
Chapter 12
Vlasov and Fokker–Planck Equations*

Mathematical tools have been derived in previous chapters to describe the dynamics
of singly charged particles in electromagnetic fields. While the knowledge of
single-particle dynamics is essential for the development of particle beam transport
systems, we are still missing a formal treatment of the behavior of multiparticle
beams. In principle a multiparticle beam can be described simply by calculating the
trajectories of every single particle within this beam, a procedure that is obviously
too inefficient to be useful for the description of any real beam involving a very large
number of particles.

In this paragraph we will derive concepts to describe the collective dynamics of a
beam composed of a large number of particles and its evolution along a transport line
utilizing statistical methods that lead to well defined descriptions of the total beam
parameters. Mathematical problems arise only when we have a particle beam with
neither few particles nor very many particles. Numerical methods must be employed
if the number of particles are of importance and where statistical methods would
lead to incorrect results.

The evolution of a particle beam has been derived based on Liouville’s theorem
assuring the constancy of the particle density in phase space. However, this concept
has not allowed us to determine modifications of particle distributions due to
external forces. Particle distributions are greatly determined by particle source
parameters, quantum effects due to synchrotron radiation, nonlinear magnetic fields,
collisions with other particles in the same beam, with particles in another beam
or with atoms of the residual gases in the beam environment to name only a few
phenomena that could influence that distribution. In this chapter, we will derive
mathematical methods that allow the determination of particle distributions under
the influence of various external electromagnetic forces.
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402 12 Vlasov and Fokker–Planck Equations*

12.1 The Vlasov Equation

To study the development of a particle beam along a transport line, we will
concentrate on the evolution of a particle density distribution function �.r; p; t/ in
six-dimensional phase space where every particle is represented by a single point.
We consider a volume element of phase space that is small enough that we may
assume the particle density to be constant throughout that element and determine its
evolution in time. In doing so, we will further assume a large, statistically significant
number of particles in each volume element and only a slow variation of the particle
density from one volume element to any adjacent volume element. To simplify
the equations, we restrict the following discussion to two-dimensional phase space
.w; pw/ and use exclusively normalized coordinates. The derivation is exactly the
same for other coordinates.

The dynamics of a collection of particles can be studied by observing the
evolution of their phase space. Specifically, we may choose a particular phase space
element and follow it along its path taking into account the forces acting on it. To
do this, we select a phase space element in form of a rectangular box defined by the
four corner points Pi in Fig. 12.1.

At the time t these corners have the coordinates

P1.w; pw/ ;

P2.w C�w; pw/ ; (12.1)

P3.w C�w; pw C�pw/ ;

P4.w; pw C�pw/ :

A short time �t later, this rectangular box will have moved and may be deformed
into a new form of a quadrilateral (Q1;Q2;Q3;Q4) as shown in Fig. 12.1. In
determining the volume of the new box at time t C �t we will assume the
conservation of particles allowing no particles to be generated or getting lost. To
keep the derivation general the rate of change in the conjugate variables is defined by

Pw D fw.w; pw; t/ ;
Ppw D gw.w; pw; t/ ;

(12.2)

Fig. 12.1 Two-dimensional
motion of a rectangle in phase
space
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where Pw D dw=dt and Ppw D dpw=dt and the time interval �t is small enough
to allow linear expansion of the particle motion. In other words, the time interval
shall be chosen such that no physical parameters of the dynamical system change
significantly and a Taylor’s expansion up to linear terms can be applied. The new
corners of the volume element are then given by

Q1 Œw C fw.w; pw; t/�t; pw C gw.w; pw; t/�t� ;

Q2 Œw C�w C fw.w C�w; pw; t/�t;

pw C gw.w C�w; pw; t/�t� ;

Q3 Œw C�w C fw.w C�w; pw C�pw; t/�t; (12.3)

pw C�pw C gw.w C�w; pw C�pw; t/�t� ;

Q4 Œw C fw .w; pw C�pw; t/�t;

pw C�pw C gw.w; pw C�pw; t/�t� :

The goal of our discussion is now to derive an expression for the particle density
�.w; pw; t/ after a time �t. Because of the conservation of particles we have

�.w C fw�t; pw C gw�t; t C�t/�AQ D �.w; pw; t/�AP ; (12.4)

where �AP and �AQ are the areas in phase space as defined by the corner points
Pi and Qi, respectively. From Fig. 12.1 and (12.1) we derive an expression for the
phase space areas which are at the starting time t

�AP D �w �pw (12.5)

and at the time t C�t from (12.3)

�AQ D �w�pw

�
1C

�
@fw
@w

C @gw

@pw

�
�t

�
; (12.6)

where Taylor’s expansions have been used for the functions fw and gw retaining
only linear terms. To prove (12.6) we note that the area �AP has the form of a
quadrilateral with its sides determined by two vectors and the area, therefore, is
equal to the determinant formed by these two vectors. In our case these vectors are
pw D .�w; 0/ pointing from P1 to P2 and pp D .0;�pw/ pointing from P1 to P4.
The area therefore is

jpw; ppj D
ˇ̌
ˇ̌�w 0

0 �pw

ˇ̌
ˇ̌ D �w�pw D �AP (12.7)

in agreement with (12.5). A time interval�t later these vectors will have changed as
determined by (12.2). Each of the corner points Pi is moving although with different
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speed thus distorting the rectangle Pi into the shape Qi of Fig. 12.1. To calculate
the new vectors defining the distorted area we expand the functions fw and gw in
a Taylor’s series at the point .w; pw/. While, for example, the w-component of the
movement of point P1 along the w coordinate is given by fw�t the same component
for P2 changes by fw�t C @fw

@w �w�t: The w-component of the vector qw D Q1�Q2

therefore becomes �w C @fw
@w�w�t. Similarly, we can calculate the p-component

of this vector as well as both components for the vector qp D Q1 � Q4. The phase
space area of the distorted rectangle (Q1;Q2;Q3;Q4) at time tC�t with these vector
components is then given by

jqw; qpj D
ˇ̌
ˇ̌̌�w C @fw

@w�w�t @fw
@pw
�pw�t

@gw
@w �w�t �pw C @gw

@pw
�pw�t

ˇ̌
ˇ̌̌ D �AQ: (12.8)

Dropping second-order terms in�t we get indeed the expression (12.6). Obviously,
the phase space volume does not change if

@fw
@w

C @gw

@pw
D 0 (12.9)

in agreement with the result obtained in Chap. 8, where we have assumed that the
Lorentz force is the only force acting on the particle. In this paragraph, however,
we have made no such restrictions and it is this generality that allows us to
derive, at least in principle, the particle distribution under the influence of any
forces. Equation (12.9) tells us that there is no damping if the velocity Pw D fw
is independent of the position and the forces Pp D gw are independent of the
momentum.

The factor �
1C

�
@fw
@w

C @gw

@pw

�
�t

�
(12.10)

in (12.6) is the general Wronskian of the transformation and is not necessarily equal
to unity. We have such an example in the form of adiabatic damping. Indeed we
have damping or anti-damping whenever the Wronskian is different from unity.

To illustrate this, we use the example of a damped harmonic oscillator, which is
described by the second-order differential equation Rw C 2˛w Pw C !20w D 0 ; or in
form of a set of two linear differential equations

Pw D !0pw D fw.w; pw; t/;

Ppw D �!0w � 2˛w pw D gw.w; pw; t/:
(12.11)

From this we find indeed the relation

@fw
@w

C @gw

@pw
D �2˛w; (12.12)
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where ˛w is the damping decrement1 of the oscillator. We have obtained on a general
basis that the phase space density for harmonic oscillators will vary only if damping
forces are present. Here we use the term damping in a very general way including
excitation depending on the sign of the damping decrement ˛w. The designation
˛w for the damping decrement may potentially lead to some confusion with the
same use for the betatron function ˛ D � 1

2
ˇ0. However, we choose here to rather

require some care than introduce against common use new designations for the
damping decrement or the betatron functions. We also note that for all cases where
the damping time is long compared to the oscillation time, and we consider here
only such cases, the damping occurs for both conjugate trajectories.

