
Chapter 10
Periodic Focusing Systems

The fundamental principles of charged particle beam dynamics as discussed in
previous chapters can be applied to almost every beam transport need. Focusing and
bending devices for charged particles are based on magnetic or electric fields which
are specified and designed in such a way as to allow the application of fundamental
principles of beam optics leading to predictable results.

Beam transport systems can be categorized into two classes: The first group
includes beam transport lines which are designed to guide charged particle beams
from point A to point B. In the second class, we find beam transport systems or
magnet lattices forming circular accelerators. The physics of beam optics is the
same in both cases but in the design of actual solutions different boundary conditions
apply. Basic linear building blocks in a beam transport line are the beam deflecting
bending magnets, quadrupoles to focus the particle beam, and field free drift spaces
between magnets. Transformation matrices have been derived in Chap. 7 and we
will apply these results to compose more complicated beam transport systems. The
arrangement of magnets along the desired beam path is called the magnet lattice or
short the lattice.

Beam transport lines can consist of an irregular array of magnets or a repetitive
sequence of a group of magnets. Such a repetitive magnet sequence is called a
periodic magnet lattice, or short periodic lattice and if the magnet arrangement
within one period is symmetric this lattice is called a symmetric magnet lattice,
or short a symmetric lattice. By definition a circular accelerator lattice is a periodic
lattice with the circumference being the period length. To simplify the design and
theoretical understanding of beam dynamics it is customary, however, to segment
the full circumference of a circular accelerator into identical sectors which are
repeated a number of times to form the complete ring. Such sectors are called
superperiods and define usually most salient features of the accelerator in contrast
to much smaller periodic segments called cells, which include only a few magnets.

In this chapter, we concentrate on the study of periodic focusing structures. For
long beam transport lines and specifically for circular accelerators it is prudent to
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consider focusing structures that repeat periodically. In this case, one can apply
beam dynamics properties of one periodic lattice structure as many times as
necessary with known characteristics. In circular particle accelerators such periodic
focusing structures not only simplify the determination of beam optics properties
in a single turn but we will also be able to predict the stability criteria for particles
orbiting an indefinite number of revolutions around the ring.

To achieve focusing in both planes, we will have to use both focusing and
defocusing quadrupoles in a periodic sequence such that we can repeat a lattice
period any number of times to form an arbitrary long beam line which provides the
desired focusing in both planes.

10.1 FODO Lattice

The most simple periodic lattice would be a sequence of equidistant focusing
quadrupoles of equal strength. This arrangement is unrealistic with magnetic
quadrupole fields which do not focus in both the horizontal and vertical plane in
the same magnet. The most simple and realistic compromise is therefore a periodic
lattice like the symmetric quadrupole triplet which was discussed in Sect. 7.2.3. and
is shown schematically in Fig. 10.1.

Each half of such a lattice period is composed of a focusing (F) and a defocusing
(D) quadrupole with a drift space (O) in between forming a FODO sequence.
Combining such a sequence with its mirror image as shown in Fig. 10.1 results in
a periodic lattice which is called a FODO lattice or a FODO channel. By starting
the period in the middle of a quadrupole and continuing to the middle of the next
quadrupole of the same sign not only a periodic lattice but also a symmetric lattice
is defined. Such an elementary unit of focusing is called a lattice unit or in this
case a FODO cell. The FODO lattice is the most widely used lattice especially in
high energy accelerator systems because of its simplicity, flexibility, and its beam
dynamical stability.

z

FODO Period

½ QF QD ½ QF

Fig. 10.1 FODO-lattice (QF focusing quadrupole, QD defocusing quadrupole)
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10.1.1 Scaling of FODO Parameters

To determine the properties and stability criteria for a FODO period we restrict
ourselves to thin lens approximation, where we neglect the finite length of the
quadrupoles. The FODO period can be expressed symbolically by the sequence
1
2
QF-L-QD-L- 1

2
QF, where the symbol L represents a drift space of length L and

the symbols QF and QD are focusing or defocusing quadrupoles, respectively. In
either case we have a triplet structure for which the transformation matrix has been
derived in Sect. 7.2.3

MFODO D
0
@1 � 2 L2

f 2
2L
�
1C L

f

�

� 1
f �

1 � 2 L2

f 2

1
A : (10.1)

Here ff D �fd D f , 1=f � D 2 .1 � L=f / L=f 2 and is called a symmetric FODO
lattice.

From the transformation matrix (10.1) we can deduce an important property for
the betatron function. The diagonal elements are equal as they always are in any
symmetric lattice. Comparison of this property with elements of the transformation
matrix expressed in terms of betatron functions (8.74) shows that the solution of the
betatron function is periodic and symmetric since ˛ D 0 both at the beginning and
the end of the lattice period. We therefore have symmetry planes in the middle of
the quadrupoles for the betatron functions in the horizontal as well as in the vertical
plane. The betatron functions then have the general periodic and symmetric form as
shown in Fig. 10.2.

From (8.22) and (10.1), we can derive the analytical expression for the periodic
and symmetric betatron function by setting ˇ0 D ˇ, ˛0 D 0 and �0 D 1=ˇ and get

ˇ D
�
1 � 2

L2

f 2

�2
ˇ C 4L2

�
1C L

f

�2
1

ˇ
; (10.2)
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Fig. 10.2 Periodic betatron functions in a FODO channel
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where f > 0 and ˇ is the value of the betatron function in the middle of the focusing
quadrupole QF. Solving for ˇ, we get

ˇC D L
f
L

f
LC1q

f 2

L2�1
D L

�.� C 1/p
�2 � 1

; (10.3)

where we define the FODO parameter � by

� D f

L
> 1 (10.4)

and set ˇ D ˇC to indicate the solution in the center of the focusing quadrupole. The
FODO parameter � is used only here and should not be identified with our general
use of this letter being the curvature. Had we started at the defocusing quadrupole
we would have to replace f by �f and get analogous to (10.3) for the value of the
betatron function in the middle of the defocusing quadrupole

ˇ� D L
�.� � 1/p
�2 � 1

: (10.5)

These are the solutions for both the horizontal and the vertical plane. In the
middle of the horizontally focusing quadrupole QF .f > 0/ we have ˇx D ˇC and
ˇy D ˇ� and in the middle of the horizontally defocusing quadrupole QD .f < 0/,
we have ˇx D ˇ� and ˇy D ˇC. From the knowledge of the betatron functions
at one point in the lattice, it is straightforward to calculate the value at any other
point by proper matrix multiplications as discussed earlier. In open arbitrary beam
transport lines the initial values of the betatron functions are not always known and
there is no process other than measurements of the actual particle beam in phase
space to determine the values of the betatron functions as discussed in Sect. 8.1.3.
The betatron functions in a periodic lattice in contrast are completely determined
by the requirement that the solution be periodic with the periodicity of the lattice. It
is not necessary that the focusing lattice be symmetric to obtain a unique, periodic
solution. Equation (8.22) can be used for any periodic lattice requiring only the
equality of the betatron functions at the beginning and at the end of the periodic
structure. Of course, not any arbitrary although periodic arrangement of quadrupoles
will lead to a viable solution and we must therefore derive conditions for periodic
lattices to produce stable solutions.

