RETE net-
work with working memories using the full data excluding static data or recurring
variables (right), for a dictionary encoded dataset

the hard disk. For a further processing, they can be read in blocks and directly be
handed over to the corresponding task without the need to resolve any references.
This allows to further minimize the usage of the main memory.

4 Compressed Triple-Index Structure

In the previous section we showed how the memory usage of the RETE algorithm
can significantly be reduced by reorganizing the working memories and making
use of the hard disk. One more problem that needs to be addressed is the memory
consumption of the HashSet that is used in combination with the triples array to
identify duplicate triples. To underline the importance of an efficient duplicate-
lookup, Table 2 gives an overview of the number of triples that get inferred
including the duplicates for the already known datasets. As can be seen, many
of the derived triples are duplicates (up to 98.8 %). To be able to handle such
an amount of lookups in an efficient way (more than 2 billion for DBpedia and
RDFS), an in memory solution is necessary. To be able to reduce the memory

Table 2. Number of interred triples

Dataset Ruleset Derived Unique Duplicate Percentage of

triples triples triples duplicates

LUBM2000 ρdf 529.9 M 66.7 M 463.2 M 87.4 %

LUBM2000 RDFS 1813.6 M 110.1 M 1703.5 M 93.9 %

DBpedia ρdf 580.1 M 7.0 M 573.1 M 98.8 %

DBpedia RDFS 2263.6 M 81.5 M 2182.1 M 96.4 %
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usage and to apply a compression to the triples needed for deduplication, one
has to consider that each triple must only be compressed separately from other
triples. This is necessary to be able to access the compressed version of each
triple without decompressing other triples.

For triple compression we propose an index structure that stores the existing
triples without loss of precision but with a much lower memory footprint. To
do so, we make use of vertical partitioning [11], which is based on the fact that
many datasets are only described by a few predicates. For each predicate in a
dataset, a two column table is created that stores the subjects in the first column
and the objects in the second column. Considering that the LUBM dataset only
uses 32 predicates, this already results in a reduction of memory consumption
of about 33 % (neglecting the overhead that is created by organizing the triples
in 32 two-column tables instead of one three-column table).

For a further compression, we apply different well known techniques to the
remaining two numerical values of a triple. First of all we try to reduce the
amount of information to be encoded by checking if applying differential encoding
could preserve memory. Differential encoding means for example to not store
(s, o), but (s, s − o). Making sure that (s > o) and ((s − o) < o), the resulting
value can be compressed more efficiently in the following steps. To avoid negative
values resulting from differential encoding, we also have to make sure that the
smaller value is subtracted from the bigger one. Finally, we map the subject as
well as the object to a left value vl and right value vr in a way that the right
value is always the smaller one, independently of the fact if differential encoding
was applied or not. The calculation of vl and vr is described in Algorithm 1.

Algorithm 1. Calculation of vl and vr

Data: subject: s, object: o
Result: value left: vl, value right: vr

vl = s;
vr = o;
if (s > o) then

if ((s - o) < o) then
vr = s - o;

else
if ((o - s) < s) then

vr = o - s;
vl = o;

else
vl = o;
vr = s;

The reason why we may reorder the subject and object in a way that the
smaller value always becomes vr is because we use variable byte encoding to
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store vr. Variable byte encoding means to encode the data in units of bytes,
where the lower-order seven bits are used to store the data and the eighth bit is
used as an indicator of the end of a data value [12]: In particular the eighth bit
is equal to 1 if the end of a data value is reached and 0 otherwise. The values
[0, 27) for example can be encoded using a single byte, where the first seven bits
store the binary representation of the value and the eighth bit is equal to 1 to
indicate the end of the value. Accordingly, the values in [27, 214) can be stored
using two bytes, where the eighth bit of the first byte is equal to 0 and the eighth
bit of the second byte is set to 1. The remaining 14 bits are used to encode the
actual data.