The derivation in two-dimensional phase space can easily be generalized to six-
dimensional phase space with the generalized volume element

�VP D �r�p (12.13)

at time t and a time interval�t later

�VQ D �r�pŒ1C r rf �t C rpg�t� : (12.14)

The Nabla operators are defined by

r r D
�
@

@w
;
@

@v
;
@

@u

�
and rp D

�
@

@pw
;
@

@pv
;
@

@pu

�
; (12.15)

where .w; v; u/ are normalized variables and the vector functions f and g are defined
by the components f D .fw; fv; fu/ and g D .gw; gv; gu/.

Equation (12.4) can now be reduced further after applying a Taylor’s expansion
to the density function � . With (12.5), (12.6) and keeping only linear terms

@�

@t
C fw

@�

@w
C gw

@�

@pw
D �

�
@fw
@w

C @gw

@pw

�
� : (12.16)

It is straightforward to generalize this result again to six-dimensional phase space

@�

@t
C f r r�C grp� D � �r rfCrpg

�
� ; (12.17)

which is called the Vlasov equation. If there is no damping the r.h.s. of the Vlasov
equation vanishes and we have

@�

@t
C f r r� C grp� D 0 : (12.18)

1The letter ˛u is used here for the damping decrement. Since in beam dynamics ˛u is also used
to identify a lattice function, a mixup of the quantities could occur. We have chosen not to use
a different nomenclature, however, since this choice is too deeply entrenched in the community.
With some care, confusion can be avoided.
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This is simply the total time derivative of the phase space density � telling us
that in the absence of damping it remains a constant of motion. The preservation of
the phase space density is Liouville’s theorem and we have demonstrated in this
paragraph the validity of this theorem for a Hamiltonian system with vanishing
dissipating forces .r rf C r pg/ D 0.

Equation (12.18) describes the evolution of a multiparticle system in phase space
where the physics of the particular particle dynamics is introduced through the
functions f .r; p; t/ and g.r; p; t/. The definition of these functions in (12.2) appears
similar to that for the Hamiltonian equations of motion. In case r and p are canonical
variables we may indeed derive these functions from the Hamiltonian

Pr D rpH D f ;

Pp D �r rH Dg;
(12.19)

where H is the Hamiltonian of the system. We are therefore, at least in principle,
able to solve the evolution of a multiparticle system in phase space if its Hamiltonian
is known. It should be emphasized, however, that the variables .w; p/ need not be
canonical to be used in the Vlasov equation.

It is interesting to apply the Vlasov equation to simple one-dimensional harmonic
oscillators with vanishing perturbation. Introducing the canonical variable p through
Pw D �p; the Hamiltonian becomes H0 D 1

2
�p2C 1

2
�w2 and the equations of motion

are

Pw D C @H0

@p D �p D f ;

Pp D � @H0

@w D ��w D g:
(12.20)

It is customary for harmonic oscillators and similarly for particle beam dynamics
to use the oscillation phase as the independent or “time” variable. Since we have not
made any specific use of the real time in the derivation of the Vlasov equation, we
choose here the phase as the “time” variable. For the simple case of an undamped
harmonic oscillator @f

@w D 0 and @g
@p D 0 and consequently the Vlasov equation

becomes from (12.16) with (12.20)

@�

@'
C �p

@�

@w
� �w

@�

@p
D 0 : (12.21)

In cylindrical phase space coordinates .w D r cos �; p D r sin �; '/ this reduces to
the simple equation

@�

@'
� �

@�

@�
D 0 : (12.22)



12.1 The Vlasov Equation 407

Fig. 12.2 Beam motion in
phase space

Ψ(w,pw,ϕ)

ϕ

Any differentiable function with the argument .r; � C �'/ can be a solution
of (12.22) describing the evolution of the particle density � with time

�.w; pw; '/ D F.r; � C �'/ ; (12.23)

Any arbitrary particle distribution in .w; pw/-phase space merely rotates about the
center with the frequency � and remains otherwise unchanged as shown in Fig. 12.2.
This is just another way of saying that an ensemble of many particles behaves like
the sum of all individual particles since any interaction between particles as well as
damping forces have been ignored. In .x; x0/-phase space this rotation is deformed
into a “rotation” along elliptical trajectories. The equation of motion in .w; pw/-
phase space is solved by r D const indicating that the amplitude r is a constant of
motion. In .x; x0/-phase space we set w D x=

p
ˇ and p D p

ˇ x0 C p̨
ˇ

x and get

from r2 D w2 C p2w for this constant of motion

ˇ x02 C 2˛ xx0 C � x2 D const (12.24)

which is the Courant-Snyder invariant. The Vlasov equation allows us to generalize
this result collectively to all particles in a beam. Any particular particle distri-
bution a beam may have at the beginning of the beam transport line or circular
accelerator will be preserved as long as damping or other statistical effects are
absent.
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12.1.1 Betatron Oscillations and Perturbations

The Vlasov equation will prove to be a useful tool to derive particle beam
parameters. Specifically, it allows us to study the influence of arbitrary macroscopic
fields on particle density in phase space and on the characteristic frequency of
particle motion. To demonstrate this, we expand the example of the harmonic
oscillator to include also perturbation terms. For such a perturbed system the
equation of motion is

Rw C �20w D �20ˇ
3
2

X
n>0

pn ˇ
n
2 wn ; (12.25)

where the coefficients pn are the strength parameters for the nth order perturbation
term and the amplitude w is the normalized betatron oscillation amplitude. The
Vlasov equation allows us to calculate the impact of these perturbation terms on
the betatron frequency. We demonstrate this first with a linear perturbation term
.n D 1/ caused by a gradient field error p1 D �ık in a quadrupole. In this case the
equation of motion is from (12.25)

Rw C �20w D ��20ˇ2ık w (12.26)

or

Rw C �20.1C ˇ2ık/w D 0 : (12.27)

This second-order differential equation can be replaced by two first-order
differential equations which is in general the most straight forward way to obtain
the functions (12.2)

Pw D �0
p
1C ˇ2ık p ;

Pp D ��0
p
1C ˇ2ık w :

(12.28)

Here it is assumed that the betatron function ˇ and the quadrupole field error
ık are uniformly distributed along the beam line and therefore can be treated as
constants. This approach is justified since we are interested only in the average
oscillation frequency of the particles and not in fast oscillating terms. The desired
result can be derived directly from (12.28) without any further mathematical
manipulation by comparison with (12.20). From there the oscillating frequency for
the perturbed system is given by

� D �0
p
1C ˇ2 ık � �0 .1C 1

2
ˇ2ık/ ; (12.29)
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for small perturbations. The betatron frequency shift can be expressed by the lowest
order harmonic of the Fourier expansion for the periodic perturbation function
�0 ˇ

2 ık to give

2��0
�
ˇ2ık

�
0

D
I
�0ˇ

2ık d' D
I
ˇık dz (12.30)

making use of the definition for the betatron phase d' Ddz=�0ˇ. The tune shift ı�
due to quadrupole field errors is therefore from (12.29)

ı � D � � �0 D 1

4�

I
ˇıkdz ; (12.31)

in agreement with (15.64). Again, the Vlasov equation confirms this result for
all particles irrespective of the distribution in phase space. This procedure can be
expanded to any order of perturbation. From the differential equation (12.25) one
gets in analogy to the equations of motion (12.28)

Pw D �0

s
1� ˇ3=2

X
n>0

pnˇn=2wn�1 p ;

Pp D ��0

s
1 � ˇ3=2

X
n>0

pnˇn=2wn�1 w :

(12.32)

For small perturbations the solution for the unperturbed harmonic oscillator
w.'/ D w0 sin.�0' C ı/ may be used where ı is an arbitrary phase constant. The
tune shift �� D � � �0 is thus while integrating over all perturbations around a
circular accelerator

�� D �
X
n>0

1

4�

I
pnˇ

nC1
2 wn�1

0 sinn�1Œ�0'.z/C ı� dz; (12.33)

where we have changed the independent variable from ' to z by dz D �0ˇd':
Not all perturbation terms contribute to a tune variation. All even terms n D 2m;

where m is an integer, integrate, for example, to zero in this approximation and
a sextupole field therefore does not contribute to a tune shift or tune spread.
This conclusion must be modified, however, due to higher-order approximations
which become necessary when perturbations cannot be considered small anymore.
Furthermore, we find from (12.33) that the tune shift is independent of the particle
oscillation amplitude only for quadrupole field errors n D 1. For higher-order
multipoles the tune shift becomes amplitude dependent resulting in a tune spread
within the particle beam rather than a coherent tune shift for all particles of the
beam.
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In a particular example, the tune spread caused by a single octupole .n D 3/ in a
circular accelerator is given by

��3 D � 	w

8�

I
p3ˇ

2 dz ; (12.34)

where w20 D 	w is the emittance of the beam. Similar results can be found for higher-
order multipoles.

