Chapter 14
Beam Emittance and Lattice Design

The task of lattice design for proton and ion beams can be concentrated to a
pure particle beam optics problem. Transverse as well as longitudinal emittances
of such beams are constants of motion and therefore do not depend on the
particular design of the beam transport or ring lattice. This situation is completely
different for electron and positron beams in circular accelerators where the emission
of synchrotron radiation determines the particle distribution in six-dimensional
phase space. The magnitude and characteristics of synchrotron radiation effects
can, however, be manipulated and influenced by an appropriate choice of lattice
parameters. We will discuss optimization and scaling laws for the transverse beam
emittance of electron or positron beams in circular accelerators.

Originally electron storage rings have been designed, optimized and constructed
for the sole use as colliding beam facilities for high energy physics. The era of
electron storage rings for experimentation at the very highest particle energies
has, however, reached a serious limitation due to excessive energy losses into
synchrotron radiation. Of course, such a limitation does not exist for proton and ion
beams with particle energies up to the order of some tens of TeV’s and storage rings
are therefore still the most powerful and productive research tool in high-energy
physics. At lower and medium-energies electron storage rings with specially high
luminosity still serve as an important research tool in high energy physics to study
more subtle phenomena which could not be detected on earlier storage rings with
lower luminosity like t- and B-factories.

To overcome the energy limitation in electron colliding beam facilities, the idea
of linear colliders which avoids energy losses into synchrotron radiation [1, 2]
becomes increasingly attractive to reach ever higher center of mass energies for
high-energy physics. Even though electron storage rings are displaced by this
development as the central part of a colliding beam facility they play an important
role for linear colliders in the form of damping rings to prepare very small emittance
particle beams.
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The single purpose of electron storage rings for high-energy physics has been
replaced by a multitude of applications of synchrotron radiation from such rings in
a large variety of basic and applied research disciplines. It is therefore appropriate
to discuss specific design and optimization criteria for electron storage rings.

Synchrotron radiation sources have undergone significant transitions and modi-
fications over past years. Originally, most experiments with synchrotron radiation
were performed parasitically on high energy physics colliding beam storage rings.
Much larger photon fluxes could be obtained from such sources compared to any
other source available. The community of synchrotron radiation users grew rapidly
and so did the variety of applications and fields. By the time the usefulness of
storage rings for high energy physics was exhausted some of these facilities were
turned over to the synchrotron radiation community as fully dedicated radiation
sources. Those are called first generation synchrotron radiation sources. They were
not optimized for minimum beam emittance and maximum photon beam brightness.
Actually, the optimization for high energy physics called for a maximum beam
emittance to maximize collision rates for elementary particle events. The radiation
sources were mostly bending magnets although the development and use of insertion
devices started in these rings. Typically, the beam emittance is in the 100s of
nanometer.

As the synchrotron radiation community further grew, funds became available
to construct dedicated radiation facilities. Generally, these rings were designed as
bending magnet sources but with reduced beam emittance (< 100nm) to increase
photon brightness. The design emittances were much smaller than those in first
generation rings but still large by present day standards. The use of insertion devices
did not significantly affect the storage ring designs yet. These rings are called second
generation rings.

Third generation synchrotron radiation sources were and are being designed,
constructed and operated now. These rings are specifically designed for insertion
device radiation with minimum beam emittances below 20 nm down to 0.5 nm for
maximum photon beam brightness. As such, they exhibit a large number of magnet-
free insertion straight sections.

Finally, fourth generation synchrotron radiation sources are the latest develop-
ment for synchrotron radiation sources. Such sources are based on linear accelerator
technology and the principle of single pass FELs where a high energy and high
quality electron beam passing through a long undulator produces coherent undulator
radiation in the X-ray regime.

