Chapter 9
Longitudinal Beam Dynamics

In previous chapters we have concentrated the discussion on the interaction of
transverse electrical and magnetic fields with charged particles and have derived
appropriate formalisms to apply this interaction to the design of beam transport
systems. The characteristics of these transverse fields is that they allow to guide
charged particles along a prescribed path but do not contribute directly to the
energy of the particles through acceleration. For particle acceleration we must
generate fields with nonvanishing force components in the direction of the desired
acceleration. Such fields are called longitudinal fields or accelerating fields. In a
very general way we describe in this section the interaction of longitudinal electric
fields with charged particles to derive the process of particle acceleration, its scaling
laws, and its stability limits.

The usefulness and application of electric fields to accelerate charged particles
depends greatly on the temporal variations of these fields. Accelerating fields
can be static or pulsed or they may be electromagnetic fields oscillating at high
frequencies. Conceptually, the most simple way to accelerate charged particles is
through a static field applied to two electrodes as shown in Fig.9.1. In this case,
the total kinetic energy a particle can gain while traveling from one electrode to
the other is equal to the product of the particle charge and the voltage between the
electrodes.

Electric breakdown phenomena, however, limit the maximum applicable voltage
and thereby the maximum energy gain. Nonetheless, this method is intriguingly
simple and efficient compared to other accelerating methods and therefore still
plays a significant role among modern particle accelerators, for example, in particle
sources. Electrostatic acceleration schemes are specifically useful for low energy
particles for which other methods of acceleration would be inefficient. Higher
voltages and particle energies can be reached if the electric fields are applied in the
form of very short pulses. Application of electro-static high voltages to accelerate
particles is limited to some 10 million volts due to high voltage breakdown.
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For higher particle energies different acceleration methods must be used. The
most common and efficient way to accelerate charged particles to high energies
is to use high frequency electromagnetic fields in specially designed accelerating
structures. Acceleration to high energies occurs while charged particles either pass
once through many or many times through one or few accelerating structures each
excited to electric field levels below the break down threshold. In this section, we
concentrate the discussion on charged particle acceleration by electromagnetic radio
frequency fields.

9.1 Longitudinal Particle Motion

Application of radio frequency in short rf-fields has become exceptionally effective
for the acceleration of charged particles. Both, fields and particle motion can be
synchronized in an effective way to allow the acceleration of charged particles in
principle to arbitrary large energies were it not for other limitations.

The first idea and experiment for particle acceleration with radio frequency
fields has been published by Ising [1] although he did not actually succeed to
accelerate particles due to an inefficient approach to rf-technology. Later Wideroe
[2] introduced the concept of generating the accelerating fields in resonating rf-
cavities and was able to accelerate heavy ions. Original papers describing these
and other early developments of particle acceleration by rf-fields are collected in a
monogram edited by Livingston [3].

To study the interaction of electromagnetic rf-fields with charged particles, we
assume a plane electromagnetic wave of frequency w propagating in the z-direction.
A free electromagnetic wave does not have a longitudinal electric field component
and therefore a special physical environment, called the accelerating structure,
must be provided to generate accelerating field components in the direction of
propagation. As will be discussed later in Sect. 18.1 this is achieved by proper
choice of boundary conditions. To study particle dynamics in longitudinal fields,
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we assume that we were able to generate rf-fields with an electric field component
along the path of the particles expressed by v ~ ¢

E(z. 1) = Ege'@™) = EyelV | 9.1)

where the phase v = wt — kz. The particle momentum changes at a rate equal to
the electric force exerted on the particle by the rf-field

dp d
1 = ¢EW) = L (ymep). ©:2)
Multiplying this with the particle velocity we get the rate of change of the
kinetic energy, dExin = cf dp. Integration of (9.2) with respect to the time becomes
unnecessarily complicated for general fields because of the simultaneous variation
of the electric field and particle velocity with time. We therefore integrate (9.2) with
respect to the longitudinal coordinate and obtain instead of the momentum gain the
increase in the kinetic or total energy for the complete accelerating structure

AE = (y — yo) mc* = e/E(w) dz, (9.3)

where yo mc? is the energy of the particle before acceleration. Of course, the trick
to integrate the electric field through the accelerating section rather than over time
following the particle is only a conceptual simplification and the time integration
will have to be executed at some point. Generally this is done when the particular
accelerating section, the fields, and the synchronization is known.

Travelling electromagnetic waves are used in linear accelerators and the acceler-
ating structure is designed such that the phase velocity of the wave is equal to the
velocity of the particles to be accelerated. In this case, the particle travels along the
structure in synchronism with the wave and is therefore accelerated or decelerated
at a constant rate. Maximum acceleration is obtained if the particles ride on the crest
of the wave.

In a standing wave accelerating section the electric field has the form

E(z.1) = Eo(z) el“'t? (9.4)

where § is the phase at the moment the particle enters the accelerating section at
t = 0. When we refer to an accelerating voltage V in a standing wave cavity we
mean to say a particle traveling close to the speed of light through the cavity will
gain a maximum kinetic energy of eV while passing the cavity center at the moment
the field reaches its crest. Such a particle would enter the cavity some time before
the field reaches a maximum and will exit when the field is decaying again. For
slower particles the energy gain would be lower because of the longer transit time.
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9.1.1 Longitudinal Phase Space Dynamics

Successful particle acceleration depends on stable and predictable interaction of
charged particles and electromagnetic fields. Because oscillating rf-fields are used,
special criteria must be met to assure systematic particle acceleration rather than ran-
dom interaction with rf-fields producing little or no acceleration. The constructive
interaction of particles and waves have been investigated in 1945 independently by
Veksler [4] and McMillan [5] leading to the discovery of the fundamental principle
of phase focusing. In this subsection, we will derive the physics of phase focusing
and apply it to the design of particle accelerators.

The degree of acceleration depends on the momentary phase ¥ of the field
as seen by the particle while travelling through or with an electromagnetic field.
Straight superposition of an electromagnetic wave and charged particle motion will
not necessarily lead to a net acceleration. In general, the particles are either too
slow or too fast with respect to the phase velocity of the wave and the particle
will, during the course of interaction with the electromagnetic wave, integrate over
a range of phases and may gain little or no net energy from the electric fields.
Therefore, special boundary conditions for the accelerating rf-wave must be met
such that maximum or at least net acceleration can be achieved. This can be done by
exciting and guiding the electromagnetic waves in specially designed accelerating
structures designed such that the phase velocity of the electromagnetic wave is equal
to the particle velocity. Only then can we choose a specific phase and integration of
(9.3) becomes straightforward for particles travelling in the direction of propagation
of the electromagnetic waves.

For practical reasons, specifically in circular accelerators, particle acceleration
occurs in short, straight accelerating sections placed along the particle path. In
this case no direct traveling wave exists between adjacent accelerating sections and
specific synchronicity conditions must be met for the fields in different accelerating
sections to contribute to particle acceleration as desired. For the purpose of
developing a theory of stable particle acceleration we may imagine an rf-wave
traveling along the path of the particle with a phase velocity equal to the particle
velocity and an amplitude which is zero everywhere except in discrete accelerating
cavities.

To ensure proper synchronization one could assume that every rf-cavity is
powered by its own microwave source. This is done often in high power rf-cavities,
but is, for example, impractical in linear accelerators. For the case of individual
power sources the phase of the rf-field can be chosen in each cavity such that its
voltage reaches the desired value at the moment the particles pass through. The
synchronisation for many cavities fed by one power source is more complicated and
we will discuss in the following paragraphs how to accomplish this.

We consider a number of rf-cavities powered by a single microwave source.
To derive the synchronicity conditions, we consider first two accelerating sections
separated by the distance L as shown in Fig.9.2. Once the proper operating
conditions are known for two sections a third section may be added by applying
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the same synchronicity condition between each pair of cavities. The successive
accelerating sections need not necessarily be a physically different sections but
could be the same section or the same sections passed through by the particles at
periodic time intervals. For example, the distance L between successive accelerating
sections may be equal to the circumference of a circular accelerator.

For systematic acceleration the phase of the rf-fields in each of the accelerating
sections must reach specific values at the moment the particles arrive. If the phase
of the fields in each of N accelerating sections is adjusted to be the same at the time
of arrival of the particles, the total acceleration is N times the acceleration in each
individual section. This phase is called the synchronous phase s defined by

Y = wt — kz = const, 9.5)

where o is the oscillating frequency of the electromagnetic field. The time derivative
of (9.5) vanishes and the synchronicity condition is

Yo =w—kBc=0, (9.6)

since dz/dt = Bc. This condition can be met if we set

2
k=— 9.7
7 0.7
and the frequency of the electromagnetic field is then from (9.6)
2 2
=k = —fc=—, 9.8
w1 1 Be L Be AT 9.8)

where ) is the lowest frequency satisfying the synchronicity condition and AT
is the time needed for particles with velocity fc to travel the distance L. This
equation relates the time of travel between successive accelerating sections with
the frequency of the accelerating rf-fields in a conditional way to assure systematic
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particle acceleration and the relation (9.8) is therefore called the synchronicity
condition.

However, any integer multiple of the frequency w,; satisfies the synchronicity
condition as well and we may instead of (9.8) define permissible frequencies of the
accelerating rf-fields by

2 2
=hw =k =—hfc=——=nh, 9.9
wp w1 n Bc 3 Bc T (9.9

where £ is an integer called the harmonic number with k;, = h k.

The synchronicity condition must be fulfilled for any spatial arrangement of the
accelerating structures which are powered by a single microwave source to get the
maximum acceleration. To illuminate the principle, we assume here, for example,
a series of short, equidistant accelerating gaps or accelerating sections along the
path of a particle. Let each of these gaps be excited by its own power source to
produce an accelerating rf-field at some random phase. The synchronicity condition
(9.8) is fulfilled if the rf-frequency is the same in each of these gaps, which are
separated by an integer multiple of rf-wavelength. However, it does not require each
accelerating gap to have the same rf-phase at the arrival time of the particles. Each
cavity in a set of accelerating cavities oscillating at the same frequency may be tuned
to an arbitrary rf-phase and the synchronicity condition still would be met. From a
practical point of view, however, it is inefficient to choose arbitrary phases and it is
more reasonable to adjust the phase in each cavity to the optimum phase desired for
maximum acceleration.

