
Chapter 8
Particle Beams and Phase Space

The solution of the linear equations of motion allows us to follow a single charged
particle through an arbitrary array of magnetic elements. Often, however, it is
necessary to consider a beam of many particles and it would be impractical to
calculate the trajectory for every individual particle. We, therefore, look for some
representation of the whole particle beam.

To learn more about the collective motion of particles, we observe their dynamics
in phase space. Each particle at any point along a beam transport line is represented
by a point in six-dimensional phase space with coordinates .x; px; y; py; s;E/ where
px � p0 x0 and py � p0 y0 are the transverse momenta with cp0 D ˇE0, s the
coordinate along the individual trajectory, E0 the ideal particle energy and E the
particle energy. Instead of the energy E often the momentum cp or the momentum
deviation from the ideal momentum �p D p � p0 or the relative momentum
deviation�p=p0 may be used. We use the momentum to study particle dynamics in
the presence of magnetic field. In accelerating systems, like linear accelerators, the
use of the particle’s kinetic energy is more convenient. Similarly, when the beam
energy stays constant, we use instead of the transverse momenta rather the slope
of the trajectories x0; y0 which are proportional to the transverse momenta and are
generally very small so we may set sin x0 � x0, etc.

The coupling between the horizontal and vertical plane is being ignored in linear
beam dynamics or treated as a perturbation as is the coupling between transverse
and longitudinal motion. Only the effect of energy errors on the trajectory will be
treated in this approximation. First, however, we set�E D 0 and represent the beam
by its particle distribution in the horizontal .x; x0/ or vertical .y; y0/-phase space
separately. Because of the absence of coupling between degrees of freedom in this
approximation we may split the six-dimensional phase space into three independent
two-dimensional phase planes.
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214 8 Particle Beams and Phase Space

8.1 Beam Emittance

Particles in a beam occupy a certain region in phase space which is called the
beam emittance and we define three independent two-dimensional beam emittances.
Their numerical values multiplied by � are equal to the area occupied by the beam
in the respective phase plane. The beam emittance is a measure of the transverse
or longitudinal temperature of the beam and depends on the source characteristics
of a beam or on other effects like quantized emission of photons into synchrotron
radiation and its related excitation and damping effects.

A simple example of a beam emittance and its boundaries is shown in Fig. 8.1,
where particles emerge from a disk with radius w and where the direction of the
particle trajectories can be anywhere within ˙90ı with respect to the surface of the
source. The proper phase space representation of this beam at the surface of the
source is shown in Fig. 8.1(left). All particles are contained in a narrow strip within
the boundaries xmax D ˙ w but with a large distribution of transverse momenta
(px D p0 tan x0).

Any real beam emerging from its source will be clipped by some aperture
limitations of the vacuum chamber. We assume a simple iris as the aperture
limitation located at a distance d from the source and an opening with a radius
of R D w. The fact that we choose the iris aperture to be the same as the size of the
source is made only to simplify the arguments. Obviously many particles emerging
from the source will be absorbed at the iris. The part of the beam which passes the
iris occupies a phase space area at the exit of the iris like the shaded area shown
in Fig. 8.1 (right). Among all particles emerging from the source with an amplitude
x D ˙w only those will pass the iris for which the slope of the trajectory is between
x0 D 0 and x0 D � 2w=`. This beam now has a measurable beam emittance as
determined by the source and iris aperture.
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Fig. 8.1 Beam from a diffuse source in real space and in phase space (left). Reduction of phase
space (shaded area) due to beam restriction by an iris aperture (right)
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The concept of describing a particle beam in phase space will become very
powerful in beam dynamics since we can prove that the density of particles in
phase space does not change along a beam transport line, where the forces acting
on particles can be derived from macroscopic electric and magnetic fields. In other
words particles that are within a closed boundary in phase space at one point of
the beam line stay within that boundary. This is Liouville’s theorem which we will
prove for the fields used in beam dynamics.

8.1.1 Liouville’s Theorem*

In Chap. 7 we have learned to follow individual particles through an arbitrary beam
transport line made up of drift spaces, dipole and quadrupole magnets. Since this is
true for any particle with known initial parameters .x0; x0

0; y0; y
0
0/ it is in principle

possible to calculate trajectories along a beam line for a large number of particles
forming a particle beam. This is impractical, and we are therefore looking for more
simple mathematical methods to describe the beam as a whole. To this end, we make
use of methods in statistical mechanics describing the evolution of a large number
of particles forming a particle beam.

Liouville’s theorem is of specific importance in this respect and we will use it
extensively to describe the properties of a particle beam as a whole. This theorem
states that under the influence of conservative forces the particle density in phase
space stays constant. Since ((7.1), (7.2)) is equivalent to the equation of a free
harmonic oscillator, we know that the motion of many particles in phase space
follow Liouville’s theorem. A more direct proof of the validity of Liouville’s
theorem in particle beam dynamics can be obtained by observing the time evolution
of an element in the six-dimensional phase space.

If � is the particle density in phase space, the number of particles within a six-
dimensional, infinitesimal element is

�.x; y; z; px; py; pz/ dx dy dz dpx dpy dpz: (8.1)

The phase space current created by the motion of these particles is

j D .� Px; � Py; � Pz; � Ppx; � Ppy; � Ppz/; (8.2)

where the time derivatives are to be taken with respect to a time � measured along
the trajectory of the phase space element. This time is to be distinguished from the
reference time t along the reference orbit in the same way as we distinguish between
the coordinates s and z. We set therefore Px D dx=d� , etc. The phase space current
must satisfy the continuity equation

r j C @�

@�
D 0: (8.3)
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From this, we get with (8.2) and the assumption that the particle location does not
depend on its momentum and vice versa

�@�
@�

Dr r.� Pr/Cr p.� Pp/ (8.4)

DPr r r� C � .r r Pr/CPp rp� C � .r p Pp/;

where r r D
�
@
@x ;

@
@y ;

@
@z

�
and rp D

�
@
@px
; @
@py
; @
@pz

�
. The time derivative of the space

vector r

Pr
c

D cpp
c2p2 C m2c4

; (8.5)

does not depend on the location r; and we have therefore

r r Pr D 0: (8.6)

From the Lorentz force equation we get

r p Pp D e rpŒPr � B� D e B .rp � Pr/� e Pr .rp � B/: (8.7)

The magnetic field B does not depend on the particle momentum p and therefore
the second term on the right hand side of (8.7) vanishes. For the first term, we find
rp�Pr D 0 because .r p�Pr/x D @Pz

@py
� @Py

@pz
and @Pz

@py
D c @

@py

pzp
p2Cm2c2

D c py pz

.p2Cm2c2/3=2
D

@Py
@pz
; where we have used p2 D p2x C p2y C p2z . We get a similar result for the other

components and have finally for (8.7)

rp Pp D 0: (8.8)

With these results, we find from (8.4) the total time derivative of the phase space
density � to vanish

@�

@�
C r r� Pr C r p� Pp D d�

d�
D 0; (8.9)

proving the invariance of the phase space density � .
Independent from general principles of classical mechanics we have shown

the validity of Liouville’s theorem for the motion of charged particles under the
influence of Lorentz forces. This is obviously also true for that part of the Lorentz
force that derives from an electrical field since

r p Pp D e rpE D 0 (8.10)

because the electric field E does not depend on the particle momentum.
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The same result can be derived in a different way from the property of the
Wronskian in particle beam dynamics. For that, we assume that the unit vectors
u1;u2 : : : ;u6 form a six-dimensional, orthogonal coordinate system. The determi-
nant formed by the components of the six vectors x1; x2; : : : ; x6 in this system is
equal to the volume of the six-dimensional polygon defined by the vectors xi. The
components of the vectors xi with respect to the base vectors uj are xij and the
determinant is

D D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

x11 x12 x13 x14 x15 x16
x21 x22 x23 � � � � � � � � �
x31 x32 � � � � � � � � � � � �
x41 � � � � � � � � � � � � � � �
x51 � � � � � � � � � � � � � � �
x61 � � � � � � � � � � � � x66

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D jx1; x2; x3; x4; x5; x6j: (8.11)

We will derive the transformation characteristics of this determinant considering a
transformation

yi D M xj; (8.12)

where M D .aij/ and the determinant (8.11) then transforms like

j y1; y2 : : : ; y6 jD
ˇ̌
ˇ̌
ˇ̌
6X

j1D1
a1j1 xj1 ;

6X
j1D1

a2j2 xj2 ; : : :

6X
j1D1

a6j6 xj6

ˇ̌
ˇ̌
ˇ̌

D
6X

a1j1 a2j2 : : : a6j6 j xj1 ; xj2 ; : : : xj6 j: (8.13)

The determinant j xj1 ; xj2 ; : : : xj6 j is equal to zero if two or more of the indices ji
are equal and further the determinant changes sign if two indices are interchanged.
These rules lead to

j y1; y2 : : : ; y6 j D
6X

jiD1
�j1j2:::j6 a1j1 a2j2 : : : a6j6 j x1; x2; : : : ; x6 j; (8.14)

where

�j1; j2 ::: j6 D
8
<
:

C1 for even permutations of the indices ji
�1 for odd permutations of the indices ji
0 if any two indices are equal.