The betatron phase for a FODO cell can be derived by applying (8.74) to a
symmetric lattice. With ˛0 D ˛ D 0 and ˇ0 D ˇ this matrix is

 
cos� ˇ sin �

� 1
ˇ

sin � cos�

!
; (10.6)
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where � is the betatron phase advance through a full symmetric period. Since the
matrix (10.6) must be equal to the matrix (10.1) the phase must be

cos� D 1 � 2 L2

f 2
D �2 � 2

�2
(10.7)

or

sin �

2
D 1

�
: (10.8)

For the solution (10.8) to be real the parameter � must be larger than unity, a
result which also becomes obvious from (10.3), (10.5) . This condition is equivalent
to stating that the focal length of half a quadrupole in a FODO lattice must be longer
than the distance to the next quadrupole.

The solutions for periodic betatron functions depend strongly on the quadrupole
strengths. Specifically, we observe that (10.3) has minimum characteristics for ˇC.
Taking the derivative dˇC=d� D 0, (10.3) becomes

�20 � �0 � 1 D 0 ; (10.9)

which can be solved for

�0 D 1
2

˙
q

1
4

C 1 D 1:6180 : (10.10)

The optimum phase advance per FODO cell is therefore

�0 � 76:345ı : (10.11)

The maximum value of the betatron function reaches a minimum for a FODO
lattice with a phase advance of about 76.3ı per cell. Since beam sizes scale with
the square root of the betatron functions, a lattice with this phase advance per cell
requires the minimum beam aperture.

This criteria, however, is true only for a flat beam when �x � �y or �y � �x. For
a round beam with uniform particle distribution in phase space �x � �y and we get
for the maximum beam acceptance by minimizing the beam diameter or E2x C E2y �
ˇxCˇy, where Ex and Ey are the beam envelopes in the horizontal and vertical plane,
respectively (Fig. 10.3). This minimum is determined by d.ˇx C ˇy/=d� D 0, or for

�opt D p
2 (10.12)

and the optimum betatron phase per cell is then from (10.8)

�opt D 90ı: (10.13)
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Fig. 10.3 Maximum beam
acceptance of a FODO lattice
with a circular aperture of
radius R and where
Ex;y D p

�x;yˇx;y

R

Ex

Ey

y

x

This solution requires the minimum radial aperture R in quadrupoles for a beam
with equal beam emittances in both planes �x D �y D �. The betatron functions in
the middle of the quadrupoles are then simply

ˇC
opt D L.2C p

2/ ;

ˇ�
opt D L.2 � p

2/ :
(10.14)

The beam envelopes are Ex D
q
�ˇC

opt and Ey D p
�ˇ�

opt and the maximum beam
emittance to fit an aperture of radius R or the acceptance of the aperture can be
determined from

E2x C E2y D R2 D �.ˇC C ˇ�/opt : (10.15)

From (10.14) we find
�
ˇC C ˇ��

opt D 4 L and the acceptance of a FODO channel
with an aperture radius R becomes

�max D R2

4L
: (10.16)

Of course, this definition of the acceptance is true only for a monochromatic beam.
In a real beam we must include the dispersion and energy spread in the beam to find
the optimum acceptance. Also there are other particle distributions for which this
optimisation may not be quite accurate.

With this optimum solution we may develop general scaling laws for the betatron
functions in a FODO lattice. The values of the betatron functions need not be known
at all points of a periodic lattice to characterize the beam optical properties. It is



10.1 FODO Lattice 309

Fig. 10.4 Scaling of
horizontal and vertical
betatron functions in a FODO
lattice
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sufficient to know these values at characteristic points like the symmetry points in a
FODO channel, where the betatron functions reach maximum or minimum values.
From (10.3), (10.14) the betatron functions at these symmetry points are given by

ˇC

ˇopt
D � .�C1/

.2Cp
2/

p
�2�1

ˇ�

ˇopt
D � .��1/

.2�p
2/

p
�2�1

(10.17)

The scaling of the betatron function is independent of L and depends only on the
ratio of the focal length to the distance between quadrupoles � D f =L. In Fig. 10.4
the betatron functionsˇC and ˇ� are plotted as a function of the FODO parameter �.

The distance L between quadrupoles is still a free parameter and can be adjusted
to the needs of the particular application. We observe, however, that the maximum
value of the betatron function varies linear with L and the maximum beam size in a
FODO lattice scales like

p
L.

10.1.2 Betatron Motion in Periodic Structures

For the design of circular accelerators it is of fundamental importance to understand
the long term stability of the beam over many revolutions. Specifically we need to
know if the knowledge of beam dynamics in one periodic unit can be extrapolated
to many periodic units.
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Stability Criterion

The periodic solution for one FODO cell has been derived in the last section and we
expect that such periodic focusing cells can be repeated indefinitely. Following the
classic paper by Courant and Snyder [1], we will derive the stability conditions for
an indefinite number of periodic but not necessarily symmetric focusing cells. The
structure of the cells can be arbitrary but must be periodic. If M.z C 2Ljz/ is the
transformation matrix for one cell, we have for N cells

M.z C N 2Lj z/ D ŒM.z C 2Lj z/�N : (10.18)

Stable solutions are obtained if all elements of the total transformation matrix
stay finite as N increases indefinitely. To find the conditions for this we calculate
the eigenvalues � of the characteristic matrix equation. The eigenvalues � are a
measure for the magnitude of the matrix elements and therefore finite values for the
eigenvalues will be the indication that the transformation matrix stays finite as well.
The characteristic matrix equation

.M � �I/ x D 0 ; (10.19)

where I is the unity matrix. For nontrivial values of the eigenvectors .x 6D 0/ the
determinant

jM � �Ij D
ˇ̌
ˇ̌C � � S

C0 S0 � �

ˇ̌
ˇ̌ D 0 (10.20)

must vanish and with CS0 � SC0 D 1 the eigenvalue equation is

�2 � .C C S0/ �C 1 D 0 : (10.21)

The solutions are

�1;2 D 1
2
.C C S0/˙

q
1
4
.C C S0/2 � 1 (10.22)

or with the substitution 1
2
.C C S0/ D cos�

�1;2 D cos� ˙ i sin� D ei�: (10.23)

The betatron phase � must be real or the trace of the matrix M must be

TrfMg D C C S0 � 2 : (10.24)
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On the other hand, the transformation matrix for a full lattice period is