The assumption that the rf-frequency of all cavities be the same is unneces-
sarily restrictive considering that any harmonic of the fundamental frequency is
acceptable. Therefore, a set of accelerating cavities in a circular accelerator, for
example, may include cavities resonating at any harmonic of ;. This is sometimes
done to achieve specific effects (e.g. bunch lengthening), but in the absence of such
requirements makes only complicates the Rf-system.

A straightforward application of the synchronicity condition can be found in
the design of the Wideroe linear accelerator structure [2] as shown in Fig.9.3.
Here the fields are generated by an external rf-source and applied to a series of
metallic drift tubes. Accelerating fields build up at gaps between the tubes while
the tubes themselves serve as a field screens for particles during the time the
electric fields is changing sign and would be decelerating. The length of the field
free drift tubes is determined by the velocity of the particles and is L = ¢f Tyt
where T}t is the period of the rf-field. As the particle energy increases so does the
velocity ¢ and the length L of the tube must increase too. Only when the particles
become highly relativistic will the distance between field free drift sections become
a constant together with the velocity of the particles. Structures with varying drift
lengths are generally found in low energy proton or ion accelerators based on the
Alvarez structure [6], which is a technically more efficient version of the Wideroe
structure.
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Fig. 9.3 Wideroe linac structure

For electrons it is much easier to reach relativistic energies where the velocity is
sufficiently constant such that in general no longitudinal variation of the accelerating
structure is needed. In circular accelerators, we cannot adjust the distance between
cavities or the circumference as the particle velocity f increases. The synchronicity
condition therefore must be applied differently. From (9.9) we find the rf-frequency
to be related to the particle velocity and distances between cavities. Consequently
we have the relation

Bgh =L, (9.10)

which requires that the distance between any pair of accelerating cavities be an
integer multiple of BA;. Since L and h are constants, this condition requires
that the rf-frequency be changed during acceleration proportional to the particle
velocity B. Only for particles reaching relativistic energies, when § ~ 1, will the
distance between cavities approach an integer multiple of the rf-wave length and the
circumference C must then meet the condition

C = Bhas. ©.11)

9.2 Equation of Motion in Phase Space

So far, we have assumed that both the particle velocity 8 and the wave number
k are constant. This is not a valid general assumption. For example, we cannot
assume that the time of flight from one gap to the next is the same for all
particles. For low energy particles we have a variation of the time of flight due
to the variation of the particle velocities for different particle momenta. The wave
number k or the distance between accelerating sections need not be the same
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for all particles either. A momentum dependent path length between accelerating
sections exists if the lattice between such sections includes bending magnets. As
a consequence, the synchronicity condition must be modified to account for such
chromatic effects.

Removing the restriction of a constant wave number k, we obtain by a variation
of (9.6)

AV = — .= —A(kBc) = —ckAB — ,Bc%a—pAt, (9.12)
dp ot

where

w2
k=ky=h—"=""opZ

, 9.13
Ly  Ag Bc ©-13)

and L, is the distance between accelerating gaps along the ideal path. The
synchronous phase is kept constant ¥, = const or ¥y = 0 and serves as the
reference phase against which all deviations are measured.

The momentum dependence of the wave number comes from the fact that the
path length L between accelerating gaps may be different from L for off momentum
particles. The variation of the wave number with particle momentum is therefore

ok
ap

_0kOL| _ kn OL
o OLOdp

0 Ly 317

ky
= ——0, (9.14)
0 Po

where o, is the momentum compaction factor. We evaluate the momentum com-
paction factor starting from the path length L = fol‘)(l + ’/—;) dz. For transverse
particle motion x = xg + 1 (Ap/po) and employing average values of the integrands
the integral becomes

X A
L=1Lo+ <—ﬁ>L0 + <ﬁ> = (9.15)

o Pl Po
Because of the oscillatory character of the betatron motion (k,xg) = 0. The
relative path length variation is ?—f = (%>% = ac% and the momentum

compaction factor becomes
o = <Q> 9.16)
P

The momentum compaction factor increases only in curved sections where p # 0
and the path length is longer or shorter for higher energy particles depending on the
dispersion function being positive or negative, respectively. For a linear accelerator
the momentum compaction factor vanishes since the length of a straight line does
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not depend on the momentum. With (dp/df) At = Ap and mcy3AB = Ap we get
finally for (9.12) with (9.14) and after some manipulation

Acp
o

¥ = —Bckn(y ™ — atc) o (9.17)

The term y~2 in (9.17) appears together with the momentum compaction factor
o, and therefore has the same physical relevance. This term represents the variation
of the particle velocity with energy. Therefore, even in a linear accelerator where
o, = 0, the time of flight between accelerating gaps is energy dependent as long as
particles are still nonrelativistic.

After differentiation of (9.17) with respect to the time, we get the equation
of motion in the longitudinal direction describing the variation of the phase
with respect to the synchronous phase v for particles with a total momentum
deviation Ap

. A
v+ g (ﬂckhnc—Cp) =0. (9.18)
ot cpo

In most practical applications, parameters like the particle velocity B or the
energy vary only slowly during acceleration compared to the rate of change of the
phase and we consider them for the time being as constants. The slow variation of
these parameters constitutes an adiabatic variation of external parameters for which
Ehrenfest’s theorem holds. The equation of motion in the potential of the rf-field
becomes in this approximation

. knne 0
g Pane 8 4 p o 9.19)
cpo Ot

Integration of the electrical fields along the accelerating sections returns the kinetic
energy gain per turn

e / E()dz = eV(Y). (9.20)
L

where V() is the total particle accelerating voltage seen by particles along the
distance L. For particles with the ideal energy and following the ideal orbit the
acceleration is eV (is) where v is the synchronous phase.

Acceleration, however, is not the only source for energy change of particles.
There are also gains or losses from, for example, interaction with the vacuum
chamber environment, external fields like free electron lasers, synchrotron radiation
or anything else exerting longitudinal forces on the particle other than accelerating
fields. We may separate all longitudinal forces into two classes, one for which the
energy change depends only on the phase of the accelerating fields V(i) and the
other where the energy change depends only on the energy of the particle U(E)



262 9 Longitudinal Beam Dynamics

itself. The total energy gain AE per unit time or per turn is the composition of both
types of external effects

AE = eV(¥) — U(E). 9.21)

where U(E) is the energy dependent loss per turn due, for example, to synchrotron
radiation.

9.2.1 Small Oscillation Amplitudes

For arbitrary variations of the accelerating voltage with time we cannot further
evaluate the equation of motion unless the discussion is restricted to small variations
in the vicinity of the synchronous phase. While the ideal particle arrives at the
accelerating cavities exactly at the synchronous phase v, most other particles in
a real beam arrive at slightly different phases. For small deviations ¢ from the
synchronous phase,

¢ =9 —1s, 9.22)

we can expand the accelerating voltage into a Taylor series at v = V¥ and get for
the average rate of change of the particle energy with respect to the energy of the
synchronous particle from (9.20)

d 1 dv dU
—AE=—|eV — —U(Ey)) — —
5 T [e (W) + e av %qo (Eo) iE

AE:| , (9.23)
Ey

where the particle energy E = Eo+ AE and Ty is the time of flight between adjacent
cavities for the reference particle

= e

At equilibrium eV () = U(E)), and since f Acp = AE, we get with (9.23) and
¢ = ¥ from (9.19) the equation of motion or phase equation

To (9.24)

chknne AV 1 dU

Acp
e —| ¢+ ——| —=
Cp()T() dlﬂ Vs T() dE

E, PO

0. (9.25)

With (9.17) and ¥ = v + ¢ Eq. (9.25) becomes the differential equation of
motion for small phase oscillations

G+ 209+ 2% =0, (9.26)
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where the damping decrement o, is defined by

1 dU
o =—" — (9.27)
2Ty dE|g,
and the synchrotron frequency by
knn. dV
Q2= &l CF (9.28)

cpoTo Ay,

Particles orbiting in a circular accelerator perform longitudinal oscillations with
the frequency 2. These phase oscillations are damped or antidamped depending on
the sign of the damping decrement. Damping occurs only if there is an energy loss
which depends on the particle energy itself as in the case of synchrotron radiation. In
most cases of accelerator physics we find the damping time to be much longer than
the phase oscillation period and we may therefore discuss the phase equation while
ignoring damping terms. Whenever damping becomes of interest, we will include
this term again.

This phase equation is valid only for small oscillation amplitudes because only
the linear term has been used in the expansion for the rf-voltage. For larger
amplitudes this approximation cannot be made anymore and direct integration of the
differential equation is necessary. The small amplitude approximation, however, is
accurate to describe most of the fundamental features of phase oscillations. At large
amplitudes, the nonlinear terms will introduce a change in the phase oscillation
frequency and finally a limit to stable oscillations to be discussed later in this
chapter.

The phase equation has the form of the equation of motion for a damped
harmonic oscillator and we will look for conditions leading to a positive frequency
and stable phase oscillations. Because the phase equation was derived first for
synchrotron accelerators the oscillations are also called synchrotron oscillations and
are of fundamental importance for beam stability in all circular accelerators based
on rf-acceleration. For real values of the oscillation frequency we find that particles
which deviate from the synchronous phase are subjected to a restoring force leading
to harmonic oscillations about the equilibrium or synchronous phase. From the
equation of motion (9.25) it becomes clear that phase focusing is proportional to the
derivative of the accelerating voltage rather than to the accelerating voltage itself
and is also proportional to the momentum compaction 7.

To gain further insight into the phase equation and determine stability criteria,
we must make an assumption for the waveform of the accelerating voltage. In most
cases, the rf-accelerating fields are created in resonant cavities and therefore the
accelerating voltage can be expressed by a sinusoidal waveform

V() = Vosiny (9.29)
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and expanded about the synchronous phase to get with ¥ = ¥ + ¢
V(s + ¢) = Vo (sin s cos ¢ + sin ¢ cos ). (9.30)
Keeping only linear terms in ¢ the phase equation is
¢+ 2% =0, (9.31)
where the synchrotron oscillation frequency becomes now

cknne

cpoTo

2 =

eVO cos Ys. (9.32)

A particle passing periodically through localized and synchronized accelerating
fields along its path performs synchrotron oscillations with the frequency £2 about
the synchronous phase.

