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Abstract. As of today, there exists no standard language for query-
ing Linked Data on the Web, where navigation across distributed data
sources is a key feature. A natural candidate seems to be SPARQL,
which recently has been enhanced with navigational capabilities thanks
to the introduction of property paths (PPs). However, the semantics of
SPARQL restricts the scope of navigation via PPs to single RDF graphs.
This restriction limits the applicability of PPs on the Web. To fill this
gap, in this paper we provide formal foundations for evaluating PPs on
the Web, thus contributing to the definition of a query language for
Linked Data. In particular, we introduce a query semantics for PPs that
couples navigation at the data level with navigation on the Web graph.
Given this semantics we find that for some PP-based SPARQL queries
a complete evaluation on the Web is not feasible. To enable systems to
identify queries that can be evaluated completely, we establish a decid-
able syntactic property of such queries.

1 Introduction

The increasing trend in sharing and interlinking pieces of structured data on the
World Wide Web (WWW) is evolving the classical Web—which is focused on
hypertext documents and syntactic links among them—into a Web of Linked
Data. The Linked Data principles [4] present an approach to extend the scope
of Uniform Resource Identifiers (URIs) to new types of resources (e.g., people,
places) and represent their descriptions and interlinks by using the Resource
Description Framework (RDF) [16] as standard data format. RDF adopts a
graph-based data model, which can be queried upon by using the SPARQL query
language [12]. When it comes to Linked Data on the WWW, the common way
to provide query-based access is via SPARQL endpoints, that is, services that
usually answer SPARQL queries over a single dataset. Recently, the original core
of SPARQL has been extended with features supporting query federation; it is
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now possible, within a single query, to target multiple endpoints (via the SERVICE
operator). However, such an extension is not enough to cope with an unbounded
and a priori unknown space of data sources such as the WWW. Moreover, not
all Linked Data on the WWW is accessible via SPARQL endpoints. Hence, as of
today, there exists no standard query language for Linked Data on the WWW,
although SPARQL is clearly a candidate.

While earlier research on using SPARQL for Linked Data is limited to frag-
ments of the first version of the language [5,13,14,25], the more recent version
1.1 introduces a feature that is particularly interesting in the context of queries
over a graph-like environment such as Linked Data on the WWW. This feature
is called property paths (PPs) and equips SPARQL with navigational capabili-
ties [12]. However, the standard definition of PPs is limited to single, centralized
RDF graphs and, thus, not directly applicable to Linked Data that is distrib-
uted over the WWW. Therefore, toward the definition of a language for accessing
Linked Data live on the WWW, the following questions emerge naturally: “How
can PPs be defined over the WWW?#¢” and “What are the implications of such a
definition?” Answering these questions is the broad objective of this paper. To
this end, we make the following main contributions:

1. We formalize a query semantics for PP-based SPARQL queries that are meant
to be evaluated over Linked Data on the WWW. This semantics is context-
based; it intertwines Web graph navigation with navigation at the level of
data.

2. We study the feasibility of evaluating queries under this semantics. We assume
that query engines do not have complete information about the queried Web
of Linked Data (as it is the case for the WWW). Our study shows that there
exist cases in which query evaluation under the context-based semantics is
not feasible.

3. We provide a decidable syntactic property of queries for which an evaluation
under the context-based semantics is feasible.

The remainder of the paper is organized as follows. Section 2 provides an overview
on related work. Section 3 introduces the formal framework for this paper, includ-
ing a data model that captures a notion of Linked Data. In Sect.4 we focus on
PPs, independently from other SPARQL operators. In Sect.5 we broaden our
view to study PP-based SPARQL graph patterns; we characterize a class of
Web-safe patterns and prove their feasibility. Finally, in Sect. 6 we conclude and
sketch future work.

2 Related Work

The idea of querying the WWW as a database is not new (see Florescu
et al.’s survey [11]). Perhaps the most notable early works in this context are
by Konopnicki and Shmueli [18], Abiteboul and Vianu [1], and Mendelzon et
al. [20], all of which tackled the problem of evaluating SQL-like queries on the
traditional hypertext Web. While such queries included navigational features,
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the focus was on retrieving specific Web pages, particular attributes of specific
pages, or content within them.

From a graph-oriented perspective, languages for the navigation and specifi-
cation of vertices in graphs have a long tradition (see Wood’s survey [26]). In the
RDF world, extensions of SPARQL such as PSPARQL [2], nSPARQL [21], and
SPARQLeR [17] introduced navigational features since those were missing in the
first version of SPARQL. Ounly recently, with the addition of property paths (PPs)
in version 1.1 [12], SPARQL has been enhanced officially with such features. The
final definition of PPs has been influenced by research that studied the computa-
tional complexity of an early draft version of PPs [3,19], and there also already
exists a proposal to extend PPs with more expressive power [9]. However, the main
assumption of all these navigational extensions of SPARQL is to work on a sin-
gle, centralized RDF graph. Our departure point is different: We aim at defining
semantics of SPARQL queries (including property paths) over Linked Data on the
WWW, which involves dealing with two graphs of different types; namely, an RDF
graph that is distributed over documents on the WWW and the Web graph of how
these documents are interlinked with each other.