(8.15)
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The sum
P6

jiD1 �j1j2:::j6 a1j1 a2j2 : : : a6j6 is just the determinant of the transformation
matrix M and finally we get

j y1; y2 : : : ; y6 j D jMj jx1; x2; : : : ; x6j: (8.16)

For a particle beam transport line, however, we know that jMj is the Wronskian
with

W D jMj D 1: (8.17)

If we now identify this six-dimensional space with the six-dimensional phase space,
we see from (8.16) and (8.17) that the phase space under the class of transformation
matrices considered in beam dynamics is constant. Conversely, if W 6D 1, we would
get a change in phase space.

8.1.2 Transformation in Phase Space

Liouville’s theorem provides a powerful tool to describe a beam in phase space.
Knowledge of the area occupied by particles in phase space at the beginning of a
beam transport line will allow us to determine the location and distribution of the
beam at any other place along the transport line without having to calculate the
trajectory of every individual particle.

In the previous paragraph, we found that the phase space density is a constant
under the assumed forces. There are three space and three momentum coordinates.
In beam dynamics, we often use trajectory slopes instead of transverse momenta.
Similar relations exist for other coordinates. Using slopes instead of momenta
preserves the phase space density only as long as p0 is a constant, which is true
in most beam dynamics calculations. We distinguish therefore two definitions of
the beam emittance, the normalized emittance �n based on space-momentum phase
space and the geometric emittance � based on space-slope phase space. Both are
related by

�n D ˇ��;

where � is the relativistic factor and ˇ D v=c the relative particle velocity.
In beam dynamics it has become customary to surround all particles of a beam

in phase space by an ellipse called the phase ellipse (Fig. 8.2) described by

�x2 C 2˛xx0 C ˇx02 D �; (8.18)

where ˛; ˇ; � and � are ellipse parameters. This seemingly arbitrary boundary will
soon gain physical significance. The area enclosed by the ellipse is called the
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Fig. 8.2 Phase space ellipse
tan

area:A =

-

-

geometric beam emittance �1 defined by

Z

ellipse
dx dx0 D ��; (8.19)

while the parameters ˛; ˇ and � determine the shape and orientation of the ellipse.
This characterization of the beam emittance by the area of an ellipse seems at
first arbitrary although practical. Later in Sect. 8.2, we will see that all particles
travel along their individual ellipses in phase space. If we now choose that or those
particles on the largest phase ellipse within a particular beam, we know that all
other particles within that ellipse will stay within that ellipse. We are thereby able
to describe the collective behavior of a beam formed by many particles by the
dynamics of a single particle.

Since all particles enclosed by a phase ellipse stay within that ellipse, we only
need to know how the ellipse parameters transform along the beam line to be able
to describe the whole particle beam. Let the equation

�0x
2
0 C 2˛0x0x

0
0 C ˇ0x

02
0 D � (8.20)

be the equation of the phase ellipse at the starting point z D 0 of the beam line.
Any particle trajectory transforms from the starting point z D 0 to any other point

z 6D 0 by the transformation

�
x .z/
x0 .z/

�
D
�

C.z/ S.z/
C0.z/ S0.z/

��
x0
x0
0

�
. Solving for x0 and

x0
0 and inserting into (8.20), we get after sorting of coefficients and stopping to show

1The literature is not always uniform in the representation of numerical values for the beam
emittance. Often the beam emittance is quoted in units of �-mm-mrad and it is not always clear if
the factor � is included in the numerical value or not. We define in this book the beam emittance
as the beam phase space area divided by � in accordance with Hamiltonian dynamics.
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explicitly the .z/-dependence

� D .C02ˇ0 � 2 S0C0˛0 C S02�0/ x2 (8.21)

C 2 .�CC0ˇ0 C S0C ˛0 C SC0˛0 � S S0�0/ x x0

C .C2ˇ0 � 2 S C ˛0 C S2�0/ x02:

This equation can be brought into the form (8.18) by replacing the coefficients in
(8.21) with

� D C02ˇ0 � 2S0C0˛0 C S02�0;

˛ D � CC0ˇ0 C .S0C C SC0/˛0 � S S0�0; (8.22)

ˇ D C2ˇ0 � 2S C˛0 C S2�0:

The resulting ellipse equation still has the same area � � as we would expect, but
due to different parameters �; ˛; ˇ, the new ellipse has a different orientation and
shape. During a transformation along a beam transport line the phase ellipse will
continuously change its form and orientation but not its area. In matrix formulation
the ellipse parameters, which are also called Twiss parameters [11], transform from
(8.22) like

0
@
ˇ .z/
˛ .z/
� .z/

1
A D

0
@

C2 �2CS S2

�CC0 CS0 C C0S �SS0
C0 2 �2C0S0 S0 2

1
A
0
@
ˇ0

˛0
�0

1
A : (8.23)

The orientation, eccentricity and area of an ellipse is defined by three parameters,
while (8.20) includes four parameters ˛; ˇ; � and �. Since the area is defined by �
we expect the other three parameters to be correlated. From geometric properties of
an ellipse we find that correlation to be

ˇ � � ˛2 D 1: (8.24)

So far, we have used only the (x; x0)-phase space, but the results are valid also for the
(y; y0)-phase space. Equation (8.23) provides the tool to calculate beam parameters
anywhere along the beam line from the initial values ˇ0; ˛0; �0.

The phase ellipse in a drift space, for example, becomes distorted in a clock
wise direction without changing the slope of any particle as shown in Fig. 8.3. If the
drift space is long enough a convergent beam transforms eventually into a divergent
beam, while the angular envelope A D x0

max D p
�� stays constant. The point zw at

which the beam reaches its minimum size is determined by ˛.zw/ D 0 and we get
from (8.23) for the location of a beam waist in a drift section.

` D zw � z0 D ˛0

�0
: (8.25)
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Fig. 8.3 Transformation of a phase space ellipse at different locations along a drift section
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Fig. 8.4 Transformation of a phase ellipse due to a focusing quadrupole. The phase ellipse is
shown at different locations along a drift space downstream from the quadrupole

This point of minimum beam size is up or downstream of z D z0 depending on the
sign of ˛0 being negative or positive, respectively.

More formally, the transformation through a simple drift space of length ` is

0
@
ˇ .`/

˛ .`/

� .`/

1
A D

0
@
1 �2` `2

0 1 �`
0 0 1

1
A
0
@
ˇ0
˛0

�0

1
A ; (8.26)

which describes, for example, the transition of a convergent phase ellipse to a
divergent phase ellipse as shown in Fig. 8.4. Particles in the upper half of the
phase ellipse move from left to right and particles in the lower half from right to
left. During the transition from the convergent to divergent phase ellipse we find
an upright ellipse which describes the beam at the location of a waist. The form
and orientation of the phase ellipse tells us immediately the characteristics beam
behavior. Convergent beams are characterized by a rotated phase ellipse extending
from the left upper quadrant to the lower right quadrant while a divergent beam
spreads from the left lower to the right upper quadrant. A symmetric phase ellipse
signals the location of a waist or symmetry point.



222 8 Particle Beams and Phase Space

A divergent beam fills, after some distance, the whole vacuum chamber aperture
and in order not to lose beam a focusing quadrupole must be inserted. During the
process of focusing a diverging beam entering a focusing quadrupole reaches a
maximum size and then starts to converge again. This transformation, generated by
a focusing quadrupole is shown in Fig. 8.4, where we recognize slopes of particle
trajectories to reverse signs thus forming a convergent beam.

After this step, the beam may develop as shown for a drift space until the next
focusing quadrupole is required. In reality this focusing scenario is complicated
by the fact that we need also vertical focusing which requires the insertion of
defocusing quadrupoles as well.