In circular accelerators we have frequently the situation that several rf-cavities
are employed to provide the desired acceleration. The reference time 7T is most
conveniently taken as the revolution time and the rf-voltage Vo is the total
accelerating voltage seen by the particle while orbiting around the ring once. The
rf-frequency is an integer multiple of the revolution frequency,

Jit = hfrev, (9.33)

where the integer % is the harmonic number and the revolution frequency is with the
circumference C

1 C
= _ =_, 9.34
Jrev To = cf (9.34)
From (9.32) the synchrotron frequency is in more practical units
@2 = 2, eeVocos v (9.35)

rev

27 Bepo

Similar to the betatron oscillation tunes, we define the synchrotron oscillation
tune or short the synchrotron tune as the ratio

2

wrev

(9.36)

Vg =

For real values of the synchrotron oscillation frequency the phase equation assumes
the simple form

@ = ¢ cos (2t + xi), (9.37)
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Fig. 9.4 Synchrotron oscillations in phase space for stable motion (.Qz > 0) (left) and for unstable
motion (£22 < 0) (right)
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where x; is an arbitrary phase function for the particle i at time r = 0. With ¢ = ¢
we find from (9.17), (9.32) the relation between the momentum and phase deviation
for real values of the synchrotron oscillation frequencyv; ~ 0.001 — 0.01

Acp ¢ 29
Ccpo hevne hrey e

§ =

sin (221 + x1). (9.38)

The particle momentum deviation, being the conjugate variable to the phase,
also oscillates with the synchrotron frequency about the ideal momentum. Both,
the phase and momentum oscillations describe the particle motion in longitudinal
phase spaceas shown in Fig.9.4 for stable and unstable synchrotron oscillations,
respectively. At the time 7y when in (9.38) the phase 27y + yi = 0 and we expect
the momentum deviation to be zero while the phase reaches the maximum value ¢.
Thus both oscillations are 90° out of phase. Particles with a negative momentum
compaction 1. < 0 move clockwise in phase space about the reference point while
a positive momentum compaction causes the particles to rotate counter clockwise.

The same process that has led to phase focusing will also provide the focusing
of the particle momentum. Any particle with a momentum different from the
ideal momentum will undergo oscillations at the synchrotron frequency which are
described by § = —8sin (£2t + x;), where the maximum momentum deviation is
related to the maximum phase excursion ¢ by

2
hwrey e

§ = ‘ 9. (9.39)

By inverse deduction we may express the momentum equation similar to the
phase equation (9.31) and get with Ap/py = § the differential equation for the
momentum deviation

a8

=+ 0225 =0. (9.40)
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Similar to the transverse particle motion, we eliminate from (9.37), (9.38) the
argument of the trigonometric functions to obtain an invariant of the form

52 (p2 0 )
5 4 & P-4 9.41)

where the sign is chosen to indicate stable or unstable motion depending on whether
the synchrotron oscillation frequency £2 is real or imaginary respectively. The
trajectories for both cases are shown in Fig.9.4. Clearly, the case of imaginary
values of the synchrotron oscillation frequency leads to exponential growth in the
oscillation amplitude.

9.2.2 Phase Stability

The synchrotron oscillation frequency must be real and the right-hand side of (9.32)
must therefore be positive to obtain stable solutions for phase oscillations. All
parameters in (9.32) are positive quantities except for the momentum compaction
n. and the phase factor cos V. For low particle energies the momentum compaction
is in general positive because y = > a, but becomes negative for higher particle
energies. The energy at which the momentum compaction changes sign is called the
transition energydefined by

(9.42)

Since the momentum compaction factor for circular accelerators is approxi-
mately equal to the inverse horizontal tune o &~ v 2, we conclude that the transition
energy ). is of the order of the tune and therefore in general a small number
reaching up to the order of a hundred for very large accelerators. For electrons, the
transition energy is of the order of a few MeV and for protons in the GeV regime. In
circular electron accelerators the injection energy always is selected to be well above
the transition energy and no stability problems occur during acceleration since the
transition energy is not crossed. Not so for protons. Proton linear accelerators with
an energy of the order of 10 GeV or higher are very costly and therefore protons and
ions in general must be injected into a circular accelerator below transition energy.

The synchronous rf-phase must be selected depending on the particle energy
being below or above the transition energy. Stable phase focusing can be obtained
in either case if the rf-synchronous phase is chosen as follows

0<yi<i for y<pm

9.43
F<Ys<m for y>p. ( )
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In a proton accelerator with an injection energy below transition energy the rf-
phase must be changed very quickly when the transition energy is being crossed.
Often the technical difficulty of this sudden change in the rf-phase is ameliorated by
the use of pulsed quadrupoles [7, 8], which is an efficient way of varying momen-
tarily the momentum compaction factor by perturbing the dispersion function. A
sudden change of a quadrupole strength can lower the transition energy below the
actual energy of the particle. This helpful “perturbation” lasts for a small fraction of
a second while the particles are still being accelerated and the rf-phase is changed.
By the time the quadrupole pulse terminates, the rf-phase has been readjusted and
the particle energy is now above the unperturbed transition energy.

In general, we find that a stable phase oscillation for particles under the influence
of accelerating fields can be obtained by properly selecting the synchronous phase
V¥ in conjunction with the sign of the momentum compaction such that

2%2>0. (9.44)

This is the principle of phase focusing [5] and is a fundamental process to obtain
stable particle beams in circular high-energy accelerators. An oscillating acceler-
ating voltage together with a finite momentum compaction produces a stabilizing
focusing force in the longitudinal degree of freedom just as transverse magnetic or
electric fields can produce focusing forces for the two transverse degrees of freedom.
With the focusing of transverse amplitudes we found a simultaneous focusing of its
conjugate variable, the transverse momentum. The same occurs in the longitudinal
phase where the particle energy or the energy deviation from the ideal energy is
the conjugate variable to the time or phase of a particle. Both variables are related
by (9.17) and a focusing force not only exists for the phase or longitudinal particle
motion but also for the energy keeping the particle energy close to the ideal energy.

Focusing conditions have been derived for all six degrees of freedom where the
source of focusing originates either from the magnet lattice for transverse motion
or from a combination of accelerating fields and a magnetic lattice property for
the energy and phase coordinate. The phase stability can be seen more clearly by
observing the particle trajectories in phase space. Equation (9.31) describes the
motion of a pendulum with the frequency £2 which, for small amplitudes sin ¢ ~ ¢
becomes equal to the equation of motion for a linear harmonic oscillator and can be
derived from the Hamiltonian

H=1¢> + 12%%. (9.45)

Small amplitude oscillations in phase space are shown in Fig.9.4 and we note
the confinement of the trajectories to the vicinity of the reference point. In case of
unstable motion the trajectories quickly lead to unbound amplitudes in energy and
phase (Fig. 9.4 right).
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Large Oscillation Amplitudes

For larger oscillation amplitudes we cannot anymore approximate the trigonometric
function sing ~ ¢ by its argument. Following the previous derivation for the
equation of motion (9.31) we get now

¢ = —22%sin o, (9.46)
which can be derived from the Hamiltonian
H=1¢"— 2%cosp (9.47)

being identical to that of a mechanical pendulum. As a consequence of our ability to
describe synchrotron motion by a Hamiltonian and canonical variables, we expect
the validity of the Poincaré integral

J1 = /dgbdgo = const (9.48)
Z

under canonical transformations. Since the motion of particles during synchrotron
oscillations can be described as a series of canonical transformations [9], we find
the particle density in the (@, ¢ ) phase space to be a constant of motion. The same
result has been used in transverse phase space and the area occupied by this beam in
phase space has been called the beam emittance. Similarly, we define an emittance
for the longitudinal phase space. Different choices of canonical variables can be
defined as required to emphasize the physics under discussion. Specifically we find
it often convenient to use the particle momentum instead of ¢ utilizing the relation
(9.17).

Particle trajectories in phase space can be derived directly from the Hamiltonian
by plotting solutions of (9.47) for different values of the “energy” H of the system.
These trajectories, well known from the theory of harmonic oscillators, are shown
in Fig. 9.5 for the case of a synchronous phase ¥, = .

The trajectories in Fig. 9.5 are of two distinct types. In one type the trajectories
are completely local and describe oscillations about equilibrium points separated
by 2 along the abscissa. For the other type the trajectories are not limited to
a particular area in phase and the particle motion assumes the characteristics of
libration. This phenomenon is similar to the two cases of possible motion of a
mechanical pendulum or a swing. At small amplitudes we have periodic motion
about the resting point of the swing. For increasing amplitudes, however, that
oscillatory motion could become a libration when the swing continues to go over
the top. The lines separating the regime of libration from the regime of oscillation
are called separatrices.

Particle motion is stable inside the separatrices due to the focusing properties of
the potential well which in this representation is just the cos ¢-term in (9.47). The
area within separatrices is commonly called an rf-bucket describing a place where
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separatrices

Fig. 9.5 Phase space diagrams for a synchronous phase ¥, = &

Fig. 9.6 Potential well for stationary rf buckets, ¥, = &

particles are in stable motion. In Fig. 9.6 the Hamiltonian (9.47) is shown in a three-
dimensional representation with contour lines representing the equipotential lines.
The stable potential wells, within the separatrices, keeping the particles focused
toward the equilibrium position, are clearly visible.

Inside the separatrices the average energy gain vanishes due to oscillatory phase
motion of the particles. This is obvious from (9.30) which becomes for ¥, =

V() = Vosiny = Vosin(ys + ¢) = Vosing (9.49)

averaging to zero since the average phase (¢) = 0.

The area within such separatrices is called a stationary rf-bucket. Such buckets,
while not useful for particle acceleration, provide the necessary potential well to
produce stable bunched particle beams in facilities where the particle energy need
not be changed as for example in a proton or ion storage ring where bunched
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beams are desired. Whenever particles must receive energy from accelerating fields,
may it be for straight acceleration or merely to compensate for energy losses
like synchrotron radiation, the synchronous phase must be different from zero.
As a matter of fact, due to the principle of phase focusing, particles within the
regime of stability automatically oscillate about the appropriate synchronous phase
independent of their initial parameters.

In the discussion of large amplitude oscillations we have tacitly assumed that
the synchrotron oscillation frequency remains constant and equal to (9.32) yet, we
also note that the frequency is proportional to the variation of the rf-voltage with
phase and we have included in the definition of the synchrotron frequency only
linear terms so far. Specifically, we note in Fig. 9.5 that the trajectories in phase
space are elliptical only for small amplitudes but are periodically distorted for
larger amplitudes. This distortion leads to a spread of the synchrotron oscillation
frequency.