To express queries over Linked Data on the WWW, two main strands of
research can be identified. The first studies how to extend the scope of SPARQL
queries to the WWW | with existing work focusing on basic graph patterns [5,
13,25] or a more expressive fragment that includes AND, OPT, UNION and FILTER [14].
The second strand focuses on navigational languages such as NautiLOD [8,10].
These two strands have different departure points. The former employs navi-
gation over the WWW to collect data for answering a given SPARQL query;
here navigation is a means to discover query-relevant data. The latter provides
explicit navigational features and uses querying capabilities to filter data sources
of interest; here navigation (not querying) is the main focus. The context-based
query semantics proposed in this paper combines both approaches. We believe
that the outcome of this research can be a starting point toward the definition
of a language for querying and navigating over Linked Data on the WWW.

3 Formal Framework

This section provides a formal framework for studying semantics of PPs over
Linked Data. We first recall the definition of PPs as per the SPARQL stan-
dard [12]. Thereafter, we introduce a data model that captures the notion of
Linked Data on the WWW.

3.1 Preliminaries

Assume four pairwise disjoint, countably infinite sets Z (IRIs), B (blank nodes),
L (literals), and V (variables). An RDF triple (or simply triple) is a tuple from
the set T = (ZUB) x I x (ZUBUL). For any triple t € T we write iris(¢) to
denote the set of IRIs in that triple. A set of triples is called an RDF' graph.
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A property path pattern (or PP pattern for short) is a tuple P = («, path, 3)
such that a, 8 € (ZU LUYV) and path is a property path expression (PP expres-
sion) defined by the following grammar (where u,uy,...,u, € I):

path = u | '(uy| ... |u,) | "path | path/path | (path|path) | (path)*

Note that the SPARQL standard introduces additional types of PP expres-
sions [12]. Since these are merely syntactic sugar (they are defined in terms
of expressions covered by the grammar given above), we ignore them in this
paper. As another slight deviation from the standard, we do not permit blank
nodes in PP patterns (i.e., a, 8 ¢ B). However, standard PP patterns with blank
nodes can be simulated using fresh variables.

Example 1. An example of a PP pattern is (Tim, (knows)* /name, ?n), which
retrieves the names of persons that can be reached from Tim by an arbitrarily
long path of knows relationships (which includes Tim). Another example are the
two PP patterns (7p,knows, Tim) and (Tim, knows, 7p), both of which retrieve
persons that know Tim.

The (standard) query semantics of PP patterns is defined by an evaluation func-
tion that returns multisets of solution mappings where a solution mapping p
is a partial function p : ¥V — (Z U B U £L). Given a solution mapping u and a
PP pattern P, we write u[P] to denote the PP pattern obtained by replacing
the variables in P according to p (unbound variables must not be replaced).
Two solution mappings, say p1 and us, are compatible, denoted by py ~ po, if
p1(?v) = pa(?v) for all variables 7v € (dom(u1) N dom(us)).

We represent a multiset of solution mappings by a pair M = ({2, card) where
2 is the underlying set (of solution mappings) and card : 2 — {1,2,... } is the
corresponding cardinality function. By abusing notation slightly, we write p € M
for all g € 2. Furthermore, we introduce a family of special (parameterized)
cardinality functions that shall simplify the definition of any multiset whose
solution mappings all have a cardinality of 1. That is, for any set of solution
mappings {2, let card1: 0 — {1,2,...} be the constant-1 cardinality function
that is defined by card1(?)(u) = 1 for all p € £2.

To define the aforementioned evaluation function we also need to introduce
several SPARQL algebra operators. Let My = (21, card) and My = (25, cards)
be multisets of solution mappings and let V' C V be a finite set of variables.
Then:

My U My = (2, card) where 2 = {2 U {25 and (i) card(p) = cardy(p) for all
solution mappings p € 2\ 2, (ii) card(pn) = carda(p) for all p € 2\ (24,
and (iii) card(p) = cardi(u) + carda(p) for all p € 21 N 2s.

My x My = (£, card) where 2 = {ulu po | (1, ) € 29 x 25 and g ~
p2} and, for every p € £2, card(p) = D (igin) E21X s st pmpin U COTA(111) -
card(pz).

My \ My = (£2, card) where 2 = { 1 € 1 |y % po for all s € (25} and, for
every pu € 2, card(p) = cardq ().
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Function ALP1(~y, path,G)  Function ALP2(v,path, Visited, G)

Input: v € (ZUBU L), Input: v € (ZUBU L), path is a PP expression,
path is a PP expression, Visited C (ZUBU L), G is an RDF graph.
G is an RDF graph. 4: if y ¢ Visited then

1: Visited := () 5:  add+y to Visited
2: ALP2(v,path, Visited,G) 6: forall u € [(?z,path,?y)]c st u(?z)=-do
3: return Visited 7: ALP2(/J(?y),path7 Visited,G) I,y eV

Fig. 1. Auxiliary functions for defining the semantics of PP expressions of the form
path™.

mv (M) = (2, card) where 2 = {u|3/ € 21 : p ~ p and dom(p) =V N

dom(y')} and, for every p € 2, card(p) = doety st peopr COTda (1)

In addition to these algebra operators, the SPARQL standard introduces auxil-
iary functions to define the semantics of PP patterns of the form (a, path* 3).
Figure 1 provides these functions—which we call ALP1 and ALP2—adapted to
our formalism.! We are now ready to define the standard query semantics of PP
patterns.

