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Abstract. Precisely determining semantic similarity between entities
becomes a building block for data mining tasks, and existing approaches
tackle this problem by mainly considering ontology-based annotations to
decide relatedness. Nevertheless, because semantic similarity measures
usually rely on the ontology class hierarchy and blindly treat ontology
facts, they may erroneously assign high values of similarity to dissimi-
lar entities. We propose ColorSim, a similarity measure that considers
semantics of OWL2 annotations, e.g., relationship types, and implicit
facts and their inferring processes, to accurately compute the relatedness
of two ontology annotated entities. We compare ColorSim with state-of-
the-art approaches and report on preliminary experimental results that
suggest the benefits of exploiting knowledge encoded in the ontologies to
measure similarity.

Keywords: Ontology annotated entities · Semantic similarity · Pattern
discovery

1 Introduction and Motivation

Semantic Web initiatives have facilitated the definition of ontologies and large
linked datasets, as well as the encoding of domain knowledge by annotating
datasets with terms from ontologies. Ontology-based annotations induce anno-
tation graphs or heterogeneous information networks where nodes represent
entities or annotations, and links correspond to relationships among entities.
Annotations encode domain knowledge required to precisely compute similar-
ity between annotated concepts. Figure 1 presents therapeutical targets HER1
and HER2 and annotations from the Gene Ontology (GO)1. These annotations
explicitly describe properties of HER1 and HER2, and state-of-the-art similarity
measures like AnnSim [13] or DiShIn [4], decide relatedness between HER1 and
HER2 in terms of the similarity of these annotations. However, because anno-
tations correspond to terms in an ontology, they can be of different types or
be related through different relationships. Additionally, these annotations can
be also used to perform reasoning tasks that infer new implicit annotations. In
case semantic similarity measures do not consider this information, inaccurate
1 Annotations extracted from Uniprot-GOA http://www.ebi.ac.uk/GOA.
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Fig. 1. Annotations in GO of genes HER1 and HER2

similarity values can be assigned. Our research aims at exploiting all this knowl-
edge to precisely decide relatedness, and defining a novel similarity measure
named ColorSim which is able to: (i) distinguish the types of the relationships
in the annotation graphs; and (ii) consider implicit relationships and compare
them in terms of the justifications that support these inferences. Further, we
devise an efficient and scalable implementation of ColorSim and will implement
a framework for link prediction and domain pattern discovery that will exploit
the properties of ColorSim. For a preliminary evaluation of our approach, we
use the online tool Collaborative Evaluation of Semantic Similarity Measures
(CESSM) [18] to study the quality of ColorSim on a dataset composed of pairs
of proteins from UniProt 2. We compare ColorSim with respect to three domain-
specific similarity measures: Sequence Similarity (SeqSim) [22], ECC [5], and
Pfam [18], and eleven state-of-the-art semantic similarity measures. Experimen-
tal results suggest that ColorSim exhibits high correlation with domain-specific
measures, and is competitive with similarity measures that consider both infor-
mation content and structural characteristics of the compared annotations. We
plan to extend our study for analyzing the impact of ColorSim on link prediction
and pattern discovery in the Life Sciences domain, e.g., drug-target interaction
collections [2,16] and GO annotated families of genes [13]; as well as in the
e-learning domain, e.g., for the recommendation of learning objects annotated
with the Pedagogical Ontology (PO) developed in the INTUITEL3 project.

2 Related Work

We have identified the following similarity measures that are able to deal with
heterogeneous information networks: (i) Taxonomic-based, (ii) Meta-Path-based,
(iii) Neighborhood-based, (iv) Annotation-based, and (v) Information Content-
based similarity measures.
2 http://www.uniprot.org/.
3 http://www.intuitel.eu.

http://www.uniprot.org/
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Taxonomic-Based Similarity Measures: Taxonomic-based similarity mea-
sures decide relatedness in terms of the topology of the ontology and usually
consider only the is-a relationship. Dps [15] and Dtax [1] are state-of-the-art
taxonomic similarity measures that assign higher similarity values to pairs of
nodes that are at greater depth in the taxonomy and closer to their lowest com-
mon ancestor, i.e., similarity is defined in terms of the deepest common ancestor
of these two nodes in the ontology. Usually, they do not consider any kind of
semantics; therefore, relationship types or implicit facts may not be taken into
account.