8.1.3 Beam Matrix

Particle beams are conveniently described in phase space by enclosing their
distribution with ellipses. Transformation rules for such ellipses through a beam
transport system have been derived for a two-dimensional phase space and we
expand here the discussion of phase space transformations to more dimensions. The
equation for an n-dimensional ellipse can be written in the form

uT� �1u D 1; (8.27)

where the symmetric matrix � is still to be determined, uT is the transpose of the
coordinate vector u defined by

u D

0
BBBBBBBBBB@

x
x0
y
y0
�

ı
:::

1
CCCCCCCCCCA

: (8.28)

The volume of this n-dimensional ellipse is

Vn D �n=2

	 .1C n=2/

p
det � ; (8.29)

where 	 is the gamma function. Applying (8.27) to the two dimensional phase
space, we get for the ellipse equation


11 x2 C 2 
12 x x0 C 
22 x02 D 1 (8.30)
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and comparison with (8.18) defines the beam matrix with well known beam
parameters as

� D
�

11 
12


21 
22

�
D �2

�
ˇ �˛

�˛ �

�
: (8.31)

Since only three of the four parameters in the beam matrix � are independent, we
find that 
21 D 
12. This identification of the beam matrix can be expanded to six
or arbitrary many dimensions including, for example, spin or coupling terms which
we have so far neglected. The two-dimensional “volume” or phase space area is

V2 D �
p

det � D �

q

11 
22 � 
212 D �� (8.32)

consistent with the earlier definition of beam emittance, since ˇ� � ˛2 D 1.
The definition of the beam matrix elements are measures of the particle distri-

bution in phase space. As such, we would expect different definitions for different
distributions. Since most particle beams have a Gaussian or bell shaped distribution,
however, we adopt a uniform definition of beam matrix elements. The betatron
oscillation amplitude for a particular particle and its derivative is described by

xi D ai

p
ˇ cos . C  i/ ; (8.33)

x0
i D ai

ˇ0

2
p
ˇ

cos . C  i/� ai
1p
ˇ

sin . C  i/ : (8.34)

We form now average values of all particles within a well defined fraction of a beam
and get

˝
x2i
˛ D ˝

a2i cos2 . C  i/
˛
ˇ D 1

2

˝
a2i
˛
ˇ D �ˇ; (8.35)

˝
x02

i

˛ D ˝
a2i
˛ ˛2
ˇ

1
2

C ˝
a2i
˛ 1
ˇ
1
2

D 1
2

˝
a2i
˛ 1C ˛2

ˇ
D ��; (8.36)

˝
xi x0

i

˛ D � ˝a2i
˛
˛ 1
2

D ��˛; (8.37)

where we have assumed a Gaussian particle distribution and a beam emittance
defined by � D ˝

a2i sin2 . �  i/
˛
. This definition describes that part of the beam

which is within one standard deviation of the distribution in multidimensional phase
space. The beam matrix elements are finally defined by


11 D ˝
x2i
˛ D �ˇ;


22 D ˝
x02

i

˛ D ��; (8.38)


12 D ˝
xi x0

i

˛ D ��˛:
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With this definition the beam emittance can be expressed by

�2 D 
11
22 � 
212 D ˝
x2i
˛ ˝

x02
i

˛ � ˝
xix

0
i

˛2
: (8.39)

This definition is generally accepted also for any arbitrary particle distribution.
Specifically, beams from linear accelerators or proton and ion beams can have
arbitrary distributions.

Similar to the two-dimensional case, we look for the evolution of the n
dimensional phase ellipse along a beam transport line. With M.P1jP2/ the n � n
transformation matrix from point P0 to P1 we get u1 D M.P1jP0/ u0 and the
equation of the phase ellipse at point P1 is

.M�1u1/T� �1
0 .M�1u1/ D uT

1� �1
1 u1 D 1: (8.40)

With
�MT

��1
� �1
0 M�1 D ŒM� 0MT ��1 the beam matrix transforms therefore like

� 1 D M� 0MT : (8.41)

This formalism will be useful for the experimental determination of beam emit-
tances.

Measurement of the Beam Emittance

The ability to manipulate in a controlled and measurable way the orientation and
form of the phase ellipse with quadrupoles gives us the tool to experimentally
determine the emittance of a particle beam. Since the beam emittance is a measure
of both the beam size and beam divergence, we cannot directly measure its value.
While we are able to measure the beam size with the use of a fluorescent screen, for
example, the beam divergence cannot be measured directly. If, however, the beam
size is measured at different locations or under different focusing conditions such
that different parts of the ellipse will be probed by the beam size monitor, the beam
emittance can be determined.

Utilizing the definition of the beam matrix in (8.31) we have


11 
22 � 
212 D �2 (8.42)

and the beam emittance can be measured, if we find a way to determine the beam
matrix. To determine the beam matrix 
0 at point P0, we consider downstream
from P0 a beam transport line with some quadrupoles and beam size monitors like
fluorescent screens at three places P1 to P3. From (8.23) and (8.31) we get for the
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beam sizes 
i;11 at locations Pi three relations of the form2


i;11 D C2
i 
0;11 C 2SiCi
0;12 C S2i 
0;22 (8.43)

which we may express in matrix formulation by

0
@

1;11

2;11

3;11

1
A D

0
@

C2
1 2C1S1 S21

C2
2 2C2S2 S22

C2
3 2C3S3 S23

1
A
0
@

0;11

0;12

0;22

1
A D M


0
@

0;11

0;12

0;22

1
A ; (8.44)

where Ci and Si are elements of the transformation matrix from point P0 to Pi and

i;jk are elements of the beam matrix at Pi. Equation (8.44) can be solved for the
beam matrix elements 
i;jk at P0

0
@

0;11

0;12

0;22

1
A D .MT


M
/
�1MT




0
@

1;11

2;11

3;11

1
A ; (8.45)

where the matrix M
 is known from the parameters of the beam transport line
between P0 and Pi and MT


 is the transpose of it. The solution vector can be used in
(8.42) to calculate finally the beam emittance.

This procedure to measure the beam emittance is straight forward but requires
three beam size monitors at appropriate locations such that the measurements can
be conducted with the desired resolution. A much simpler procedure makes use of
only one beam size monitor at P1 and one quadrupole between P0 and P1. We vary
the strength of the quadrupole and measure the beam size at P1 as a function of the
quadrupole strength. These beam size measurements as a function of quadrupole
strength are equivalent to the measurements at different locations discussed above
and we can express the results of n beam size measurements by the matrix equation

0
BBB@


1;11


2;11
:::


n;11

1
CCCA D

0
BBB@

C2
1 2C1S1 S21

C2
2 2C2S2 S22
:::

:::
:::

C2
n 2CnSn S2n

1
CCCA

0
@

0;11


0;12

0;22

1
A D M
;n

0
@

0;11


0;12

0;22

1
A : (8.46)

2Note: the sign of the cross term is different from (8.23) because 
12 D �˛.
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This method of emittance measurement is also known as quad scan. Like in (8.45)
the solution is from simple matrix multiplications

0
@

0;11


0;12

0;22

1
A D .MT


;nM
;n/
�1MT


;n

0
BBB@


1;11


2;11
:::


n;11

1
CCCA : (8.47)

An experimental procedure has been derived which allows us to determine the
beam emittance through measurements of beam sizes as a function of focusing.
Practically, the evaluation of (8.47) is performed by measuring the beam size

1;11.k/ at P1 as a function of the quadrupole strength k and comparing the results
with the theoretical expectation


1;11.k/ D C2.k/
0;11 C 2C.k/S.k/
0;12 C S2.k/
0;22: (8.48)

By fitting the parameters 
0;11; 
0;12 and 
0;22 to match the beam size measure-
ments, one can determine the beam emittance from (8.42). However, this procedure
does not guarantee automatically a measurement with the desired precision. To
accurately fit three parameters we must be able to vary the beam size considerably
such that the nonlinear variation of the beam size with quadrupole strength becomes
quantitatively significant. An analysis of measurement errors indicates that the beam
size at P0 should be large and preferable divergent. In this case variation of the
quadrupole strength will dramatically change the beam size at P1 from a large value
when the quadrupole is off, to a narrow focal point and again to a large value by
over focusing.

A most simple arrangement consists of a single quadrupole and a screen at a
distance d. Assuming that the length `q of the quadrupole is `q � d, we can use
thin lens approximation and the total transformation matrix is then

�
1 � d=f d
�1=f 1

�
D
�
1 d
0 1

��
1 0

�1=f 1

�
: (8.49)

Equation (8.48) becomes


1;11.k/ D �
1 � d `qk

�2

0;11 C 2

�
1 � d `qk

�
d 
0;12 C d2
0;22

or after reordering


1;11.k/ D
�

d2`2q
0;11

�
k2 C ��2d `q
0;11 � 2d2`q
0;12

�
k (8.50)

C �

0;11 C 2d 
0;12 C d2
0;22

�
:
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Fitting 
1;11.k/ with a parabola
�
ak2 C bk C c

�
will determine the whole beam

matrix 
0 by


0;11 D a

d2`2q
;


0;12 D �b � 2d`q
0;11

2d2`q
; (8.51)


0;22 D c � 
0;11 � 2d
0;12

d2
:

The beam matrix not only defines the beam emittance but also the betatron
functions at the beginning of the quadrupole in this measurement. We gain with
this measurement a full set of initial beam parameters

�
˛0; ˇ0; �

0
0; �
�

and may now
calculate beam parameters at any point along the transport line.