12.1.2 Damping

At the beginning of this section we have decided to ignore damping and have
used the undamped Vlasov equation (12.18). Damping or anti-damping effects do,
however, occur in real systems and it is interesting to investigate if the Vlasov
equation can be used to derive some general insight into damped systems as well.
For a damped oscillator we use (12.11), (12.12) to form the Vlasov equation in the
form of (12.16). Instead of the phase we now use the real time as the independent
variable to allow the intuitive definition of the damping decrement as the relative
decay of the oscillation amplitude with time

@�

@t
C !0pw

@�

@w
� .!0w C 2˛wpw/

@�

@pw
D C2˛w� : (12.35)

This partial differential equation can be solved analytically in a way similar to
the solution of the undamped harmonic oscillator by using cylindrical coordinates.
For very weak damping we expect a solution close to (12.23) where the amplitude
r in phase space was a constant of motion. For a damped oscillator we try to form a
similar invariant from the solution of a damped harmonic oscillator

w D w0e�˛wt cos
q
!20 � ˛2w t D re�˛wt cos � : (12.36)

With the conjugate component !0 pw D Pw, we form the expression

!0 pw C ˛wwq
!20 � ˛2w

D �w0e�˛wt sin
q
!20 � ˛2w t D �re�˛wt sin � (12.37)

and eliminate the phase � from (12.36), (12.37) keeping only terms linear in the
damping decrement ˛w to obtain the “invariant”

r2e� 2˛w t D w2 C p2w C 2
˛w

!0
wpw : (12.38)
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Obviously if we set ˛w D 0 we have the invariant of the harmonic oscillator. The
time dependent factor due to finite damping modifies this “invariant”. However,
for cases where the damping time is long compared to the oscillation period we
may still consider (12.38) a quasi invariant. The phase coordinate � can be derived
from (12.36), (12.37) as a function of w and pw as may be verified by insertion
into the differential equation (12.35). The solution for the phase space density of a
damped oscillator is of the form

�.w; pw; t/ D e2˛wtF.r; ˚/ ; (12.39)

where F.r; ˚/ is any arbitrary but differentiable function of r and ˚ and the phase
˚ is defined by

˚ D � C
q
!20 � ˛2w t D arctan

0
B@C!0 pw C ˛wwq

!20 � ˛2ww

1
CA C

q
!20 � ˛2w t : (12.40)

For very weak damping ˛w ! 0 and the solution (12.39) approaches (12.23)
where ˛w D 0 and �' D !0t as expected. Therefore even for finite damping
a particle distribution rotates in phase space although with a somewhat reduced
rotation frequency due to damping. The particle density � , however, changes
exponentially with time due to the factor e2˛wt. For damping ˛w > 0, we get an
increase in the phase space density at the distance R from the beam center. At
the same time the real particle oscillation amplitudes .w; pw/ are being reduced
proportional to e�˛wt and the increase in the phase space density at R reflects
the concentration of particles in the beam center from larger amplitudes due to
damping.

In conclusion we found that in systems where velocity dependent forces exist,
we have damping .˛w > 0/ or anti-damping .˛w < 0/ of oscillation amplitudes.
As has been discussed such forces do exist in accelerators leading to damping.
Mostly, however, the Vlasov equation is applied to situations where particles interact
with self or external fields that can lead to instabilities. It is the task of particle
beam dynamics to determine the nature of such interactions and to derive the
circumstances under which the damping coefficient ˛w, if not zero, is positive for
damping or negative leading to beam instability.

12.2 Damping of Oscillations in Electron Accelerators

In electron accelerators we are concerned mainly with damping effects caused
by the emission of synchrotron radiation. All six degrees of freedom for particle
motion are damped. Damping of energy oscillations occurs simply from the fact
that the synchrotron radiation power is energy dependent. Therefore a particle
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with a higher energy than the reference particle radiates more and a particle
with less energy radiates less. The overall effect is that the energy deviation is
reduced or damped. Damping of the transverse motion is principally a geometric
effect. The photons of synchrotron radiation are emitted into the direction of
the particle motion. Therefore part of the energy loss is correlated to a loss in
transverse momentum. On the other hand, the lost energy is restored through
accelerating fields with longitudinal components only. The overall effect of an
energy loss during the course of betatron oscillations is therefore a loss of transverse
momentum which leads to a reduction in the transverse oscillation amplitude, an
effect we call damping. In the next section, we will discuss the physics leading
to damping and derive the appropriate damping decrement for different modes of
oscillations.

12.2.1 Damping of Synchrotron Oscillations

In a real beam particles are spread over a finite distribution of energies close to the
reference energy. The magnitude of this energy spread is an important parameter
to be considered for both beam transport systems as well as for experimental
applications of particle beams. In general, an energy spread as small as possible
is desired to minimize chromatic aberrations and for improved accuracy of experi-
mental observation. We will therefore derive the parametric dependence of damping
and discuss methods to reduce the energy spread within a particle beam.

To do this, we consider a beam of electrons being injected with an arbitrary
energy distribution into a storage ring ignoring incidental beam losses during the
injection process due to a finite energy acceptance. Particles in a storage ring
undergo synchrotron oscillations which are oscillations about the ideal momentum
and the ideal longitudinal position. Since energy and time or equivalently energy
and longitudinal position are conjugate phase space variables, we will investigate
both the evolution of the energy spread as well as the longitudinal distribution or
bunch length of the particle beam.

The evolution of energy spread or bunch length of the particle beam will depend
very much on the nature of particles and their energy. For heavy particles like
protons or ions there is no synchrotron radiation damping and therefore the phase
space for such beams remains constant. As a consequence, the energy spread or
bunch length also stays a constant. A similar situation occurs for electrons or
positrons at very low energies since synchrotron radiation is negligible. Highly
relativistic electrons, however, produce intense synchrotron radiation leading to a
strong damping effect.

The damping decrement ˛w is defined in the Vlasov equation by

@f

@w
C @g

@p
D �2˛w (12.41)
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Fig. 12.3 Longitudinal
particle position

τ>0
ct = s

particle bunch

reference par-
ticle

and can be calculated with the knowledge of the functions f and g. For the
conjugate variables .w; pw/we use the time deviation of a particle with respect to the
synchronous particle w D 
 as shown in Fig. 12.3 and the difference of the particle’s
energy E from the synchronous or reference energy E0 and set pw D 	 D E � E0.

Since f D d

dt D P
 and g D d	

dt D P	 we have to determine the rate of change for
the conjugate variables. The rate of change of 
 is from (9.17) with cp0 � E0

d


dt
D ��ch

	

E0
; (12.42)

where we have replaced the phase by the time P D cˇhk0 P
 and the relative
momentum error by the relative energy error since we consider here only highly
relativistic particles. The latter replacement is a matter of convenience since we will
be using the energy gain in accelerating fields.

The energy rate of change P	 is the balance of the energy gained in accelerating
fields and the energy lost due to synchrotron radiation or other losses

P	 D 1

T
ŒeVrf .
s C 
/ � U.Es C 	/� : (12.43)

Here T is the time it takes the particles to travel the distance L. The energy
gain within the distance L for a particle traveling a time 
 behind the reference
or synchronous particle is eVrf .
s C 
/ and U is the energy loss to synchrotron
radiation along the same distance of travel. here we assume the energy gain or loss
to be distributed evenly over the length of L.