9.2.3 Acceleration of Charged Particles

In the preceding paragraph we have arbitrarily assumed that the synchronous phase
be zero ¥, = 0 and as a result of this choice we obtained stationary, non-accelerating
rf-buckets. No particle acceleration occurs since the particles pass through the
cavities when the fields are zero. Whenever particle acceleration is required a finite
synchronous phase must be chosen. The average energy gain per revolution is then

AE = V() = Vp sin . (9.50)

Beam dynamics and stability becomes much different for ¢ # 0. From (9.19),
we get with (9.21), (9.30), (9.32) a phase equation more general than (9.46)

QZ
[sin(ys + ¢) —sin ] = 0, (9.51)
os Y.

S

¢+
or after expanding the trigonometric term into its components

2

0s Y5

¢+ (sin Y5 cos @ + sin @ cos s — sin ) = 0. (9.52)
c

This equation can also be derived directly from the Hamiltonian for the dynamics

of phase motion

2

%(/')2 _ % [cos(¥s + @) — cos Ys + ¢ sin ] = H. (9.53)
cos VY
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Fig. 9.7 Phase space diagrams for particles above transition energy (y > yi;), synchronous phases
of s = /3 (top left), 57 /6 (top right), 27/3 (bottom)

The phase space trajectories or diagrams differ now considerably from those in
Fig. 9.5 depending on the value of the synchronous phase ;. In Fig. 9.7 phase space
diagrams are shown for different values of the synchronous phase and a negative
value for the momentum compaction 7.

We note clearly the reduction in stable phase space area as the synchronous phase
is increased or as the particle acceleration is increased. Outside the phase stable
areas the particles follow unstable trajectories leading to continuous energy loss or
gain depending on the sign of the momentum compaction. Equation (9.53) describes
the particle motion in phase space for arbitrary values of the synchronous phase and
we note that this equation reduces to (9.45) if we set s = m. The energy gain for
the synchronous particle at i = v, becomes from (9.18)

AE = e / E(y)dz. (9.54)

We obtain a finite energy gain or loss whenever the synchronous phase in
accelerating sections is different from an integer multiple of 180° assuming that all
accelerating sections obey the synchronicity condition. The form of (9.54) actually
is more general insofar as it integrates over all fields encountered along the path of
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Fig. 9.8 3D rendition of a potential well for moving rf buckets ¥, 7 0

the particle. In case some accelerating sections are not synchronized, the integral
collects all contributions as determined by the phase of the rf-wave at the time the
particle arrives at a particular section whether it be accelerating or decelerating.
The synchronicity condition merely assures that the acceleration in all accelerating
sections is the same for each turn.

Particle trajectories in phase space are determined by the Hamiltonian (9.53),
which is similar to (9.47) except for the linear term in ¢. Due to this term, the
potential well is now tilted (Fig.9.8) compared to the stationary case (Fig.9.6).
We still have quadratic minima in the potential well function to provide stable
phase oscillations, but particles escaping over the maxima of the potential well
will be lost because they continuously loose or gain energy as can be seen by
following such trajectories in Fig.9.9. This is different from the case of stationary
buckets where such a particle would just wander from bucket to bucket while
staying close to the ideal energy at the center of the buckets. Phase stable
regions in case of finite values of the synchronous phase are called moving
rf-buckets.

The situation is best demonstrated by the three diagrams in Fig. 9.9 showing the
accelerating field, the potential, and the phase space diagram as a function of the
phase for different synchronous phases.
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Fig. 9.9 Phase space focusing for moving rf buckets displaying the phase relationship of
accelerating field, potential, and rf bucket

In this particular case we have assumed that the particle energy is above transition
energy and that the synchronous phase is such that cosy, < 0 to obtain stable
synchrotron oscillations. The center of the bucket is located at the synchronous
phase ¢ and the longitudinal stability range is limited by the phases ¥, and ¥,. In
the next section we will derive analytical expressions for the longitudinal stability
limit and use the results to determine the momentum acceptance of the bucket as
well.

While both phases, ¥ as well as & — v, would supply the desired energy gain
only one phase provides stability for the particles. The stable phase is easily chosen
by noting that the synchrotron oscillation frequency {2 must be real and therefore
ne cosys > 0. Depending on such operating conditions the rf-bucket has different
orientations as shown in Fig. 9.10.

We still can choose whether the electric field should accelerate or decelerate
the beam by choosing the sign of the field. For the decelerating case which, for
example, is of interest for free electron lasers, the “fish” like buckets in the phase
space diagram are mirror imaged.
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Fig. 9.10 Relationship between rf phase and orientation of moving rf buckets for accelerating as
well as decelerating fields

9.3 Longitudinal Phase Space Parameters

We will here investigate in more detail specific properties and parameters of
longitudinal phase space motion. From these parameters it will be possible to define
stability criteria.

9.3.1 Separatrix Parameters

During the discussions of particle dynamics in longitudinal phase space we found
specific trajectories in phase space, called separatrices which separate the phase
stable region from the region where particles follow unstable trajectories leading
away from the synchronous phase and from the ideal momentum. Within the phase
stable region particles perform oscillations about the synchronous phase and the
ideal momentum. This “focal point” in the phase diagram is called a stable fixed
point (sfp). The unstable fixed point (ufp) is located where the two branches of
the separatrix cross. The location of fixed points can be derived from the two
conditions:

H _
W

oM

and W = 0. (9.55)

From the first condition, we find with (9.53) that ¥y = 0 independent of any
other parameter. All fixed points are therefore located along the 1/-axis of the phase
diagram as shown in Fig. 9.11.

The second condition leads to the actual location of the fixed points ¥ on the
Y-axis and is with ¥ = ¥, + ¢

sin ¢ — sin s = 0. (9.56)
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Fig. 9.11 Characteristic S rf-bucket separatrices
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This equation can be solved for Yy = i or Yy = m — ¥, and the coordinates of
the fixed points are

(Vs 1//'Sf) = (Y5, 0) for the stable fixed point, sfp, and 9.57)
(Wut, Yur) = (T — 5, 0) for the unstable fixed point, ufp. '

The distinction between a stable and unstable fixed point is made through the
existence of a minimum or maximum in the potential at these points respectively. In
Fig.9.9, this distinction becomes obvious where we note the stable fixed points in
the center of the potential minima and the unstable fixed points at the saddle points.
The maximum stable phase elongation or bunch length is limited by the separatrix
and the two extreme points ¥, and ¥, which we will determine in Sect. 9.3.3.

9.3.2 Momentum Acceptance

Particles on trajectories just inside the separatrix reach maximum deviations in
phase and momentum from the ideal values in the course of performing synchrotron
oscillations. A characteristic property of the separatrix therefore is the definition of
the maximum phase or momentum deviation a particle may have and still undergo
stable synchrotron oscillations. The value of the maximum momentum deviation
is called the momentum acceptance of the accelerator. To determine the numerical
value of the momentum acceptance, we use the coordinates of the unstable fixed
point (9.57) and calculate the value of the Hamiltonian for the separatrix which is
from (9.53) with Viur = Vs + @ur = T — W5 and Yrgr = 0

2

Hr = [ RVA

[2 cos s — (T — 295)sin Y] . (9.58)

Following the separatrix from this unstable fixed point, we eventually reach the
location of maximum distance from the ideal momentum. Since ¢ is proportional
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to Ap/po, the location of the maximum momentum acceptance can be obtained
through a differentiation of (9.53) with respect to ¢

; ag _stinws—sin(‘ﬂs +9) _

0. 9.59
dp cos Vs ( )

At the extreme points where the momentum reaches a maximum or minimum,
d¢/d¢ = 0 which occurs at the phase

sin(ys + @) = sin s or ¢ =0. (9.60)

This is exactly the condition we found in (9.56) for the location of the stable fixed
points and is independent of the value of the Hamiltonian. The maximum momen-
tum deviation or momentum acceptance ¢,.. occurs therefore for all trajectories at
the phase of the stable fixed points ¥ = ;. We equate at this phase (9.58) with
(9.53) to derive an expression for the maximum momentum acceptance

Yo = 272 — (m — 29) tan ). (9.61)

In accelerator physics it is customary to define an over voltage factor. This factor
is equal to the ratio of the maximum rf-voltage in the cavities to the desired energy
gain in the cavity Uy

Vi 1
g=0 - _ (9.62)
Uy sin Vg

and can be used to replace trigonometric functions of the synchronous phase. To
solve (9.61), we use the expression

1
%JT — Yy = arccos — (9.63)
q

derived from the identity cos (%n - Iﬁs) = sin Y, replace the synchrotron oscilla-
tion frequency §2 by its representation (9.35) and get with (9.17) the momentum
acceptance for a moving bucket

Ap\® _ eVosinyy 1
(_p) = ﬂz (\/q2 — 1 —arccos —) : 9.64)

Po /J acc ”h|'7c|CPO q

The function

F(g) =2 (\/q2 — 1 —arccos l) (9.65)

q

is shown in Fig.9.12 as a function of the over voltage factor g.
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The synchronous phase is always different from zero or & when charged particles
are to be accelerated. In circular electron and very high-energy proton accelerators
the synchronous phase must be nonzero even without acceleration to compensate for
synchrotron radiation losses. In low and medium energy circular proton or heavy ion
storage rings no noticeable synchrotron radiation occurs and the synchronous phase
is either ¥y = 0 or w depending on the energy being below or above the transition
energy. In either case sin s = 0 which, however, does not necessarily lead to a
vanishing momentum acceptance since the function F(g) approaches the value 2¢
and the factor sin s F(g) — 2 in (9.64) while ¢ — oo. Therefore stable buckets
for protons and heavy ions can be produced with a finite energy acceptance. The
maximum momentum acceptance for such stationary buckets is from (9.64)

Ap\? 2eV,
(_P) _ 2V (9.66)
PO/ max stat. T[h| Te ICPO

Note that this expression for the maximum momentum acceptance appears to be
numerically inconsistent with (9.39) for ¢ = 7, because (9.39) has been derived for
small oscillations only (¢ < 7). From Fig.9.11, we note that the aspect ratios of
phase space ellipses change while going from bucket center towards the separatrices.
The linear proportionality between maximum momentum deviation and maximum
phase of (9.39) becomes distorted for large values of ¢ such that the acceptance of
the rf-bucket is reduced by the factor 2/m from the value of (9.39).

