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Abstract. We propose two real-time sound recognition approaches that
are able to distinguish a predefined whistle sound on a NAO robot
in various noisy environments. The approaches use one, two, and four
microphone channels of a NAO robot. The first approach is based on
a frequency/band-pass filter whereas the second approach is based on
logistic regression. We conducted experiments in six different settings
varying the noise level of both the surrounding environment and the
robot itself. The results show that the robot will be able to identify the
whistle reliability even in very noisy environments.

1 Introduction

While much attention in autonomous robotics is focused on behavior, robots
must also be able to interact and sense trigger-events in a human environ-
ment. Specifically, apart from direct interaction between humans and robots, it
is appropriate for robots to sense audio signals in the surrounding environment
such as whistles and alarms. Digital Audio Signal Processing (DASP) techniques
are well established in the consumer electronics industry. Applications range from
real-time signal processing to room simulation.

Roboticists also develop DASP techniques, only tailored for their needs on
specific kind of robots. Literature shows a whole spectrum of techniques, start-
ing with techniques that aim for the recognition of specific signals with one
microphone on one end, e.g. [13], to complete systems that combine the entire
bandwidth between single signals to microphones arrays combined with speech
recognition and other tasks such as localization on the other end, e.g. [8]. The
available literature reveals that there are many cases of audio processing/
recognition situations as there are different robots and environments, including
real-time processing, combining human speech and other audio signals etc.

A lot of research has been devoted to audio signals featuring humanoid
robots, especially in the past decade. Audio signals can be important sensor
information as they can be used for various purposes, e.g. for the improvement
of the robot’s self-localization, the communication between multiple robots, or
using the audio signals as the only source for self-localization when an exist-
ing Wi-Fi network might be down. A demonstration within the SPL in 2013 in
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Eindhoven by the team RoboEireann revealed how difficult it is to communicate
between NAOs on the soccer field in a noisy environment.

The technical committee of SPL announced a challenge where the robots
have to recognize predefined static signals emitted by a global sound system.
Similar to the horn-like audible alarms in ice hockey, where half-time starts and
ends are signaled using the horn, future RoboCup tournaments could rely on
this mechanism to signal GameController or referee messages. Teams are also
required to bring one whistle that has to be recognized by the teams robots. This
part of the challenge brings in a real soccer aspect to the SPL. In this paper,
we focus on recognizing the sound of a whistle utilizing several NAO robots. We
present two approaches, one general idea of a naive one-channel approach and
one using a multi-channel learning approach.

The paper is organized as follows: we discuss relevant work in the next section
and describe our approach in Sect. 3. Our experimental setup and the conducted
robot tests is explained in Sect. 4. We discuss the pros and cons of our results in
Sect. 5 and conclude and outline future work in the remaining Sect. 6.

2 Related Work

When consulting the literature one finds a number of research papers that relate
to our work. Saxena and Ng [13] present a learning approach for the problem
of estimating the incident angle of a sound using just one microphone, not con-
nected to a mobile robot. The experimental results show that their approach
is able to accurately localize a wide range of sounds, such as human speech,
dog barking, or a waterfall. Sound source localization is an important function
in robot audition. Most existing research investigates sound source localization
using static microphone arrays. Hu et al. [4] propose a method that is able to
simultaneously localize a mobile robot and in addition an unknown number of
multiple sound sources in the vicinity. The method is based on a combinational
algorithm of difference of arrival (DOA) estimation and bearing-only SLAM.
Experimental results with an eight-channel microphone array on a wheeled robot
show the effectiveness of the proposed method. Navigation is part of another
study where the authors developed an audio-based robot navigation system for
a rescue robot. It is developed using tetrahedral microphone array to guide a
robot finding the target shouting for help in a rescue scenario [14]. The approach
uses speech recognition technology and using a time DOA method (TDOA). The
authors claim that the system meets the desired outcome.