Whatever the applications, in most cases it is the beam emittance which will
ultimately determine the usefulness of the storage ring design for a particular
application. We will derive and discuss physics and scaling laws for the equilibrium
beam emittance in storage rings while using basic phenomena and processes of
accelerator physics as derived in previous sections.
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14.1 Equilibrium Beam Emittance in Storage Rings

The equilibrium beam emittance in electron storage rings is determined by the
counteracting effects of quantum excitation and damping as has been discussed
earlier. Significant synchrotron radiation occurs only in bending magnets and the
radiation from each bending magnet contributes independently to both quantum
excitation and damping. The contribution of each bending magnet to the equilibrium
beam emittance can be determined by calculating the average values for (‘/c3 ‘H) and
(k%) by
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where H is defined by (11.52) and C is the circumference of the storage ring.
Obviously, this integral receives contributions only where there is a finite bending
radius and therefore the total integral is just the sum of individual integrals over each
bending magnet.

14.1.1 FODO Lattice

We consider here briefly the FODO lattice because of its simplicity and its ability to
give us a quick feeling for the scaling of beam emittance with lattice parameters. The
beam emittance can be manipulated at design time by adjusting (#) to the desired
value. To calculate the average value (#) in a FODO lattice is somewhat elaborate.
Here, we are interested primarily in the scaling of the beam emittance with FODO
lattice parameters. Recollecting the results for the symmetric solutions of the lattice
functions in a FODO lattice (10.3), (10.5), (10.74) we notice the following scaling
laws

B oL, (14.2)
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where L is the distance between the centers of adjacent quadrupoles. All three terms
in the function H(z) = y(z) n*> + 2a(z) N’ + B(z) ' scale in a similar fashion like
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and the equilibrium emittance for a FODO lattice scales then like

_ Z(H/P3> zL_3
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where ® = {},/p is the deflection angle in each bending magnet. The proportionality
factor depends on the beam focusing. A minimum can be reached for a focal length
of |f| &~ 1.06 L in each half-quadrupole resulting in a minimum beam emittance
achievable in a FODO lattice given in practical units by

x yO3, (14.7)

e(radm) ~ 107" E%(GeV) @3 (deg?), (14.8)

where ¢ = 27 /Ny, N the number of bending magnets in the ring and Ny / 2 the
total number of FODO cells in the ring. This result is significant because it exhibits
a general scaling law of the beam emittance proportional to the square of the beam
energy and the cube of the deflecting angle in each bending magnet, which is valid
for all lattice types. The coefficients, though, vary for different lattices. While the
beam energy is primarily driven by the desired photon spectrum, we find that high
brightness photon beams from low emittance electron beams require a storage ring
design composed of many lattice cells with a small deflection angle per magnet. Of
course, there are some limits on how far one can go with this concept due to other
limitations, not the least being size and cost of the ring which both grow with the
number of lattice cells.

14.1.2 Minimum Beam Emittance

While the cubic dependence of the beam emittance on the bending angle is a
significant design criterion, we discuss here a more detailed optimization strategy.
The emittance is determined by the beam energy, the bending radius and the
‘H-function. Generally, we have no choice on the beam energy which is mostly
determined by the desired critical photon energy of bending magnet and insertion
device radiation or cost. Similarly, the bending radius is defined by the ring
geometry, desired spectrum etc. Interestingly, it is not the bending radius but rather
the bending angle which influences the equilibrium beam emittance. The main
process to minimize the beam emittance is to adjust the focusing such that the
lattice functions in the bending magnets generate a minimum value for (Hy),. The
equilibrium beam emittance (13.18) depends only on the lattice function H}(z)
inside bending magnets. Independent of any lattice type, we may therefore consider
this function only within bending magnets. For the purpose of this discussion we
assume a regular periodic lattice, where all bending magnets are the same and
all lattice functions within each bending magnet are the same. That allows us to
concentrate our discussion just on one bending magnet. The contribution of any
individual bending magnet to the beam emittance can be determined by calculation
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of the average value for

N

(Hv), = L Ho(z) dz, (14.9)
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where £}, is the length of the bending magnet and the bending radius is assumed to
be constant within a magnet. From here on, we ignore the index x since we assume
a flat storage ring in the horizontal plane. All lattice functions are therefore to be
taken in the horizontal plane.