Definition 1. The evaluation of a PP pattern P over an RDF graph G, denoted
by [P]a, is a multiset of solution mappings (2, card) that is defined recursively
as given in Fig. 2 where a,f € (ZULUYV), zp,2r € (ZUL), v, ?vr € V,
Uy Up,y ey Up € L, Tv €V is a fresh variable, and pg denotes the empty solution
mapping (dom(pg) = 0).

3.2 Data Model

The standard SPARQL evaluation function for PP patterns (cf. Sect. 3.1) defines
the expected result of the evaluation of a pattern over a single RDF graph.
Since the WWW is not an RDF graph, the standard definition is insufficient
as a formal foundation for evaluating PP patterns over Linked Data on the
WWW. To provide a suitable definition we need a data model that captures
the notion of a Web of Linked Data. To this end, we adopt the data model
proposed in our earlier work [14]. Here, a Web of Linked Data (WoLD) is a tuple
W = (D, data, adoc) consisting of (i) a set D of so called Linked Data documents
(documents), (ii) a mapping data : D — 27 that maps each document to a
finite set of RDF triples (representing the data that can be obtained from the
document), and (iii) a partial mapping adoc : Z — D that maps (some) IRIs to a
document and, thus, captures a IRI-based retrieval of documents. In this paper
we assume that the set of documents D in any WoLD W = (D, data,adoc) is
finite, in which case we say W is finite (for a discussion of infiniteness refer to
our earlier work [14]).

! Variable ?z in line 6 is necessary since PP patterns in our formalism do not have
blank nodes.
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[avu, B = ({nldom(n) = ({a, B} N V) and ul(a, u, B)] € G } , card1(?))

[ (] - ), )6 = ({ ] dom(u) = ({a, 8} NV) and
Jpl{a,u,B)] € G:ue (T\{uy,..., un}) }, cardl(n)>

[(a, "path, )] = [{8, path, a)]q
[(a, pathy /pathy, Al = m(a,symv ([(@ pathy, 70)]a x [(7v,pathy, Alc )
[(a, (pathy | pathy), Ac = [(, pathy, B)]a U (@, pathy, B)la
[z, (patn)”, 7or)]e = ({ | dom(u) = {?on} and p(?vr) € ALPA (a1, path, G) } , card1?))

[{?vL, (path)™, 2vR)] ¢ = <{ pu|dom(p) = {?vr, 7vr } and p(?vr,) € terms(G) and
wu(?vr) € ALP1(u(?vL), path, G) }, cardl(m>

[(?oL, (path)*, zr)]c = [(zr, ("path)*, 7oL)]

[(zv, (path)*, zr)]c = < {{gw} Lflilt € [(zr, (path)™, 2v)] : u(?v) = zr, . card1(9)>

Fig. 2. SPARQL 1.1 W3C property paths semantics.

A few other concepts are needed for the subsequent discussion. For any
two documents d,d’ € D in a WoLD W = (D, data, adoc), document d has
a data link to d’ if the data of d mentions an IRI v € 7 (i.e., there exists a
triple (s,p,0) € data(d) with u € {s,p,o0}) that can be used to retrieve d' (i.e.,
adoc(u) = d'). Such data links establish the link graph of the WoLD W, that is, a
directed graph (D, E) in which the edges E are all pairs (d,d’) € D x D for which
d has a data link to d". Note that this graph, as well as the tuple (D, data, adoc)
typically are not available directly to systems that aim to compute queries over
the Web captured by W. For instance, the complete domain of the partial map-
ping adoc (i.e., all IRIs that can be used to retrieve some document) is unknown
to such systems and can only be disclosed partially (by trying to look up IRISs).
Also note that the link graph of a WoLD is a different type of graph than the
RDF “graph” whose triples are distributed over the documents in the WoL.D.

4 Web-Aware Query Semantics for Property Paths

We are now ready to introduce our framework, which does not deal with syntac-
tic aspects of PPs but aims at defining query semantics that provide a formal
foundation for using PP patterns as queries over a WoLLD (and, thus, over Linked
Data on the WWW).

4.1 Full-Web Query Semantics

As a first approach we may assume a full-Web query semantics that is based
on the standard evaluation function (as introduced in Sect.3.1) and defines an
expected query result for any PP pattern in terms of all data on the queried
WoLD. Formally:
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Definition 2. Let P be a PP pattern, let W = (D, data, adoc) be a WoLD, and
let G* be an RDF graph such that G* = ;e p data(d), then the evaluation of

P over W under full-Web semantics, denoted by [P]ly, is defined by [P}y =
[P] G-

We emphasize that the full-Web query semantics is mostly of theoretical interest.
In practice, that is, for a WoLD W that represents the “real” WWW (as it runs
on the Internet), there cannot exist a system that guarantees to compute the
given evaluation function [-]*¥. over W using an algorithm that both terminates
and returns complete query results. In earlier work, we showed such a limi-
tation for evaluating other types of SPARQL graph patterns—including triple
patterns—under a corresponding full-Web query semantics defined for these pat-
terns [14]. This result readily carries over to the full-Web query semantics for
PP patterns because any PP pattern P = {«, path, ) with PP expression path
being an IRI uw € 7 is, in fact, a triple pattern (a,u, ). Informally, we explain
this negative result by the fact that the three structures D, data, and adoc that
capture the queried Web formally, are not available in practice. Consequently,
to enumerate the set of all triples on the Web (i.e., the RDF graph G* in Defin-
ition 2), a query execution system would have to enumerate all documents (the
set D); given that such a system has limited access to mapping adoc (in partic-
ular, dom(adoc)—the set of all IRIs whose lookup retrieves a document—is, at
best, partially known), the only guarantee to discover all documents is to look
up any possible (HTTP-scheme) IRI. Since these are infinitely many [7], the
enumeration process cannot terminate.