8.2 Betatron Functions

The trajectory of a particle through an arbitrary beam transport system can be
determined by repeated multiplication of transformation matrices through each of
the individual elements of the beam line. This method is convenient especially for
computations on a computer but it does not reveal many properties of particle
trajectories. For deeper insight, we attempt to solve the equation of motion
analytically. The differential equation of motion is

u00 C k.z/ u D 0; (8.52)

where u stands for x or y and k.z/ is an arbitrary function of z resembling the
particular distribution of focusing along a beam line. For a general solution of (8.52)
we apply the method of variation of integration constants and use an ansatz with a
z-dependent amplitude and phase

u.z/ D p
�
p
ˇ.z/ cosŒ .z/ �  0�; (8.53)

which is similar to the solution of a harmonic oscillator with a constant coefficient k.
The quantities � and  0 are integration constants. From (8.53) we form first and
second derivatives with the understanding that ˇ D ˇ.z/;  D  .z/, etc.

u0D p
�
ˇ0

2
p
ˇ

cos. �  0/� p
�
p
ˇ sin. �  0/  

0;

u00D p
�
ˇ ˇ00 � 1

2
ˇ02

2 ˇ3=2
cos. �  0/ � p

�
ˇ0
p
ˇ

sin. �  0/  
0 (8.54)

��
p
ˇ sin. �  0/  

00 � p
�
p
ˇ cos. �  0/  

02;
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and insert into (8.52). The sum of all coefficients of the sine and cosine terms
respectively must vanish separately to make the ansatz (8.53) valid for all phases  .
From this, we get the two conditions:

1
2
.ˇˇ00 � 1

2
ˇ02/� ˇ2 02 C ˇ2k D 0 (8.55)

and

ˇ0 0 C ˇ  00 D 0: (8.56)

Equation (8.56) can be integrated immediately since ˇ0 C ˇ  00 D .ˇ  0/0 for

ˇ  0 D const D 1; (8.57)

where a specific normalization of the phase function has been chosen by selecting
the integration constant to be equal to unity. From (8.57) we get for the phase
function

 .z/ D
Z z

0

dNz
ˇ.Nz/ C  0: (8.58)

Knowledge of the function ˇ.z/ along the beam line obviously allows us to
compute the phase function. Inserting (8.57) into (8.55) we get the differential
equation for the function ˇ.z/

1
2
ˇˇ00 � 1

4
ˇ02 C ˇ2k D 1; (8.59)

which becomes with ˛ D � 1
2
ˇ0 and � D .1C ˛2/=ˇ

ˇ00 C 2 kˇ � 2� D 0: (8.60)

The justification for the definition of � becomes clear below, when we make the
connection to ellipse geometry and (8.24).With ˛0 D � 1

2
ˇ00 this is equivalent to

˛0 D k ˇ � �: (8.61)

Before we solve (8.60) we try to determine the physical nature of the functions
ˇ.z/; ˛.z/, and �.z/. To do that, we note first that any solution that satisfies (8.60)
together with the phase function  .z/ can be used to make (8.53) a real solution
of the equation of motion (8.52). From that solution and the derivative (8.54) we
eliminate the phase . �  0/ and obtain a constant of motion which is also called
the Courant-Snyder invariant [4]

�u2 C 2˛ uu0 C ˇ u02 D �: (8.62)
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This invariant expression is equal to the equation of an ellipse with the area ��
which we have encountered in the previous section and the particular choice of
the letters ˇ; ˛; �; � for the betatron functions and beam emittance becomes now
obvious. The physical interpretation of this invariant is that of a single particle
traveling in phase space along the contour of an ellipse with the parameters ˇ; ˛,
and � . Since these parameters are functions of z however, the form of the ellipse
is changing constantly but, due to Liouville’s theorem, any particle starting on that
ellipse will stay on it. The choice of an ellipse to describe the evolution of a beam in
phase space is thereby more than a mathematical convenience. We may now select
a single particle to define a phase ellipse and know that all particles with lesser
betatron oscillation amplitudes will stay within that ellipse. The description of an
ensemble of particles forming a beam have thereby been reduced to that of a single
particle.

The ellipse parameter functions or Twiss parameters ˇ; ˛; � and the phase
function  are called the betatron functions or lattice functions or Twiss functions
and the oscillatory motion of a particle along the beam line (8.53) is called the
betatron oscillation. This oscillation is quasi periodic with varying amplitude and
frequency.

To demonstrate the close relation to the solution of a harmonic oscillator, we use
the betatron and phase function to perform a coordinate transformation

.u; z/ �! .w;  / (8.63)

by setting

w. / D u.z/p
ˇ.z/

and  D
Z z

0

dNz
ˇ.Nz/ ; (8.64)

where u.z/ stands for x.z/ and y.z/ respectively. The new coordinates .w;  / are
called normalized coordinates and equation of motion (8.52) transforms to

d2w

d 2
C w2 D 0; (8.65)

which indeed is the equation of a harmonic oscillator with angular frequency one.
This identity will be very important for the treatment of perturbing driving terms
that appear on the right hand side of (8.65) which will be discussed in more detail
in Sect. 8.3.1.

So far, we have tacitly assumed that the betatron function ˇ.z/ never vanishes or
changes sign. This can be shown to be true by setting q.z/ D p

ˇ.z/ and inserting
into (8.59). With ˇ0 D 2 q q0 and ˇ00 D 2 .q02Cq q00/ we get the differential equation

q00 C k q � 1

q3
D 0: (8.66)
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The term 1=q3 prevents a change of sign of q.z/. Letting q > 0 vary toward
zero q00 � 1=q3 ! 1. This curvature, being positive, will become arbitrarily large
and eventually turns the function q.z/ around before it reaches zero. Similarly, the
function q.z/ stays negative along the whole beam line if it is negative at one point.
Since the sign of the betatron function is not determined and does not change, it has
became customary to use only the positive solution.

The beam emittance parameter � appears as an amplitude factor in the equation
for the trajectory of an individual particle. This amplitude factor is equal to the beam
emittance only for particles traveling on an ellipse that just encloses all particles in
the beam. In other words, a particle traveling along a phase ellipse with amplitudep
� defines the emittance of that part of the total beam which is enclosed by this

ellipse or for all those particles whose trajectories satisfy

ˇ u02 C 2˛ uu0 C � u2 � �u: (8.67)

Since it only leads to confusion to use the letter � as an amplitude factor we will
from now on use it only when we want to define the whole beam and set

p
� D a

for all cases of individual particle trajectories.

8.2.1 Beam Envelope

To describe the beam and beam sizes as a whole, a beam envelope equation can
be defined. All particles on the beam emittance defining ellipse follow trajectories
described by

xi.z/ D p
�
p
ˇ.z/ cosŒ .z/ C ıi�; (8.68)

where ıi is an arbitrary phase constant for the particle i. By selecting at every point
along the beam line that particle i for which cosŒ .z/C ıi� D ˙1, we can construct
an envelope of the beam containing all particles

E.z/ D ˙ p
�
p
ˇ.z/: (8.69)

Here the two signs indicate only that there is an envelope an either side of the
beam center. We note that the beam envelope is determined by the beam emittance
� and the betatron function ˇ.z/. The beam emittance is a constant of motion and
resembles the transverse “temperature” of the beam. The betatron function reflects
exterior forces from focusing magnets and is highly dependent on the particular
arrangement of quadrupole magnets. It is this dependence of the beam envelope
on the focusing structure that lets us design beam transport systems with specific
properties like small or large beam sizes at particular points.
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8.3 Beam Dynamics in Terms of Betatron Functions

Properties of betatron functions can now be used to calculate the parameters of
individual particle trajectories anywhere along a beam line. Any particle trajectory
can be described by

u.z/ D a
p
ˇ cos C b

p
ˇ sin (8.70)

and the amplitude factors a and b can be determined by setting at z D 0

 D 0; ˇ D ˇ0; u.0/ D u0;

˛ D ˛0; u0.0/ D u0
0:

(8.71)