Meta-Path Based Similarity Measures: Meta-path-based similarity mea-
sures compute relatedness in terms of the sub-graphs of an original information
network that satisfies a meta-path expression. A meta-path is a path expres-
sion on the nodes and edges of the information network, and characterizes a
set of paths. The intuition behind meta-path-based similarity measures is that,
the more linked two concepts are by paths that satisfy the input meta-path,
the more similar they are. PathSim [23] and HeteSim [20] are meta-path-based
similarity measures that compute relatedness based on this idea. These similar-
ity measures are not designed to deal with ontologies, and the semantics that
describe the terms used to annotate the concepts in the information network is
not considered by these measures. Therefore, they only take into account links
that are explicitly defined in the information network, omitting implicit facts
and their corresponding justifications.

Neighborhood Based Similarity Measures: Neighborhood based similar-
ity measures define relatedness of two concepts in terms of the similarity of
their neighbors. SimRank [7] extends PageRank [12] to compute relatedness
between graph related concepts. However, SimRank is not designed to deal with
ontologies; thus, it does not differentiate between link types, their semantics, and
implicit facts, i.e., all the neighbors are considered in the same way, regardless
of the type of the relationships that connect them.

Information Content Based Similarity Measures: Information Content
measures show how informative is a concept in a certain corpus. It is calculated
with the following formula: IC(x) = − log

(
freq(x)

N

)
, where freq(x) is the number

of times the concept x appears in the corpus, and N is the size of the corpus;
therefore, more frequently used concepts are seen as less informative. The main
work in this area is the similarity measure presented by Resnik et al. [19], which
defines relatedness between two concepts as the Information Content of the most
informative common ancestor. Further, Jiang and Conrath [8], and Lin [11] rely
on this idea. Couto et al. refines with GraSM [3] and DiShIn [4] the similarity
measure of Resnik defining the disjunctive common ancestors of two concepts;
the similarity is defined by the average of the Information Content of all the dis-
junctive common ancestors. The Information Content-based similarity measures
are designed to calculate the similarity between words in a thesaurus; therefore,
they only consider the topology of the taxonomy.
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Annotation-Based Similarity Measures: AnnSim [13] is an annotation-
based similarity measure that determines relatedness of two entities in terms
of the similarity of their annotations. To compute the similarity of annotations,
AnnSim combines properties of path- and topological-based similarity measures
like Dtax and Dice coefficients, and does not consider any additional seman-
tics represented in the corresponding ontology. Contrary to existing approaches,
ColorSim considers semantics as a first-class citizen, and exploits this knowl-
edge during the computation of relatedness between ontology-based annotated
entities.

3 Problem Statement and Contributions

We hypothesize that semantics encoded in ontologies possess valuable informa-
tion that have to be considered to determine relatedness. Our first research goal
addresses the challenges of defining a semantic similarity measure able to differ-
entiate between relationship types and exploit their semantics; then, we plan to
develop a framework that relies on this measure to enhance data mining tasks.
Our research questions (RQ) are the following: (RQ1) What is the improvement
of considering semantics during the computation of similarity between two anno-
tated concepts?; (RQ2) How can semantic similarity measures efficiently scale
up to large datasets and be computed in real-time applications?; and (RQ3)
What is the impact of expressive semantic similarity measures on data mining
tasks, e.g., to discover domain patterns between annotated concepts?.

Existing similarity measures are not able to fully exploit information about
relationship types or their properties. Therefore, our first research goal is to pro-
pose a novel semantic similarity measure. We rely on OWL2 as vocabulary to
describe concepts and relationships, and the axioms that describe their seman-
tics; further, an OWL2 reasoner is assumed to infer implicit facts. Figure 2(a)
presents a taxonomy of relationships in the Gene Ontology (GO). Relationship
taxonomies can refine a neighborhood-based similarity approach assuming that
not only the neighbors of a concept influence in the similarity measure, but also
the relationship type used to infer that this concept is a neighbor. For exam-
ple, if we have four concepts A, B, C, and D, all of them identical in terms
of taxonomy-based similarity, but related through the following relationships:
(i) A part of D; (ii) B negatively regulates D; and (iii) C positively regulates D.
Since negatively regulates and positively regulates are more similar according to
the taxonomy (See Fig. 2(a)), both B and C must be more similar than A and
B, or A and C.