The momentum acceptance is further reduced for moving buckets as the syn-
chronous phase increases. In circular accelerators, where the required energy gain
for acceleration or compensation of synchrotron radiation losses per turn is Uy, the
momentum acceptance is

Ap\? U F(g) ( Ap\*
(_P) =% py=f@ (_p) , (9.67)
Po max,moving JT]’II Ne |Cp0 2 q PO/ max static

The reduction F(g)/2q in momentum acceptance is solely a function of the
synchronous phase and is shown in Fig. 9.13 for the case y > 4.
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Fig. 9.13 Reduction factor 1 —
of the momentum acceptance g F(q)/ 2q
F(gq)/2q as a function of the -
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Overall, the momentum acceptance depends on lattice and rf-parameters and
scales proportional to the square root of the rf-voltage in the accelerating cavities.
Strong transverse focusing decreases the momentum compaction thereby increasing
the momentum acceptance while high rf-frequencies diminish the momentum
acceptance. Very high frequency accelerating systems based, for example, on high
intensity lasers to produce high accelerating fields are expected to have a rather
small momentum acceptance and work therefore best with quasi-monoenergetic
beams.

It is often customary to use other parameters than the momentum as the
coordinates in longitudinal phase space. The most common parameter is the particle
energy deviation AE/wy together with the phase. In these units, we get for the
stationary bucket instead of (9.66)

AE
Wrf

(9.68)

max,stat.

which is measured in eV-sec. Independent of the conjugate coordinates used,

the momentum acceptance for moving rf-buckets can be measured in units of
a stationary rf-bucket, where the proportionality factor depends only on the
synchronous phase.

9.3.3 Bunch Length

During the course of synchrotron oscillations, particles oscillate between extreme
values in momentum and phase with respect to the reference point and both
modes of oscillation are out of phase by 90°. All particles of a beam perform
incoherent phase oscillations about a common reference point and generate thereby
the appearance of a steady longitudinal distribution of particles, which we call a
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particle bunch. The total bunch length is twice the maximum longitudinal excursion
of particles from the bunch center defined by

. A,
p==x-—9, (9.69)
2

where ¢ is the maximum phase deviation.

In circular electron accelerators the rf-parameters are generally chosen to gen-
erate a bucket which is much larger than the core of the beam. Statistical emission
of synchrotron radiation photons generates a Gaussian particle distribution in phase
space and therefore the rf-acceptance is adjusted to provide stability far into the tails
of this distribution. To characterize the beam, however, only the core (one standard
deviation) is used. In the case of bunch length or energy deviation we consider
therefore only the situation for small oscillation amplitudes. In this approximation
the bunch length becomes with (9.39)

¢ A
€ _ L clnel Ap (9.70)
2 ) P0 [max
or with (9.35)
C_ evom | meepp  Ap ©.71)
2 Wrey he‘/\/COSlﬂs Po max' .

The bunch length in a circular electron accelerator depends on a variety of rf-and
lattice parameters. It is inversely proportional to the square root of the rf-voltage
and frequency. A high frequency and rf-voltage can be used to reduce the bunch
length of which only the rf-voltage remains a variable once the system is installed.
Practical considerations, however, limit the range of bunch length adjustment this
way. The momentum compaction is a lattice function and theoretically allows the
bunch length to adjust to any small value. For high-energy electron rings 1. ~ —o
and by arranging the focusing such that the dispersion functions changes sign,
the momentum compaction factor of a ring can become zero or even negative.
Rings for which n. = 0 are called isochronous rings [10]. By adjusting the
momentum compaction to zero, phase focusing is lost similar to the situation going
through transition in proton accelerators and total beam loss may occur. In this case,
however, nonlinear, higher order effects become dominant which must be taken into
consideration. If on the other hand the momentum compaction is adjusted to very
small values, beam instability may be avoidable. [11] The benefit of an isochronous
or quasi-isochronous ring would be that the bunch length in an electron storage ring
could be made very small. This is important, for example, to either create short
synchrotron radiation pulses or maximize the efficiency of a free electron laser by
preserving the micro bunching at the laser wavelength as the electron beam orbits
in the storage ring.
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Fig. 9.14 Maximum phases limiting the extend of moving buckets

In a circular proton or ion accelerator we need not be concerned with the
preservation of Gaussian tails and therefore the whole rf-bucket could be filled with
the beam proper at high density. In this case, the bunch length is limited by the
extreme phases y; and ¥, of the separatrix. Because the longitudinal extend of the
separatrix depends on the synchronous phase, we expect the bunch length to depend
also on the synchronous phase. One limit is given by the unstable fixed point at
Y1 = m — . The other limit must be derived from (9.53), where we replace ‘H
by the potential of the separatrix from (9.58). Setting ¢ = 0, we get for the second
limit of stable phases the transcendental equation

cos Y12 + Yiasin Y = (7 — ¥) sin Y — cos V. 9.72)

This equation has two solutions mod(27) of which i is one solution and the
other is ;. Both solutions and their difference are shown in Fig. 9.14 as functions
of the synchronous phase.

The bunch length of proton beams is therefore determined only by

A
b = 2—;(% — ). (9.73)

Different from the electron case, we find the proton bunch length to be directly
proportional to the rf-wavelength. On the other hand, there is no direct way of
compressing a proton bunch by raising or lowering the rf-voltage. This difference
stems from the fact that electrons radiate and adjust by damping to a changed rf-
bucket while non-radiating particles do not have this property. However, applying
adiabatic rf-voltage variation we may modify the bunch length as will be discussed
in Sect. 9.3.5.

9.3.4 Longitudinal Beam Emittance

Separatrices distinguish between unstable and stable regions in the longitudinal
phase space. The area of stable phase space in analogy to transverse phase space
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is called the longitudinal beam emittance; however, it should be noted that the
definition of longitudinal emittance as used in the accelerator physics community
often includes the factor 7 in the numerical value of the emittance and is therefore
equal to the real phase space area. To calculate the longitudinal emittance, we
evaluate the integral ¢ p dg where p and g are the conjugate variables describing
the synchrotron oscillation.

Similar to transverse beam dynamics we distinguish again between beam
acceptance and beam emittance. The acceptance is the maximum value for the beam
emittance to be able to pass through a transport line or accelerator components. In
the longitudinal phase space the acceptance is the area enclosed by the separatrices.
Of course, we ignore here other possible acceptance limitations which are not
related to the parameters of the accelerating system. The equation for the separatrix
can be derived by equating (9.53) with (9.58) which gives with (9.17) and (9.35)

Acp 2 eVy .
— ) = ————[cosg+ 1+ Q¥+ ¢ —m)sin ] . (9.74)
cpo wh|nelepo

We define a longitudinal beam emittance by

AE
€p = de, (9.75)
s Wrf

where the integral is to be taken along a path S tightly enclosing the beam in phase
space. Only for ¢ = nm can this integral be solved analytically. The maximum
value of the beam emittance so defined is the acceptance of the system. Numerically,
the acceptance of a stationary bucket can be calculated by inserting (9.74) into (9.75)
and integration along the enclosing separatrices resulting in

2eVoE
€pace =8 O—Oﬂz (9.76)
T h el Wie

Comparison with the momentum acceptance (9.75) shows the simple relation
that the longitudinal acceptance is eight times the energy acceptance

AE
€p,acc = 8 a)_
rf

9.77)

max,stat

For moving rf-buckets, the integration (9.75) must be performed numerically
between the limiting phases ¥; and ¥,. The resulting acceptance in percentage of
the acceptance for the stationary rf-bucket is shown in Fig. 9.15 as a function of the
synchronous phase angle.

The acceptance for ¥, < 180° is significantly reduced imposing some practical
limits on the maximum rate of acceleration for a given maximum rf-voltage. During
the acceleration cycle, the magnetic fields in the lattice magnets are increased
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Fig. 9.15 Acceptance of moving rf buckets in units of the acceptance of a stationary rf bucket

consistent with the available maximum rf-voltage and by virtue of the principle of
phase focusing the particles will keep close to the synchronous phase whenever the
rate of energy increase is slow compared to the synchrotron oscillation frequency
which is always the case. In high-energy electron synchrotrons or storage rings the
required “acceleration” is no more a free parameter but is mainly determined by the
energy loss due to synchrotron radiation and a stable beam can be obtained only if
sufficient rf-voltage is supplied to provide the necessary acceptance.

9.3.5 Phase Space Matching

In transverse phase space a need for matching exists while transferring a beam
from one accelerator to another accelerator. Such matching conditions exist also
in longitudinal phase space. In the absence of matching part of the beam may be
lost due to lack of overlap with the rf-bucket or severe phase space dilution may
occur if a beam is injected unmatched into a too large rf-bucket. In the case of
electrons a mismatch generally has no detrimental effect on the beam unless part
or all of the beam exceeds rf-bucket limitations. Because of synchrotron radiation
and concomitant damping, electrons always assume a Gaussian distribution about
the reference phase and ideal momentum. The only matching then requires that the
rf-bucket is large enough to enclose the Gaussian distribution far into the tails of
7-10 standard deviations.

In proton and heavy ion accelerators such damping is absent and careful phase
space matching during the transfer of particle beams from one accelerator to
another is required to preserve beam stability and phase space density. A continuous
monochromatic beam, for example, being injected into an accelerator with too large
an rf-bucket as shown in Fig. 9.16 will lead to a greatly diluted emittance.

This is due to the fact that the synchrotron oscillation is to some extend nonlinear
and the frequency changes with oscillation amplitude with the effect that for all
practical purposes the beam eventually occupies all available phase space. This does
not conflict with Liouville’s theorem, since the microscopic phase space is preserved
albeit fragmented and spread through filamentation over the whole bucket.
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Fig. 9.16 Phase space filamentation after a few synchrotron oscillations

The situation is greatly altered if the rf-voltage is reduced and adjusted to just
cover the energy spread in the beam. Not all particles will be accepted, specifically
those in the vicinity of the unstable fixed points, but all particles that are injected
inside the rf-bucket remain there and the phase space density is not diluted. The
acceptance efficiency is equal to the bucket overlap on the beam in phase space. A
more sophisticated capturing method allows the capture of almost all particles in
a uniform longitudinal distribution by turning on the rf-voltage very slowly [12], a
procedure which is also called adiabatic capture.

Other matching problems occur when the injected beam is not continuous. A
beam from a booster synchrotron or linear accelerator may be already bunched but
may have a bunch length which is shorter than the rf-wavelength or we may want to
convert a bunched beam with a significant momentum spread into an unbunched
beam with small momentum spread. Whatever the desired modification of the
distribution of the beam in phase space may be, there are procedures to allow the
change of particular distributions while keeping the overall emittance constant.