Before we go on, we apply these expressions to the simple situation of a linear
accelerator of length L where the momentum compaction factor vanishes ˛c D 0

and where there is no energy loss due to synchrotron radiation U � 0. Furthermore,
we ignore for now other energy losses and have with �c D 1=�2

f D P
 D 1
ˇ2�2

	
E ;

g D P	 D 1
T eVrf .
s C 
/ :

(12.44)

Inserted into (12.41) we find the damping decrement to vanish which is consistent
with the constancy of phase space. From the Vlasov equation we learn that in the
absence of damping the energy spread 	 stays constant as the particle beam gets
accelerated.
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The Vlasov equation still can be used to also describe adiabatic damping but we
need to use the relative energy spread as one of the variables. Instead of the second
equation (12.44) we have then with ı D 	

E

g D d

dt
ı D

	
Et

� 	
E0

�t
; (12.45)

where E0 and Et are the energies time t0 and t D t0Cdt; respectively. We choose
the time interval dt small enough so that the energy increase dE D adt � E0 and
get

g D � 	

Et

a

E0
: (12.46)

The damping decrement becomes from (12.41) with ı D 	
E and @f=@
 D 0

@g

@ı
D � a

E0
D �2˛w D 1

ı

dı

dt
(12.47)

and after integration

Z
dı

ı
D ln

ı

ı0
D �

Z
a

E0
dt D �

Z
dE

E0
D C ln

E0

Et
(12.48)

or

ı

ı0
D E0

Et
: (12.49)

The relative energy spread in the beam is reduced during acceleration inversely
proportional to the energy. The reduction of the relative energy spread is called
adiabatic damping. This name is unfortunate in the sense that it does not
actually describe a damping effect in phase space as we just found out but
rather describes the variation of the relative energy spread with energy which
is merely a consequence of the constant phase space density or Liouville’s
theorem.

Returning to the general case (12.43) we apply a Taylor’s expansion to the rf-
voltage in (12.44) and get for terms on the r.h.s. keeping only linear terms

e Vrf.
s C 
/ D eVrf.
s/C e
@Vrf

@


ˇ̌
ˇ̌

s


 ; (12.50)

�U.Es C 	/ D �U.Es/� @U

@E

ˇ̌̌
ˇ
Es

	 : (12.51)
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Since the energy gain from the rf-field eVrf.
s/ for the synchronous particle just
compensates its energy loss U.Es/, we have instead of (12.43) now

P	 D 1

T

"
e PVrf.
s/ 
 � @U

@E

ˇ̌̌
ˇ
Es

	

#
; (12.52)

where we have set PVrf D @Vrf
@


. The synchrotron oscillation damping decrement can
now be derived from (12.41) with (12.44), (12.52) to give

˛s D C 1
2

1

T

@U

@E

ˇ̌
ˇ̌
Es

: (12.53)

We will now derive the damping decrement for the case that the energy loss
is only due to synchrotron radiation. The energy loss along the transport line L is
given by

Us D 1

c

Z L

0

P�ds ; (12.54)

where P� is the synchrotron radiation power and the integration is taken along the
actual particle trajectory s. If �.z/ is the bending radius along z, we have ds

dz D 1C x
�
:

With x D xˇ C � 	
Es

and averaging over many betatron oscillations, we get hxˇi D 0

and

ds

dz
D 1C �

�

	

E
: (12.55)

This asymmetric averaging of the betatron oscillation only is permissible if
the synchrotron oscillation frequency is much lower than the betatron oscillation
frequency as is the case in circular accelerators. With ds D Œ1 C .�=�/.	=Es/�dz
in (12.54), the energy loss for a particle of energy Es C 	 is

Us.Es C 	/ D 1

c

Z
L

P�

�
1C �

�

	

Es

�
dz (12.56)

or after differentiation with respect to the energy

@Us

@E

ˇ̌
ˇ̌
Es

D 1

c

Z
L

�
dP�
dE

C P�
�

�

1

Es

�
Es

dz : (12.57)

The synchrotron radiation power is proportional to the square of the energy and
the magnetic field P� � E2s B20 which we use in the expansion

dP�
dE

D @P�
@E

C @P�
@B0

@B

@E
D 2

P�
Es

C 2
P�
B

@B

@x

@x

@E
: (12.58)
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The variation of the synchrotron radiation power with energy depends directly
on the energy but also on the magnetic field if there is a field gradient @B

@x and a finite
dispersion function � D Es

@x
@E . The magnetic field as well as the field gradient is to

be taken at the reference orbit. Collecting all these terms and setting 1
B0

@B
dx D � k we

get for (12.57)

@Us

@E

ˇ̌̌
ˇ
Es

D 1

c

Z
L

�
2

P�
Es

C 2
P�
Es
�k�C P�

Es

�

�

�ˇ̌̌
ˇ
Es

dz (12.59)

D Us

Es

2
42C 1

cUs

Z
L

P��

�
1

�
C 2�k

�ˇ̌
ˇ̌
Es

dz

3
5 ;

where we have made use of Us D 1
c

R
L P� .Es/ dz. Recalling the expressions for

the synchrotron radiation power and energy loss P� D C� E4s=�
2 and Us D

C�E4s
R

dz=�2, we may simplify (12.59) for

@U

@E

ˇ̌
ˇ̌
Es

D Us

Es
.2C #/ ; (12.60)

where the #-parameter has been introduced in (11.25). We finally get from (12.53)
with (12.60) the damping decrement for synchrotron oscillations

˛	 D Us

2TEs
.2C #/ D Us

2TEs
J	D hP�i

2Es
J	 ; (12.61)

in full agreement with results obtained earlier. Since all parameters except # are
positive we have shown that the synchrotron oscillations for radiating particles are
damped. A potential situation for anti-damping can be created if # < �2.

To calculate the damping decrement, we assume accelerating fields evenly
distributed around the ring to restore the lost energy. In practice this is not true
since only few rf-cavities in a ring are located at one or more places around the ring.
As long as the revolution time around the ring is small compared to the damping
time, however, we need not consider the exact location of the accelerating cavities
and may assume an even and uniform distribution around the ring.

12.2.2 Damping of Vertical Betatron Oscillations

Particles orbiting in a circular accelerator undergo transverse betatron oscillations.
These oscillations are damped in electron rings due to the emission of synchrotron
radiation. First we will derive the damping decrement for the vertical betatron oscil-
lation. In a plane accelerator with negligible coupling this motion is independent
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of other oscillations. This is not the case for the horizontal betatron motion which
is coupled to the synchrotron oscillation due to the presence of a finite dispersion
function. We will therefore derive the vertical damping decrement first and then
discuss a very general theorem applicable for the damping in circular accelerators.
This theorem together with the damping decrement for the synchrotron and vertical
betatron oscillations will enable us to derive the horizontal damping in a much
simpler way than would be possible in a more direct way.

In normalized coordinates the functions f and g are for the vertical plane

dw

d'
D C�p D f .w; p; '/ ; (12.62)

dp

d'
D ��w D g.w; p; '/ ; (12.63)

where � D �y;w D y=
p
ˇy;

1
�y

dw
d' D p

ˇyy0 � 1
2

ˇ0yp
ˇy

y and �y' D  y is the vertical

betatron phase.
Due to the emission of a synchrotron radiation photon alone the particle does not

change its position y nor its direction of propagation y0. With this we derive now
the damping within a path element �z which includes the emission of photons as
well as the appropriate acceleration to compensate for that energy loss. Just after the
emission of the photon but before the particle interacts with accelerating fields let
the transverse momentum and total energy be p? and Es,respectively. The slope of
the particle trajectory is therefore (Fig. 12.4)

y0
0 D cp?

ˇEs
: (12.64)

Energy is transferred from the accelerating cavity to the particle at the rate of the
synchrotron radiation power P� and the particle energy increases in the cavity of
length �z from Es to Es C P�

�z
ˇ c and the slope of the particle trajectory becomes at

the exit of the cavity of length�z due to this acceleration

y0
1 D cp?