M D
�

cos� C ˛ sin � ˇ sin �
�� sin � cos� � ˛ sin�

�
; (10.25)

which can be expressed with J D
�
˛ ˇ

�� �˛
�

by

M D I cos� C J sin� : (10.26)

This matrix has the form of Euler’s formula for a complex exponential. Since the
determinant of M is unity we get �ˇ � ˛2 D 1 or J 2 D �I. Similar to Moivre’s
formula, for N equal periods

MN D .I cos� C J sin �/N D I cos .N�/C J sin .N�/ (10.27)

and the trace for N periods is bounded if cos� < 1 or if (10.24) holds or if

Tr
�MN

� D 2 cos.N�/ � 2 : (10.28)

This result is called the stability criterion for periodic beam transport lattices. We
note that the trace of the transformation matrix M does not depend on the reference
point z. To show this we consider two different reference points z1 and z2, where
z1 < z2, for which the following identities hold

M.z2 C 2Lj z1/ D M.z2j z1/M.z1 C 2Lj z1/ D M.z2 C 2Lj z2/M.z2j z1/
(10.29)

and solving for M.z2 C 2Ljz2/ we get

M.z2 C 2Lj z2/ D M.z2j z1/M.z1 C 2Lj z1/M�1.z2j z1/ : (10.30)

This is a similarity transformation and therefore, both transformation matrices
M.z2C2Lj z2/ and M.z1C2Lj z1/ have the same trace and eigenvalues independent
of the choice of the location z.

10.1.3 General FODO Lattice

So far we have considered FODO lattices, where both quadrupoles have equal
strength, f1 D �f2 D f . Since we made no use of this in the derivation of the
stability criterion for betatron functions we expect that stability can also be obtained
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for unequal quadrupoles strengths. In this case the transformation matrix of half a
FODO cell is

M 1
2

D
 
1 0

� 1
f2
1

!�
1 L
0 1

� 
1 0

� 1
f1
1

!
D
 
1 � L

f1
L

� 1
f �

1 � L
f2

!
; (10.31)

where 1=f � D C1=f1C1=f2�L=.f1 f2/. Multiplication with the reverse matrix gives
for the full transformation matrix of the FODO cell

M D
 
1 � 2 L

f �
2L
�
1 � L

f2

�

� 2
f �
1 � L

f1
1 � 2 L

f �

!
: (10.32)

The stability criterion

TrfMg D
ˇ̌
ˇ̌2 � 4L

f �

ˇ̌
ˇ̌ < 2 (10.33)

is equivalent to

0 <
L

f � < 1 : (10.34)

To determine the region of stability in the .u; v/-plane, where u D L=f1 and
v D L=f2 we get from (10.34) the condition

0 < u C v � uv < 1 ; (10.35)

where u and v can be positive or negative. Solving the second inequality for either u
or v we find the conditions juj < 1 and jvj < 1. With this, the first inequality can be
satisfied only if u and v have different signs. The boundaries of the stability region
are therefore given by the four equations

juj D 1 ; jvj D juj
1Cjuj ;

jvj D 1 ; juj D jvj
1Cjvj ;

(10.36)

defining the stability region shown in Fig. 10.5 which is also called the necktie
diagram because of its shape. Due to the full symmetry in juj and jvj the shaded
area in Fig. 10.5 is the stability region for both the horizontal and vertical plane.

For convenience, we used the thin lens approximation to calculate the necktie
diagram. Nothing fundamentally will, however, change when we use the transfor-
mation matrices for real quadrupoles of finite length except for a small variation of
the stability boundaries depending on the degree of deviation from the thin lens
approximation. With the general transformation matrix for a full FODO period
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Fig. 10.5 Necktie diagram
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the periodic solution for the betatron function is ˇ2 D S2

1�C2
and

the stability condition

TrM D jC C S0j < 2 : (10.37)

The stability diagram has still the shape of a necktie although the boundaries are
slightly curved (Fig. 10.5).

A general transformation matrix for half a FODO cell can be obtained in matrix
formalism with  D p

k` by multiplying the matrices

M 1
2

D
 

cosh 2
`2
 2

sinh 2
 2
`2

sinh 2 cosh 2

!�
1 L
0 1

�

�
 

cos 1
`1
 1

sin 1
� 1
`1

sin 1 cos 1

!
; (10.38)

where now L is not the half cell length but just the drift space between two adjacent
quadrupoles of finite length and the indices refer to the first and the second half
quadrupole, respectively. From this we get the full period transformation matrix by
multiplication with the reverse matrix

M D
�

C S
C0 S0

�
D M 1

2 ;r
M 1

2
:

Obviously the mathematics becomes elaborate although straight forward and it
is prudent to use computers to find the desired results.
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Table 10.1 FODO cell parameters

Example #1 #2 #3 #4

Energy, E (GeV) 10 50 4 20,000

Half cell length, L (m) 6.0 2.6 3.6 114.25

Quadrupole length, `q (m) 0.705 1.243 0.15 3.64

Bending magnet length, `b (m) 3.55 2.486 2.5 99.24

Phase advance per cell,  101.4 108.0 135.0 90.0

Quadrupole strengtha, k (m�2) � � � � � � � � � � � �
Lattice typeb (FODO) sf cf sf sf

aThese parameters will be determined in Problem 6.1
bsf separated function, cf combined function lattice

Fig. 10.6 FODO lattice for one octant of a synchrotron [2, 3]

As reference examples to study and discuss a variety of accelerator physics issues
in this text, we consider different FODO lattices (Table 10.1) which are of some
but definitely not exhaustive practical interest. Other periodic lattices are of great
interest as well specifically for synchrotron radiation sources but are less accessible
to analytical discussions than a FODO lattice. All examples except #2 are separated
function lattices.

Example #1 is that for a 10 GeV electron synchrotron at DESY [2, 3] representing
a moderately strong focusing lattice with a large stability range as is commonly used
if no extreme beam parameters are required as is the case for synchrotrons used to
inject into storage rings. Figure 10.6 shows the betatron functions for this lattice. We
note small deviations from a regular FODO lattice which is often required to make
space for other components. Such deviations from a regular lattice cause only small
perturbations in the otherwise periodic betatron functions. As example #2 we use the
lattice for the long curved beam transport lines leading the 50 GeV beam from the
linac to the collision area at the Stanford Linear Collider [4]. This lattice exhibits the
greatest deviation from a thin lens FODO channel as shown in Fig. 10.7. Example
#3 resembles a theoretical lattice for an extremely small beam emittance used to
study fundamental limits of beam stability and control of aberrations [7]. Lattices
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Fig. 10.7 FODO cell for a linear collider transport line [5, 6] (example #2 in Table 10.1)

for future very high energy hadron colliders in the TeV range use rather long FODO
cells leading to large values of the betatron and dispersion functions and related high
demands on magnet field and alignment tolerances. Arc lattice parameters for the
20 TeV Superconducting Super Collider, SSC are compiled as example #4.