Because we only store two numerical values in a row, we only have to encode
vr like described before. After reading a 1 at the eighth position of a byte, the
start of the second value can explicitly be identified while the end of that value
is defined by the remaining bytes. Thus, both values vl and vr can be encoded
together in a single byte array that is explicitly sized to the amount of data that
is needed to encode both values. To ensure that the encoded order of s and o is
preserved as well as the fact if differential encoding was applied, two more bits
are used, which are the most significant bits in the byte array.

For an example consider s = 622 and o = 35. Because ((s−o) > o), we do not
apply differential encoding and get vl = s = 622 and vr = o = 35. The binary
representation of 35 is 0010 0011, which results in 1010 0011 after applying
variable byte encoding (the first bit was set to 1). The binary representation of
622 is 0000 0010 0110 1110, where the two most significant bits are used to point
out if differential encoding was applied and if the order of the encoding of the
subject as a left value and the object as a right value was preserved. Because
we did not apply differential encoding, the most significant bit remains 0 and
because we preserved the order of the s and o, the second most significant bit
remains 0, too. Finally we can concatenate both binary values to

00 00 0010 0110 1110
︸ ︷︷ ︸

vl

1 010 0011
︸ ︷︷ ︸

vr

which can be encoded using three bytes. Assuming we are using 8 byte data types
to dictionary encode the triple terms and we apply the aforementioned compres-
sion of vertical partitioning, differential encoding and variable byte encoding,
we are able to reduce the amount of used data for the triple from the previous
example from 24 byte to 3 byte without loss of precision. Nevertheless, the com-
pression rate depends on the efficiency of vertical partitioning for a given dataset
as well as on the respective value for s and o.

Based on the introduced triple-compression, a fast and memory efficient
triple-index structure can be build to identify duplicate triples, which will be
the only data structure that needs be be kept in memory during the reasoning
process. For every predicate a HashSet can be created that stores the compressed
value of s and o instead of storing for example two 8 byte values. This solution
still allows to efficiently search for a duplicate triple by using hashing, but uses
much less memory than the approach described in Sect. 2.2. Detailed information
about the compression rate for different datasets is given in the next section.
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5 Evaluation

In the following section we are going to evaluate the proposed concepts of an
adapted working-memory for the RETE algorithm as well as the compressed
index structure and give a detailed view on different aspects. Finally we are going
to show how the concepts perform together in our reasoner implementation on
different datasets.

5.1 Implementation

To evaluate our concepts, we used the reasoner implementation presented in [6]
and adapted it to the new concepts and requirements. The reasoner is imple-
mented in Java and uses OpenCL3, the open standard for parallel programming
of heterogeneous systems. It allows to program heterogeneous devices like GPUs
and supports a wide range of parallelism. Furthermore, we use the jocl-library4

as OpenCL Java bindings.
To allow an efficient execution of application code on the GPU, it is impor-

tant to minimize memory access as well as to minimize the use of control flow
structures like loops and if-then-else statements. To achieve these requirements,
we also integrated a novel approach that generates the source code that is exe-
cuted on the GPU during runtime. Based on the rule file that is given as an input
when the reasoner execution is started, we generate the code that is executed
on the GPU specific to the rules. This allows us to provide dedicated methods
for example for each beta node that can be adapted to explicitly meet the needs
of a single beta node and ensures to only load the data from memory that is
needed. Furthermore, dictionary encoded values can directly be embedded to
the code. This allows for example to check a triple to meet the conditions from
α2 in Fig. 1 (a triple predicate needs to be equal to “rdfs:domain”) by directly
compare a predicate to the numerical value of 79 instead of a variable (in Fig. 2
the dictionary encoded value for “rdfs:domain” is 79).