ˇEs C P�
�z
c

� cp?
ˇEs

�
1 � P�

ˇEs

�z

c

�
: (12.65)

Fig. 12.4 Acceleration and
damping
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We are now in a position to express the functions f and g in terms of physical
parameters. The function f is expressed by

f D �w

�'
D y1 � y0p

ˇy�'
D y0

0p
ˇy

�z

�'
D �

q
ˇyy0

0; (12.66)

where we made use of �' D �z=.�ˇ/. The damping decrement will depend on
the derivation df

dw which can be seen from (12.66) to vanish since f does not depend
on w

@f

@w
D 0: (12.67)

The variation of the conjugate variable p with phase is from (12.62)

�p

�'
D

dw1
d' � dw0

d'

� �'
: (12.68)

From linear beam dynamics, we find

dw1
d'

� dw0
d'

D
q
ˇy.y

0
1 � y0

0/� 1

2

ˇ0
yp
ˇy

.y1 � y0/ (12.69)

and get with (12.65), (12.66)

g.w; p; '/ D �p

�'
D

�p
ˇy

P�
ˇcEs

�zy0
0 C F.y/

��'
: (12.70)

The function F.y/ is a collection of y-dependent terms that become irrelevant for
our goal. Damping will be determined by the value of the derivative @g

@p which with

y0
0 D 1p

ˇy

dw
d' C 1

2
ˇ0

y
1
ˇy

y0 becomes

@g

@p
D �

@g

@ dw
d'

D P�
ˇcEs

�z

�'
: (12.71)

In the derivation of (12.71) we have used the betatron phase as the “time” and
get therefore the damping per unit betatron phase advance. Transforming to the real
time with �z

ˇc�' D Trev
2�

and (12.41)

@g

@p
D P�

Es

Trev

2�
D �2˛y

Trev

2�
(12.72)



12.2 Damping of Oscillations in Electron Accelerators 419

and solving for the vertical damping decrement

˛y D �hP� i
2Es

: (12.73)

In this last equation, we have used the average synchrotron radiation power which
is the appropriate quantity in case of a non-isomagnetic ring. The damping of the
vertical betatron function is proportional to the synchrotron radiation power. This
fact can be used to increase damping when so desired by increasing the synchrotron
radiation power from special magnets in the lattice structure.

12.2.3 Robinson’s Damping Criterion

The general motion of charged particles extends over all six degrees of freedom
in phase space and therefore the particle motion is described in six-dimensional
phase space as indicated in the general Vlasov equation (12.17). It is, however,
a fortunate circumstance that it is technically possible to construct accelerator
components in such a fashion that there is only little or no coupling between
different pairs of conjugate coordinates. As a consequence, we can generally treat
horizontal betatron oscillations separate from the vertical betatron oscillations and
both of them separate from synchrotron oscillations. Coupling effects that do occur
will be treated as perturbations. There is some direct coupling via the dispersion
function between synchrotron and particularly the horizontal betatron oscillations
but the frequencies are very different with the synchrotron oscillation frequency
being in general much smaller than the betatron oscillation frequency. Therefore in
most cases the synchrotron oscillation can be ignored while discussing transverse
oscillations and we may average over many betatron oscillations when we discuss
synchrotron motion.

A special property of particle motion in six-dimensional phase space must be
introduced allowing us to make general statements about the overall damping effects
in a particle beam. We start from the Vlasov equation (12.17)

@�

@t
C f r r� C gr p� D � �r r f C r p g

�
� (12.74)

and define a total damping decrement ˛t by setting

r rf C r pg D �2˛t : (12.75)

The total damping decrement is related to the individual damping decrements of
the transverse and longitudinal oscillations but the precise dependencies are not yet
obvious. In the derivation of (12.17), we have expanded the functions f and g in
a Taylor series neglecting all terms of second or higher order in time and got as a
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result the simple expression (12.75) for the overall damping. Upon writing (12.75) in
component form, we find from the components of the l.h.s. that the overall damping
decrement ˛t is just the sum of all three individual damping decrements and we may
therefore set

r r f C rpg D �2˛t D �2.˛x C ˛y C ˛	/ : (12.76)

From this equation and the linearity of the functions f and g describing the
physics of the dynamical system general characteristics of the damping process can
be derived. The damping decrement does not depend on the dynamic variables of
the particles and coupling terms do not contribute to damping. The damping rate
is therefore the same for all particles within a beam. In the following paragraphs,
we will discuss in more detail the general characteristics of synchrotron radiation
damping. Specifically, we will determine the functions f and g and derive an
expression for the total damping.

We consider a small section of a beam transport line or circular accelerator
including all basic processes governing the particle dynamics. These processes are
focusing, emission of photons and acceleration. All three processes are assumed
to occur evenly along the beam line. The six-dimensional phase space to be
considered is

.x; x0; y; y0; 
; 	/ : (12.77)

During the short time �t some of the transverse coordinates change and it is
those changes that determine eventually the damping rate. Neither the emission
of a synchrotron radiation photon nor the absorption of energy in the accelerating
cavities causes any change in the particle positions x; y; and 
 . Indicating the initial
coordinates by the index 0 and setting ˇc�t D �z we get for the evolution of the
particle positions within the length element�z in the three space dimensions

x D x0 C x0
0�z ;

y D y0 C y0
0�z ; (12.78)


 D 
0 C �c
	0

Es

�z

ˇc
:

The conjugate coordinates vary in a somewhat more complicated way. First
we note that the Vlasov equation does not require the conjugate coordinates to
be canonical variables. Indeed this derivation will become simplified if we do
not use canonical variables but use the slopes of the particle trajectories with the
reference path and the energy deviation. The change of the slopes due to focusing
is proportional to the oscillation amplitude and vanishes on average. Emission of a
synchrotron radiation photon occurs typically within an angle of ˙1=� causing a
small transverse kick to the particle trajectory. In general, however, this transverse
kick will be very small and we may assume for all practical purposes the slope
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of the transverse trajectory not to be altered by photon emission. Forces parallel
to the direction of propagation of the particles can be created, however, through
the emission of synchrotron radiation photons. In this case, the energy or energy
deviation of the particle will be changed like

	 D 	0 � P�
�z

ˇc
C Prf

�z

ˇc
: (12.79)

Here we use the power P� to describe the synchrotron radiation energy loss rate
a particle may suffer during the time ˇc�t D �z. No particular assumption has
been made about the nature of the energy loss except that during the time �t it be
small compared to the particle energy. To compensate this energy loss the particles
become accelerated in rf-cavities. The power Prf is the energy flow from the cavity
to the particle beam, not to be confused with the total power the rf-source delivers
to the cavity.

The transverse slopes x0 and y0 are determined by the ratio of the transverse to
the longitudinal momentum u0 D pu=pz where u stands for x or y, respectively.
During acceleration in the rf-cavity the transverse momentum does not change but
the total kinetic energy increases from Es to Es C Prf

�z
ˇc and the transverse slope of

the trajectory is reduced after a distance �z to

u0 D cpu

cpz C Prfˇ
�z
ˇc

� u0
0 � Prf

Es

�z

ˇc
u0
0 : (12.80)

Explicitly, the transverse slopes vary now like

x0 D x0
0 � Prf

Es

�z
ˇc x0

0 ;

y0 D y0
0 � Prf

Es

�z
ˇc y0

0 :
(12.81)

All ingredients are available now to formulate expressions for the functions f and g
in component form

f D
�

x0
0; y0

0; �c
	

Es

	
;

g D
�
� Prf

Es
x0
0;� Prf

Es
y0
0;�P� C Prf

	
:

(12.82)

With these expressions we evaluate (12.76) and find that rrf D 0. For the
determination of rpg we note that the power Prf from the cavity is just equal to the
average radiation power

˝
P�

˛
and the derivative of the radiation power with respect

to the particle energy is

� @P�
@	

D �2P�
Es
: (12.83)
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Finally, we note that the rf-power Prf is equal to the average radiation power
˝
P�

˛
and get from (12.76)

˛x C ˛y C ˛	 D 2

˝
P�

˛
Es
: (12.84)

The sum of all damping decrements is a constant, a result which has been
derived first by Robinson [1] and is known as the Robinson criterion. The total
damping depends only on the synchrotron radiation power and the particle energy
and variations of magnetic field distribution in the ring keeping the radiation power
constant will not affect the total damping rate but may only shift damping from one
degree of freedom to another.

12.2.4 Damping of Horizontal Betatron Oscillations

With the help of the Robinson criterion, the damping decrement for the horizontal
betatron oscillation can be derived by simple subtraction. Inserting (12.61), (12.75)
into (12.84) and solving for the horizontal damping decrement we get

˛x D
˝
P�

˛
2Es

.1 � #/: (12.85)

The damping decrements derived from the Vlasov equation agree completely
with the results obtained in Sect. 11.2 by very different means.

No matter what type of magnet lattice we use, the total damping depends only on
the synchrotron radiation power and the particle energy. We may, however, vary the
distribution of the damping rates through the #-parameter to different oscillation
modes by proper design of the focusing and bending lattice in such a way that
one damping rate is modified in the desired way limited only by the onset of
anti-damping in another mode. Specifically, this is done by introducing gradient
bending magnets with a field gradient such as to produce the desired sign of the #
parameter.