With these boundary conditions we get

a D 1p
ˇ0

u0;

b D ˛0p
ˇ0

u0 Cp
ˇ0 u0

0;
(8.72)

and after insertion into (8.70) the particle trajectory and its derivative is

u.z/ D
s
ˇ

ˇ0
.cos C ˛0 sin / u0 C

p
ˇ ˇ0 sin u0

0;

u0.z/ D 1p
ˇ0ˇ

Œ.˛0 � ˛/ cos � .1C ˛ ˛0/ sin � u0 (8.73)

C
s
ˇ0

ˇ
.cos � ˛ sin / u0

0;

or in matrix formulation

�
C.z/ S.z/
C0.z/ S0.z/

�
D
0
@
q

ˇ

ˇ0
.cos C ˛0 sin /

p
ˇˇ0 sin 

˛0�˛p
ˇˇ0

cos � 1C˛˛0p
ˇˇ0

sin 
q

ˇ0
ˇ
.cos � ˛ sin /

1
A :

(8.74)

Knowledge of the betatron functions along a beam line allows us to calculate
individual particle trajectories. The betatron functions can be obtained by either
solving numerically the differential equation (8.59) or by using the matrix formalism
(8.23) to transform phase ellipse parameters. Since the ellipse parameters in (8.23)
and the betatron functions are equivalent, we have found a straightforward way
to calculate their values anywhere once we have initial values at the start of the
beam line. This method is particularly convenient when using computers to perform
matrix multiplication.
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Transformation of the betatron functions becomes very simple in a drift space
where the transformation matrix is

�
C.z/ S.z/
C0.z/ S0.z/

�
D
�
1 z
0 1

�
: (8.75)

The betatron functions at the point z are from (8.26)

ˇ.z/ D ˇ0 � 2˛0 z C �0 z2;

˛.z/ D ˛0 � �0 z; (8.76)

�.z/ D �0;

with initial values ˇ0; ˛0; �0 taken at the beginning of the drift space.
We note that �.z/ D const. in a drift space. This result can be derived also

from the differential equation (8.60) which for k D 0 becomes ˇ00 D 2� and the
derivative with respect to z is ˇ000 D 2� 0. On the other hand, we calculate from the
first equation (8.76) the third derivative of the betatron function with respect to z to
be ˇ000 D 0. Obviously both results are correct only if the � -function is a constant in
a drift space where k D 0.

The location of a beam waist is defined by ˛ D 0 and occurs from (8.76) at
zw D ˛0=�0. The betatron function increases quadratically with the distance from
the beam waist (see Fig. 8.5) and can be expressed by

ˇ.z � zw/ D ˇw C .z � zw/
2

ˇw
; (8.77)

where ˇw is the value of the betatron function at the waist and z � zw is the distance
from the waist. From (8.77) we note that the magnitude of the betatron function
away from the waist reaches large values for both large and small betatron functions
at the waist. We may therefore look for conditions to obtain the minimum value for
the betatron function anywhere in a drift space of length 2L. For this we take the
derivative of ˇ with respect to ˇw and get from .dˇ=dˇw D 0/

ˇw;opt D L: (8.78)

Fig. 8.5 Betatron function in
a drift space

βw

zw

β0

z
z0=0
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At either end of the drift space we have then

ˇ.L/ D 2 ˇw;opt: (8.79)

This is the optimum solution for the betatron function on either side of a drift
space with length 2L resulting in a minimum aperture requirement along a drift
space of length L. The phase advance in a drift space is from (8.77)

 .L/ D
Z L

0

dNz=ˇw

1C .Nz=ˇw/ 2
D arctan

L

ˇw
! �

2
for

L

ˇw
! 1: (8.80)

The phase advance through a drift space of length 2L is therefore never larger
than � and actually never quite reaches that value

� drift < �: (8.81)

8.3.1 Beam Dynamics in Normalized Coordinates

The form and nomenclature of the differential equation (8.52) resembles very much
that of a harmonic oscillator and indeed this is not accidental since in both cases the
restoring force increases linearly with the oscillation amplitude. In particle beam
dynamics we find an oscillatory solution with varying amplitude and frequency
and by a proper coordinate transformation we are able to make the motion of a
particle look mathematically exactly like that of a harmonic oscillator. This kind of
formulation of beam dynamics will be very useful in the evaluation of perturbations
on particle trajectories since all mathematical tools that have been developed for
harmonic oscillators will be available for particle beam dynamics.

We introduce Floquet’s coordinates, or normalized coordinates through the
transformation

w D up
ˇ

(8.82)

and

' .z/ D
Z z

0

dNz
� ˇ.Nz/ : (8.83)

Note, that we used in here a different normalization than that selected in (8.57) to
adapt more appropriately to the issues to be discussed here. With this transformation
we get for the first derivative

u0 D Pw
p
ˇ

�ˇ
C w

ˇ0

2
p
ˇ

D 1

�
p
ˇ

Pw � ˛p
ˇ

w (8.84)
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and for the second derivative

u00 D Rw
�2ˇ3=2

� w
˛0
p
ˇ

� w
˛2

ˇ3=2
; (8.85)

where dots indicate derivatives with respect to the phase Pw D dw=d', etc. We insert
these expressions into (8.52) and get the general equation of motion expressed in
normalized coordinates

u00 C k u D 1

�2ˇ3=2

2
64 RwC� 1

2
ˇˇ00 � ˛2 C kˇ2

�
„ ƒ‚ …

D1
�2w

3
75 D p.x; y; z/; (8.86)

where the right-hand side represents a general perturbation term p.x; y; z/ which
was neglected so far. The square bracket is equal to unity according to (8.59) and
the equation of motion takes the simple form of a harmonic oscillator with some
perturbation

Rw C �2w � �2ˇ3=2p.x; y; z/ D 0: (8.87)

This nonlinear equation of motion can be derived from the Hamiltonian

H D 1
2

Pw2 C 1
2
�2w2 � �2ˇ3=2

nX
kD1

ˇ
k�1
2

pk

k
wk; (8.88)

where coupling has been ignored and

p.x; z/ D
nX

kD1
pkxk�1 D

nX
kD1

pkˇ
k�1
2 wk�1; (8.89)

where pk is a perturbation of order k. Later, we will perform another canonical
transformation to action-angle variables, which brings the Hamiltonian into a
convenient form to exhibit effects of perturbations.

Since the parameter � is constant, we have in the case of vanishing perturbations
pn 	 0 the exact equation of a harmonic oscillator and particles perform in this
representation periodic sine-like oscillations with the frequency �

w D w0 cos. C ı/: (8.90)

The transformation matrix in these variables is given by

M .z j 0/ D
�

C. / S. /
C0. / S0. /

�
D
�

cos . / sin . /
� sin . / cos . /

�
(8.91)

as can easily be derived from (8.90).



8.3 Beam Dynamics in Terms of Betatron Functions 235

Fig. 8.6 Ideal phase ellipse
in normalized coordinates

w

dw/dψ

a

The use of normalized coordinates not only allows us to treat particle beam
dynamics equivalent to a harmonic oscillator but is also convenient in the discus-
sions of perturbations or aberrations. In phase space each particle performs closed
trajectories in the form of an ellipse which we called the phase ellipse. In Cartesian
coordinates this ellipse, however, continuously changes its shape and orientation and
correlations between two locations are not always obvious. If we use normalized
coordinates, the unperturbed phase ellipse becomes an invariant circle as shown in
Fig. 8.6.

From (8.82) we get with u.z/ D a
p
ˇ.z/ cos .z/ where  .z/ D �'.z/

w.'/ D up
ˇ

D a cos ; (8.92)

dw

d 
D
p
ˇ u0 C ˛p

ˇ
u D �a sin ; (8.93)

and after elimination of the phase the Courant-Snyder invariant becomes

w2 C
�

dw

d 

�2
D a2; (8.94)

where a is the betatron oscillation amplitude.
The equation of motion (8.87) is now ready to be transformed into action-angle

variables. The constancy of the action J is now synonymous with the Courant-
Snyder invariant (5.59) or the constancy of the beam emittance.

J D 1
2
�
�
�u2 C 2˛u u0 C ˇ u0 2

�
D 1

2
��: (8.95)

In . ; J / phase-space, the particle moves along a circle with radius J at a
revolution frequency �. The motion is uniform, periodic and stable. Including the
independent variable ' to form a three-dimensional phase-space, we find a particle
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ψ
J

ϕ

trajectory 
in phase space

reference path

Fig. 8.7 Unperturbed particle trajectories in ( ; J; '/ phase-space

to spiral along the surface of a torus as shown in Fig. 8.7. The ensemble of all
particles oscillating with the same amplitude J follow spirals occupying the full
surface of the torus.