ASIMO, the remarkable humanoid developed by HONDA also uses the audi-
tory system for its tasks. An early paper from 2002 introduces the use of a
commercial speech recognition and synthesis system on that robot. The authors
state that the audio quality and intonation of voice need more work and that they
are not yet satisfactory for use on the robot [12]. Okuno et al. [11] present a later
version of ASIMO’s ability to use the auditory system for tasks at hand. They
use the HARK open-source robot audition software [9] and made experiments
with speech and music. The authors claim that the active audition improves the
localization of the robot with regard to the periphery.
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Speech/dialogue based approaches for the NAO also exist. Kruijff-Korbayové
et al. [5], e.g., present a conversational system using an event-based approach
for integrating a conversational Human-Robot-Interaction (HRI) system. The
approach has been instantiated on a NAO robot and is used as a testbed for
investigating child-robot interaction. The authors come to the conclusion that
the fully autonomous system is not yet mature enough for end-to-end usability
evaluation. Latest research such as the paper by Jayagopi et al. [15] suggest that
significant background noise presented in a real HRI setting makes auditory
tasks challenging. The authors introduced a conversational HRI dataset with
a real-behaving robot inducing interactive behavior with and between humans.
The paper however does not discuss the auditory methods used in detail. We
assume that the authors use the standard auditory recognition that comes with
the NAO.

Athanasopoulos et al. [1] present a TDOA-based sound source localization
method that successfully addresses the influence of a robot’s shape on the sound
source localization. The evaluation is made with the humanoid robot NAO. The
authors state that this approach allows to achieve reliable sound source location.

All mentioned approaches differ from our approach (a) in the method used,
(b) in the purpose of the audio recognition, and (c) in us using the RoboCanes
framework. Here, all audio modules have been implemented from scratch and
run within the robot’s system loop. We are synchronizing the audio signals with
the update of the vision system of our NAO robots.

3 Approach

The recognition of whistle sounds will provide information that can be used by
the behavior control of the robot to react to signals, which, for example, may be
given by a referee. The behavior is mostly based on information gained from the
camera images. Therefore, most behavior modules are running in a control loop
synchronized with the camera (in our experiments 30 fps). To minimize the delay
in reacting to whistle signals, we need to run the audio processing with the same
rate. In every cycle of the decision making, the whistle detection needs to check
the most recent audio data from the microphones. However, integrated in the
behavior control the time between two executions of the audio processing module
can vary slightly. Processing all audio data since the last cycle would result in
a slightly varying amount of recorded audio samples to be processed, since the
microphones of NAO provide a constant stream of audio samples with 48 kHz.
To be independent of the exact execution frequency of the audio processing, we
select the block of audio sample to process using a moving window. Every cycle
we use the most recent 2,048 audio samples. The time between two executions
of the whistle detection will be approximately 33ms (30 fps), thus a window
length of 42.67 ms on the audio data (2,048 samples at 48 kHz) is a sufficient size
to not skip any samples. When multiple microphones are available, this process
is done for each channel independently, such that we obtain new microphone
measurements in the form of equally sized blocks of audio samples. The audio
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Fig. 1. The whistle identification framework for Sect. 3.

Pre-emphasi d' i -
[re SR [ FFT [Truncate ‘

signal in the time domain can then be transformed to the frequency domain
by using a Fast Fourier Transformation (FFT) on those blocks of 2,048 audio
samples (Fig.1).

If the size of the input to the FFT is NV, then the output contains % +1 coef-
ficients [7]. We have used these coefficients to generate the energy or log-energy
profiles for each block of audio samples. These energy or log-energy profiles will
be the input data for the whistle detection approaches. In the following, we will
call a set of those coefficients a sample (as in sample input data or training
sample, not audio sample). In our case, the output of the FFT is 1,025 coeffi-
cients. The preliminary analysis has shown that the majority of the energies or
log-energies resides within the first 400 frequency components. Therefore, our
samples contain feature vectors with 400 components, such that each feature
consists of \/a2 + b2 or In(y/a2 + b2 +¢€), where n = {1,...,400}, a,, represents
the real coefficients, b,, represents imaginary coefficients, and € = 2.2204e~16 is
a small positive number. We would also add a bias term to provide more expres-
sivity to our learning models. We have collected positive and negative samples,
and have annotated the target of each sample indicating the presence of the
whistle. It is to be noted that we have collected our samples at the rate the sys-
tem outputs the coefficients, which would amount to approximately 40-50 ms.
For datasets containing multiple channels, for each sampling point, we have col-
lected multiple samples proportional to the number of channels. We have tested
two approaches, a simple approach using a frequency/band-pass filter to isolate
the wanted frequency from the audio signal and another approach using logistic
regression with [?>-norm regularization.