In evaluating the integral (14.1) we must include all contributions. The emission
of photons depends only on the bending radius regardless of whether the bending
occurs in the horizontal or vertical plane. Since for the calculation of equilibrium
beam emittances only the energy loss due to the emission of photons is relevant
it does not matter in which direction the beam is bent. The effect of the emission
of a photon on the particle trajectory, however, is different for both planes because
dispersion functions are different resulting in a different quantum excitation factor
‘H. For a correct evaluation of the equilibrium beam emittances in the horizontal and
vertical plane (14.1) should be evaluated for both planes by determining H, and H,
separately but including in both calculations all bending magnets in the storage ring.

The integral in (14.1) can be evaluated for each magnet if the values of the
lattice functions at the beginning of the bending magnet are known. With these
initial values the lattice functions at any point within the bending magnet can be
calculated assuming a pure dipole magnet. With the definitions of parameters from
Fig. 14.1, we find the following expressions for the lattice functions in a bending
magnet where z is the distance from the entrance of the magnet

B(z) = Bo — 2wz + Yoz,

a(z) = ap — Yoz,

y(2) = yo, (14.10)
n(z) = no + noz + p (1 —cosh),

n'(z) = n; + sin 6.
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Fig. 14.1 Lattice functions in a bending magnet
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Here the deflection angle is & = z/p and Bo, 2o, Yo. No. 1;, are the values of the
lattice functions at the beginning of the magnet. Before we use these equations we
assume lattices where 79 = n;, = 0. The consequences of this assumption will be
discussed later. Inserting (14.10) into (14.1) we get for small deflection angles after
integration over one dipole magnet

(Hp), = 10%Bo — app10° + yop* 50 + 0(6°), (14.11)

where we have assumed the bending radius to be constant within the length £}, of
the magnet. In a storage ring with dipole magnets of different strength, contributions
from all magnets must be added to give the average quantum excitation term for the
whole ring of length C

(1] 7), = = 32 (o) . (14.12)

1

where we sum over all magnets i with length £, ;. In an isomagnetic ring the
factor ( ‘K3‘ Hy/ (k%)) becomes simply || (H,,), and the equilibrium beam emit-
tance is

2
ivo = cqz— ] (Hy)- - (14.13)

Inserting (14.11) into (14.13) we get for the beam emittance in the lowest order
of approximation

18 1 1
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where Yo = y(z0) is one of the lattice functions not to be confused with the particle
energy y.

Here we have assumed a separate function lattice where the damping partition
number J, = 1. For strong bending magnets or sector magnets this assumption
is not always justified due to focusing in the bending magnets and the damping
partition number should be corrected accordingly.

The result (14.14) shows clearly a cubic dependence of the beam emittance
on the deflection angle @ of the bending magnets which is a general lattice
property since we have not yet made any assumption on the lattice type yet.
Equation (14.14) exhibits minima with respect to both oy and By. We solve the
derivation d(H)/dag = 0 for o and the derivative d(H) /3By = 0 for By and get
the optimum values for the Twiss functions at the entrance to the bending magnet

12
Bo.opt = ?€b7 (14.15a)

Qopt = V15 (14.15b)
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and the minimum value for (#) is

(14.16)

With this, the minimum obtainable beam emittance in any lattice is from (13.18)

@3
415

The results are very simple for small deflection angles but for angles larger than
about 30° per bending magnet the error for (7)., exceeds 10 % and higher order
terms must be included.

For simplicity, we assumed that the dispersion functions 7o = 0 and ny = 0.
This a desirable feature, because it means that the dispersion function is also zero
in the insertion devices (ID) of a synchrotron radiation source. A finite dispersion
function in IDs can lead to an undesirable increase of the beam emittance.