Additionally, existing semantic similarity measures do not take into account
implicit facts. The description of the relationships in the datasets of the Linking
Open Data (LOD) cloud, includes a set of semantic properties specified with
OWL2, e.g., transitivity, reflexivity, ObjectPropertyChain, or symmetry, which
allow the reasoner to infer new implicit relationships between two concepts. To
illustrate, consider the following properties of GO relationships: (i) hasPart is
the inverse of partOf; and (ii) regulates is transitive over partOf by means of
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(a) Relationship Taxonomy (b) GO Ontology Inference Example

Fig. 2. Differences according to the knowledge encoded in GO

an ObjectPropertyChain axiom. Additionally, relationships are transitive over
the is-a relationship in OWL2. Although considering implicit relationships is
a step forward in comparison with the-state-of-the art, this is not enough for
computing accurate values of similarity. We consider that not only the final
inference is relevant to calculate the similarity, but also the followed derivation
route to reach this inference. This route is provided by OWL2 reasoners as a
set of axioms that supports the final inference. Figure 2(b) illustrates implicit
relationships according to the semantics encoded in GO using dashed arrows.
The reasoner infers that A, B, and C negatively regulate E and F. A and B share
the justification, while the justification for C is different. The justification for
A and B is based on the fact that the property negatively regulates is transitive
over the is-a relationship, while the justification for C relies on the transitivity
of negatively regulates. Further, the same implicit relationship may have more
than one justification. For example, the implicit relationship negatively regulates
in Fig. 3(a) can be inferred by applying: (a) transitivity over negatively regulates,
or (b) transitivity over the is-a relationship.

Our second research goal is to provide a framework able to efficiently com-
pute ColorSim on real-time and to scale up to large datasets. Currently, Web
based recommendation systems are based on similarity measures that have to
be calculated in real-time to satisfy users’ requests. Similarity measures used in

(a) Different Justifications (b) Portion of GO

Fig. 3. Examples of implicit facts in GO (dashed arrows)



800 I. Traverso-Ribón

this context belong to some of the categories presented in Sect. 2; they can be
calculated in polynomial time. Additionally, link prediction and domain pattern
discovery approaches require accurately computation of similarity measures for
large datasets. Thus, our research will explore different heuristics to efficiently
determine the properties of the implicit and explicit ontology facts, as well as
the combination of this knowledge to decide relatedness.

Finally, our third research goal is the development of graph mining frame-
works that by exploiting our proposed similarity measures will be able to predict
potential novel interactions and patterns. We will focus on the following three
problems in the Life Sciences domain: (1) defining relatedness between seman-
tically annotated surgery procedures [9]; (2) extending the predicting approach
proposed by Palma et al. [14] to suggest new interactions between drugs and
targets; and (3) analyzing and enhancing the quality of computationally inferred
Gene Ontology annotations [21].

4 Proposed Approach and Research Methodology

We aim at enhancing semantic similarity measures with semantics from ontolo-
gies, e.g., relationship types, implicit facts and their corresponding justifications,
and thus, improve tasks of link prediction, pattern discovery, and recommen-
dations. We propose ColorSim, a semantic similarity measure that computes
relatedness between two entities E1 and E2 annotated with ontology terms.
ColorSim assigns values of similarity to E1 and E2 close to 1.0, if their corre-
sponding annotation sets A1 and A2, are highly similar, i.e., similarity depends
on how good is the matching between the annotations in A1 and A2. To com-
pute this matching, sets A1 and A2 are represented as a weighted bipartite graph
WBG = (A1 ∪ A2,WE ), where WE is a set of the weighted edges in the Carte-
sian product of A1 and A2, and an edge weight corresponds to the similarity
between annotations a1 ∈ A1 and a2 ∈ A2 connected by the edge.