3.1 Frequency/Band-Pass Filter

In frequency/band-pass filter approach, we investigate the recognition of a whis-
tle given the energies of the frequency spectrum. The fundamental frequency is
usually the dominant frequency in the sample. For this reason, an attempt was
made to exploit this correlation to provide a fast, memory efficient algorithm for
whistle recognition. The algorithm takes as input a sample x (the energy profile),
the known frequency of the whistle F', and a frequency error parameter [.
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We iterate over the elements in the sample and record the index of the element
with the highest amplitude. The index of the maximum element is translated
to a frequency value by multiplying by the sample rate to frame ratio, where
the sample rate is the number of samples taken per second in the original audio
signal and the number of frames is the number of time-domain samples used to
compute the FFT. If the computed frequency is within the bounds defined by
F £ 3, the sample is assumed to have been taken in the presence of a whistle.
The frequency F may be selected by analyzing several positive data sam-
ples and computing the average fundamental frequency across these samples.
B may be selected by trial and error, although there are fundamental limits to
its potential values; since the frequency granularity of the output of the FFT is
the %, where S is the sample rate and f is the number of frames used to compute

the FFT, 8 cannot be chosen to be less than half of % as this will prevent any

recognition at all. In practice, it is desirable for 8 to be much larger than %
as (0 increases, the recall of the set should increase to 1.0, while the precision
may decrease due to the inclusion of an increased number of false-positives. The
value of 3 should also not be chosen to be high either, as while this will ensure
excellent recall, it will include far too many false positives to be a useful recog-
nition system. This algorithm may be improved by averaging the calculations of
the fundamental frequency across multiple channels of input before testing the
frequency’s inclusion in F + 3.

3.2 Logistic Regression with I2-norm Regularization

Our datasets contain log-energy profiles as well as indications of the availability
of the whistle. Therefore, we can formulate our original goal mentioned in Sect. 1
as a binary classification problem using logistic regression [2]. The outcome or
the target of the methods such as logistic regression is quite suitable for robotic
hardware, as it consumes minimal computational and memory resources. We
represent our training examples by the set {(x;, y;)}};, where, the feature vector
x; € RN+ with bias term, y; € {0,1}, M > N, and M, N € Z~q. Hence, we
define the design matrix X to be a M x (N + 1) matrix that contains training
samples in its rows. We also define a target vector y € RM that contains all
the binary target values from the training set. Our hypotheses space consist of

vector-to-scalar sigmoid functions, hg(x) = ﬁ7 with adjustable weights 0 €

RN*1. Similarly, we define the matrix-to-vector function, hg(X), which results
in a column vector with i*" element hg (X;), where, X is the it row of the design
matrix X. We use a cross-entropy cost function, J(8) = —4;7(y" In(he(X)) +
(1—y)"In(1—hg(X)))+ 53,076, with [?-norm regularization. Here, the natural
logarithmic function, In(.), is applied element wise and 1 is an M-dimensional
column vector with all elements equal to one. It is a common practice to avoid
regularizing of the bias parameter. We have regularized the bias weight in the
cost function, in order to present the equations without too much clutter. In
practice, we normally do not regularize the weight associated with bias term.
Taking the gradient of the cost function with respect to 8, we obtain VgJ =

LXT(he(X) —y) + 2+ 0.
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Table 1. Dataset description for different environments, and robot activities. Table
shows the number of positive and negative samples collected for each environment and
robot combinations, and the number of channels active on the robot.

Set‘Description ‘Positive Negative Channels

1 |Indoor silent environment; silent robot 1005 1000 1

2 |Indoor silent environment; active robot 2328 2032 1-2
3 |Outdoor mildly noisy environment; silent robot| 2112 2154 1—2
4 |Outdoor noisy environment; silent robot 2030 2010 1-2
5 |Indoor noisy environment (1); silent robot 4022 4170 1=2
6 |Indoor noisy environment (2); silent robot 8024 8000 1-2
7 |Indoor noisy environment (3); silent robot 8324 7996 1-4
8 |Indoor noisy environment (3); active robot 8272 8000 1-4

We have trained our logistic regression classifiers in batch mode with
the state of art L-BFGS quasi-Newton method [10] to find the best 8. We predict
the availability of the whistle if and only if hg(x) > 7, where, 0 < 7 < 1. There-
fore, A and 7 would be the hyper-parameters that we need to modify to find
the best solution. We have used standard parameter sweeping techniques to find
the A that provides the best trade off between the bias and the variance, while
precision, recall, and Fi-score have been used to obtain the suitable 7 value.
As a preprocessing step, the features, except the bias, have been subjected to
feature standardization. We have independently set each dimension of the sam-
ple to have zero-mean and unit-variance. We achieved this by first computing
the mean of each dimension across the dataset and subtracting this from each
dimension. Then each dimension is divided by its standard deviation.