12.3 The Fokker–Planck Equation

From the discussions of the previous section it became clear that the Vlasov
equation is a useful tool to determine the evolution of a multiparticle system
under the influence of forces depending on the physical parameters of the system
through differentiable functions. If, however, the dynamics of a system in phase
space depends only on its instantaneous physical parameters where the physics of
the particle dynamics cannot be expressed by differentiable functions, the Vlasov
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equation will not be sufficient to describe the full particle dynamics. A process
which depends only on the state of the system at the time t and not on its history is
called a Markoff process.

In particle beam dynamics we have frequently the appearance of such processes
where forces are of purely statistical nature like those caused, for example, by
the quantized emission of synchrotron radiation photons or by collisions with
other particles within the same bunch or residual gas atoms. To describe such a
situation we still have variations of the coordinates per unit time similar to those
in (12.2) but we must add a term describing the statistical process and we set
therefore

Pw D fw.w; pw; t/C
X


i ı.t � ti/ ; (12.86)

Ppw D gw.w; pw; t/C
X

�i ı.t � ti/ ; (12.87)

where 
i and �i are instantaneous statistical changes in the variables w and pw with
a statistical distribution in time ti and where ı.t � ti/ is the Dirac delta function. The
probabilities Pw.
/ and Pp.�/ for statistical occurrences with amplitudes 
 and �
be normalized and centered

R
Pw.
/ d
 D 1 ;

R
Pw.
/
 d
 D 0 ;R

Pp.�/ d� D 1 ;
R

Pp.�/� d� D 0 :
(12.88)

The first equations normalize the probability amplitudes and the second equa-
tions are true for symmetric statistical processes. The sudden change in the
amplitude by �wi or in momentum by �pwi due to one such process is given by

�wi D
Z

i ı.t � ti/ dt D 
i ; (12.89a)

�pwi D
Z
�i ı.t � ti/ dt D �i : (12.89b)

Analogous to the discussion of the evolution of phase space in the previous
section, we will now formulate a similar evolution including statistical processes.
At the time tC�t, the particle density in phase space is taken to be �.w; pw; tC�t/
and we intend to relate this to the particle density at time t. During the time interval
�t there are finite probabilities Pw.
/; Pp.�/ that the amplitude .w � 
/ or the
momentum .pw � �/ be changed by a statistical process to become w or pw at time
t. This definition of the probability function also covers the cases where particles
during the time �t either jump out of the phase space area �AP or appear in the
phase space area �AQ.

To determine the number of particles ending up within the area �AQ, we look
at all area elements �AP which at time t are a distance �w D 
 and �pw; D �

away from the final area element �AQ at time t C �t. As a consequence of our
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assumption that the particle density is only slowly varying in phase space, we may
assume that the density � is uniform within the area elements �AP eliminating the
need for a local integration. We may now write down the expression for the phase
space element and the particle density at time t C�t by integrating over all values
of 
 and �

I D �AP

Z C1

�1

Z C1

�1
�.w � 
; pw � �; t/Pw.
/Pp.�/ d
d� ; (12.90)

where we used the abbreviation I D �.w C fw�t; pw C gw�t; t C �t/ �AQ:

The volume elements �AP and �AQ are given by (12.5), (12.6), respectively.
The statistical fluctuations may in general be of any magnitude. In particle beam
dynamics, however, we find that the fluctuations with reasonable probabilities are
small compared to the values of the variables w and pw. The phase space density
can therefore be expanded into a Taylor series where we retain linear as well as
quadratic terms in 
 and �

�.w � 
; pw � �; t/ D �0 � 
 @�0
@w

� �
@�0

@pw
(12.91)
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where �0 D �.w; pw; t/ and we finally get for the integrals with (12.88)

I D �0 C 1
2
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Z

2Pw.
/ d
 C 1

2

@2�0

@p2w

Z
�2Pp.�/ d� : (12.92)

For simplicity, we leave off the integration limits which are still from �1 to C1.
If we now set N to be the number of statistical occurrences per unit time we may
simplify the quadratic terms on the r.h.s. of (12.92) by setting

1
2

Z

2Pw.
/ d
 D 1

2

˝N
 

2
˛
�t ; (12.93)

1
2

Z
�2Pp.�/ d� D 1

2

˝N��
2
˛
�t ; (12.94)

and get similarly to the derivation of the Vlasov equation in Sect. 12.1
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:
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This partial differential equation is identical to the Vlasov equation except for the
statistical excitation terms and is called the Fokker–Planck equation [2]. We define
diffusion coefficients describing the flow in 
 and � space by

D
 D 1
2

˝N∼
2
˛
; (12.96)

D� D 1
2

˝N≈�2
˛
; (12.97)

and the Fokker–Planck equation becomes finally

@�
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C fw
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@w
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@�
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D 2˛w� C D
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C D�

@2�

@p2w
: (12.98)

For the case of damped oscillators the Fokker–Planck equation can be derived
similar to (12.35) and is

@�

@t
C!0pw

@�

@w
� .!0w C 2˛wpw/

@�

@pw
D 2˛w� C D


@2�

@w2
C D�

@2�

@p2w
: (12.99)

This form of the Fokker–Planck equation will be very useful to describe a particle
beam under the influence of diffusion processes. In the following section, we will
derive general solutions which will be applicable to specific situations in accelerator
physics.

12.3.1 Stationary Solution of the Fokker–Planck Equation

A unique stationary solution exists for the particle density distribution described by
the partial differential equation (12.98). To derive this solution we transform (12.98)
to cylindrical coordinates .w; pw/ ! .r; �/ with w D r cos � and pw D r sin �
and note terms proportional to derivatives of the phase space density with respect
to the angle � . One of these terms !0�� exists even in the absence of diffusion
and damping and describes merely the betatron motion in phase space while the
other terms depend on damping and diffusion. The diffusion terms will introduce
a statistical mixing of the phases � and after some damping times any initial
azimuthal variation of the phase space density will be washed out. We are here only
interested in the stationary solution and therefore set all derivatives of the phase
space density with respect to the phase � to zero. In addition we find it necessary to
average square terms of cos � and sin � . With these assumptions the Fokker–Planck
Equation (12.98) becomes after some manipulations in the new coordinates

d�

dt
D 2˛w�C

�
˛wr C D

r

�
@�

@r
C D

@2�

@r2
; (12.100)
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where we have defined a total diffusion coefficient

D D 1
2
.D
 C D�/ : (12.101)

Equation (12.100) has some similarity with, for example, wave equations in
quantum mechanics which are solved by the method of separation of variables
and we expect the stationary solution for the phase space density to be of the form
�.r; t/ D P

n Fn.t/Gn.r/. The solution Gn.r/ must meet some particular boundary
conditions. Specifically, at time t D 0, we may have any arbitrary distribution of the
phase space density Gn0.r/. Furthermore, we specify that there be a wall at r D R
beyond which the phase space density drops to zero and consequently, the boundary
conditions are

Gn.r < R/ D Gn0.r/ ;
Gn.r > R/ D 0 :

(12.102)

By the method of separation of the constants we find for the functions Fn.t/

Fn.t/ D const: e�˛n t ; (12.103)

where the quantity �˛n is the separation constant. The general form of the
solution for (12.100) may now be expressed by a series of orthogonal functions or
eigenmodes of the distribution Gn.r/ which fulfill the boundary conditions (12.102)

�.r; t/ D
X
n�0

cnGn.r/ e�˛n t : (12.104)

The amplitudes cn in (12.104) are determined such as to fit the initial density
distribution

�0.r; t D 0/ D
X
n�0

cnGn0.r/ : (12.105)

With the ansatz (12.104) we get from (12.100) for each of the eigenmodes the
following second-order differential equation:

@2Gn

@r2
C

�
1

r
C ˛w

D
r

�
@Gn

@r
C ˛w

D

�
2C ˛n

˛w

�
Gn D 0 : (12.106)

All terms with a coefficient ˛n > 0 vanish after some time due to damping (12.103).
Negative values for the damping decrements ˛n < 0 define instabilities which
we will not consider here. Stationary solutions, therefore require the separation
constants to be zero ˛n D 0. Furthermore, all solutions Gn must vanish at the
boundary r D R where R may be any value including infinity if there are no physical
boundaries at all to limit the maximum particle oscillation amplitude. In the latter
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case where there are no walls, the differential equation (12.106) can be solved by
the stationary distribution