4.2 Context-Based Query Semantics

Given the limited practical applicability of full-Web query semantics for PPs,
we propose an alternative query semantics that interprets PP patterns as a
language for navigation over Linked Data on the Web (i.e., along the lines of
earlier navigational languages for Linked Data such as NautiLOD [8]). We refer
to this semantics as context-based.

The main idea behind this query semantics is to restrict the scope of searching
for any next triple of a potentially matching path to specific data within specific
documents on the queried WoLD. As a basis for formalizing these restrictions
we introduce the notion of a context selector. Informally, for each IRI that can
be used to retrieve a document, the context selector returns a specific subset of
the data within that document; this subset contains only those RDF triples that
have the given IRI as their subject (such a set of triples resembles Harth and
Speiser’s notion of subject authoritative triples [13]). Formally, for any WoLD
W = (D, data, adoc), the context selector of W is a function C": ZUBULUY —
27 that, for each v € (ZUBULUYV), is defined as follows:>

2 To simplify the following formalization of context-based semantics, context selectors
are defined not only over IRIs, but also over blank nodes, literals, and variables.
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CW( )= {(s,p, o) € data(adoc(y)) |’y = 5} if v € 7 and v € dom(adoc),
= 0 otherwise.

Informally, we explain how a context selector restricts the scope of PP patterns
over a WoLLD as follows. Suppose a sequence of triples (s1,p1,01), ..., (Sk, Pk, Ok)
presents a path that already matches a sub-expression of a given PP expression.
Under the previously defined full-Web query semantics (cf. Sect.4.1), the next
triple for such a path can be searched for in an arbitrary document in the queried
WoLD W. By contrast, under the context-based query semantics, the next triple
has to be searched for only in C"(0;,). Given these preliminaries, we now define
context-based semantics:

Definition 3. Let P be a PP pattern and let W = (D, data, adoc) be a WoLD.
The evaluation of P over W under context-based semantics, denoted by [P]¢E®,
returns a multiset of solution mappings ({2, card) defined recursively as given
in Fig. 3, where u,..,u, € I; zr,zr € (ZUL); v, 7vr € V; ug is the empty
solution mapping (i.e., dom(ug) = 0); function ALPW1 is given in Flig. 4; and
v €V is a fresh variable.

There are three points worth mentioning w.r.t. Definition 3: First, note how
the context selector restricts the data that has to be searched to find matching

[ur,p, B)I5" = ({ #]dom(s) = ({8} N V) and ul(ur, p, B)] € C¥(ur) }, card1 ) )
[, p AT = (0, card1® )

[{?vL, p, B = < { u|dom(p) = ({?vL, B} NV) and

nlzon,p B € | €V}, cardt )
ueL

[uw, |-+ L un) BT = ({ #ldom(n) = ({8} N V) and
I p(ur, p, B) € CV(ur) :p & {ur, ..., un} 1, card1(?) >

[e, '(ua |- | un), B = <(Z),card1(m>

[?ow, Y |-+ [ un), B3 = ( { ] dom(p) = ({7vr, 8} N V) and
3 ul(?vL, p, B)] € U Cw(u) tp & {ur,...,un} } . card1(? >
wET
(e, Apath7 B}ﬂ%x = [(B, path, oz)]]%t/x
[{c, path; /pathy, )" = Tl'{a.ﬁ}mv(ﬂ(avPathlv?W]ﬁAt/x X [[(71’7Path2»/3>]]%x>

ctx ctx

[{er, pathy |pathy, B)]" = [{e, pathy, B)]w" U [(«, pathy, )]
[{zw, (path)™, 2or)] 5" = < { | dom(p) = {?vr} and pu(?vr) € ALPW1(wL, path, W)}, card1(?) >
[(?vL, (path)™, 2or)]5 = < {u|dom(p) = {?vr, ?vr} and p(?v) € terms(W) and

pu(?vr) € ALWP1(pu(?vL), path, W) }, card1(?) >

ctx

[{?on, (Path)™, zr)]%" = [(er, ("path)”, 2vr) %"

: * ctx _
[(zL, (path)*, zr) |55 = < {{gw} ;flilb € [{zv, (path)™, 20) |57 : n(?v) = zR, , card1(? >

Fig. 3. Context-based query semantics for SPARQL property paths over the web.
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Function ALPW1 (7, path,W)  Function ALPW2(, path, Visited, W)

Input: v € (ZUBU L), Input: v € (ZUBU L), path isa PP expression,
path is a PP expression, Visited C (ZUBU L), W isa WoLD.
W is a WoLD. 4: if v ¢ Visited then

1: Visited = () 5. add v to Visited
2: ALPW2 (v, path, Visited, W) 6: forall u € [(?z, path, 7y)]i” s.t. p(?z) =~ do
3: return Visited 7: ALPW2(/L(?y),path7 Vz'sited,W) 72,7y €V

Fig. 4. Auxiliary functions used for defining context-based query semantics.

triples (e.g., consider the first line in Fig. 3). Second, we emphasize that context-
based query semantics is defined such that it resembles the standard semantics
of PP patterns as close as possible (cf. Sect.3.1). Therefore, for the part of our
definition that covers PP patterns of the form («, path* ), we also use auxiliary
functions— ALPW1 and ALPW2 (cf. Fig.4).