4 Experiments and Results

We have conducted all experiments using audio data recorded on NAO robots.
We have used several different setups to evaluate the performance of the different
approaches on a range of recorded data with different characteristics and different
amounts of noise. Each recorded sample contains the log-energy profile of a the
captured audio signal of one time step. During the recording, the samples were
manually marked as positive, y = 1, or negative, y = 0, samples.

The whistle identification methods, that we will be describing in this paper,
have used the datasets shown in Table 1 and Fig. 2. The samples in the datasets
1, 2, 5, 6, and 7 were collected from indoor environments, while the samples in
the datasets 3, and 4 were collected from outdoor environments. The datasets 5,
6, and 7 contain samples from noisy RoboCup environments simulated though
speakers. We have simulated three different noisy environments with a combi-
nations of silent and active robots to collect samples. The datasets 2—6 have
used channels 1 and 2 to collect samples, the datasets 7 and 8 have used all four
channels, and the first dataset have used only the first channel.
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Fig. 2. Example frequencies for the different setups. Each figure shows one example
for a positive sample (green) and one example for a negative sample (red) (Color figure
online).

4.1 Frequency/Band-Pass Filter

We have analyzed the data using the maximum frequency technique, and for
each dataset, we found best values for 8 such that the Fi-score was maximized.
For each tuning of 5 and for each dataset, a random 70 % of the data was chosen
as a training set, while the remaining 30 % served as a cross-validation set.
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Table 2. Positive percentage, negative percentage, accuracy, precision, recall, F;-score,
and f for all datasets with all samples independently.

Dataset ‘ Positive % ‘ Negative % ‘ Accuracy ‘ Precision ‘ Recall ‘ Fi ‘ 153

1 100.00 99.66 99.83 1.00 1.00 [1.00]271
2 99.86 99.18 99.54 0.99 1.00 |0.99| 154
3 100.00 97.82 98.90 0.98 1.00 |0.99|130
4 99.84 99.67 99.75 1.00 1.00 |1.00 247
5 89.28 98.10 93.82 0.98 0.89 |0.93 457
6 94.46 98.32 96.38 0.98 0.94 |0.96 | 226
7 84.49 98.18 91.12 0.98 0.84 |0.91|154
8 93.72 98.85 96.19 0.99 0.94 |0.96 247
-8 | 9200 | 9789 | 9496 | 098 [ 0.92 [0.95]319

Table 2 shows the performance on all datasets on the samples independently;
each channel is considered a separate sample as well as the results for all of the
data as a single set. The values for 3 were selected by performing a parameter
sweep from 50 to 800 in increments of 1 and choosing the value which maximizes
the F-score.

4.2 Logistic Regression with I2-norm Regularization

We have conducted several analyses on our datasets to obtain the best outcome
on the predictions. In all our experiments, we have used hold-out cross validation
with 70 % data on the training set and 30 % data on the cross-validation set. In
order to eliminate the bias, we have randomized the datasets before the split. We
report here the results based on the minimum cost that have been observed on
the cross-validation set after 30 independent runs, and the results are rounded
up to two decimal points. In order to vary cost, we have used A values from the
set {0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64, 1.28, 2.56, 5.12, 10.24, 20.48, 40.96,
81.92, 163.84, 327.68}. Table 3 shows the results for positive percentage, negative
percentage, accuracy, precision, recall, Fi-score, and 7 for all datasets taking all

Table 3. Positive percentage, negative percentage, accuracy, precision, recall, F1-score,
and 7 for all datasets with all samples independently.

Dataset ‘ Positive % ‘ Negative % ‘ Accuracy | Precision Recall‘ Fy ‘ T

1 100.00 100.00 100.00 1.00 1.00 |1.00|0.5
2 99.86 100.00 99.92 1.00 0.99 10.99|0.5
3 99.53 100.00 99.77 1.00 0.99 ]0.99|0.5
4 99.51 99.67 99.59 0.99 0.99 [0.99|04
5 94.70 94.97 94.84 0.95 0.95 0.95]/0.5
6 97.88 98.38 98.13 0.98 0.98 10.98|0.5
7 96.68 97.08 96.88 0.97 0.97 10.97]0.5
8 95.57 97.92 96.72 0.98 0.96 ]0.97]0.7
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Table 4. Positive percentage, negative percentage, accuracy, precision, recall, F;-score,
and 7 for all datasets dependently (averaging).