�.r; t/ D
X
n�0
˛nD0

cn Gn.r/ / exp
�
� ˛w

2D
r2

	
; (12.107)

which can easily be verified by backinsertion into (12.106). The solution for the
particle distribution in phase space under the influence of damping ˛w and statistical
fluctuations D is a Gaussian distribution with the standard width

�r D
s

D

˛w
: (12.108)

Normalizing the phase space density the stationary solution of the Fokker–
Planck equation for a particle beam under the influence of damping and statistical
fluctuations is

�.r/ D 1p
2��r

e�r2=2�2r : (12.109)

Eigenfunctions for which the eigenvalues ˛n are not zero, are needed to describe
an arbitrary particle distribution, e.g., a rectangular distribution at time t D 0. The
Fokker–Planck equation, however, tells us that after some damping times these
eigensolutions have vanished and the Gaussian distribution is the only stationary
solution left. The Gaussian distribution is not restricted to the r-space alone.
The particle distribution in equilibrium between damping and fluctuations is also
Gaussian in the normalized phase space .w; pw/ as well as in real space. With
r2 D w2 C p2w we get immediately for the density distribution in .w; pw/-space

�.w; pw/ D 1

2��w�pw

e�w2=2�2w e�p2w=2�
2
pw ; (12.110)

where we have set �w D �pw D
q

D
˛w

. The standard deviation in w and pw is the same

as for r which is to be expected since all three quantities have the same dimension
and are linearly related.

In real space we have for u D x or y by definition u D p
ˇuw and p D Pw

�
where

Pw D dw
d' . On the other hand, p D p

ˇxx0 � ˇ0

2
p
ˇ

x and inserted into (12.107) we get
the density distribution in real space

�.u; u0/ / exp

�
��uu2 � ˇ0

u uu0 C ˇuu02

2 �2w

�
: (12.111)
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This distribution describes the particle distribution in real phase space where
particle trajectories follow tilted ellipses. Note that we carefully avoid replacing the
derivative of the betatron function with ˇ0 D �2˛ because this would lead to a
definite confusion between the damping decrement and the betatron function. To
further reduce confusion we also use the damping times 
i D ˛�1

i . Integrating the
distribution (12.111) for all values of the angles u0, for example, gives the particle
distribution in the horizontal or vertical midplane. Using the mathematical relationR 11e�p2x2˙qxdx D

p
�

p eq2=.4p2/ [3], we get

�. u / D 1p
2 �

p
ˇu�w

e�u2=2�2u ; (12.112)

where the standard width of the horizontal Gaussian particle distribution is

�u D
p
ˇ�w D

p
ˇ

p

uDu: (12.113)

The index u has been added to the diffusion and damping terms to indicate that
these quantities are in general different in the horizontal and vertical plane. The
damping time depends on all bending magnets, vertical and horizontal, but only on
the damping-partition number for the plane under consideration. Similar distinction
applies to the diffusion term.

In a similar way, we get the distribution for the angles by integrating (12.111)
with respect to u

�.u0/ D
p
ˇ

p
2�

q
1C 1

4
ˇ0 2�w

exp

"
� ˇ u0 2

2.1C1
4
ˇ0 2/ �2w

#
; (12.114)

where the standard width of the angular distribution is

� 0
u D

s
4C ˇ0 2

4ˇ
�w D

s
4C ˇ0 2

4ˇ

p

uDu: (12.115)

We have not made any special assumption as to the horizontal or vertical plane
and find in (12.112)–(12.115) the solutions for the particle distribution in both
planes.

In the longitudinal phase space the equations of motion are mathematically equal
to Eq. (12.11). First we define new variables

Pw D �˝s0

�c
P
; (12.116)
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where ˝s0 is the synchrotron oscillation frequency, �c the momentum compaction
and 
 the longitudinal deviation of a particle from the reference particle. The
conjugate variable we define by

p D � P	
E0
; (12.117)

where 	 is the energy deviation from the reference energy E0. After differentiation
of (12.52) and making use of (12.53) and the definition of the synchrotron oscillation
frequency, we use these new variables and obtain the two first-order differential
equations

Pw D C˝sp; (12.118)

Pp D �˝sw � 2˛	p: (12.119)

These two equations are of the same form as (12.11) and the solution of the
longitudinal Fokker–Planck equation is therefore similar to (12.112)–(12.115). The
energy distribution within a particle beam under the influence of damping and
statistical fluctuations becomes with p D ı D 	=E0

�.ı/ D 1p
2��ı

e�ı2=2�2ı ; (12.120)

where the standard value for the energy spread in the particle beam is defined by

�	

E0
D

p

	D	: (12.121)

In a similar way, we get for the conjugate coordinate 
 with w D ˝s
�c

 the distribution

�.
/ D 1p
2��


e�
2=2�2
 : (12.122)

The standard width of the longitudinal particle distribution is finally

�
 D j�cj
˝s

p

	D	: (12.123)

The deviation in time 
 of a particle from the synchronous particle is equivalent
to the distance of these two particles and we may therefore define the standard value
for the bunch length from (12.123) by

�` D cˇ
j�cj
˝s

p

	D	: (12.124)
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By application of the Fokker–Planck equation to systems of particles under the
influence of damping and statistical fluctuations, we were able to derive expressions
for the particle distribution within the beam. In fact, we were able to determine
that the particle distribution is Gaussian in all six degrees of freedom. Since such
a distribution does not exhibit any definite boundary for the beam, it becomes
necessary to define the size of the distributions in all six degrees of freedom by
the standard value of the Gaussian distribution. Specific knowledge of the nature
for the statistical fluctuations are required to determine the numerical values of the
beam sizes.

In Chap. 13 we will apply these results to determine the equilibrium beam
emittance in an electron positron storage ring where the statistical fluctuations are
generated by quantized emission of synchrotron radiation photons.

12.3.2 Particle Distribution within a Finite Aperture

The particle distribution in an electron beam circulating in a storage ring is a
Gaussian if we ignore the presence of walls containing the beam. All other modes of
particle distribution are associated with a finite damping time and vanish therefore
after a short time. In a real storage ring we must, however, consider the presence of
vacuum chamber walls which cut off the Gaussian tails of the particle distribution.
Although the particle intensity is very small in the far tails of a Gaussian distribution,
we cannot cut off those tails too tight without reducing significantly the beam
lifetime. Due to quantum excitation, we observe a continuous flow of particles from
the beam core into the tails and back by damping toward the core. A reduction of
the aperture into the Gaussian distribution absorbs therefore not only those particles
which populate these tails at a particular moment but also all particles which reach
occasionally large oscillation amplitudes due to the emission of a high energy
photon. The absorption of particles due to this effect causes a reduction in the beam
lifetime which we call the quantum lifetime.

The presence of a wall modifies the particle distribution especially close to the
wall. This modification is described by normal mode solutions with a finite damping
time which is acceptable now because any aperture less than an infinite aperture
absorbs beam particles thus introducing a finite beam lifetime. Cutting off Gaussian
tails at large amplitudes will not affect the Gaussian distribution in the core and
we look therefore for small variations of the Gaussian distribution which become
significant only quite close to the wall. Instead of (12.107) we try the ansatz

�.r; t/ D e� ˛w
2D r2g.r/ e�˛t ; (12.125)

where 1=˛ is the time constant for the distribution, with the boundary condition that
the particle density be zero at the aperture or acceptance defining wall r D A or

�.A; t/ D 0 : (12.126)
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Equation (12.125) must be a solution of (12.100) and back insertion of (12.125)
into (12.100) gives the condition on the function g.r/

g00 C
�
1

r
� r

�2

�
g0 C ˛

˛w �2
g D 0 : (12.127)

Since g.r/ D 1 in case there is no wall, we expand the correction into a power series

g.r/ D 1C
X
k�1

Ck xk ; where x D r2

2�2
: (12.128)

Inserting (12.128) into (12.127) and collecting terms of equal powers in r we derive
the coefficients