The novelty of our approach relies on the computation of the similarity
between a1 and a2. ColorSim considers not only the class hierarchy of the ontol-
ogy to decide the relatedness between a1 and a2, but also takes into account the
explicit and implicit neighbors, the type of the relationships that supports the
inference of these neighbors, and the reasoning processes performed to infer
the implicit facts. To illustrate the impact that considering additional knowl-
edge can have on the computation of the similarity, consider the portion of GO
presented in Fig. 3(b). Although the neighbors of cardiac muscle contraction
and diaphragm contraction are very different either in terms of the taxonomy-
based similarity and based on their justifications, Dtax(cardiac muscle contrac-
tion,diaphragm contraction) is 0.75. Contrary, our similarity measure considers
the semantics encoded in the ontology and detects that these two annotations are
dissimilar, i.e., Sim(cardiac muscle contraction,diaphragm contraction) is equal
to 0.135.

We define for each annotation ai, a set Ri of relationships where ai appears
as subject. Each element in Ri is a quadruple t = (ai, aj , rij , Eij), where rij
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Fig. 4. Neighborhoods of nodes in Fig. 2(b). Solid and dashed arrows represent explicit
and implicit relationships, respectively. Implicit relationships are labelled with the
axioms used to derive the relation.

is a relationship type such that there is an out-going link from ai to aj in the
ontology, and Eij is a set composed of the justifications that support the inference
of rij , whenever rij is an implicit fact. Figure 4 illustrates neighborhoods of
nodes where the same relationships are inferred using different justifications.
Quadruples represent the association between two nodes through an explicit
or implicit relationship, e.g., t1 =(A, E, neg-regulates, {transitive over is-a})
is an example of a quadruple where the relationship neg-regulates is implicit
and inferred by using the axiom transitive over is-a. Based on the knowledge
represented in quadruples, we compute the similarity Sim(a1, a2) as follows:

Sim(a1, a2) =

∑
(t1i,t2j)∈R1 ×R2

Simrelationship(t1i, t2j)

Max(|R1|, |R2|)
where

– R1 and R2 are the relationships sets of a1 and a2, respectively;
– quadruples t1i = (a1, ai, r1i, E1i) and t2j = (a2, aj , r2j , E2j) belong to the

Cartesian product of R1 × R2; and
– Simrelationship(t1i, t2j) is defined as a triangular norm tN4 that combines the

values of similarity of the justifications of r1i, r2j with the taxonomy-based
similarity of t1i and t2j .

The Simrelationship(t1i, t2j) is defined as follows:

Simrelationship(t1i, t2j) = tN (SimD(t1i, t2j),SimjustificationSet(E1i, E2j))

where,

– The taxonomic similarity of t1i and t2j , SimD(t1i, t2j), corresponds to a triangu-
lar norm that combines three taxonomic similarities: Dtax(a1, a2), Dtax(ai, aj),
and Dtax(r1i, r2j); and

– SimjustificationSet(E1i, E2j) is a similarity measure that determines the relat-
edness of the justification sets E1i and E2j based on the similarity of the
justifications in the Cartesian product of E1i and E2j .

4 For this ontology we used the Product TN for Simrelationship and SimD.
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A justification e is described in terms of a set X of axioms used in the
derivation of the corresponding relationship. Formally, the similarity of sets E1i

and E2j is defined as follows:

SimjustificationSet(E1i, E2j) =

∑
(e1i,e2j)∈(E1i ×E2j)

Simjustification(e1i, e2j)

Max(|E1i|, |E2j |)
where,

– Simjustification(e1i, e2j) is defined as the similarity of the sets X1i,X2j of axioms
of e1i, e2j , i.e., Simjustification(e1i, e2j) = SimaxiomSet(X1i,X2j)

– the similarity of two sets of axioms, SimaxiomSet(X1i,X2j), is defined in terms
of the type of the axioms.

Currently, we consider four types of OWL2 axioms: subClassOf, subProper-
tyOf, ObjectPropertyChain, and TransitiveProperty. Further, we provide a differ-
ent definition of similarity for each axiom, and the similarity between different
axioms is 0.0.