In summary it has been demonstrated that for certain optimum lattice functions
in the bending magnets the equilibrium beam emittance becomes a minimum. No
assumption about a particular lattice has been made. Another observation is that the
beam emittance is proportional to the third power of the magnet deflection angle
and proportional to the square of the beam energy. Therefore many small deflection
magnets interspersed within quadrupoles should be used to achieve a small beam
emittance. Low emittance storage rings, therefore, are characterized by many short
magnet lattice cells.

This approach has been used for a number of third generation synchrotron light
sources. However, soon it was apparent that modification of the dispersion function
could produce even smaller beam emittance in spite of the effect of IDs. Only, as
it became possible in recent years to reach sub-nm beam emittances with sufficient
dynamic aperture did the choice of finite dispersions in the IDs become undesirable
again.

2 (Ho(@)/p%):
(1/p).

€dvamin & CqY ~ Cyy? (14.17)

min

14.2 Absolute Minimum Emittance

In the previous section we found conditions which lead to a minimum beam
emittance in an isomagnetic ring

1
1 [zt
€ ==Cqy*— H(z) dz (14.18)
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The H-function in (14.1) is a nonlinear function of z and therefore any asym-
metry of the Twiss functions lead to larger values of the #-integral. We may
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therefore assume that a symmetric H-function may actually give the smallest value
for the integral and emittance [3]. Following Teng we first discuss the case when
no = 7;’0 = 0, and o9y = O at the center of the bending magnet. Note that this
condition is different from the previous assumption for the Twiss functions. At a

distance z from the magnet center the Twiss functions are for small deflection angles
(© £ 30°)

2

B@=Fo+— a@=-— y@=m (14.192)
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The H-function (11.52) becomes then with £ the length of the bending magnet
(H), = %f(f (B0 + 2ann’ + yn?) dz, where the three integrals are
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to result finally in

m Bo 1o 3 1 5
/H(z)d = e (up lzﬂop)z + 3052 (14.20)

First, we consider the case in which we set 7o = 0 and

:30 1 5 ,30 14
d — = .
/H‘(Z) =1t 320/30;)26 12¢ T 3208,

This integral has a minimum versus B¢ and from % [ H1(z) dz = 0 the optimum
value for B is
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With this optimum f Hi(z)dz = TE and the minimum beam emittance is

e 1
€= Cyytm ——.
RPN

This result has been derived by L. Teng in [3] and immediately rejected as
“absolute minimum but useless”. This judgement was based on the realization that
the dispersion function at either end of the bending magnet is not zero and must
therefore be of finite value at the insertion straight section too. This is not good as
discussed above because insertion devices will enhance the emittance where n # 0
and will also lead to an increased effective emittance for the synchrotron radiation
users. This becomes a serious problem for very small beam emittances as can be
obtained now about 30 years after his note. However there is a way out.

If we cut one bending magnet in a cell into two pieces and install them as the first
and last bending magnet we get a zero dispersion function for all straight sections
without change of the beam emittance. There may be an arbitrary number of such
bending magnets between those half-magnets and there are enough quadrupoles
between the last bending magnet and the center of the straight section to match
the horizontal betatron function to any desired value while the dispersion function
is now zero in the IDs. The vertical betatron function does not contribute to the
emittance and may be matched any way possible within reason. Within the unit
cell we expect a periodic matching section between magnets. Incidentally, the same
result can be obtained if we set &g = 0 in (14.11) and look again for the optimum
Bo- However, we must replace the total deflection angle by its half.

Just to be complete in this discussion we assume for a moment that g # 0

(14.21)
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From 3%0 | Ha(z) dz = 0 the optimum betatron function is

Bs _ 3, 120" mop

2 80 2P

Furthermore there is also an optimum dispersion function and evaluating
% f H(z)dz = 0 we get an optimum dispersion function in the middle of the
bending magnet of

A
N=——=-—0
24p 24
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. _ 1 ﬁ .. .
for which [ H,(z)dz = BV and the minimum beam emittance

e 1
e =C, 2
NPT

(14.22)

which is even smaller.