10.2 Beam Dynamics in Periodic Closed Lattices

In the previous section, we discussed the beam dynamics in a FODO lattice and
we will use such periodic lattices to construct a closed path for circular accelerators
like synchrotrons and storage rings. The term “circular” is used in this context rather
loosely since such accelerators are generally composed of both circular and straight
sections giving the ring the appearance of a circle, a polygon or racetrack. Common
to all these rings is the fact that the reference path must be a closed path so that
the total circumference of the ring constitutes a periodic lattice that repeats turn for
turn.

10.2.1 Hill’s Equation

The motion of particles or more massive bodies in periodic external fields has been
studied extensively by astronomers in the last century specially in connection with
the three body problem. In particle beam dynamics we find the equation of motion
in periodic lattices to be similar to those studied by the astronomer Hill. We will
discuss in this chapter the equation of motion, called Hill’s equation its solutions
and properties.
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Particle beam dynamics in periodic systems is determined by the equation of
motion

u00 C K.z/ u D 0 ; (10.39)

where K.z/ is periodic with the period Lp

K.z/ D K.z C Lp/ : (10.40)

The length of a period Lp may be the circumference of the circular accelerator
lattice or the length of a superperiod repeating itself several times around the
circumference. The differential equation (10.39) with the periodic coefficient
(10.40) has all the characteristics of a Hill’s differential equation [8]. The solutions
of Hill’s equation and their properties have been formulated in Floquet’s theorem

• two independent solutions exist of the form

u1.z/ D w.z/ ei� z=Lp ;

u2.z/ D w�.z/ e�i� z=Lp
(10.41)

• w�.z/ is the complex conjugate solution to w.z/. For all practical cases of beam
dynamics we have only real solutions and w�.z/ D w.z/ I

• the function w.z/ is unique and periodic in z with period Lp

w.z C Lp/ D w.z/ I (10.42)

• � is a characteristic coefficient defined by

cos� D 1
2
Tr
�M �

z C Lp jz�	 I (10.43)

• the trace of the transformation matrix M is independent of z

Tr
�M.z C Lpjz	/ 6D f .z/ I (10.44)

• the determinant of the transformation matrix is equal to unity

detM D 1 I (10.45)

• the solutions remain finite for

1
2

Tr
�M.z C Lpjz/	 < 1 : (10.46)

The amplitude function w.z/ and the characteristic coefficient� can be correlated
to quantities we have derived earlier using different methods. The transformation
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of a trajectory u through one lattice period of length Lp must be equivalent to the
multiplication by the transformation matrix (10.25) for that period which gives

u.z C Lp/ D .cos C ˛ sin / u.z/C ˇ sin u0.z/ ; (10.47)

where u stands for any of the two solutions (10.41) and  is the betatron phase
advance for the period. From (10.41), (10.42) we get on the other hand

u.z C Lp/ D u.z/ e˙i� D u.z/ .cos�˙ i sin�/ : (10.48)

Comparing the coefficients for the sine and cosine terms we get

cos D cos� or  D � (10.49)

and

˛ u.z/C ˇu0.z/ D ˙ i u.z/ : (10.50)

The first equality can be derived also from (10.25) and (10.43). Equation (10.50)
can be further simplified by a logarithmic differentiation

u00

u0 � u0

u
D �ˇ

0

ˇ
� ˛0

˙ i � ˛
: (10.51)

On the other hand, we can construct from (10.39), (10.50) the expression

u00

u0 � u0

u
D �K ˇ

˙ i � ˛
� ˙ i � ˛

ˇ
: (10.52)

and equating the r.h.s. of both expressions (10.51) and (10.52), we find

.1� ˛2 � K ˇ2 C ˛0ˇ � ˛ ˇ0/ ˙ i .2˛ C ˇ0/ D 0 ; (10.53)

where all functions in brackets are real as long as we have stability. Both brackets
must be equal to zero separately with the solutions

ˇ0 D �2 ˛ ; (10.54)

and

˛0 D K ˇ � � : (10.55)

Equation (10.54) can be used in (10.50) for

u0

u
D ˙i � ˛

ˇ
D ˙ i

ˇ
C 1

2

ˇ0

ˇ
; (10.56)
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and after integration

log
u

u0
D ˙ i

Z z

0

d	

ˇ
C 1

2
log

ˇ

ˇ0
; (10.57)

where u0 D u.z0/ and ˇ0 D ˇ.z0/ for z D z0. Solving for u.z/ we get the well
known solution

u.z/ D a
p
ˇ.z/ e˙i ; (10.58)

where a D u0=
p
ˇ0 and

 .z � z0/ D
Z z

z0

d	

ˇ.	/
: (10.59)

With  .Lp/ D � and

p
ˇ.z/ D w.z/

a
(10.60)

we find the previous definitions of the betatron functions to be consistent with the
coefficients of Floquet’s solutions in a periodic lattice. In the next section we will
apply the matrix formalism to determine the solutions of the betatron functions in
periodic lattices.

10.2.2 Periodic Betatron Functions

Having determined the existence of stable solutions for particle trajectories in
periodic lattices we will now derive periodic and unique betatron functions. For
this we take the transformation matrix of a full lattice period

M.z C Lp j z / D
�

C S
C0 S0

�
(10.61)

and construct the transformation matrix for betatron functions.

0
@
ˇ

˛

�

1
A D

0
@

C2 �2CS S2

�CC0 CS0 C C0S �SS0
C0 2 �2C0S0 S0 2

1
A
0
@
ˇ0

˛0
�0

1
AD Mˇ

0
@
ˇ0

˛0
�0

1
A : (10.62)

Because of the quadratic nature of the matrix elements, we find the same result
in case of a 180ı phase advance for the lattice segment. Any such lattice segment
with a phase advance of an integer multiple of 180ı is neutral to the transformation
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of lattice functions. This feature can be used to create irregular insertions in a lattice
that do not disturb the lattice functions outside the insertions.

To obtain from (10.62) a general periodic solution for the betatron functions we
simply solve the eigenvector equation

.Mˇ � I/ˇ D 0 : (10.63)

The solution can be obtained from the component equations of (10.63)

.C2 � 1/ ˇ � 2 SC ˛ C S2 � D 0 ;

CC0 ˇ � .S0C C CS0 � 1/ ˛ C SS0 � D 0 ; (10.64)

C02 ˇ � 2S0C0 ˛ C .S02 � 1/ � D 0 :

A particular simple solution is obtained if the periodic lattice includes a
symmetry point. In this case, we define this symmetry point as the start of the
periodic lattice with ˛ D 0, and get the simple solutions

ˇ2 D S2

1 � C2
; ˛ D 0 ; � D 1

ˇ
: (10.65)

The transformation matrix for a superperiod or full circumference of a ring becomes
then simply from (8.74)

M D
 

cos� ˇ sin�
� 1
ˇ

sin� cos�

!
; (10.66)

where � is the phase advance for the full lattice period. The solutions are stable as
long as the trace of the transformation matrix meets the stability criterion (10.37) or
as long as � ¤ n
 , where n is an integer.