This result is not particularly interesting in itself since it only corroborates what
we have found earlier for harmonic oscillators with simpler mathematical tools. The
circle in . ; J/-phase space, however, provides us with a reference against which to
compare perturbed motions and derive stability criteria. Indeed, we will later use
canonical transformations to eliminate well-known linear motions, like the circular
motion of an unperturbed harmonic oscillator in . ; J /-space to exhibit more
clearly the effects of perturbation only. Including perturbations into the Hamiltonian
(5.57) allows the determination of perturbed tunes and study resonance phenomena.
Having defined canonical variables for the system, we also will be able to study
the evolution of particle beams by applying Vlasov’s equation in Sect. 12.1. The
Fokker-Planck equation finally will allow us to determine beam parameters even in
the presence of statistical events.

We have chosen the betatron phase  as the independent variable and the
particles cover one full turn along the phase “ellipse” for each betatron oscillation.
This is a convenient way of representation in beam transport systems, yet, for
circular accelerators we find it more useful to define ' D  =� as the independent
variable in which case the particle rotation frequency in phase space is the same as
that in the ring. This is particularly convenient when we discuss field and alignment
perturbations which occur periodically in a ring and allow the application of Fourier
techniques.

8.4 Dispersive Systems

Beam guidance and focusing is performed by applying Lorentz forces and the
effects of these fields on particle trajectories depend on the momentum of the
particles. So far, we have derived beam dynamics for particles with ideal momenta
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for which the beam transport system is designed. To properly describe the dynamics
of a real particle beam we must include chromatic effects caused by an error in the
beam energy or by a spread of energies within the particle beam. In Sect. 5.5.4; the
perturbation due to a momentum error has been derived and expressed in terms of a
dispersion. Continuing the formulation of beam dynamics in terms of transformation
matrices we derive in this section transformation matrices for particles with a
momentum error.

8.4.1 Analytical Solution

The dispersion function has been derived as a special solution to a chromatic
perturbation term in (5.81) where

D.z/ D
Z z

0

�.Nz/ ŒS.z/C.Nz/� C.z/ S.Nz/� dNz (8.96)

describes the dispersion function in a beam transport line. There is no contribution
to the dispersion function unless there is at least one bending magnet in the beam
line. Knowledge of the location and strength of bending magnets, together with
the principal solutions of the equations of motion, we may calculate the dispersion
anywhere along the beam transport line by integration of (8.96).

Similar to the matrix formalism for betatron oscillations we would also like to
apply the same formalism for the dispersion function. For this we note that the
particle deviation u from the reference path is composed of the betatron motion and
a displacement due to an energy error u D uˇ C uı. The transformation matrix is
therefore a composite of both contributions and can be expressed by

0
@

u.z/
u0.z/
ı

1
A D M

0
B@

uˇ.z0/
u0̌ .z0/
ı

1
CAC M

0
@

uı.z0/
u0
ı.z0/
ı

1
A ; (8.97)

where M is the 3 � 3 transformation matrix, ı the relative momentum error and
uı.z/ D D.z/ ı and u0

ı.z/ D D0.z/ ı the displacement and slope, respectively,
of the reference path for particles with a momentum error ı. Equation (8.97) can
also be applied to the dispersion function alone by setting the betatron oscillation
amplitudes to zero and the momentum error ı D 1 for

0
@

D.z/
D0.z/
1

1
A D M

0
@

D.z0/
D0.z0/
1

1
A : (8.98)
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By determining the transformation matrices for individual bending magnets, we
are in a position to calculate in matrix formulation the dispersion function anywhere
along a beam transport line.

In the deflecting plane of a pure sector magnet the principal solutions are with
K D �2 D 1=
2

�
C.z/ S.z/
C0.z/ S0.z/

�
D
�

cos .�z/ 
 sin .�z/
�� sin .�z/ cos .�z/

�
: (8.99)

With 
 D const we get from (8.96) and (8.99) for the dispersion function within the
magnet

D.z/ D sin .�z/
Z z

0
cos .�Nz/ dNz � cos .�z/

Z z

0
sin .�Nz/ dNz

D 
0 Œ1 � cos .�z/� (8.100)

D0.z/ D sin .�z/ :

Particles with momentum error ı follow an equilibrium path given by D.z/ ı
which can be determined experimentally by observing the beam path for two
different values of the beam momentum ı1 and ı2. The difference of the two paths
divided by the momentum difference is the dispersion function D.z/ D �u=.ı2�ı1/.
In practical applications this is done either by changing the beam energy or by
changing the strength of the bending magnets. In circular electron accelerators,
however, only the first method will work since the electrons always adjust the
energy through damping to the energy determined by the magnetic fields. In circular
electron accelerators, we determine the dispersion function by changing the rf-
frequency which enforces a change in the particle energy as we will discuss later
in Chap. 9.

8.4.2 3 � 3-Transformation Matrices

From (8.99) and (8.100) we may form now 3 � 3-transformation matrices. In the
deflecting plane of a pure sector magnet of arc length ` such a transformation
matrix is

Ms;
 .` j0/ D

0
B@

cos � 
 sin � 
 .1 � cos �/
� 1



sin � cos � sin �

0 0 1

1
CA (8.101)
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where � D `=
 is the deflection angle of the magnet. In the non deflecting plane,
the magnet behaves like a drift space with 1



D 0, k D 0 and arc length `

Ms;0 .` j0/ D
0
@

C.z/ S.z/ 0
C0.z/ S0.z/ 0
0 0 1

1
A (8.102)

For a synchrotron magnet of the sector type we get from (7.38) in analogy to
(8.100), replacing � by

p
K and with � D p

k C �2` and � D 1=
 for the case of a
focusing synchrotron magnet

Msy;f .` j0/ D

0
B@

cos� sin�p
K

1�cos�

K

�p
K sin� cos� sin�



p

K

0 0 1

1
CA (8.103)

and for a defocusing synchrotron magnet

Msy;d .` j0/ D

0
B@

cosh� sinh�pjKj
cosh��1

0jKjpjKj sinh� cosh� sinh�

0

pjKj
0 0 1

1
CA (8.104)

where� D
qˇ̌

k C �20
ˇ̌
`.

In case of a rectangular magnet without field gradient, we multiply the matrix for
a sector magnet by the transformation matrices for endfield-focusing. Since these
end effects act like quadrupoles we have no new contribution to the dispersion and
the transformation matrices for each endfield are

Me D
0
@

1 0 0

� tan .�=2/ 1 0
0 0 1

1
A : (8.105)

With these endfield matrices the chromatic transformation matrix for a rectangular
bending magnet in the deflecting plane is obtained from (8.103) with Mr;
 D
Me Msy;
Me for k D 0

Mr;
.`j0/ D
0
@
1 
 sin � 
 .1 � cos �/
0 1 2 tan .�=2/
0 0 1

1
A : (8.106)

Similarly, we can derive the transformation matrices for rectangular synchrotron
magnets.
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Only bending magnets create a dispersion. Therefore the transformation matrices
of other magnets or drift spaces are extended to 3 � 3 matrices by adding a third
column and row with all elements equal to zero and M33 D 1.

8.4.3 Linear Achromat

Frequently it is necessary in beam transport systems to deflect a particle beam. If this
is done in an arbitrary way an undesirable finite dispersion function will remain at
the end of the deflecting section. Special magnet arrangements exist which allow
to bend a beam without generating a residual dispersion. Such magnet systems
composed of only bending magnets and quadrupoles are called linear achromats.

Consider, for example, an off momentum particle travelling along the ideal
path of a straight beam line. At some location, we insert a bending magnet and
the off-momentum particle will be deflected by a different angle with respect to
particles with correct momenta. The difference in the deflection angle appears as
a displacement in phase space from the center to a finite value � Pw D ıD.z/=

p
ˇ.

From here on, the off momentum reference path follows the dispersion function
D.z/ ı and the particle performs betatron oscillations in the form of circles until
another bending magnet further modifies or compensates this motion (Fig. 8.8).

In case a second bending magnet is placed half a betatron oscillation downstream
from the first causing the same deflection angle the effect of the first magnet can be
compensated completely and the particle continues to move along the ideal path
again. A section of a beam transport line with this property is called an achromat.

Figure 8.9 displays an achromatic section proposed by Panofsky [10] which may
be used as a building block for curved transport lines or circular accelerators. This
section is composed of a symmetric arrangement of two bending magnets with a

z

motion in phase space

motion in real space

bending magnet

dispersion function: D(z)δ

Θδ

δ=0

δ>0

w

dw/dt

D(z)δ/β1/2

Fig. 8.8 Trajectory of an off momentum particle through a chromatic beam transport section
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Fig. 8.9 Double bend achromat [3, 10]

quadrupole in the center and is also know as a double bend achromat or a Chasman-
Green lattice [3].