These functions evaluate the sub-expression path recursively over the queried
WoLD(instead of using a fixed RDF graph as done in the standard semantics in
Fig.1). Third, the two base cases with a variable in the subject position (i.e.,
the third and the sixth line in Fig.3) require an enumeration of all IRIs. Such
a requirement is necessary to preserve consistency with the standard semantics,
as well as to preserve commutativity of operators that can be defined on top
of PP patterns (such as the Anpoperator in SPARQL; cf. Sect. 5). However, due
to this requirement there exist PP patterns whose (complete) evaluation under
context-based semantics is infeasible when querying the WWW. The following
example describes such a case.

Example 2. Consider the PP pattern Pg, = (?v,knows, Tim), which asks for
the IRIs of people that know Tim. Under context-based semantics, any IRI u'
can be used to gemerate a correct solution mapping for the pattern as long as
a lookup of that IRI results in retrieving a document whose data includes the
triple (u',knows, Tim). While, for any WoLD that is finite, there exists only a
finite number of such IRIs, determining these IRIs and guaranteeing complete-
ness requires to enumerate the infinite set of all IRIs and to check each of them
(unless one knows the complete—and finite—subset of all IRIs that can be used
to retrieve some document, which, due to the infiniteness of possible HTTP IRIs,
cannot be achieved for the WWW).

It is not difficult to see that the issue illustrated in the example exists for any
triple pattern that has a variable in the subject position. On the other hand,
triple patterns whose subject is an IRI do not have this issue. However, having an
IRI in the subject position is not a sufficient condition in general. For instance,
the PP pattern (Tim, knows, 7v) has the same issue as the pattern in Exam-
ple 2 (in fact, both patterns are semantically equivalent under context-based
semantics). A question that arises is whether there exists a property of PP pat-
terns that can be used to distinguish between patterns that do not have this issue
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(i.e., evaluating them over any WoLD is feasible) and those that do. We shall
discuss this question for the more general case of PP-based SPARQL queries.

5 SPARQL with Property Paths on the Web

After considering PP patterns in separation, we now turn to a more expressive
fragment of SPARQL that embeds PP patterns as the basic building block and
uses additional operators on top. We define the resulting PP-based SPARQL
queries, discuss the feasibility of evaluating these queries over the Web, and
introduce a syntactic property to identify queries for which an evaluation under
context-based semantics is feasible.

5.1 Definition

By using the algebraic syntax of SPARQL [22], we define a graph pattern recur-
sively as follows: (i) Any PP pattern («, path, §) is a graph pattern; and (ii) if
Py and P, are graph patterns, then (P;ANDP,), (PiUNIONP,), and (P;oPTP,) are
graph patterns.® For any graph pattern P, we write V(P) to denote the set of
all variables in P.

By using PP patterns as the basic building block of graph patterns, we can
readily carry over our context-based semantics to graph patterns: For any graph
pattern P and any WoLD W, the evaluation of P over W under context-based
semantics is a multiset of solution mappings, denoted by [P]{ that is defined
recursively as follows:*

— If P is a PP pattern, then [P]$* is defined in Definition 3.

— If P is (Py AND P), then [P]5t* = [Pi]55* ) [Pe] 5.

— If P is (P UNION P,), then [P]5* = [Pi]5i* U [Pe] S

— If P is (P oPT P»), then [P]5* = ([P]5™ = [Pa]5) U ([PgE \ [P2058%).

5.2 Discussion

Given a query semantics for evaluating PP-based graph patterns over a WoLD,
we now discuss the feasibility of such evaluation. To this end, we introduce the
notion of Web-safeness of graph patterns. Informally, graph patterns are Web-
safe if evaluating them completely under context-based semantics is possible.
Formally:

Definition 4. A graph pattern P is Web-safe if there exists an algorithm that,
for any finite WoLD W = (D, data, adoc), computes [P]* by looking up only a
finite number of IRIs without assuming direct access to the sets D and dom(adoc).

3 For this paper we leave out other types of SPARQL graph patterns such as filters.
Adding them is an exercise that would not have any significant implication on the
following discussion.

4 Note that the definition uses the algebra operators introduced in Sect. 3.1.
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Example 3. Considergraphpattern Pg, = ((Bob, knows, 7v)AND(?v, knows, Tim)).
The right sub-pattern Pg, = (Tv, knows, Tim) is not Web-safe because evaluating it
completely over the WW W is not feasible under context-based semantics (cf. Exam-
ple 2). However, the larger pattern Pg, is Web-safe; it can be evaluated com-
pletely under context-based semantics. For instance, a possible algorithm may
first evaluate the left sub-pattern, which is feasible because it requires the lookup
of a single IRI only (the IRI Bob). Thereafter, the evaluation of the right sub-
pattern Pg, can be reduced to looking up a finite number of IRIs only, namely the
IRIs bound to variable v in solution mappings obtained for the left sub-pattern.
Although any other IRI u* might also be used to discover matching triples for
Pe,, each of these triples has IRI u* as its subject (which is a consequence of
restricting retrieved data based on the context selector introduced in Sect. 4.2).
Therefore, the solution mappings resulting from such matching triples cannot be
compatible with any solution for the left sub-pattern and, thus, do not satisfy the
join condition established by the semantics of ANDin pattern Pe,.