Different from an open transport line, well determined and unique starting values
for the periodic betatron functions exist in a closed lattice due to the periodicity
requirement allowing us to determine the betatron function anywhere else in the
lattice. Although (10.65) allows both a positive and a negative solution for the
betatron function, we choose only the positive solution for the definition of the
betatron function.

Stable periodic solutions for asymmetric but periodic lattices, where ˛ 6D 0,
can be obtained in a straightforward way from (10.64) as long as the determinant
jMp � Ij 6D 0.

The betatron phase for a full turn around a circular accelerator of circumference
C is from (10.59)

�.LC/ D
Z zCLC

z

d	

ˇ.	/
: (10.67)



320 10 Periodic Focusing Systems

If we divide this equation by 2
 we get a quantity � which is equal to the number
of betatron oscillations executed by particles traveling once around the ring. This
number is called the tune or operating point of the circular accelerator. Since there
are different betatron functions in the horizontal plane and in the vertical plane, we
also get separate tunes in a circular accelerator for both planes

�x;y D 1

2


I
d	

ˇx;y.	/
: (10.68)

This definition is equivalent to having chosen the integration constant in (8.57)
equal to 1=2
 instead of unity. Yet another normalization can be obtained by
choosing 1=� for the integration constant in ( 8.57), in which case the phase
defined as

'.z/ D  .z/

�
D
Z z

0

d	

� ˇ.	/
(10.69)

varies between 0 and 2
 along the circumference of a ring lattice. This normaliza-
tion will become convenient when we try to decompose periodic field errors in the
lattice into Fourier components to study their effects on beam stability.

Equation (10.68) can be used to get an approximate expression for the relation-
ship between the betatron function and the tune. If ˇ is the average value of the
betatron function around the ring then �.LC/ D 2
� � LC=ˇ � 2
R=ˇ or

ˇ D R

�
: (10.70)

This equation is amazingly accurate for most rings and is therefore a useful tool for
a quick estimate of the average betatron function or for the tunes often referred to
as the smooth approximation.

In a circular accelerator three tunes are defined for the three degrees of freedom,
the horizontal, vertical and longitudinal motion. In Fig. 10.8 the measured frequency

Fig. 10.8 Frequency spectrum from a circulating particle beam, �s synchrotron tune, �x; �y

betatron tunes, �x ˙ �y satellites
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spectrum is shown for a particle beam in a circular accelerator. The electric signal
from an isolated electrode in the vacuum chamber is recorded and connected to a
frequency analyzer. The signal amplitude depends on the distance of the passing
beam to the electrode and therefore includes the information of beam oscillations as
a modulation of the revolution frequency.

Synchrotron oscillations can also be detected with electrodes and the signal from
synchrotron oscillations appears on a spectrum analyzer as sidebands to harmonics
of the revolution frequency. Analogous to the transverse motion, a longitudinal tune
�s is defined as the number of oscillations per revolution or as the synchrotron tune.

We note a number of frequencies in the observed spectrum of the storage ring
SPEAR as shown in Fig. 10.8. At the low frequency end two frequencies indicate
the longitudinal tune �s and its first harmonic at 2�s. The two large signals are the
horizontal and vertical tunes of the accelerator. Since the energy oscillation affects
the focusing of the particles, we also observe two weak satellite frequencies on one
of the transverse tunes at a distance of ˙�s. The actual frequencies observed are not
directly equal to � !0, where !0 is the revolution frequency, but are only equal to the
non-integral part of the tune �� !0, where �� is the distance to the integer nearest
to �.

10.2.3 Periodic Dispersion Function

The dispersion function can be periodic if the lattice is periodic. In this section we
will determine the periodic solution of the dispersion function first for the simple
lattice building block of a FODO channel and then for general but periodic lattice
segments.

Scaling of the Dispersion in a FODO Lattice

Properties of a FODO lattice have been discussed in detail for a monochromatic
particle beam only and no chromatic effects have been taken into account. To
complete this discussion we now include chromatic effects which cause, in linear
approximation, a dispersion proportional to the energy spread in the beam and
are caused by bending magnets. We have used the transformation matrix for a
symmetric quadrupole triplet as the basic FODO cell. The bending magnet edge
focusing was ignored and so were chromatic effects. In the following we still ignore
the quadratic edge focusing effects of the bending magnets, but we cannot ignore
any longer linear effects of energy errors. For simplicity we assume again thin lenses
for the quadrupoles and get for the chromatic transformation matrix through half a
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FODO cell, 1
2
QF - B - 1

2
QD with (8.101) and assuming small deflection angles
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or after multiplication
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�
1C L
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�

0 0 1

1
CA : (10.71)

The absolute value of the focal length f is the same for both quadrupoles but
since we start at the symmetry point in the middle of a quadrupole this focal length
is based only on half a quadrupole. We have also assumed that the deflection angle
of the bending magnet is small, � � 1, in analogy to thin lens approximation for
quadrupoles. Lastly, we assumed that the bending magnets occupy the whole drift
space between adjacent quadrupoles. This is not quite realistic but allows us an
analytical and reasonable accurate approach.

In Sect. 8.4 dispersive elements of transformation matrices have been derived. In
periodic lattices, however, we look for a particular solution which is periodic with
the periodicity of the focusing lattice and label the solution by �.z/ or the �-function
in distinction from the ordinary, generally non-periodic dispersion function D.z/.
The typical form of the periodic dispersion function in a FODO lattice is shown in
Fig. 10.9.

In addition to being periodic, this �-function must be symmetric with respect to
the symmetry points in the middle of the FODO quadrupoles, where the derivative
of the �-function vanishes. The transformation through one half FODO cell is

0
@
��
0

1

1
A D M 1

2 FODO

0
@
�C
0

1

1
A ; (10.72)

Fig. 10.9 Dispersion
function in FODO cells
(example ]1 in Table 10.1)
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where we have set ı D 1 in accordance with the definition of dispersion functions
and deflection in the horizontal plane.