General conditions for linear achromats have been discussed in Sect. 7.4 and we
found that the integrals

Is D
Z z

0
�.Nz/S.Nz/dNz D 0; (8.107)

and

Ic D
Z z

0
�.Nz/C.Nz/ dNz D 0; (8.108)

must vanish for a lattice section to become achromatic. For a double bend achromat
this can be accomplished by a single parameter or quadrupole if adjusted such that
the betatron phase advance between the vertex points of the bending magnet is 180ı.
A variation of this lattice, the triple bend achromat [5, 8], is shown in Fig. 8.10,
where a third bending magnet is inserted for practical reasons to provide more
locations to install sextupoles for chromatic corrections. Magnet arrangements as
shown in Figs. 8.9 and 8.10 are dispersion free deflection units or linear achromats.
This achromat is focusing only in the deflecting plane but defocusing in the
nondeflecting plane which must be compensated by external quadrupole focusing
or, since there are no special focusing requirements for the nondeflecting plane, by
either including a field gradient in the pole profile of the bending magnets [6] or
additional quadrupoles between the bending magnets. In a beam transport line this
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Fig. 8.10 Triple bend achromat [5]

Fig. 8.11 Achromatic beam translation

achromat can be used for diagnostic purposes to measure the energy and energy
spread of a particle beam as will be discussed in more detail in Sect. 8.4.5

A further variation of the lattice in Fig. 8.9 has been proposed by Steffen [10]
to generate an achromatic beam translation as shown in Fig. 8.11. In this case,
the total phase advance must be 360ı because the integral Ic would not vanish
anymore for reasons of symmetry. We use therefore stronger focusing to make Ic

vanish because both the bending angle and the cosine like function change sign.
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Achromatic properties are obtained again for parameters meeting the condition [10]


 tan.�=2/C � D 1p
k

d
p

k cos' C 2 sin'

d
p

k sin' � 2 cos'
; (8.109)

where ' D p
k` and k; ` the quadrupole strength and length, respectively. The need

for beam translation occurs frequently during the design of beam transport lines.
Solutions exist to perform such an achromatic translation but the required focusing
is much more elaborate and may cause significantly stronger aberrations compared
to a simple one directional beam deflection of the double bend achromat type.

Utilizing symmetric arrangements of magnets, deflecting achromats can be
composed from bending magnets only [10]. One version has become particularly
important for synchrotron radiation sources, where wiggler magnets are used to
produce high intensity radiation. Such triple bend achromat are composed of a row
of alternately deflecting bending magnets which do not introduce a net deflection
on the beam. Each unit or period of such a wiggler magnet (Fig. 8.12) is a linear
achromat.

The transformation of the dispersion through half a wiggler unit is the super-
position of the dispersion function from the first magnet at the end of the second
magnet plus the contribution of the dispersion from the second magnet. In matrix
formulation and for hard edge rectangular magnets the dispersion at the end of half
a wiggler period is

�
Dw

D0
w

�
D
��
0 .1 � cos �/

�2 tan .�=2/

�
C
�
1 `w

0 1

��

0 .1 � cos �/
2 tan .�=2/

�
; (8.110)

where 
 > 0, � D `w
 and `w the length of one half wiggler pole (see Fig. 8.12).
Evaluation of (8.110) gives the simple result

Dw D 2`w tan.�=2/;
D0

w D 0:
(8.111)

The dispersion reaches a maximum in the middle of the wiggler period and
vanishes again for reasons of symmetry at the end of the period. For sector magnets

Fig. 8.12 Wiggler achromat D(z)

2lw

lwlw
wiggler pole

wiggler period
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we would have obtained the same results. Each full wiggler period is therefore from
a beam optics point of view a linear achromat. Such an arrangement can also be
used as a spectrometer by placing a monitor in the center, where the dispersion is
large. For good momentum resolution, however, beam focusing must be provided
in the deflecting plane upstream of the bending magnets to produce a small focus at
the beam monitors as will be discussed in the next section.

The examples of basic lattice designs discussed in this section are particularly
suited for analytical treatment. In practice, modifications of these basic lattices are
required to meet specific boundary conditions making, however, analytical treatment
much more complicated. With the availability of computers and numerical lattice
design codes, it is prudent to start with basic lattice building blocks and then use a
fitting program for modifications to meet particular design goals.

8.4.4 Spectrometer

Although the dispersion has been treated as a perturbation it is a highly desired
feature of a beam line to determine the energy or energy distribution of a particle
beam. Such a beam line is called a spectrometer for which many different designs
exist. A specially simple and effective spectrometer can be made with a single 180ı
sector magnet [2, 9]. For such a spectrometer, the transformation matrix is from
(8.101)

M
�
180

ı

�
D
0
@

�1 0 2
0
0 �1 0

0 0 �1

1
A : (8.112)

In this spectrometer all particles emerging from a small target (Fig. 8.13) are
focused to a point again at the exit of the magnet. The focal points for different
energies, however, are separated spatially due to dispersion. Mathematically, this is

Fig. 8.13 Hundred and
eighty degree spectrometer

δ > 0 δ < 0δ = 0 target
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evident since the particle trajectories at the end of the magnet are given by

x D �x0 C 2
ı; (8.113)

where x0 is the starting point of a particle within the target, and showing different
positions x for different energies ı. The energy dispersion of the secondary particles
is �x D 2
ı.

The image point is independent of x0
0 and only proportional to ı with a

large proportionality factor which allows a large energy resolution. While this
spectrometer seems to have almost ideal features it is also an example of the
limitations of perturbation methods. For larger values of ı of the order of several
percent higher order terms cannot be neglected anymore. Inclusion of such terms,
for example, will first tilt and then bend the focal plane at the end of the magnet.

More sophisticated spectrometers including focusing to accept large emittance
beams have been devised with special efforts to reduce the effects of aberrations. It
is not the intend of this text to discuss in detail such designs. More comprehensive
overviews for spectrometers with further references can be found for example in
[1, 10]. In the treatment of this spectrometer we have ignored the nondeflecting
plane. Since there is no focusing, particles are widely spread out in this plane at
the end of the magnet. Practical versions of this spectrometer, therefore, include a
focusing term in the nondeflecting plane in such a way that the resulting focusing is
the same in both planes [7].

8.4.5 Measurement of Beam Energy Spectrum

Frequently it is desirable to determine experimentally the particle energy and energy
spread. Basically only one bending magnet is needed to perform this experiment.
The finite beam size of the monochromatic part of the beam will greatly influence
the resolution of the energy measurement. Optimum resolution is achieved if some
focusing is included and the measurement is performed at a location, where the
beam size is small while the dispersion is large. In Fig. 8.14 particle beams at two
different energies are shown in phase space, where both beam centers are separated
by the dispersion and its slope.

In reality no such separation exists since we have a spread of energies rather
than two distinct energies. This energy spread is mixed with the spread in phase
space of the beam emittance and beams of different energies can only be separated
completely if the relative energy difference is at least

ımin D ıp

p0

 2Eb

D
D 2

p
�ˇ

D
; (8.114)
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Fig. 8.14 Momentum resolution in phase space
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Fig. 8.15 Measurement of the momentum spectrum

where Eb D p
�ˇ is the beam envelope. To maximize the energy resolution the

beam size Eb should be small and the dispersion D.z/ large. From Fig. 8.14 we note
therefore, that for a given beam emittance and dispersion the energy resolution can
be improved significantly if the measurement is performed at or close to a beam
waist, where ˇ reaches a minimum.