The example illustrates that some graph patterns are Web-safe even if some
of their sub-patterns are not. Consequently, we are interested in a decidable
property that enables to identify Web-safe patterns, including those whose sub-
patterns are not Web-safe.

Buil-Aranda et al. study a similar problem in the context of SPARQL fed-
eration where graph patterns of the form Ps = (SERVlCE?v P) are allowed [6].
Here, variable 7v ranges over a possibly large set of IRIs, each of which rep-
resents the address of a (remote) SPARQL service that needs to be called to
assemble the complete result of Ps. However, many service calls may be avoided
if Pg is embedded in a larger graph pattern that allows for an evaluation during
which 7v can be bound before evaluating Ps. To tackle this problem, Buil-Aranda
et al. introduce a notion of strong boundedness of variables in graph patterns and
use it to show a notion of safeness for the evaluation of patterns like Ps within
larger graph patterns. The set of strongly bound variables in a graph pattern P,
denoted by SBV(P), is defined recursively as follows:

— If P is a PP pattern, then SBV(P) = V(P) (where V(P) are all variables in P).
— If P is of the form (P; AND P,), then SBV(P) = SBV(F;) U SBV(Ps).

— If P is of the form (P; uNioN P5), then SBV(P) = SBV(P;) N SBV(F%).

— If P is of the form (P; oPT P), then SBV(P) = SBV(F,).

The idea behind the notion of strongly bound variables has already been used
in earlier work (e.g., “certain variables” [23], “output variables” [24]), and it is
tempting to adopt it for our problem. However, we note that one cannot identify
Web-safe graph patterns by using strong boundedness in a manner similar to its
use in Buil-Aranda et al.’s work alone. For instance, consider graph pattern Pe,
from Example 3. We know that (i) Pg, is Web-safe and that (ii) V(Pg,) = {?v}
and also SBV(Pg,) = {?v}. Then, one might hypothesize that for every graph
pattern P,if SBV(P) = V(P), then P is Web-safe. However, the PP pattern
Pe, = (?v,knows, Tim) disproves such a hypothesis because, even if SBV(Pg,) =
V(P,), pattern Pg, is not Web-safe (cf. Example 2).
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We conjecture the following reason why strong boundedness cannot be used
directly for our problem. For complex patterns (i.e., patterns that are not PP
patterns), the sets of strongly bound variables of all sub-patterns are defined
independent from each other, whereas the algorithm outlined in Example 3 lever-
ages a specific relationship between sub-patterns. More precisely, the algorithm
leverages the fact that the same variable that is the subject of the right sub-
pattern is also the object of the left sub-pattern.

Based on this observation, we introduce the notion of conditionally Web-
bounded variables, the definition of which, for complex graph patterns, is based
on specific relationships between sub-patterns. This notion shall turn out to be
suitable for our case.

Definition 5. The conditionally Web-bounded variables of a graph pattern P
w.r.t. a set of variables X is the subset CBV(P | X) C V(P) that is defined recur-
sively as follows:

If P is: then CBV(P | X) is:
1) {e,u, By or {a,(u1]...|un),B) suchthatae € (ZU L) ora € X v(P)
2) {a,u, BY or (o, u1|...|un),B) suchthatce ¢ (ZU L) and o ¢ X 0
3) {a, (path)*, B) s.t.« € Vand B ¢ V cBv((B, ("path)*, o) | X)

4) (o, (path)™, B) s.t. (i) o« & V or B € V, and (ii) for any two variables ?x, 7y € V CBV((a,path, B) | X)
it holds that CBV((?x, path, 7y) | {?a}) = {?=, 7y}

5) (o, (path)*, B) such that none of the above 0
6) (e, “path, B) with P’ = (B, path, ) cBV(P' | X)
7) {o, (path; |pathy), B) with P’ = ({a, pathy, B) UNION (o, path,, B8)) cBV(P'| X)

8) (o, pathy /pathy, B) s.t., forany 7v € V\ (X U{a, B}), 7v € CBV(P' | X) cBV(P' | X)\ {?v}
where P’ = ((a,pathl , 7v) AND (?v, paths,, [-2))

9) (o, pathy /pathgy, B) such that none of the above 0
10) (P1 AND Py) s.t. CBV(Py | X)) = V(P1) and CBV(P2 | X) = V(P2) v(P)
11) (P1 AND P3) s.t. CBV(Py | X) = V(P1) and CBV(Ps | X USBV(Py)) = V(P2) v(P)
12) (P1 AND Ps) s.t. CBV(P2 | X)) = V(P2) and CBV(Py | X USBV(P2)) = V(P1) v(P)
13) (P1 AND P) such that none of the above 0
14) (P1 UNION P») CBV(Py | X)NCBV(P> | X)
15) (P1 OPT Py) s.t. CBV(Py | X)) = V(Py) and CBV(Ps | X) = V(P2) vV(P)
16) (Py OPT Py) s.t. CBV(Py | X) = V(P1) and CBV(P2 | X USBV(P1)) = V(P2) vV(P)
17) (P OPT P») such that none of the above 0

Example 4. For the PP pattern Pg, = (?v, knows, Tim) —which is not Web-
safe (as discussed in Example 2)—if we use the set {?v} as condition, then, by
line 1 in Definition 5, it holds that CBV(Pg, | {?v}) = {?v}. However, if we use
the empty set instead, we obtain CBV(Pg, |0) =0 (cf. line 2 in Definition 5).