In the particular arrangement of quadrupoles chosen in (10.71) the focusing
quadrupole is the first element and the dispersion function reaches a maximum
value �C there. In the center of the defocusing quadrupole the dispersion function is
reduced to a minimum value ��. The opposite sequence of quadrupoles would lead
to similar results. From (10.72) we get with �0C D �0� D 0 the two equations

�� D
�
1 � L

f

�
�C C L2

2
0
;

0 D � L
f 2
�C C L


0

�
1C L

2 f

�
:

(10.73)

Solving (10.73) for the periodic dispersion function in the middle of the FODO
quadrupoles, where �0 D 0, we get in the focusing or defocusing quadrupole
respectively

�C D f 2


0

�
1C L

2 f

�
D L2

2
0
� .2� C 1/

�� D f 2


0

�
1 � L

2 f

�
D L2

2
0
� .2� � 1/ ;

(10.74)

where � D f =L.
As mentioned before, in this approximation the bending magnet is as long as the

length of half the FODO cell since the quadrupoles are assumed to be thin lenses
and no drift spaces have been included between the quadrupoles and the bending
magnet. The bending radius 
0, therefore, is equal to the average bending radius in
the FODO lattice. From the known values of the dispersion function at the beginning
of the FODO lattice we can calculate this function anywhere else in the periodic cell.
Similar to the discussion in Sect. 10.1, we chose an optimum reference lattice, where

�0 D p
2 ; (10.75)

and

�C
0 D L2

2

.4C p

2/ ;

��
0 D L2

2

.4 � p

2/ :
(10.76)

In Fig. 10.10 the values of the dispersion functions, normalized to those for the
optimum FODO lattice in the middle of the FODO quadrupoles, are plotted versus
the FODO cell parameter �.

From Fig. 10.10 we note a diminishing dispersion function in a FODO cell as
the betatron phase per cell or the focusing is increased . f ! 0/. This result will
be important later for the design of storage rings for specific applications requiring
either large or small beam emittances. The procedure to determine the dispersion
functions in a FODO cell is straightforward and can easily be generalized to real
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Fig. 10.10 Scaling of the
dispersion function in a
FODO lattice
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FODO lattices with finite quadrupole length and shorter bending magnets although
it may be desirable to perform the matrix multiplications on a computer. For
exploratory designs of accelerators structures, however, the thin lens approximation
is a powerful and fairly accurate design tool.

General Solution for the Periodic Dispersion

In the previous section the dispersion function for a periodic and symmetric FODO
lattice was derived. Many periodic lattice structures, however, are neither symmetric
nor are they pure FODO structures and therefore we need to derive the periodic
dispersion function in a more general form. To do this, we include in the equation
of motion also the linear energy error term from, for example, (5.46)

u00 C K.z/u D �0.z/ı : (10.77)

For particles having the ideal energy .ı D 0/ the right hand side vanishes and the
solutions are composed of betatron oscillations and the trivial solution

u0.z/ 	 0 : (10.78)

This trivial solution of (10.77) is clearly periodic and represents what is called
in beam transport systems the ideal path and in circular accelerators the equilibrium
orbit or closed orbit about which particles perform betatron oscillations. The
expression for the ideal equilibrium orbit is this simple since we decided to use a
curvilinear coordinate system which follows the design orbit (10.78) as determined
by the placement of bending magnets and quadrupoles.
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For off momentum particles .ı 6D 0/ the ideal path or closed orbit is displaced.
Ignoring for a moment the z-dependence of K and �0, this systematic displacement
of the orbit is of the order of

�u D �0

K
ı (10.79)

as suggested by (10.77) . In a real circular accelerator we expect a similar although
z-dependent displacement of the equilibrium orbit for off momentum particles. Only
one equilibrium orbit exists for each particle energy in a given closed lattice. If there
were two solutions u1 and u2 of (10.77) we could write for the difference

.u1 � u2 /
00 C K.z/ .u1 � u2/ D 0 ; (10.80)

which is the differential equation for betatron oscillations. Different solutions for
the same energy, therefore, differ only by energy independent betatron oscillations
which are already included in the general solution as the homogeneous part of
the differential equation (10.77). Therefore, in a particular circular lattice only one
unique equilibrium orbit or closed orbit exists for each energy.

Chromatic transformation matrices have been derived in Sect. 8.4. If we apply
these 3�3-matrices to a circular lattice and calculate the total transformation matrix
around the whole ring, we will be able to determine a self-consistent solution for
equilibrium orbits. Before we calculate the periodic equilibrium orbits, we note that
the solutions of (10.77) are proportional to the momentum deviation ı. We therefore
define the generalized periodic dispersion function as the equilibrium orbit for ı D 1

which we call the �-function. The transformation matrix for a periodic lattice of
length Lp is

M.z C Lp j z / D
0
@

C
�
z C Lp

�
S
�
z C Lp

�
D
�
z C Lp

�
C0 �z C Lp

�
S0 �z C Lp

�
D0 �z C Lp

�
0 0 1

1
A (10.81)

and we get for the �-function with �.z C Lp/ D �.z/, �0.z C Lp/ D �0.z/

�.z/ D C.z C Lp/ �.z/C S.z C Lp/ �
0.z/C D.z C Lp/ ;

�0.z/ D C0.z C Lp/ �.z/C S0.z C Lp/ �
0.z/C D0.z C Lp/ :

(10.82)

These two equations can be solved for �.z/ and �0.z/, the periodic dispersion
function at the point z. The equilibrium orbit for any off momentum particle can
be derived from this solution by multiplying with ı

uı.z/ D �.z/ ı : (10.83)
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In a more formal way the periodic solution for the dispersion function can be
derived from (10.82) while we drop the arguments for increased clarity

.C � 1/�C S�0 C D D 0;

C0�C .S0 � 1/�0 C D0 D 0 ;
(10.84)

which, in vector notation is

.M� � I/� D 0 ; (10.85)

where M� is defined by (10.81) and � D .�; �0; 1/. The periodic dispersion function
is therefore the eigenvector of the eigenvalue equation (10.85) .

A particularly simple result is obtained again if the point z is chosen at a
symmetry point, where �0

sym D 0. In this case the dispersion function at the
symmetry point is

�sym D D

1 � C
and �0

sym D 0 : (10.86)

Once the values of the �-functions are known at one point it is straightforward to
obtain the values at any other point in the periodic lattice by matrix multiplication.

We may also try to derive an analytical solution for the periodic dispersion from
the differential equation

�00 C K � D � : (10.87)

The solution is again the composition of the solutions for the homogeneous
and the inhomogeneous differential equation. First, we transform (10.87) into
normalized coordinates w� D �=

p
ˇ and d' D dz=.�ˇ/. In these coordinates

(10.87) becomes

d2w�
d'2

C �2w� D �2ˇ3=2� D �2F.'/ : (10.88)

An analytical solution to (10.88) has been derived in Sect. 5.5.4 and we have
accordingly

w�.'/ D w0� cos �' C Pw0�
�

sin �'
C� R '0 F.�/ sin �.' � �/ d� ;

Pw�
�
.'/ D �w0� sin �' C Pw0�

�
cos �'

C� R '0 F.�/ cos �.' � �/ d� ;