For example, to accept a bunched beam with a bunch length shorter than
the rf-wavelength in the same way as a continuous beam by matching only
the momentum acceptance would cause phase space filamentation as shown in
Fig.9.17. In a proper matching procedure the rf-voltage would be adjusted such
that a phase space trajectory surrounds closely the injected beam (Fig.9.17 left).
In mathematical terms, we would determine the bunch length ¢ of the injected
beam and following (9.70) would adjust the rf-voltage such that the corresponding
momentum acceptance § = (Ap/po)max matches the momentum spread in the
incoming beam. If no correct matching is done and the beam is injected like shown
in (Fig.9.17 right), then the variation of synchrotron oscillation frequency with
amplitude would cause filamentation and dilution of beam phase space. Effectively,
this simulates in real space a larger effective emittance.

Equation (9.70) represents a relation between the maximum momentum devia-
tion and phase deviation for small amplitude phase space trajectories which allows
us to calculate the bunch length as a function of external parameters. Methods
have been discussed in transverse particle dynamics which allow the manipulation
of conjugate beam parameters in phase space while keeping the beam emittance
constant. Specifically, within the limits of constant phase space we were able to
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Fig. 9.17 Mismatch for a bunched beam (right). Proper match for a bunched beam (left)

exchange beam size and transverse momentum or beam divergence by appropriate
focusing arrangements to produce,for example, a wide parallel beam or a small
beam focus.

Similarly, we are able to manipulate within the limits of a constant longitudinal
beam emittance the bunch length and momentum spread. The focusing device in this
case is the voltage in accelerating cavities. Assume, for example, a particle bunch
with a very small momentum spread but a long bunch length as shown in Fig.9.18
left. To transform such a bunch into a short bunch we would suddenly increase the
rf-voltage in a time short compared to the synchrotron oscillation period. The whole
bunch then starts to rotate within the new bucket (Fig.9.18 middle) exchanging
bunch length for momentum spread. After a quarter synchrotron oscillation period,
the bunch length has reached its shortest value and starts to increase again through
further rotation of the bunch unless the rf-voltage is suddenly increased a second
time to stop the phase space rotation of the bunch (Fig.9.18 right). The rf-voltage
therefore must be increased to such a value that all particles on the bunch boundary
follow the same phase space trajectory.

This phase space manipulation can be conveniently expressed by repeated appli-
cation of (9.39). The maximum momentum deviation (Ap/pg)o and the maximum
phase deviation ¢, for the starting situation in Fig. 9.18 (left) are related by

Ap 20

Po 0 B hwrev“]cl

%o, (9.78)

where £2 is the starting synchrotron oscillation frequency for the rf-voltage Vy. To
start bunch rotation the rf-voltage is increased to V; (Fig.9.18 middle) and after
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At the same time the original momentum error 2}9 /Polo has become a phase error
@1 given by
Ap
po |,

2 .
=" 4. (9.80)
hwyey | Ne |

Now we need to stop further phase space rotation of the whole bunch. This can
be accomplished by increasing a second time the rf-voltage during a time short
compared to the synchrotron oscillation period in such a way that the new bunch
length or ¢ is on the same phase space trajectory as the new momentum spread
2}7 /pol1 (Fig.9.18 right). The required rf-voltage is then determined by

Ap
Po

2,

= — (9.81)
| hwrevlnc|(p1

while solving £2, for the voltage V,. We take the ratio of (9.77) and (9.80) to get

@1 822 _ Ap/poli
%o £20 Ap/polo

(9.82)
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and replace the ratio of the momentum spreads by the ratio of (9.78) and (9.79).
With £2; « +/V; and £ o« ¢ we get finally the scaling law for the reduction of the

bunch length
1
61 Vo 4
— == . 9.83
e= () ©0.83)

In other words the bunch length can be reduced by increasing the rf-voltage in a two
step process and the bunch length reduction scales like the fourth power of the rf-
voltage. This phase space manipulation is symmetric in the sense that a beam with
a large momentum spread and a short bunch length can be converted into a bunch
with a smaller momentum spread at the expense of the bunch length by reducing the
rf-voltage in two steps.

The bunch length manipulation described here is correct and applicable only for
non-radiating particles. For radiating particles like electrons, the bunch manipula-
tion is easier due to damping effects. Equation (9.39) still holds, but the momentum
spread is independently determined by synchrotron radiation and the bunch length
therefore scales simply proportional to the square root of the rf-voltage.

9.4 Higher-Order Phase Focusing

The principle of phase focusing is fundamental for beam stability in circular
accelerators and we find the momentum compaction factor to be a controlling
quantity. Since the specific value of the momentum compaction determines critically
the beam stability, it is interesting to investigate the consequences to beam stability
as the momentum compaction factor varies. Specifically, we will discuss the
situation where the linear momentum compaction factor is reduced to very small
values and higher-order terms become significant. This is, for example, of interest
in proton or ion accelerators going through transition energy during acceleration, or
as we try to increase the quadrupole focusing in electron storage rings to obtain a
small beam emittance, or when we intentionally reduce the momentum compaction
to reduce the bunch length. In extreme cases, the momentum compaction factor
becomes zero at transition energy or in an isochronous storage ring where the
revolution time is made the same for all particles independent of the momentum.
The linear theory of phase focusing would predict beam loss in such cases due to
lack of phase stability. To accurately describe beam stability when the momentum
compaction factor is small or vanishes, we cannot completely ignore higher-order
terms. Some of the higher-order effects on phase focusing will be discussed here.
There are two main contributions to the higher-order momentum compaction factor,
one from the dispersion function and the other from the momentum dependent path
length. First, we derive the higher-order contributions to the dispersion function, and
then apply the results to the principle of phase focusing to determine the perturbation
on the beam stability.
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9.4.1 Dispersion Function in Higher Order

The first-order change in the reference path for off energy particles is proportional to
the relative momentum error. The proportionality factor is a function of the position
s and is called the dispersion function. This result is true only in linear beam
dynamics. We will now derive chromatic effects on the reference path in higher
order to allow a more detailed determination of the chromatic stability criteria. The
linear differential equation for the normalized dispersion function is

d2
il +12wy = UZ,B%K = v2F(¢), (9.84)
dg?

where ¢ is the betatron phase, wo = 70/ +/B, B(z) the betatron function and 7(z)
the undisturbed dispersion function. The periodic solution of (9.84) is called the

. . . . 25 ing
normalized dispersion function wo(p) = Y7 tleel

and

Fp) = pix =Y Fpe™. (9.85)

This linear solution includes only the lowest-order chromatic error term from
the bending magnets and we must therefore include higher-order chromatic terms
into the differential equation of motion. To do that we use the general differential
equation of motion while ignoring all coupling terms

X (kK k) x = 4Kk8 — k8 4+ k8 — Im (1= §)x* + k/xx’ (9.86)
— (& + 2ck)(1 = 8)x* + Sr(1 — §) x?
+ 2% + k)x 8 — (k + 2*)x8* + 0(4),

where k = 1/p. We are only interested in the chromatic solution with vanishing
betatron oscillation amplitudes and insert for the particle position therefore

Xy = 108 + 118% + 8 + O4). (9.87)

Due to the principle of linear superposition separate differential equations exist
for each component 7; by collecting on the right-hand side terms of equal power
in 8. For the terms linear in §, we find the well-known differential equation for the
dispersion function

o+ K@ =K =Y Foe", (9.88)

n
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where we also express the perturbations by its Fourier expansion. The terms
quadratic in 6 form the differential equation

N +K@m=—Y Fue" (9.89)

— Imud — (€* + 2k + Sreng + &' nony + (26 + k)no
= — ZF(),, el + ZFI" ei”",
and terms cubic in § are determined by
W+ K@m =+ Fue" - Fie" (9.90)

—mnont — 2 (k> + 2ck) nomi + (2% + k) my
+ knony + «" (ony + 1) + " nomg

= +ZF0nein<p — ZFlneimp =+ Zaneimp.

We note that the higher-order dispersion functions are composed of the negative
lower-order solutions plus an additional perturbation. After transformation of these
differential equations into normalized variables, w = n/ \/E , etc., we get with j =
0, 1, 2 differential equations of the form

m=j n=00

Wj(@) + vowi(p) = B F@) = vy Y Y (1) PE,, e, (9.91)

m=0n=—00

where we have expressed the periodic perturbation on the r.h.s. by an expanded
Fourier series. Noting that the dispersion functions w;(¢) are periodic, we try the
ansatz

wil@) =Y wine"?, (9.92)

and insertion into (9.91) allows to solve for the individual Fourier coefficients wy,
by virtue of the orthogonality of the exponential functions e”?. We get for the
dispersion functions up to second order and reverting to the ordinary n-function

FOn eln(ﬂ

no(@) =+ (0) ) 5. (9.93a)
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Fo, e Fy, e
(@) = —F(9) Z = _enz B @Y (9.93b)

(g) = +/32(¢)ZZ —ﬂz(w)ZFl" +/32(¢)ZF2"
(9.93c)

The solutions of the higher-order differential equations have the same integer-
resonance behavior as the linear solution for the dispersion function. The higher-
order corrections will become important for lattices where strong sextupoles are
required in which cases the sextupole terms may be the major perturbations to
be considered. Other perturbation terms depend mostly on the curvature « in the
bending magnets and, therefore, maybe small for large rings or beam-transport lines
with weak bending magnets.

9.4.2 Path Length in Higher Order

The path length together with the velocity of particles governs the time of arrival
at the accelerating cavities from turn to turn and therefore defines the stability of a
particle beam. Generally, only the linear dependence of the path length on particle
momentum is considered. We find, however, higher-order chromatic contributions
of the dispersion function to the path length as well as momentum independent
contributions due to the finite angle of the trajectory with respect to the ideal orbit
during betatron oscillations.

The path length for a particular trajectory from point zo to point z in our
curvilinear coordinate system can be derived from the integral L = g%zds, where
s is the coordinate along the particular trajectory. This integral can be expressed by

L= ¢ \/(1 + kx)* + X2 +y2dz, (9.94)

where the first term of the integrand represents the contribution to the path length
due to curvature generated by bending magnets while the second and third term
are contributions due to finite horizontal and vertical betatron oscillations. For
simplicity, we ignore vertical bending magnets. Where this simplification cannot
be made, it is straight forward to extend the derivation of the path length in higher
order to include bending and betatron oscillations in the vertical plane as well. We
expand (9.94) up to second order and get for the path length variation AL = L — L

AL = 95 (kx + 122 + L2 4 1y?) de + O(3). (9.95)
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The particle amplitudes are composed of betatron oscillation, orbit distortions
and off energy orbits

x=xg+x+n08+ms+..., 9.96)
Yy =Yg+ Yo.

where (xﬂ,ylg) describe the betatron oscillations and (19, 71, ...) are the linear

and higher-order dispersion functions derived in Sect. 9.4.1. The quantities (xo, yo)

describe the deviation of the actual orbit from the ideal orbit or orbit distortion due

to magnetic field and alignment errors.