While for the non- Web-safe pattern Pg, we thus observe CBV(Pg, |0) # V(Pg,),
for graph pattern Pg, = ((Bob, knows, ?v)AND(?v, knows, Tim)) —which is Web-
safe (cf. Example 3)—we have CBV(Pg, |0) = V(Pg,). The fact that CBV(Pg, |0) =
{20} follows from (i) CBV({Bob, knows, ?v) | #) = {?v}, (ii) SBV({Bob, knows, 7v))
= {?v}, (iii) CBV((?v, knows, Tim) ‘{711}) {?v}, and (iv) line 11 in Defini-
tion 5.

The example seems to suggest that, if all variables of a graph pattern are condi-
tionally Web-bounded w.r.t. the empty set of variables, then the graph pattern
is Web-safe. The following result verifies this hypothesis.

Theorem 1. A graph pattern P is Web-safe if CBV(P|0) = V(P).
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Note 1. Due to the recursive nature of Definition 5, the condition CBV(P |()=
V(P) (as used in Theorem 1) is decidable for any graph pattern P.

We prove Theorem 1 based on an algorithm that evaluates graph patterns recur-
sively by passing (intermediate) solution mappings to recursive calls. To capture
the desired results of each recursive call formally, we introduce a special eval-
uation function for a graph pattern P over a WoLD W that takes a solution
mapping p as input and returns only the solutions for P over W that are com-
patible with pu.

Definition 6. Let P be a graph pattern, let W be a WoLD, and let ({2, card) =
[Plt®. Given a solution mapping p, the p-restricted evaluation of P over W
under context-based semantics, denoted by [P | u]&®, is the multiset of solution
mappings ({2, card’) with ' = {y' € 02 ‘ w ~ p} and card' (p') = card(y') for
all ' e (.

The following lemma shows the existence of the aforementioned recursive algo-
rithm.

Lemma 1. Let P be a graph pattern and let i, be a solution mapping. If it
holds that CBV(P|d0m(,u;n)) = V(P), there exists an algorithm that, for any
finite WoLD W, computes [P | pin |¢&° by looking up a finite number of IRIs
only.

Before providing the proof of the lemma (and of Theorem 1),we point out two
important properties of Definition 6. First, it is easily seen that, for any graph
pattern P and WoLD W, [P | pp |57 = [P]$i*, where py is the empty solution
mapping (i.e., dom(ug) = 0). Consequently, given an algorithm, say A, that has
the properties of the algorithm described by Lemma 1, a trivial algorithm that
can be used to prove Theorem 1 may simply call algorithm A with the empty
solution mapping and return the result of this call ( we shall elaborate more on
this approach in the proof of Theorem 1 below). Second, for any PP pattern
(a, path, 3) and WoLD W, if « is a variable and path is a base PP expression
(i.e., one of the first two cases in the grammar in Sect.3.1), then [P|u[$* is
empty for every solution mapping u that binds (variable) a to a literal or a blank
node. Formally, we show the latter as follows.

Lemma 2. Let P be a PP pattern of the form (Tv,u,8) or (Tv,(uy | -+ |
Up), B) with 7v € V and u,uy,...,u, € Z, and let p be a solution mapping. If
v € dom(u) and u(?v) € (BU L), then, for any WoLD W, [P| ] is the
empty multiset.

Proof (Lemma 2). Recall that, for any IRI u and any WoLD W, context C"(u)
contains only triples that have IRI u as their subject. As a consequence, for any
WoLD W, every solution mapping ' € [P]§* binds variable ?v to some IRI
(and never to a literal or blank node); i.e., u/(?v) € Z. Therefore, if 7v € dom(u)
and p(?v) € (BU L), then p cannot be compatible with any p' € [P]$* and,

thus, [P |p ] is empty. O
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We use Lemma 2 to prove Lemma 1 as follows.

Proof idea (Lemma 1). We prove the lemma by induction on the possible struc-
ture of graph pattern P. For the proof, we provide Algorithm 1 and show that
this (recursive) algorithm has the desired properties for any possible graph pat-
tern (i.e., any case of the induction, including the base case). Due to space
limitations, in this paper we only present a fragment of the algorithm and high-
light essential properties thereof. The given fragment covers the base case (lines
1-11) and one pivotal case of the induction step, namely, graph patterns of the
form (P;ANDP:) (lines 57-72). The complete version of the algorithm and the
full proof can be found in an extended version of this paper [15].

For the base case, Algorithm 1 looks up at most one IRI (cf. lines 2-5). The
crux of showing that the returned result is sound and complete is Lemma 2 and
the fact that the only possible context in which a triple (s,p,0) with s € T can
be found is C"(s).