Dataset ‘ Positive % ‘ Negative % ‘ Accuracy ‘ Precision ‘ Recall‘ Fi ‘ T

2 100.00 100.00 100.00 1.00 1.00 {1.00]0.5
3 100.00 100.00 100.00 1.00 1.00 {1.00]0.5
4 99.67 100.00 99.84 1.00 0.99 [0.92]0.5
5 96.69 95.85 96.26 0.96 0.97 [0.96]0.5
6 98.67 98.83 98.75 0.99 0.99 [(0.99]0.5
7 98.56 98.50 98.53 0.99 0.99 [0.99]0.5
8 96.30 99.33 97.79 0.99 0.96 [0.98]0.6

Table 5. Overall performance on the combined dataset. The datasets 2—8 have 1-2
channels in common. The combined dataset have been tested on 400 + 1 features
independently and averaging. We have performed analysis on combining the adjacent
two channels to generate 800 + 1 features and tested the performance independently.
Finally, we have analyzed the performance independently and dependently on all chan-
nels for datasets 2-8 on 400 + 1 features.

Dataset‘Ch.‘ Method ‘ Feat. ‘Pos. ‘Neg.‘Acc. ‘Prec.‘Recall‘ F1 ‘ 7
2-8 1-2 | Independently | 400 + 1 | 94.26 | 96.78 | 95.51 | 0.97 | 0.94 |0.96|0.5

2-8 |1-2|Dependently|400 4 1|96.47|97.60/97.03| 0.98 | 0.97 [0.97|0.5
2-8 1-2 | Independently | 800 + 1 |95.68 |97.95|96.80 | 0.98 | 0.96 |0.97 (0.6
2-8 1-4 | Independently | 400 4+ 1 | 94.58 | 96.90 | 95.73 | 0.97 | 0.95 |0.96|0.5
2-8 |1-4|Dependently|400 4 1|96.57|98.21|97.38| 0.98 | 0.97 [0.97|0.5

samples independently, i.e., we have assumed that the samples from each channel
isindependent in the cross-validation set. Therefore, a sample is predicted positive
if and only if hg(x) > 7. We have conducted a parameter sweep for 7 from the set
{0.3, 0.4, 0.5, 0.6, 0.7, 0.8} and selected the value with the highest F;-score.

Table 4 shows the results for all datasets dependently, i.e., during cross vali-
dation, we select hyper-parameters based on the average values of the channels
active while the samples were collected. For example, when we collect samples for
dataset eight, every time we would collect a sample, there are four active chan-
nels. During the cross validation phase, in order to determine the number of
correctly classified positive samples, we have summed-up the probabilities of the
samples of the adjacent four channels above the given threshold and divided by
four. Therefore, when there are k-channels (k € {1,2,3,4}) active in a dataset,
at every sampling point, we would collect k£ samples. Therefore, when we cal-
culate the scores in Table4 for cross-validation set, we have used the averaging
formula (hence, dependently), f(x1,...,Xx) = %Zle he(x;) > 7, where {x}¥
are features of the adjacent samples, and f(xy,...,x) : {RVT1}¥ — [0,1], to
predict a positive sample. When k = 1, independent and dependent scores will
be similar. It is clearly evident from the Table 4 that the averaging has improved
the prediction capabilities. We have not used the first dataset in Table4 as it
contains samples only from channel 1.
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Table 6. Performance of the channels 1, 2, 3, and 4 separately and independently for
the combined datasets (1-8).

Channel | Positive | Negative | Accuracy | Precision | Recall | F. | T

1 91.31 91.09 91.20 0.91 091 (0.91]0.6
2 91.78 86.38 89.10 0.87 0.91 10.89]0.6
3 94.94 94.33 94.64 0.95 0.95 [0.95]0.5
4 95.34 96.75 96.03 0.97 0.95 [0.96]0.7
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Fig. 3. Visualization of datasets 1, 5, 7 (4 %), and 8 (4 %) using t-SNE.