(10.89)

where we have set Pw D d
d' w.'/. To select a periodic solution, we set

w�.2
/ D w�.0/ D w0� and Pw�.2
/ D Pw0� :
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Inserting these boundary conditions into (10.89) to determine
�

w0�; Pw0�
�

and use

the results in the first equation of (10.89) to get the general periodic solution for the
normalized dispersion function after some manipulations

w�.'/ D �

2 sin
�

Z 'C2


'

F.�/ cosŒ�.' � � C 
/� d� : (10.90)

Now we return to the original variables .�; z/, and get from (10.90) the equation
for the periodic dispersion or �-function

�.z/ D
p
ˇ.z/

2 sin
�

Z zCLp

z

p
ˇ.	/


.	/
cos �Œ'.z/� '.	/C 
� d	 : (10.91)

This solution shows clearly that the periodic dispersion function at any point
z depends on all bending magnets in the ring. We also observe a fundamental
resonance phenomenon which occurs should the tune of the ring approach an integer
in which case finite equilibrium orbits for off momentum particles do not exist
anymore. To get stable equilibrium orbits, the tune of the ring must not be chosen to
be an integer or in accelerator terminology an integer resonance must be avoided

� 6D n ; (10.92)

where n is an integer.
This is consistent with the solution (10.86) demanding that

ˇ̌
C.z C Lp/

ˇ̌
be less

than unity. Since C is the matrix element for the total ring we have C D cos 2
�
which obviously is equal to C1 only for integer values of the tune �. While (10.89)
is not particularly convenient to calculate the dispersion function, it clearly exhibits
the resonance character and will be very useful later in some other context, for
example, if we want to determine the effect of a single bending magnet.

Another way to solve the differential equation (10.88) will be considered to
introduce a powerful mathematical method useful in periodic systems. We note that
the perturbation term F.z/ D ˇ3=2.z/ � .z/ is a periodic function with the period
Lp or 2
 using normalized coordinates. The perturbation term can therefore be
expanded into a Fourier series

ˇ3=2 � D
X

Fnein' ; (10.93)

where

Fn D 1

2


I
ˇ3=2� e�in' d' (10.94)
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or if we go back to regular variables

Fn D 1

2
�

I p
ˇ.	/


.	/
e�in'.	/ d	 : (10.95)

Similarly, we may expand the periodic �-function into a Fourier series

w�.'/ D
X

W�n ein' : (10.96)

Using both (10.93), (10.96) in (10.88) we get

.�n2 C �2/
X

W�ne�in' D �2
X

Fne�in' ; (10.97)

which can be solved for the Fourier coefficients W�n of the periodic dispersion
function

W�n D �2Fn

�2 � n2
: (10.98)

The periodic solution of the differential equation (10.88) is finally

w�.'/ D
C1X

nD�1

�2Fnein'

�2 � n2
: (10.99)

It is obvious again, that the tune must not be an integer to avoid a resonance. This
solution is intrinsically periodic since ' is periodic and the relation to (10.90) can be
established by replacing Fn by its definition (10.94). Using the property F�n D Fn

we get for a symmetric lattice and with formula GR[1.445.6]1

w�.'/ D
C1X

nD�1

ein' �
2


H
� .	/

p
ˇ.	/e�in	d	

�2 � n2
(10.100)
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cos n.	 � '/
�2 � n2

#
d	

D 1

2 sin �


I
� .	/

p
ˇ.	/ cos.�Œ' � 	 C 
�/d	

which is the same as (10.90) since d� D �ˇ d	. For an asymmetric lattice the proof is
similar albeit somewhat more elaborate. Solution (10.100) expresses the dispersion

1We will abbreviate in this way formulas from the Table of Integrals, Series and Products, I.S.
Gradshteyn/I.M. Ryzhik, 4th edition.
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function as the combination of a constant and a sum of oscillatory terms. Evaluating
the non-oscillatory part of the integral, we find the average value of the dispersion
or �-function,

h � i � hˇi
�0

: (10.101)

This result by itself is of limited usefulness but can be used to obtain an estimate
for the momentum compaction factor ˛c defined analogous to (8.125) by

˛c D 1

Lp

I
� .z/


 .z/
dz �



�




�
: (10.102)

A good approximation for the momentum compaction factor is therefore ˛c �
hˇi=.
 �/ and with (10.70) integrated only over the arcs of the ring

˛c � 1

�2
: (10.103)

Thus we find the interesting result that the transition energy �t is approximately
equal to the horizontal tune of a circular accelerator

�t � �x : (10.104)

As a cautionary note for circular accelerators with long straight sections, only the
tune of the arc sections should be used here since straight sections do not contribute
to the momentum compaction factor but can add significantly to the tune.

10.2.4 Periodic Lattices in Circular Accelerators

Circular accelerators and long beam transport lines can be constructed from
fundamental building blocks like FODO cells or other magnet sequences which
are then repeated many times. Any cell or lattice unit for which a periodic solution
of the lattice functions can be found may be used as a basic building block for a
periodic lattice. Such units need not be symmetric but the solution for a symmetric
lattice segment is always periodic.

FODO cells as elementary building blocks for larger beam transport lattices
may lack some design features necessary to meet the objectives of the whole
facility. In a circular accelerator we need for example some component free spaces
along the orbit to allow the installation of experimental detectors or other machine
components like accelerating sections, injection magnets or synchrotron radiation
producing insertion devices. A lattice made up of standard FODO cells with bending
magnets would not provide such spaces.
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The lattice of a circular accelerator therefore exhibits generally more complexity
than that of a simple FODO cell. Often, a circular accelerator is made up of a
number of superperiods which may be further subdivided into segments with
special features like dispersion suppression section, achromatic sections, insertions,
matching sections or simple focusing and bending units like FODO cells. To
illustrate basic lattice design concepts, we will discuss specific lattice solutions to
achieve a variety of objectives.

Synchrotron Lattice

For a synchrotron whose sole function is to accelerate particles the problem of
free space can be solved quite easily. Most existing synchrotrons are based on a
FODO lattice recognizing its simplicity, beam dynamical stability and efficient use
of space. To provide magnet free spaces, we merely eliminate some of the bending
magnets. As a consequence the whole ring lattice is composed of curved as well
as straight FODO cells. The elimination of bending magnets must, however, be
done thoughtfully since the dispersion function depends critically on the distribution
of the bending magnets. Random elimination of bending magnets may lead to an
uncontrollable perturbation of the dispersion function.

Often it is desirable to have the dispersion function vanish or at least be small in
magnet free straight sections to simplify injection and avoid possible instabilities if
rf-cavities are placed where the dispersion function is finite. The general approach
to this design goal is, for example, to use regular FODO cells for the arcs followed
by a dispersion matching section, where the dispersion function is brought to zero or
at least to a small value leading finally to a number of bending magnet free straight
FODO cells. As an example such a lattice is shown in Fig. 10.11 for a 3.5 GeV
synchrotron [9].