Evaluating the integral (9.95), we note that the oscillatory character of (xg,yg)
causes all terms linear in (xg,yg) to vanish while averaging over many turns.
The orbit distortions (xg, yo) are statistical in nature since the correction in a real
accelerator is done such that (xg) = 0 and (x;) = 0. Betatron oscillations and
orbit distortions are completely independent and therefore cross terms like (xgxo)
vanish. The dispersion function 7 and the higher-order term 7; are unique periodic
solutions of the inhomogeneous equation of motion. For the betatron oscillations we
assume a nonresonant tune which causes terms like (xgno) to vanish as well. With
these results the path length variation is

ALw 5 ¢ (xg + Y5+ x5 + 35+ Kxg + szs,) dz (9.97)
#5brmdz 5 (om + 3703 + i) e

There are three main contributions of which two are of chromatic nature.
The finite transverse betatron oscillations as well as orbit distortions contribute
to a second order increase in the path length of the beam transport system
which is of non-chromatic nature. Equation (9.97) can be simplified by using
the explicit expressions for the particle motion xg(z) = /€:B:(2)siny,(2)

and xp(z) = /€/Bx(2) [cos Yx(z) — ax(2) sinYu(z)]. Forming the square
x% 2= ¢, /Bx(2) (cos2 Y — a, sin 29, + o sin’ 1//X) and averaging over all phases
Y
1
95 X dz = exgg B (cos® Y, + o sin® ) dz, (9.98)

PAVN .
_ nyg (co; 14 + i sin? 1//)6) dz ~ %ex ¢ y.dz,

where we used the simplifying expression (sin2 Ipx) ~ % Similarly, we get
¢ yl’gzdz ~ le,$yydz, and gSKZx/ZB dz ~ 3€;$K*B.dz. The integrals are taken
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over the entire beam transport line of length Ly and using average values for the
integrands, the path-length variation is

AL

o= et Haln) +els)

+1(6%) 1 (57) + 1) ©99)
+ a8 + ((Km) + L (k?ng) + %<n62>) 82+ 003).

In this expression for the path-length variation we find separate contributions
due to betatron oscillations, orbit distortion and higher-order chromatic effects. We
have used the emittance € as the amplitude factor for betatron oscillation and get
therefore a path length spread within the beam due to the finite beam emittance €.
Note specifically that for an electron beam this emittance scales by the factor n2 to
include Gaussian tails, where n, is the oscillation amplitude in units of the standard
amplitude o. For whole beam stability a total emittance of €y = 7%¢ — 10%¢ should
be considered. For stable machine conditions, the contribution of the orbit distortion
is the same for all particles and can therefore be corrected by an adjustment of
the rf-frequency. We include these terms here, however, to allow the estimation of
allowable tolerances for dynamic orbit changes.

9.4.3 Higher Order Momentum Compaction Factor

The longitudinal phase stability in a circular accelerator depends on the value of the
momentum compaction 7., which actually regulates the phase focusing to obtain
stable particle motion. This parameter is not a quantity that can be chosen freely
in the design of a circular accelerator without jeopardizing other desirable design
goals. If, for example, a small beam emittance is desired in an electron storage
ring, or if for some reason it is desirable to have an isochronous ring where the
revolution time for all particles is the same, the momentum compaction should
be made to become very small. This in itself does not cause instability unless the
momentum compaction approaches zero and higher-order chromatic terms modify
phase focusing to the extent that the particle motion becomes unstable. To derive
conditions for the loss of phase stability, we evaluate the path length variation (9.99)
with momentum in higher order

AL
= 0.8 + a1 8%+ &+ O03), (9.100)
0

where £ represents the momentum independent term

£= % (ex (ra) + & (Vy) + & (Kzﬁx)) 9.101)



292 9 Longitudinal Beam Dynamics
and

o = (km) + L (k*nd) + L (n?) (9.102)

is the non-linear momentum compaction factor.

From the higher order dispersion and path length we may now derive the value
of the higher order momentum compaction factor. First we note that we are not
interested in oscillatory terms. Therefore (9.93b) reduces to

m(p) = £ ((p) p (¢)F10, (9.103)
where
Foo = (k) and
Fio = <—%mn% — (& + 2ck) 1§ + %Kng + &' nomy + (267 + k) n0>.
Furthermore
(km) = < L (¢)>( Foo + Fio), (9.104)

where the average is to be taken over one superperiod of the accelerator. The other
terms in (9.102) and (9.101) are straight forward. With the knowledge of the higher
order momentum compaction factor we are now able to consider higher order phase
motion.

9.4.4 Higher-Order Phase Space Motion

Following the derivation of the linear phase equation, we note that it is the variation
of the revolution time with momentum rather than the path-length variation that
affects the synchronicity condition. With the expanded momentum compaction 1. =
# — a.we get the differential equation for the phase oscillation to second order

d
a—l/tf = — 0 (8 — 0182 — £) (9.105)
and for the momentum oscillation
a6 Vi . .
= M (Siny —sinyy). (9.106)

A Tocpo
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Fig. 9.19 Second-order longitudinal phase space for s = 0, £ = 0 and weak perturbation
O{]/ ne = —3.0

In linear approximation, where &; = 0 and £ = 0, a single pair of fixed points
and separatrices exist in phase space. These fixed points can be found from the
condition that ¢/ = 0 and § = 0 and they lie on the abscissa for § = 0. The
stable fixed point is located at (Vs 8ss) = (s, 0) defining the center of the rf-
bucket where stable phase oscillations occur. The unstable fixed point at (Yu¢, Suf) =
(m — v, 0) defines the crossing point of the separatrices separating the trajectories
of oscillations from those of librations.

Considering also higher-order terms in the theory of phase focusing leads to a
more complicated pattern of phase space trajectories. Setting (9.106) equal to zero
we note that the abscissae of the fixed points are at the same location as for the linear
case

Yir = Ys and Yor = — VY. (9.107)

The energy coordinates of the fixed points, however, are determined by solving
(9.105) for ¥ = 0 or

NS —o18>—E=0 (9.108)

with the solutions

8 = + ¢ (1 + M) , (9.109)
091
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Fig. 9.20 Higher-order longitudinal phase space diagrams for ¥y = 0, § = 0 and strong
perturbation o /7. = —6.0 (top) and &y /n. = —13.5 (bottom)

where

_ 4oy

r 2

(9.110)

Due to the quadratic character of (9.108), we get now two layers of fixed points
with associated areas of oscillation and libration. In Figs.9.19, 9.20, the phase
diagrams are shown for increasing values of «; while for now we set the momentum
independent perturbation £ = 0. Numerically, the contour lines have been calculated
from the Hamiltonian (9.114) with A /25, = 0.005, where A is defined in (26199).
The appearance of the second layer of stable islands and the increasing perturbation
of the original rf-buckets is obvious. There is actually a point [Fig.9.20 (top)]
where the separatrices of both island layers merge. We will use this merging of the
separatrices later to define a tolerance limit for the perturbation on the momentum
acceptance.

The coordinates of the fixed points in the phase diagram are determined from
(9.116), (9.117) and are for the linear fixed points in the first layer

point A: Y = Yy, Sa = & (1— 1-1"),

2(11

9.111)
point B: Yy =7 — 1, 0p = &(I—VI—F).

20(1
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Fig. 9.21 Second-order longitudinal phase space for the same parameters as Fig. 9.20 (top), but
now with 2§ /9. = —0.125

The momenta of these fixed points are at § = 0 for I’ = 0 consistent with
earlier discussions. As orbit distortions and betatron oscillations increase, however,
we note a displacement of the equilibrium momentum as I" increases.

The fixed points of the second layer of islands or rf-buckets are displaced both in
phase and in momentum with respect to the linear fixed points such that the stable
and unstable fixed points are interchanged. The locations of the second layer of fixed
points are

point C: ¢ = Vs, Sc
point D: yp = 7w — ¥, Op

&(HM)

i <1+ — ) 9.112)

The dependence of the coordinates for the fixed points on orbit distortions and the
amplitude of betatron oscillations becomes evident from (9.121), (9.124). Specifi-
cally, we note a shift in the reference momentum of the beam by & /1. as the orbit dis-
tortion increases as demonstrated in the examples shown in Figs. 9.21, 9.22, 9.23c,
d. Betatron oscillations, on the other hand, cause a spread of the beam momentum
in the vicinity of the fixed points. This readjustment of the beam momentum is a
direct consequence of the principle of phase focusing whereby the particle follows
a path such that the synchronicity condition is met. The phase space diagram
of Fig.9.19 is repeated in Fig.9.21 with a parameter 2£/n. = —0.125 and in
Fig.9.22 with the further addition of a finite synchronous phase of ¥, = 0.7
rad. In addition to the shift of the reference momentum a significant reduction in
the momentum acceptance compared to the regular rf-buckets is evident in both
diagrams.

As long as the perturbation is small and |o;| < |7.|, the new fixed points are
located far away from the reference momentum and their effect on the particle
dynamics can be ignored. The situation becomes very different whenever the
linear momentum compaction becomes very small or even zero due to strong
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Fig. 9.22 Higher-order longitudinal phase space diagrams for ¥, = 0.7, 2§ /5. = —0.125 and a
weak perturbation o /7. = —3.0

quadrupole focusing during momentum ramping through transition or in the case
of the deliberate design of a low «-lattice for a quasi isochronous storage ring. In
these cases higher order perturbations become significant and cannot be ignored.
We cannot assume anymore that the perturbation term ¢ is negligibly small and the
phase dynamics may very well become dominated by perturbations.

The perturbation «; of the momentum compaction factor depends on the
perturbation of the dispersion function and is therefore also dependent on the
sextupole distribution in the storage ring. Given sufficient sextupole families it is
at least in principle possible to adjust the parameter «; to zero or a small value by a
proper distribution of sextupoles.