The reduction in emittance by a factor 3/2 looks desirable but now we have
again a finite although small dispersion function in the long straight section. The
dispersion function scales like the square root of the betatron functions and for a
betatron phase of 90°, for example, the dispersion function n* in the middle of the

. . . B* _ B 4[5 . .
straight section is n* = B = i \/; . For the users the effective emittance

— e/ *252 : 82 20 _ 12415
€eff = €04/1 + on’ where the relative energy spread is §* = Cqy Tp = €057 -

Finally, the effective beam emittance is

e _ 12 L
€0 12 @3
To keep the effective beam emittance close to the natural emittance the deflection
angle in the bending magnets must be large. In other words, the effective beam
emittance for finite values of the dispersion function in insertion devices is much
larger for modern low emittance storage rings with small deflection angles per
bending magnet. for an emittance increase of a factor /2 the deflection angle per
bending magnet must be ® > 0.75 or 42.8°.

14.3 Beam Emittance in Periodic Lattices

To achieve a small particle beam emittance a number of different basic magnet
storage ring lattice units are available and in principle most any periodic lattice
unit can be used to achieve as small a beam emittance as desired. More practical
considerations, however, will limit the minimum beam emittance achievable in a
lattice. While all lattice types to be discussed have been used in existing storage
rings and work well at medium to large beam emittances, differences in the
characteristics of particular lattice types become more apparent as the desired
equilibrium beam emittance is pushed to very small values.

Of the large variety of magnet lattices that have been used in existing storage
rings the most commonly used ones are based on the double bend achromat (DBA)
and derivatives thereof. In the DBA lattice the straight sections are separated by
two bending magnets forming an achromat. In more recent years this approach has
been modified into a multi-bend achromat where several bending magnets form an
achromat between the straight sections. This trend was stimulated by the desire to
minimize the beam emittance ever more while utilizing the @ scaling. However,
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at the same time the ring circumference would grow equally because of the higher
number of long insertion straight sections unless there are several bending magnets
between straight sections, thus limiting circumference and costs.

14.3.1 The Double Bend Achromat Lattice (DBA)

The double bend achromat or DBA lattice is designed to make full use of the
minimization of beam emittance by the proper choice of lattice functions as
discussed earlier. In Fig. 14.2 the basic layout of this lattice is shown.

A set of two or three quadrupoles provides the matching of the lattice functions
into the bending magnet to achieve the minimum beam emittance. The central part of
the lattice between the bending magnets may consist of one or more quadrupoles and
its only function is to focus the dispersion function such that it is matched again to
zero at the end of the next bending magnet resulting necessarily in a phase advance
from bending magnet to bending magnet of close to 180°. This lattice type has been
proposed first by Panofsky [4] and later by Chasman and Green [5] as an optimized
lattice for a synchrotron radiation source. In Fig. 14.3 an example of a synchrotron
light source based on this type of lattice is shown representing the solution of the
design study for the European Synchrotron Radiation Facility ESRF [6].

QF QD B QF B QD QF

5 10 15 20 s(m) |

(1 — 11 M ~— 1 !
U— U u—=u U

—_— —0}

Fig. 14.3 European synchrotron radiation facility, ESRF [6] (one half of 16 superperiods). The
lattice is asymmetric to provide a mostly parallel beam in one insertion and a small beam cross
section in the other
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The ideal minimum beam emittance (14.17) in this lattice type for small bending
angles and an isomagnetic ring with J, = 1 is

C
o = ——=1"6’ (14.23)
415
or in more practical units
€psa (rad m) = 5.036 x 107 E*(GeV?) ©3(deg?) . (14.24)

This lattice type can be very useful for synchrotron light sources where many
component and dispersion free straight sections are required for the installation of
insertion devices. For damping rings this lattice type is not quite optimum since it
is a rather “open” lattice with a low bending magnet fill factor and consequently a
long damping time. Other more compact lattice types must be pursued to achieve in
addition to a small beam emittance also a short damping time.