To derive mathematical expressions for the energy resolution and conditions for
the maximum energy resolution 1=ımin we assume a beam line as shown in Fig. 8.15
with the origin of the coordinate system z D 0 in the center of the bending magnet.
The salient features of this beam line is the quadrupole followed by a bending
magnet. With this sequence of magnets we are able to focus the particle beam in
the deflection plane while leaving the dispersion unaffected. In case of a reversed
magnet sequence the dispersion function would be focused as well compromising
the energy resolution.
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Transforming the dispersion (8.100) back from the end of the sector bending
magnet to the middle of the magnet we get the simple result

�
D0

D0
0

�
D
 

cos �
2

�
0 sin �
2

1

0

sin �
2

cos �
2

!�

0 .1 � cos �/
sin �

�
D
�

0

2 sin �
2

�
; (8.115)

The dispersion appears to originate in the middle of the magnet with a slope
D0
0 D 2 sin �=2. At a distance z from the middle of the bending magnet the

betatron function is given by ˇ.z/ D ˇ0 � 2˛0 z C �0 z2 where .ˇ0; ˛0; �0/ are
the Twiss functions in the middle of the bending magnet, and the dispersion is
D.z/ D 2 sin.�=2/z. Inserting these expressions into (8.114) we can find the
location zM for maximum momentum resolution by differentiating ımin with respect
to z. Solving dımin=dz D 0 for z we get

zM D ˇ0

˛0
(8.116)

and the maximum momentum resolution is

ı�1
min D

p
ˇ0sin.�=2/p

�
: (8.117)

The best momentum resolution for a beam with emittance � is achieved if both the
bending angle � and the betatron function ˇ0 in the middle of the bending magnet
are large. From condition (8.116), we also find ˛0 > 0 which means that the beam
must be converging to make a small spot size at the observation point downstream of
the bending magnet. With (8.76) we find that zM D ˇ0=˛0 D �ˇM=˛M and from the
beam envelope E2b D �ˇM at z D zM we get the derivative 2EbE0

b D �ˇ0
M

D �2�˛M .
With this and D=D0 D z, the optimum place to measure the energy spread of a
particle beam is at

zM D D.zM/

D0.zM/
D Eb.zM/

E0
b.zM/

: (8.118)

It is interesting to note that the optimum location zM is not at the beam waist, where
ˇ.z/ reaches a minimum, but rather somewhat beyond the beam waist, where D=

p
ˇ

is maximum.
At this point we may ask if it is possible through some clever beam focusing

scheme to improve this resolution. Analogous to the previous derivation we look
for the maximum resolution ı�1

min D D.z/=Œ2
p
�ˇ.z/�. The dispersion is expressed

in terms of the principal solution D.z/ D S.z/D0.0/ and D0.z/ D S0.z/D0.0/ since
D.0/ D 0. The betatron function is given by ˇ.z/ D C2.z/ ˇ0 � 2C.z/S.z/ ˛0 C
S2.z/ �0 and the condition for maximum resolution turns out to be ˛=ˇ D �D0=D.
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With this, we get the resolution

ı�1
min D D.z/

2
p
�ˇ

D S.z/D0
0

2
p
�ˇ

D sin.�=2/p
�ˇ

S.z/ (8.119)

and finally with S.z/ D p
ˇ0ˇ.z/ sin .z/

ı�1
min D

p
ˇ0sin.�=2/p

�
sin .z/ �

p
ˇ0sin.�=2/p

�
; (8.120)

which is at best equal to result (8.117) for .z/ D 90ı. The momentum resolution is
never larger than in the simple setup of Fig. 8.15 no matter how elaborate a focusing
lattice is employed.

If more than one bending magnet is used the resolution may be increased if the
betatron phases between the magnets .zi/ and the place of the measurement .zM /

are chosen correctly. The resolution then is

ı�1
min D 1p

�

X
i

p
ˇ0i sin.�i=2/ sinŒ .zM /�  .zi/�; (8.121)

where the sum is taken over all magnets i. Such an energy resolving system is
often used in beam transport lines to filter out a small energy band of a particle
beam with a larger energy spread. In this case a small slit is placed at the place for
optimum momentum resolution .z D zM/. Of course, for highly relativistic electrons
the momentum spectrum is virtually equal to the energy spectrum.

This discussion is restricted to linear beam optics which does not address prob-
lems caused by nonlinear effects and geometric as well as chromatic aberrations.

8.4.6 Path Length and Momentum Compaction

The existence of different reference paths implies that the path length between
two points of a beam transport line may be different as well for different particle
momenta. We will investigate this since the path length is of great importance as
will be discussed in detail in Chap. 9. In preparation for this discussion, we derive
here the functional dependencies of the path length on momentum and focusing
lattice.

The path length along a straight section of the beam line depends on the angle
of the particle trajectory with the reference path. In this chapter we are interested
only in linear beam dynamics and may neglect such second order corrections to the
path length. The only linear contribution to the path length comes from the curved
sections of the beam transport line. The total path length is therefore given by

L D
Z
.1C �x/ dz: (8.122)
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We evaluate (8.122) along the reference path, where x D D.z/ ı. First we find the
expected result L0 D R

dz for ı D 0, which is the ideal design length of the beam
line or the design circumference of a circular accelerator. The deviation from this
ideal length is then

�L D ı

Z
� .z/D.z/ dz: (8.123)

The variation of the path length with momentum is determined by the momentum
compaction factor, defined by

˛c D �L=L0
ı

with ı D �p

p
: (8.124)

Its numerical value can be calculated with (8.123) and is

˛c D 1

L0

Z L0

0

� .z/D.z/ dz D
�

D.z/




	
: (8.125)

In this approximation the path length variation is determined only by the dispersion
function in bending magnets and the path length depends only on the energy of the
particles. To prepare for the needs of longitudinal phase focusing in Chap. 9, we will
not only consider the path length but also the time it takes a particle to travel along
that path. If L is the path length, the travel time is given by

� D L

cˇ
: (8.126)

Here ˇ D v=c is the velocity of the particle and is not to be confused with the
betatron function. The variation of � gives by logarithmic differentiation

��

�
D �L

L
� �ˇ

ˇ
: (8.127)

With �L=L D ˛cı and cp D ˇE we get dp=p D dˇ=ˇ C dE=E and with dE=E D
ˇ2dp=p we can solve for dˇ=ˇ D .1=�2/ dp=p, where � D E=mc2 is the relativistic
factor. From (8.127) we have then

��

�
D �

�
1

�2
� ˛c

�
dp

p
D ��c

dp

p
(8.128)

and call the combination

�c D
�
1

�2
� ˛c

�
(8.129)
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the momentum compaction. The energy

�t D 1p
˛c

(8.130)

for which the momentum compaction vanishes is called the transition energy which
will play an important role in phase focusing. Below transition energy the arrival
time is determined by the actual velocity of the particles while above transition
energy the particle speed is so close to the speed of light that the arrival time of
a particle with respect to other particles depends more on the path length than on
its speed. For a circular accelerator we may relate the time �r a particle requires to
follow a complete orbit to the revolution frequency !r and get from (8.128)

d!r

!r
D �d�r

�r
D �c

dp

p
: (8.131)

For particles above transition energy this quantity is negative which means a particle
with a higher energy needs a longer time for one revolution than a particle with a
lower energy. This is because the dispersion function causes particles with a higher
energy to follow an equilibrium orbit with a larger average radius compared to the
radius of the ideal orbit.

By special design of the lattice one could generate an oscillating dispersion
function in such a way as to make the momentum compaction �c to vanish. Such
a transport line or circular accelerator would be isochronous to the approximation
used here. Due to higher order aberrations, however, there are nonlinear terms in
the dispersion function which together with an energy spread in the beam cause a
spread of the revolution frequency compromising the degree of isochronicity. These
higher order corrections are discussed later in Chap. 9.4.1.

Problems

8.1 (S). Particle trajectories in phase space follow the shape of an ellipse. Derive a
transformation of the phase space coordinates .u; u0/ to coordinates .w; Pw/ such that
the particle trajectories are circles with the radius ˇ�.

8.2 (S). Use (8.18) for the phase ellipse and prove that the area enclosed by the
ellipse is indeed equal to ��.

8.3 (S). Show that the transformation of the beam matrix (8.41) is consistent with
the transformation of the lattice functions.

8.4 (S). Sometimes two FODO channels of different parameters must be matched.
Show that a lattice section can be designed with a phase advance of� x D � y D
�=2, which will provide the desired matching of the betatron functions from the
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symmetry point of one FODO channel to the symmetry point of the other channel.
Such a matching section is also called a quarter wavelength transformer. Does this
transformer also work for curved FODO channels, where the dispersion is finite?

8.5. Construct a beam bump like in problem 7.6 but now use betatron and phase
functions for the solution. What are the criteria for either AM being the maximum
displacement or not? For which phase  M would the dipole fields be minimum? Is
there a more economic solution for a symmetric beam bump with an amplitude AM

in the center of QD2?

8.6. Consider a ring made from an even number of FODO cells. To provide
component free space we cut the ring along a symmetry line through the middle
of two quadrupoles on opposite sides of the ring and insert a drift space of length
`d. Derive the transformation matrix for this ring and compare with that of the
unperturbed ring. What is the tune change of the accelerator. The betatron functions
will be modified. Derive the new value of the horizontal betatron function at the
symmetry point in units of the unperturbed betatron function. Is there a difference
to whether the free section is inserted in the middle of a focusing or defocusing
quadrupole? How does the �-function change?

8.7. Consider a regular FODO lattice, where some bending magnets are eliminated
to provide magnet free spaces and to reduce the �-function in the straight section.
How does the minimum value of the �-function scale with the phase per FODO cell.
Show if conditions exist to match the �-function perfectly in the straight section of
this lattice?
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