9.4.5 Stability Criteria

Stability criteria for phase oscillations under the influence of higher order momen-
tum compaction terms can be derived from the Hamiltonian. The nonlinear equa-
tions of motion (9.105), (9.106) can be derived from the Hamiltonian

H= [cos Y —cos Vs + (Y — ) sin Y] + o (£ — —nc82 + 05183)

9.113)

To cpo

To eliminate inconsequential factors for the calculation of phase space trajecto-
ries, we simplify (9.113) to

§

2“1

H = Alcos ¥ —cos Vs + (¥ — W) sin ¥] + 2 5 82+ 2282, (9.114)

C
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where

A= 2€Vrf

= -\ (9.115)
TocpowieTc

We may use (9.114) to calculate phase space trajectories and derive stability
conditions for various combinations of the parameters A, the perturbation of the
momentum compaction ¢, and the synchronous phase v (Figs.9.19, 9.20, 9.21,
and 9.22). In Fig.9.23, the phase diagrams of Figs.9.19, 9.20, 9.21, and 9.22
are displayed now as three-dimensional surfaces plots with the same parameters.
Starting from the linear approximation where only regular rf-buckets appear along
the v-axis, we let the ratio o1 /7. increase and find the second set of rf-buckets
to move in from large relative momentum errors §; toward the main rf-buckets.
A significant modification of the phase diagrams occurs when the perturbation
reaches such values that the separatrices of both sets of buckets merge as shown in
Fig.9.20 (top). A further increase of the perturbation quickly reduces the momentum

a) b)

second order unstable second order unstable

fixed| points \ stable fixed points stable
“Irf-buckets N\ rf-buckets

=) v
.
0.0
o ;0. 7
o 50‘;03 6 T os
c d)
soeond order unstable second order unstable stable
. . fixed | point:
fixed p01\nts stable 1xed pomnts rf-buckets
/rf-buckets /\
|

Fig. 9.23 Three dimensional rendition of Figs. 9.19(a), 9.20(b), 9.21(c) and 9.22(d)
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acceptance of the rf-system as can be noticed by comparing Figs. 9.20 (top) and
(bottom) or Figs.9.23 (top) and 9.23 (bottom). The effect of the momentum shift
when £ # 0 becomes obvious in Figs. 9.21, 9.22, 9.23c, d as well as the effect of a
finite synchronous phase in Fig. 9.23d.

From these qualitative observations we derive a threshold of allowable perturba-
tion o} above which the momentum acceptance of the system becomes significantly
reduced. From Figs. 9.20 (top) we take the condition for momentum stability when
the separatrices of both sets of buckets merge which occurs when the Hamiltonian
for both separatrices or for the fixed points (B) and (C) are equal and

H (=, 88) = H(, 8c). (9.116)

Equation (9.116) becomes in the form of (9.114)

A(=2cos ¥y + (7 — 24) sin yy) — 82 + %%53 +255, 9.117)
2, 2% g3 3
= _8C + §_5C + 27]_8C

Comparing (9.115) with the results of linear theory, we note that the maximum
unperturbed momentum acceptance is related to the parameter A by

1 Ap\?
A (_p) el 9.118)
F(q) sin wS pO max 770

where [lj = sin s and F(q) is defined in (9.65). Equation (9.117) can be solved for
the maximum momentum acceptance

AI’)2 Ne (o2 2 2 A1 o3 3 13
= = §2—82)+2 §2—8)+2—=—(5c—388).  (9.119)
(po max |nc|(c ) 3|nc|(c ») Il <P

Using the expression (9.109) for the coordinates of the fixed points (9.119)
eventually becomes with (9.110)

Ap\’ 2
LY ey, (9.120)
Po 30[%

max

and the stability criterion that the nonlinear perturbation not reduce the momentum
acceptance is finally expressed by

Ine| (1 —1)**
o) < _—
J3 (Q

Po ) desired

9.121)
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From this criterion we note that the momentum independent perturbation I" can
further limit the momentum acceptance until there is for I" > 1 no finite momentum
acceptance left at all.

The momentum shift and the momentum acceptance as well as stability limits
can be calculated analytically as a function of «; and the momentum independent
term I". As long as the perturbation is small and (9.121) is fulfilled we calculate the
momentum acceptance for the linear rf-buckets from the value of the Hamiltonian
(9.114). For stronger perturbations, where the separatrices of both layers of rf-
buckets have merged and are actually exchanged (Fig.9.20), a different value of
the Hamiltonian must be chosen. The maximum stable synchrotron oscillation in
this case is not anymore defined by the separatrix through fixed point B but rather
by the separatrix through fixed point C. In the course of synchrotron oscillations a
particle reaches maximum momentum deviations from the reference momentum at
the phase ¥ = . We have two extreme momentum deviations, one at the fixed
point (C), and the other half a synchrotron oscillation away. Both points have the
same value of the Hamiltonian (9.114) and are related by

255 p g 225 AR S - 2253 9.122)
Me Te Te Ne

We replace 8¢ from (9.112) and obtain a third-order equation for the maximum
momentum acceptance §

Ne

5
8 = "
1

[1 L (=r) = gr]. (9.123)

This third-order equation can be solved analytically and has the solutions

Slzzﬂfa(l—z\/ﬁ),

8y3 = 22“1 (1 + \/ﬁ) 9.124)

Two of the three solutions are the same and define the momentum at the crossing
of the separatrix at the fixed point (C) while the other solution determines the
momentum deviation half a synchrotron oscillation away from the fixed point
(C). We plot these solutions in Fig.9.24 together with the momentum shift of the
reference momentum at the fixed point (A). As long as there is no momentum
independent perturbation (/" = 0) the momentum acceptance is given by

2
-2<— o

8 < 1. (9.125)

Ne

The asymmetry of the momentum acceptance obviously reflects the asymmetry
of the separatrix. For ; — 0 the momentum acceptance in (9.120) diverges, which
is a reminder that we consider here only the case where the perturbation «; exceeds
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Fig. 9.24 Higher-order —2a 1 3
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the limit (9.121). In reality the momentum acceptance does not increase indefinitely
but is limited by other criteria, for example, by the maximum rf-voltage available.
The momentum acceptance limits of (9.124) are further reduced by a finite beam
emittance when I # 0 causing a spread in the revolution time. All beam stability is
lost as I" approaches unity and the stability criterion for stable synchrotron motion
in the presence of betatron oscillations is defined by

45051
n?

<1, (9.126)

where the parameter £ is defined by (9.101).

In evaluating the numerical value of § we must consider the emittances €, as
amplitude factors. In case of a Gaussian electron beam in a storage ring, for example,
a long quantum lifetime can be obtained only if particles with betatron oscillation
amplitudes up to at least seven standard values are stable. For such particles the
emittance is € = 7%¢,, where ¢, is the beam emittance for one standard deviation.
Similarly, the momentum acceptance must be large enough to include a momentum
deviation of dmax > 70, /Ep.

In general, the stability criteria can be met especially if sextupole magnets are
adjusted that the linear perturbation «; of the momentum compaction is made
small. In this case, however, we must consider dynamic stability of the beam and
storage ring to prevent «; to vary more than the stability criteria allow. Any dynamic
variation Aoy must meet the condition

nz
Aoy < — (9.127)

4€°
Even if the quadratic term «; is made to approach zero we still must consider the
momentum shift due to non-chromatic terms when & # 0. From (9.111) we have
for the momentum shift §, of the stable fixed point A

5, = (1-v1=T). (9.128)

B 20(1
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where I' is small when oy — 0 and the square root can be expanded. In this limit
the momentum shift becomes

8, = E for a; — 0. (9.129)

Ne

To achieve low values of the momentum compaction, it is therefore also
necessary to reduce the particle beam emittance. Case studies of isochronous lattices
show, however, that this might be very difficult because the need to generate both
positive and negative values for the dispersion function generates large values for
the slopes of the dispersion leading to rather large beam emittances.

Adjusting the quadratic term «; to zero finally brings us back to the situation
created when the linear momentum compaction was reduced to small values. One
cannot ignore higher-order terms anymore. In this case we would expect that the
quadratic and cubic perturbations of the momentum compaction will start to play
a significant role since 1, ~ 0 and «; ~ 0. The quadratic term «3 will introduce
a spread of the momentum compaction due to the momentum spread in the beam
while the cubic term o4 introduces a similar spread to the linear term «;.

Problems

9.1 (S). A 500MHz rf-system is supposed to be used in a Wideroe type linac to
accelerate protons from a 1 MeV Van de Graaf accelerator. Determine the length of
the first three drift tubes for an accelerating voltage at the gaps of 0.5 MeV while
assuming that the length of the tubes shall not be less than 15cm. Describe the
operating conditions from an rf-frequency point of view.

9.2 (S). A proton beam with a finite energy spread is injected at an energy of
200 MeV into a storage ring in n, equidistant short bunches while the rf-system
in the storage ring is turned off. Derive an expression for the debunching time or the
time it takes for the bunched proton beam to spread out completely.

9.3 (S). The momentum acceptance in a synchrotron is reduced as the synchronous
phase is increased. Derive a relationship between the maximum acceleration rate
and momentum acceptance. How does this relationship differ for protons and
radiating electrons?

9.4 (S). Derive an expression for and plot the synchrotron frequency as a function
of oscillation amplitude within the separatrices. What is the synchrotron frequency
at the separatrices?

9.5 (S). Sometimes it is desirable to produce short bunches, even only temporary
in a storage ring either to produce short X-ray pulses or for quick ejection from a
damping ring into a linear collider. By a sudden change of the rf-voltage the bunch
can be made to rotate in phase space. Determine analytically the shortest possible
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bunch length as a function of the rf-voltage increase considering a finite energy
spread. For how many turns would the short bunch remain within 50 % of its shortest
value?

9.6. Calculate the synchrotron oscillation frequency for a 9 GeV proton booster.
The maximum momentum iS cpmax = 8.9 GeV the harmonic number &7 = 84, the
rf-voltage Vi = 200kV, transition energy y, =5.4 and rf-frequency at maximum
momentum fy = 52.8 MHz. Calculate and plot the rf and synchrotron oscillation
frequency as a function of momentum from an injection momentum of 400 MeV to
a maximum momentum of 8.9 GeV while the synchronous phase is ¥ = 45°. What
is the momentum acceptance at injection and at maximum energy? How long does
the acceleration last?

9.7. Specify a synchrotron of your choice made up of FODO cells for the
acceleration of relativistic particles. Assume an rf-system to provide an accelerating
voltage equal to 10™* of the maximum particle energy in the synchrotron. During
acceleration the synchrotron oscillation tune shall remain less than vy < 0.02.
What are the numerical values for the rf-frequency, harmonic number, rf-voltage,
synchronous phase angle and acceleration time in your synchrotron? In case of a
proton synchrotron determine the change in the bunch length during acceleration.
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