14.3.2 The FODO Lattice

The FODO lattice, shown schematically in Fig. 14.4 is the most commonly used and
best understood lattice in storage rings optimized for high-energy physics colliding
beam facilities where large beam emittances are desired. This choice is obvious
considering that the highest beam energies can be achieved while maximizing the
fill factor of the ring with bending magnets.

This lattice provides the most space for bending magnets compared to other
lattices. The usefulness of the FODO lattice, however, is not only limited to high-
energy large emittance storage rings. By using very short cells very low beam
emittances can be achieved as has been demonstrated in the first low emittance
storage ring designed [7] and constructed [8] as a damping ring for the linear collider
SLC to reach an emittance of 11 x 10~ m at 1 GeV.

The lattice functions in a FODO structure have been derived and discussed in
detail and are generally determined by the focusing parameters of the quadrupoles.

Fig. 14.4 FODO lattice — cell length: 2L

V i

|
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Fig. 14.5 Electron beam
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Since FODO cells are not achromatic the dispersion function is in general not zero
at either end of the bending magnets.

The beam emittance can be derived analytically in thin lens approximation by
integrating the quantum excitation factor along the bending magnets. The result is
shown in Fig. 14.5 where the function [(H)/(p©?)] is plotted as a function of the
betatron phase advance per FODO half cell which is determined by the focal length
of the quadrupoles.

The beam emittance for an isomagnetic FODO lattice is given by [9]

by (H
€rono0 = Cq)/z@3abo—/§ @)3 , (14.25)

where £y, is the actual effective length of one bending magnet and 2/}, the length
of a FODO cell. From Fig. 14.5 it becomes apparent that the minimum beam
emittance is reached for a betatron phase of about 136.8° per FODO cell. In this
case (H)/(p ®3) ~ 1.25 and the minimum beam emittance in such a FODO lattice
in practical units is

¢
€.ono (rad m) = 97.53 x 10_13e—bE2(GeV2) ©3(deg®) . (14.26)
b,0

Comparing the minimum beam emittance achievable in various lattice types
the FODO Ilattice seems to be the least appropriate lattice to achieve small beam
emittances. This, however, is only an analytical distinction. FODO cells can be made
much shorter than the lattice units of other structures and for a given circumference
many more FODO cells can be incorporated than for any other lattice. As a
consequence, the deflection angles per FODO cell can be much smaller. For very
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low emittance storage ring, therefore, it is not a priori obvious that one lattice
is better than another. However, additional requirements like number of desired
insertion straight sections for a particular application must be included in the
decision for the optimum storage ring lattice.

14.3.3 Optimum Emittance for Colliding Beam Storage Rings

The single most important parameter of colliding beam storage rings is the
luminosity and most of the design effort for such facilities is aimed at maximizing
the collision rate. As a consequence of the beam-beam effect, the beam emittance
must be chosen to be as large as possible for maximum luminosity as will be
discussed in Sect.21.2.2. Since for most high energy storage rings a FODO lattice is
employed it is clear that for maximum emittance the phase advance per cell should
be kept low as indicated in Fig. 14.5. Of course, there is a practical limit given by
increasing magnet apertures and associated costs.

In linear colliders there is no beam stability concern due to the beam-beam effect
like in a storage ring and a much smaller beam cross section can be chosen. The
limit here is the total beam-beam disruption due to the large electromagnetic fields
at the surface of the colliding beams. Strong synchrotron radiation introduce, for
example, significant energy losses which jeopardize the analysis of high energy
physics events.

Problems

14.1 (S). Derive an approximate expression of the beam emittance in an isomag-
netic FODO lattice as a function of phase per cell and determine the minimum value
of the emittance. Use a lattice which is symmetric in both planes and assume that
the bending magnets are as long as the half cells ({, = L).

14.2 (S). Consider a storage ring made of FODO cells at an energy of your choice.
How many bending magnets or half cells do you need to reach a beam emittance of
no more than ¢, = 5- 10~ m?
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