5.2 Datasets and Environment

Basically we use three different datasets. The Lehigh University Benchmark
(LUBM) [10] was already mentioned before. It is widely used for reasoner eval-
uation and thus gives a good reference for a comparison. We generate datasets
ranging from 1000 universities up to 8000 universities, which consist of more than
1 billion triples. In addition to the synthetic dataset, we also use the complete
English version of DBpedia (version 3.9) as well as the real world Comparative
Toxicogenomics Database (CTD) [13], which describes cross-species chemical-
gene/protein interactions and chemical- and gene-disease relationships. All three
datasets are used with the complete RDFS ruleset as it is defined by the W3C5

as well as with the RDFS subset ρdf [9].
3 http://www.khronos.org/opencl/.
4 http://www.jocl.org/.
5 http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#RDFSRules.

http://www.khronos.org/opencl/
http://www.jocl.org/
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#RDFSRules
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Table 3. Reasoning results for ρdf and RDFS on a laptop

Dataset Input ρdf ρdf ρdf RDFS RDFS RDFS
triples total triples reasoning throughput total triples reasoning throughput

LUBM1000 134M 167M 41.6 s 4017 ktps 189M 114.1 s 1653 ktps

LUBM2000 267M 334M 98.4 s 3391 ktps 377M 287.6 s 1312 ktps

LUBM4000 534M 668M 296.9 s 2249 ktps 754M 758.3 s 996 ktps

LUBM8000 1068M 1335M 716.7 s 1863 ktps 1509M 1824.8 s 827 ktps

DBPedia 394M 401M 409.9 s 1154 ktps 475M 2886.6 s 165 ktps

CTD 335M 358M 70.2 s 5104 ktps 358M 306.8 s 1176 ktps

The evaluation is performed using an Apple MacBook Retina laptop from
2012 equipped with 16GB of memory, a 2.3 GHz Intel Core i7 processor, a 256GB
SSD hard disk and a NVIDIA GeForce GT 650M graphic card with 1024MB of
memory. All tests were performed five times and the average time of the whole
reasoning process including materialization and deduplication is given.

5.3 Reasoning

The reasoning results in Table 3 show a decreasing throughput for both rulesets
on the LUBM datasets. The highest throughput of 4017 kilo triples per second
(ktps) is reached for LUBM1000 and the ρdf ruleset, which decreases to 1863
ktps for LUBM8000. The decrease is caused by different factors. First of all,
we noticed that with a growing number of triples also the Java virtual machine
garbage collector activity increases, which causes delays in the reasoner execu-
tion. Furthermore, the complexity of the beta-calculation of the RETE algorithm
may grow in an exponential way for some rules, depending on the dataset. With
respect to the used hardware, this further reduced the throughput.

Compared to ρdf, RDFS is not more complex, but causes more alpha nodes
to be created during the RETE execution and materializes much more triples.
This results in a more computation intensive execution and a lower throughput.
Nevertheless, for RDFS we were able to reach a throughput ranging from 165 ktps
(DBpedia) to 1653 ktps (LUBM1000). Furthermore, the full RDFS ruleset was
successfully applied to more than 1 billion triples resulting in a total of 1.5 billion
unique statements on a single laptop.

The memory consumption caused by the triple-index structure that is neces-
sary to allow an efficient deduplication during the reasoning process is given in
Table 4. It can be seen that the memory consumption per triple is between 5.94
and 7.45 byte, depending on the dataset. Thus, in comparison to a 24 byte triple
representation we reached a compression of up to 75 %, which finally enables us
to reason on large scale datasets like LUBM8000 on a hardware with only 16GB
of memory. Because the triple information are kept in a hash structure, Table 4
gives also the used bytes per triple with overhead, which also considers the used
memory for free entries in the HashSets. Depending on the reached density of
values in the HashSets the overhead may differ in size.
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Table 4. Memory usage of the triple-index structure after applying ρdf reasoning