Table 5 shows the overall performance on the combined dataset. We have
conducted several analyses on the combined dataset. Firstly, Table 1 shows that
the channels 1-2 are common to all datasets. Therefore, we have extracted all
samples from channels 1-2 and analyzed the performance on 400 4 1 features
independently and dependently (averaging). Secondly, we have expanded the
adjacent two channels to create a feature vector of 800 + 1 features and ana-
lyzed the performance independently. Finally, we have analyzed the performance
independently and dependently for all channels from the combined datasets 2—-8
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on 400 + 1 features. Table 5 concludes that for both robots with only two active
channels (1-2) and for robots with all active channels (1-4) it is best to use
weights learned from averaging for 400 + 1 features. Finally, we have observed
the performance of the channels 1, 2, 3, and 4 separately and independently for
the combined datasets (1-8), which is given in Table 6.

We have concluded from our findings that performance on averaging provides
best results for our datasets. Once we have decided the hyper-parameters, we
have learned the weights from the complete datasets. On the robot, we have used
the average history of 16 decision points to decide the availability of a whistle.
We have used a threshold of 0.8 for these averaging, and the robot has detected
a whistle 100 % on a separate test set.

5 Discussion

When working with audio signals, it is a common practice to use Mel-frequency
cepstral coefficients (MFCCs) [3] as features. In our work, we have used a trun-
cated power or log-power spectrum of the signal as features. The main reason
behind this choice is motivated by (1) the shape of the distribution of the samples
in the high-dimensional space; and (2) the detection of a whistle signal at every
sampling point. If we were to change the problem to identify particular patterns
of whistle signals, then MFCCs would have been our primary choice as the fea-
ture extractor. Figure 3 shows the distribution of the samples in 2D for datasets
1, 5, 7, and 8 using t-Distributed Stochastic Neighbor Embedding (t-SNE) [6].
The distribution of the samples in dataset 1 (Fig. 3a) is clearly linearly separable,
therefore, we have obtained 100 % accuracy in the first row of Tables 2, 3, and 4.
Figure 3b shows the distribution of the samples of the dataset 5. The approach 2
has found solutions with 94.84 % and 96.26 % (Tables 3 and 4) accuracies, but the
frequency /band-pass filter approach has shown slightly inferior (Table 2 fifth row)
performance. The main reason behind the drop of performance for this approach
is that it uses the frequency of the highest magnitude. When we collected sam-
ples for the dataset 5, we had explicitly whistled with less strength. Therefore,
the energies of the whistle signal may not have enough strength to overcome the
energies of the ambient sounds. Our second approach has managed to learn a sta-
tistically significant classifier for dataset 5. Figure 3c and d show the distribution
of 4% (approximately 4000) of the samples in the datasets 7 and 8. These were the
hardest datasets that we had collected. Tables 3 and 4 show that approach 2 has
found better solutions than approach 1 (Table?2 last row). Both approaches are
fast enough to be executed in real-time on the NAO (Intel Atom Z530 1.6 GHz).
The audio capture and FFT takes 2.4 ms. The whistle detection using approach
1 adds 0.1 ms, approach 2 adds 0.27 ms. Overall, our findings conclude that app-
roach 2 has outperformed approach 1, and is suitable for practical usage.

For approach 1, as a future work, we have considered attempts to learn the
frequency profile of the noise in the signal. The method takes the ordering of the
samples into account, and rather than computing the frequency of maximum
amplitude, computes the frequency with the highest impulse; a characteristic
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of most whistles is that they usually cause a large difference in a particular
frequency in a short period of time. This method accomplishes this by computing
a normalization vector v such that v; ® x; = 1. The frequency impulse is then
obtained by computing v;_1 ® x; = w. The vector v is then adjusted such that
vi=avi1+ (1 - a)ﬁ, where « is a resistance factor that determines how
easily v conforms to the new environment. We can then determine if frequencies
within the range F'+( have experienced a sufficient impulse between x;_1 and x;.

6 Conclusion

We have presented two approaches to identify an existence of a whistle sound on
a NAO robot in various noisy environments using one, two, and four microphone
channels. The first approach is based on a frequency/band-pass filter, whereas
the second approach is based on logistic regression. The results show that the
robot will be able to identify the whistle reliability even in very noisy environ-
ments. Even though both approaches are real-time compatible on predictions,
the second approach has outperformed the first approach in all datasets and
combined datasets and it is the most suitable method for practical usage. In
future, we are planning to conduct classification using a multi-layer perceptron
and support vector machines [2], and to extend our work to recognize different
whistle patterns. We also plan to use the approach to improve robot localization.
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