For PP patterns of the form (P,ANDP,) consider lines 57-72. By using Defin-
ition 5, we show CBV(P; | dom(uin)) = V(P;) and CBV(P; | dom(pin) U dom(u)) =
V(P;) for all u € 2% Therefore, by induction, all recursive calls (lines 60 and 62)
look up a finite number of IRIs and return correct results; i.e., (27, card™) =
[P | pin 5% and (02H, card") = [P;| pin U p )5 for all p € 02Fi Then, since
each u € 2 is compatible with all 4/ € 2* and all processed solution map-
pings are compatible with p;,, it is easily verified that the computed result is
[(PLAND P, ) | pin [+ O

We are now ready to prove Theorem 1, for which we use Lemma 1, or more
precisely the algorithm that we introduce in the proof of the lemma.

Proof (Theorem1). Let P be a graph pattern s.t. CBV(P | () = V(P). Then, given
the empty solution mapping 1y with dom(ug) = 0, we have CBV(P ’ dom(pp)) =
V(P). Therefore, by our proof of Lemma 1 we know that, for any finite WoL.LD W,
Algorithm 1 computes [P | g [§7 by looking up a finite number of IRIs. We also
know that the empty solution mapping is compatible with any solution mapping.
Consequently, by Definition 6, [P | ug |55 = [P]$* for any WoLD W. Hence, by
passing the empty solution mapping to it, Algorithm 1 can be used to compute
[P]s* for any finite WoLD W, and during this computation the algorithm looks
up a finite number of IRIs only. a

While the condition in Theorem 1 is sufficient to identify Web-safe graph pat-
terns, the question that remains is whether it is a necessary condition (in which
case it could be used to decide Web-safeness of all graph patterns). Unfortu-
nately, the answer is no.

Example 5. Consider the graph pattern P = (P; UNION Py) with P; = (u1,p1, 7x)
and Py = (ug,p2,7y). We note that CBV(Py |0) = {7z} and CBV(Py|0) = {7y},
and, thus, CBV(P|0) = (0. Hence, the pattern does not satisfy the condition
in Theorem 1. Nonetheless, it is easy to see that there exists a (sound and

complete) algorithm that, for any WoLD W, computes [P]g* by looking up



A Context-Based Semantics for SPARQL Property Paths Over the Web 85

Algorithm 1. FEvalCtzBased(P, pin), which computes [P | pin] 55

1: if P is of the form (a,u,3) or P is of the form {(a,!(u1 | --- | un),5) then
2: if aeZthenu =«

3: else if a € V and a € dom(uin) and pin(a) € Z then v’ := pin(a)
4:  else v := null
5. if u’ is an IRI and looking it up results in retrieving a document, say d then
6: G := the set of triples in d (use a fresh set of blank node identifiers when
parsing d)

7: G':={(s,p,0) €G|s=u'}
8: (2, card) := [P]g: ([P]e’ can be computed by using any algorithm that

implements the standard SPARQL evaluation function)
9: return a new multiset (£2', card’) with £ = {y/ € 2|1/ ~ pin} and

card’ (1) = card(p') for all u' € 2

10:  else
11: return a new empty multiset (£2, card) with 2 = 0 and dom(card) =0

57: else if P is of the form (PiANDP:) then

58: if CBV(P1 |d0m(u;n)) =V(P,) theni:=1;j:=2elsei:=2;j:=1

59:  Create a new empty multiset M = (£2, card) with 2 = () and dom(card) = 0
60: (T card™) := BvalCtzBased(P;, yin)

61: for all u € 2F do

62: (2%, card") := FvalCtzBased(P;, pin U 1)

63: for all i/ € 2% do

64: W= Uy

65: k = cardTi(p) - card"(y')

66: if u* € 2 then

67: old := card (™)

68: Adjust card such that card(u*) = k + old
69: else

70: Adjust card such that card(p*) =k

71: Add p* to 2

72: return M

a finite number of IRIs only. For instance, such an algorithm, say A, may
first use two other algorithms that compute [P]¢* and [P]¢E by looking up a
finite number of IRIs, respectively. Such algorithms exist by Theorem 1, because
CBV(P, |0) = W(Py) and CBV(P, |0) = V(P,). Finally, algorithm A can generate
the (sound and complete) query result [P]{E* by computing the multiset union

[Pt U [Pe]§f®, which requires no additional IRI lookups.

Remark 1. The example illustrates that “only if” cannot be shown in Theo-
rem 1. It remains an open question whether there exists an alternative condition
for Web-safeness that is both sufficient and necessary (and decidable).
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6 Concluding Remarks and Future Work

This paper studies the problem of extending the scope of SPARQL property
paths to query Linked Data that is distributed on the WWW. We have proposed
a context-based query semantics and analyzed its peculiarities. Our perhaps most
interesting finding is that there exist queries whose evaluation over the WWW
is not feasible. We studied this aspect and introduced a decidable syntactic
property for identifying feasible queries.

We believe that the presented work provides valuable input to a wider dis-
cussion about defining a language for accessing Linked Data on the WWW.
In this context, there are several directions for future research such as the fol-
lowing three. First, studying a more expressive navigational core for property
paths over the Web; e.g., along the lines of other navigational languages such
as nSPARQL [21] or NautiLOD [8]. Second, investigating relationships between
navigational queries and SPARQL federation. Third, while the aim of this paper
was to introduce a formal foundation for answering SPARQL queries with PPs
over Linked Data on the WWW | an investigation of how systems may implement
efficiently the machinery developed in this paper is certainly interesting.
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