Dataset Predicates Byte/triple Byte/triple Total

with overhead memory

LUBM1000 32 6.04 9.71 1620 MB

LUBM2000 32 6.11 9.29 3098 MB

LUBM4000 32 5.69 8.26 5513 MB

LUBM8000 32 6.16 8.80 11748 MB

DBpedia 53139 7.45 12.81 5129 MB

CTD 43 5.94 9.36 3137 MB

Furthermore, Table 4 gives the number of predicates that are used within a
dataset. As can be seen, for LUBM as well as for CTD the number of predicates
is quite small such that the overhead when the vertical partitioning is applied is
infinitesimal small. Even for DBpedia, where the number of predicates is much
higher, the overhead that is caused by about 53k predicates is less than 8 MB
for vertical partitioning, assuming that a single predicate causes an overhead of
about 150 byte in our implementation.

Overall, the proposed concepts including the adapted RETE algorithm, which
allows to completely swap the working memories to the hard disk, allow to reduce
the main-memory consumption by more than 84 %. While using the naive app-
roach for storing triple information we approximately used 20.0 GB of memory
for applying ρdf Reasoning on LUBM2000. Using the new concepts, we only need
about 3.1 GB for the compressed triple-index structure.

6 Related Work and Discussion

RDF compression has been investigated in the related work under several aspects.
In [14] and [15] a binary representations for RDF graphs is used for a fast and
memory efficient query answering. While query answering is not the purpose of
the introduced triple-index structure, our goal was to efficiently identify dupli-
cate triples, which can be done by checking the existence of a single (and unique)
value. An OWL2 RL reasoner called RDFox that completely works in main mem-
ory is proposed in [16]. While the parallelization is applied similar to our work by
creating multiple threads (one for each CPU core) that handle all triples one after
the other, they report a memory consumption of at most 80 bytes per triple for
creating the necessary index structures, which is about 10 times more than our
implementation needs, but also serves a different purpose.

Large scale reasoning has recently been addressed in several works. While
they may differ in the ontology language they implement, most of them have in
common that they use a MapReduce implementation to handle the large amount
of data and to be able to scale the architecture [1–3,17]. In [17] the authors intro-
duce WebPie, a MapReduce based implementation for RDFS and pD* reasoning.
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They show that their architecture is highly scalable and is able to reason over
100 billion (LUBM) triples. On 64 computing nodes they reach a throughput
of 481 ktps for 1 billion triples and a maximum throughput of 2125 ktps for 20
billion triples. The lower throughput for the smaller datasets is founded in the
overhead that is introduced by the platform. While our implementation is not
able to scale like WebPie, it is still able to reason over 1 billion triples and reaches
a throughput of 1863 ktps on a laptop, which is nearly 4 times faster than WebPie
for the same dataset. For smaller datasets our approach even reaches a through-
put of 4017 ktps, which is almost twice as much as the maximum throughput
reported in [17]. In [18] a parallel reasoner implementation is proposed that does
not use MapReduce, but also distributes the workload to multiple computing
nodes. The largest dataset used in [18] was a LUBM10000/4 (10.000 universities
were generated, but only every fourth instance triple was used) with about 350M
triples. The dataset was processed on 64 computing nodes each running four
processes (each process was running on its own processor core). They reached a
throughput of 1185 ktps (of input triples), but did not apply any deduplication.

A reasoner implementation that uses only a single computing node is described
in [19]. The authors also use the massively parallel architecture of a GPU to apply
the ρdf ruleset. Unlike our implementation, the work in [19] does not support user
defined rules and is only able to process datasets that fit into the main memory
of a single GPU. A high throughput for reasoning with the ρdf rules on a single
machine is also reported for DynamiTE [20], which is a stream reasoner that was
also evaluated by applying a full materialization. The reasoner makes use of mul-
ticore processors and reaches an input processing ratio of about 227 ktps for the
LUBM8000 benchmark.