Ck D 1

.kŠ/2

pDkY
pD1
.p � 1 � X/ � � .k � 1/Š

.kŠ/2
X ; (12.129)

where X D ˛
2˛w

� 1. The approximation X � 1 is justified since we expect the
vacuum chamber wall to be far away from the beam center such that the expected
quantum lifetime 1=˛ is long compared to the damping time 1=˛w of the oscillation
under consideration. With these coefficients (12.128) becomes

g.r/ D 1 � ˛

2˛w

X
k�1

1

k kŠ
xk : (12.130)

For x D A2=.2�2/ � 1 where A is the amplitude or amplitude limit for the
oscillation w, the sum in (12.130) can be replaced by an exponential function

X
k�1

1

k kŠ
xk � ex

x
: (12.131)

From the condition g.A/ D 0 we finally get for the quantum lifetime 
q D 1=˛


q D 1
2

w

ex

x
; (12.132)

where

x D A2

2�2
: (12.133)

The quantum lifetime 
q is related to the damping time. To make the quantum
life time very large of the order of 50 or more hours, the aperture must be at least
about 7�w in which case x D 24:5 and ex=x D 1:8 � 109.
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The aperture A is equal to the transverse acceptance of a storage ring for a one-
dimensional oscillation like the vertical betatron oscillation while longitudinal or
energy oscillations are limited through the maximum energy acceptance allowed by
the rf-voltage. Upon closer look, however, we note a complication for horizontal
betatron oscillations and synchrotron oscillations because of the coupling from
energy oscillation into transverse position due to a finite dispersion function. We
also have assumed that ˛=.2˛w/ � 1 which is not true for tight apertures of less
than one sigma. Both of these situations have been investigated in detail [4, 5] and
the interested reader is referred to those references.

Specifically, if the acceptance A of a storage ring is defined at a location where
there is also a finite dispersion function, Chao [4] derives a combined quantum
lifetime of


 D en2=2

p
2�˛xn3

1

.1C r/
p

r .1 � r/
; (12.134)

where n D A=�T , �2
T

D �2x C �2�2ı , r D �2�2ı =�
2
T
, A the transverse aperture, � the

dispersion function at the same location where the aperture is A, �x the transverse
beam size and �ı D �	=E the standard relative energy width in the beam.

12.3.3 Particle Distribution in the Absence of Damping

To obtain a stationary solution for the particle distribution it was essential that there
were eigensolutions with vanishing eigenvalues ˛n D 0. As a result, we obtained an
equilibrium solution where the statistical fluctuations are compensated by damping.
In cases where there is no damping, we would expect a different solution with
particles spreading out due to the effect of diffusion alone. This case can become
important in very high energy electron positron linear colliders where an extremely
small beam emittance must be preserved along a long beam transport line. The
differential equation (12.106) becomes in this case

@2Gn

@r2
C 1

r

@Gn

@r
C ˛n

D
Gn D 0 : (12.135)

We will assume that a beam with a Gaussian particle distribution is injected into
a damping free transport line and we therefore look for solutions of the form

�n.r; t/ D cnGn.r/ e�˛nt ; (12.136)

where

Gn.r/ D e�r2=2�20 (12.137)
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with �0 being the beam size at t D 0. We insert (12.137) into (12.135) and obtain an
expression for the eigenvalues ˛n

˛n D 2D

�20
� D

�40
r2 : (12.138)

The time dependent solution for the particle distribution now becomes

�.r; t/ D A exp
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�20
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�
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� �
1 � 2D

�20
t

��
: (12.139)

Since nowhere a particular mode is used we have omitted the index n. The
solution (12.139) exhibits clearly the effect of the diffusion in two respects. The
particle density decays exponentially with the decrement 2D=�20 . At the same time
the distribution remains to be Gaussian although being broadened by diffusion. The
time dependent beam size � is given by

�2.t/ D �20

1 � 2D
�20

t
� �20

�
1C 2D

�20
t

�
; (12.140)

where we have assumed that the diffusion term is small .2D=�20 /t � 1. Setting
�2 D �2u D 	uˇu for the plane u where ˇu is the betatron function at the observation
point of the beam size �u. The time dependent beam emittance is

	u D 	u0 C 2D

ˇu
t (12.141)

or the rate of change

d	u

dt
D 2D

ˇu
D D
 C D�

ˇu
: (12.142)

Due to the diffusion coefficient D we obtain a continuous increase of the beam
emittance in cases where no damping is available.

The Fokker–Planck diffusion equation provides a tool to describe the evolution
of a particle beam under the influence of conservative forces as well as statistical
processes. Specifically, we found that such a system has a stationary solution in
cases where there is damping. The stationary solution for the particle density is
a Gaussian distribution with the standard width of the distribution � given by the
diffusion constant and the damping decrement.

In particular, the emission of photons due to synchrotron radiation has the
properties of a Markoff process and we find therefore the particle distribution to be
Gaussian. Indeed we will see that this is true in all six dimensions of phase space.



434 12 Vlasov and Fokker–Planck Equations*

Obviously not every particle beam is characterized by the stationary solution of
the Fokker–Planck equation. Many modes contribute to the particle distribution and
specifically at time t D 0 the distribution may have any arbitrary form. However,
it has been shown that after a time long compared to the damping times only one
nontrivial stationary solution is left, the Gaussian distribution.

Problems

12.1 (S). Derive from the Vlasov equation an expression for the synchrotron
frequency while ignoring damping. A second rf-system with different frequency
can be used to change the synchrotron tune. Determine a system that would reduce
the synchrotron tune for the reference particle to zero while providing the required
rf-voltage at the synchronous phase. What is the relationship between both voltages
and phases? Is the tune shift the same for all particles?

12.2 (S). Formulate an expression for the equilibrium bunch length in a storage
ring with two rf-systems of different frequencies to control bunch length.

12.3 (S). Energy loss of a particle beam due to synchrotron radiation provides
damping. Show that energy loss due to interaction with an external electromagnetic
field does not provide beam damping.

12.4 (S). An arbitrary particle distribution of beam injected into a storage ring
damps out while a Gaussian distribution evolves with a standard width specific to
the ring design. What happens if a beam from another storage ring with a different
Gaussian distribution is injected? Explain why this beam changes its distribution to
the ring specific Gaussian distribution.

12.5 (S). Consider a 1.5 GeV electron storage ring with a bending field of
1.5 T. The circumference may be covered to 60 % by bending magnets. Let
the bremsstrahlung lifetime be 100 h, the Coulomb scattering lifetime 50 h and
the Touschek lifetime 60 h. Calculate the total beam lifetime including quantum
excitation as a function of aperture. How many “sigma’s” .A=�/ must the apertures
be in order not to reduce the beam lifetime by more than 10% due to quantum
excitation?

12.6. To reduce coupling instabilities between bunches of a multibunch beam it is
desirable to give each bunch a different synchrotron tune. This can be done, for
example, by employing two rf-systems operating at harmonic numbers h and h C 1.
Determine the ratio or required rf-voltages to split the tunes between successive
bunches by ��=�s.

12.7. Attempt to damp out the energy spread of a storage ring beam in the following
way. At a location where the dispersion function is finite one could insert a TM110-
mode cavity. Such a cavity produces accelerating fields which vary linear with
the transverse distance of a particle from the reference path. This together with a
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linear change in particle energy due to the dispersion would allow the correction
of the energy spread in the beam. Derive the complete Vlasov equation for such an
arrangement and discuss the six-dimensional dynamics. Show that it is impossible
to achieve a monochromatic stable beam.

12.8. Derive an expression for the diffusion due to elastic scattering of beam
particles on residual gas atoms. How does the equilibrium beam emittance of an
electron beam scale with gas pressure and beam energy? Determine an expression
for the required gas pressure to limit the emittance growth of a proton or ion beam
to no more than 1% per hour and evaluate numerical for a proton emittance of
10�9 rad-m at an energy of 300 GeV. Is this a problem if the achievable vacuum
pressure is 1 nTorr? Concentrating the allowable scattering to one location of 10 cm
length (gas jet as a target) in a ring of 4 km circumference, calculate the tolerable
pressure of the gas jet.

12.9. For future linear electron colliders it may be desirable to provide a switching
of the beams from one experimental detector to another. Imagine a linear collider
system with two experimental stations separated transversely by 50 m. To guide
the beams from the linear accelerators to the experimental stations use translating
FODO cells and determine the parameters required to keep the emittance growth of
a beam to less than 10% (beam emittance 10�11 rad-m at 500 GeV).
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