Based on the definition of the similarity Sim(a1, a2) between two annota-
tions a1 and a2, we compute the 1-to-1 maximal weighted bipartite graph match-
ing between two sets of annotations. Given two annotation sets A1 and A2,
let MWBG = (A1 ∪ A2,WEr) be the 1-to-1 maximal weighted bipartite graph
matching for a weighted bipartite graph WBG = (A1 ∪A2,WE ), where WEr ⊆
WE, ColorSim on MWBG is as follows:

ColorSim(MWBG) =

∑
(a1,a2)∈WEr

Sim(a1, a2)

Max(|A1|, |A2|)

5 Preliminary Results

We use the CESSM Collaborative Evaluation of GO-based Semantic Similarity
Measures [18] to evaluate ColorSim on a dataset composed of pairs of proteins
from UniProt. These proteins are annotated with GO terms separated into the
GO hierarchies of biological process (BP), molecular function (MF), and cellular
component (CC). GO and UniProt are both from August 2008. CESSM imple-
ments eleven semantic similarity measures; some of them are measures specif-
ically developed for the GO ontology while others are general measures. We
evaluated ColorSim with the provided dataset and compared our results w.r.t.
the other measures and the three gold standards. Figures 5(a) and 5(b) report
the results of ColorSim produced by the CESSM tool. The correlation between
ColorSim and SeqSim is higher than 0.72; its behavior is very similar to simGIC
(GI) [17] and simUI (UI) [6], two similarity measures specific for GO. Table 1
shows the correlations of ColorSin and state-of-the-art measures w.r.t. three gold
standard measures: ECC, Pfam, and SeqSim. ColorSim is the sixth best with
ECC, the first with Pfam, and the fourth with SeqSim. Further, ColorSim is the
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(a) ColorSim and SeqSim Correlation (b) ColorSim and state-of-the-art measures

Fig. 5. Correlation between SeqSim and ColorSim

Table 1. Correlation with three baseline similarity measures: ECC, Pfam, and SeqSim

Similarity GI UI RA RM RB LA LM LB JA JM JB ColorSim

ECC 0.398 0.402 0.302 0.308 0.444 0.304 0.313 0.435 0.193 0.254 0.371 0.369

Pfam 0.455 0.451 0.323 0.263 0.459 0.287 0,206 0.373 0.173 0.165 0.332 0.499

SeqSim 0.774 0.730 0.407 0.303 0.740 0.341 0.254 0.637 0.216 0.235 0.586 0.726

domain-independent measure with the highest correlation. The Pearson’s cor-
relation of ColorSim with SeqSim is 0.726 while the state-of-the-art annotation
similarity measure AnnSim has a correlation of 0.65 with SeqSim in the same
dataset. Both measures rely on the GO annotations to compute similarity. How-
ever, AnnSim is based on Dtax, and it only considers the class hierarchy of the
ontology and may assign high values of similarity to dissimilar proteins which
also have low values of SeqSim. Contrary, ColorSim is able to distinguish the
relationships that relate the neighbors of two annotations and the axioms used
to infer the implicit facts. Thus, ColorSim can assign more accurate values of
similarity and exhibits a better correlation with baseline similarity measures.

6 Evaluation Plan

We will develop an implementation of ColorSim able to efficiently scale up to
large datasets. The evaluation of our approach will be conducted on different
biomedical datasets that represent associations between drugs and targets [2,16],
and genes and GO terms [13]; as well as PO annotated learning objects. We also
plan to enhance the link prediction approach proposed by Palma et al. [14] with
the properties of ColorSim and study the impact that these new features have on
link prediction. Finally, we will extend ColorSim to consider order between the
annotations of two entities; this feature will allow to detect relatedness between
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processes that are described in terms of sequences of annotations. We will use the
dataset of semantically annotated surgery procedures [9] to evaluate the quality
of our approach.

7 Lessons Learned and Conclusions

We proposed a semantic similarity measure aware of relationship types and of
their semantics. Our results show an improvement w.r.t. state-of-the-art mea-
sures, being ColorSim the most correlated generic measure with the gold stan-
dards. However, it is important to highlight that because an OWL2 reasoner
needs to be invoked, the worst scenario of ColorSim is 2NEXP-Time [10]. There-
fore, heuristics are required to compute the justifications of the implicit relation-
ships efficiently. Furthermore, we have observed that in ontologies with a small
number of axioms, the benefits of ColorSim is negligible in comparison to its
computational cost. Thus, we need to develop strategies to detect conditions
that benefit the computation of the implicit relationships and their respective
justifications. The study of these computational issues and the development of
a graph mining framework that exploit the benefits of ColorSim, are part of our
future work.
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