In comparison to our previous work [6] (using 192 GB memory and two GPUs
reaching a maximum throughput of 2700 ktps for LUBM1000 and the ρdf rules),
we were able to reduce the required hardware resources and increase the through-
put at the same time. This was mainly possible by eliminating the need to resolve
the references of working memories and by providing a faster implementation of
the code that gets executed on the GPU by generating the code based on the
given rules, leading to an overall increased throughput.

The presented concepts in this paper provide a holistic approach for large
scale reasoning on limited hardware. Even though the hardware can be scaled
in terms of using multiple GPUs, our approach does not allow to scale like a
MapReduce based implementation mainly because the main memory is still a
limiting factor. The throughput that is achieved depends on the structure of the
dataset as well as on the ruleset and is particular high if the number of beta-
matches that need to be computed is small. Thus, using more expressive and
complex semantics, a MapReduce based approach can be more efficient due to
the higher computation power. While we used only a single GPU from a laptop,
the influence of these factors can be further reduced when multiple and more
powerful GPUs are used, like described in [6]. Nevertheless, using lightweight
ontology languages or appropriate user-defined rules, the proposed approach
allows to reason on large datasets achieving a throughput that is comparable or
even higher than state of the art reasoner reach on a cluster of computing nodes.



Large Scale Rule-Based Reasoning Using a Laptop 117

7 Conclusion

To the best of our knowledge, this work is the first one that shows a reasoner
implementation that is able to apply the RDFS rules to a dataset with more than
1 billion triples using only a single laptop. This is possible by using a massively
parallel execution in combination with a substantially reduction of the memory
consumption of the whole reasoner process. To do so, we first introduced a
concept to adapt the RETE algorithm by changing the way, working memories
are used. Using the new concept, working memories can completely be stored
to the hard disk without the need to hold all triples in memory. An efficient
execution of the algorithm based on the new concepts was achieved by generating
the source code that gets executed on the massively parallel hardware of a GPU
based on the provided rules during runtime. This novel concept of applying
a generative approach for the execution on parallel hardware allows to apply
optimizations like reducing control flow structures and reducing memory access.

Furthermore, we introduced a compressed triple-index structure that allows
to efficiently identify duplicate triples that get inferred during the reasoning
process. The new triple-index structure has a memory footprint of about 25 %
of the original dictionary encoded triple representation, which allows to keep
much more triples for deduplication in memory. To achieve this, we used the
vertical partitioning approach known from triple compression and combined it
with different methods of integer compression and adapted them to our needs.
Finally, we were able to process large scale datasets on a simple hardware without
the need of a costly and time consuming setup of multiple computing nodes
running in a cluster. While we did the evaluation using a laptop, a workstation
equipped with more memory and a more powerful GPU (or even multiple GPUs)
should be able to process even larger datasets.

After showing that GPUs are suitable to perform massively parallel reasoning
on large datasets, our future work will include the investigation of adapting our
approach to not only perform reasoning on static data, but also on data streams.
Furthermore, an extension of the expressiveness that is supported by our rule-
based reasoner will be part of the future work.
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Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Par-
reira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) ISWC
2012, Part I. LNCS, vol. 7649, pp. 133–148. Springer, Heidelberg (2012)

20. Urbani, J., Margara, A., Jacobs, C., van Harmelen, F., Bal, H.: DynamiTE: parallel
materialization of dynamic RDF data. In: Alani, H., Kagal, L., Fokoue, A., Groth,
P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.)
ISWC 2013, Part I. LNCS, vol. 8218, pp. 657–672. Springer, Heidelberg (2013)


	Large Scale Rule-Based Reasoning Using a Laptop
	1 Introduction
	2 Using RETE for a Reasoner Implementation
	2.1 Basic Concept
	2.2 Memory Consumption

	3 RETE on the GPU with an Adapted Working-Memory Concept
	4 Compressed Triple-Index Structure
	5 Evaluation
	5.1 Implementation
	5.2 Datasets and Environment
	5.3 Reasoning

	6 Related Work and Discussion
	7 Conclusion
	References