Figure 10.11 shows one quadrant of the whole ring and we clearly recognize
three different lattice segments including seven arc FODO half cells, two half
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Fig. 10.11 Typical FODO lattice for a separated function synchrotron
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cells to match the dispersion function and one half cell for installation of other
machine components. Such a quadrant is mirror reflected at one or the other end
to form one of two ring lattice superperiods. In this example the ring consists of
two superperiods although another ring could be composed by a different number
of superperiods. A specific property of the lattice shown in Fig. 10.11 is, as far as
focusing is concerned, that the whole ring is made up of equal FODO cells with
only two quadrupole families QF and QD. The betatron functions are periodic and
are not significantly affected by the presence or omission of bending magnets which
are assumed to have negligible edge focusing. By eliminating bending magnets in
an otherwise unperturbed FODO lattice, we obtain magnet free spaces equal to the
length of the bending magnets which are used for the installation of accelerating
components, injection magnets, and beam monitoring equipment.

Phase Space Matching

Periodic lattices like FODO channels exhibit unique solutions for the betatron and
dispersion functions. In realistic accelerator designs, however, we will not be able
to restrict the lattice to periodic cells only. We will find the need for a variety of
lattice modifications which necessarily require locally other than periodic solutions.
Within a lattice of a circular accelerator, for example, we encountered the need
to provide some magnet free spaces, where the dispersion function vanishes. In
colliding beam facilities it is desirable to provide for a very low value of the betatron
function at the beam collision point to maximize the luminosity. These and other
lattice requirements necessitate a deviation from the periodic cell structure.

Beam transport lines are in most cases not based on periodic focusing. If
such transport lines carry beam to be injected into a circular accelerator or must
carry beam from such an accelerator to some other point, we must consider
proper matching conditions at locations, where lattices of different machines or
beam transport systems meet [10, 11]. Joining arbitrary lattices may result in an
inadequate over lap of the phase ellipse for the incoming beam with the acceptance
of the downstream lattice as shown in Fig. 10.12a.

incoming beam acceptance
a) b) c)

Fig. 10.12 Matching conditions in phase space: mismatch (a), perfect match (b), efficient
match (c)
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For a perfect match of two lattices, all lattice functions must be the same at the
joining point as shown in Fig. 10.12b

.ˇx; ˛x; ˇy; ˛y; �; �
0/1 D .ˇx; ˛x; ˇy; ˛y; �; �

0/2 : (10.105)

In this case, the phase ellipse at the end of lattice 1 is similar to the acceptance
ellipse at the entrance of lattice 2 (see Fig. 10.12). To avoid dilution of particles in
phase space perfect matching is desired in proton and ion beam transport systems
and accelerators. For electrons this is less critical because electron beams regain
the appropriate phase ellipse through synchrotron radiation and damping. The main
goal of matching an electron beam is to assure that the emittance of the incoming
beam is fully accepted by the downstream lattice as shown in Fig. 10.12b, c. Perfect
matching of all lattice functions and acceptances with beam emittance, however,
provides the most economic solution since no unused acceptance exist. Matching
of the dispersion function (�; �0) in addition also assures that phase ellipses for off
momentum particles match as well.

Matching in circular accelerators is much more restrictive than that between
independent lattices. In circular accelerators a variety of lattice segments for
different functions must be tied together to form a periodic magnet structure.
To preserve the periodic lattice functions, we must match them exactly between
different lattice segments. Failure of perfect matching between lattice segments can
lead to lattice functions which are vastly different from design goals or do not exist
at all.

In general there are six lattice functions to be matched requiring six variables or
quadrupoles in the focusing structure of the upstream lattice to produce a perfect
match. Matching quadrupoles must not be too close together in order to provide
some independent matching power for individual quadrupoles. As an example, the
betatron functions can be modified most effectively if a quadrupole is used at a
location, where the betatron function is large and not separated from the matching
point by multiples of 
 in betatron phase. Most independent matching conditions
for both the horizontal and vertical betatron functions are created if matching
quadrupoles are located where one betatron function is much larger than the other
allowing almost independent control of matching condition.

It is impossible to perform such general matching tasks by analytic methods
and a number of numerical codes are available to solve such problems. Frequently
used matching codes are TRANSPORT [12], or MAD [13]. Such programs are
an indispensable tool for lattice design and allow the fitting of any number of
lattice functions to desired values including boundary conditions to be met along
the matching section.

Dispersion Matching

A very simple, although not perfect, method to reduce the dispersion function in
magnet free straight sections is to eliminate one or more bending magnets close
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to but not at the end of the arc and preferably following a focusing quadrupole,
QF. In this arrangement of magnets the dispersion function reaches a smaller
value compared to those in regular FODO cells with a slope that becomes mostly
compensated by the dispersion generated in the last bending magnet. The match
is not perfect but the dispersion function is significantly reduced, where this is
desirable, and magnet free sections can be created in the lattice. This method
requires no change in the quadrupole or bending magnet strength and is therefore
also operationally very simple as demonstrated in the example of a synchrotron
lattice shown in Fig. 10.11. We note the less than perfect matching of the dispersion
function which causes a beating of an originally periodic dispersion function. In
the magnet free straight sections, however, the dispersion function is considerably
reduced compared to the values in the regular FODO cells.

More sophisticated matching methods must be employed, where a perfect match
of the dispersion function is required. Matching of the dispersion to zero requires
the adjustment of two parameters, � D 0 and �0 D 0, at the beginning of
the straight section. This can be achieved by controlling some of the upstream
quadrupoles. Compared to a simple two parameter FODO lattice (Fig. 10.11) this
variation requires a more complicated control system and additional power supplies
to specially control the matching quadrupoles. This dispersion matching process
disturbs the betatron functions which must be separately controlled and matched by
other quadrupoles in dispersion free sections. Such a matching method is utilized in
a number of storage rings with a special example shown in Fig. 10.13 [14].

Here, we note the perfect matching of the dispersion function as well as the
associated perturbation of the betatron function requiring additional matching.
Quadrupoles QFM and QDM are adjusted such that � D 0 and �0 D 0 in the
straight section. In principle this could be done even without eliminating a bending
magnet, but the strength of the dispersion matching quadrupoles would significantly
deviate from that of the regular FODO quadrupoles and cause a large distortion of
the betatron function in the straight section. To preserve a symmetric lattice, the
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Fig. 10.13 Lattice for a 1.2 GeV low emittance damping ring



334 10 Periodic Focusing Systems

betatron function must be matched with the quadrupoles Q1 and Q2 to get ˛x D 0

and ˛y D 0 at the symmetry points of the lattice.

Dispersion Suppressor

A rather elegant method of dispersion matching has been developed by Keil [15].
Noting that dispersion matching requires two parameters he chooses to vary the last
bending magnets at the end of the arcs rather than quadrupoles. The great advantage
of this method is to leave the betatron functions and the tunes undisturbed at least
as long as we may ignore the end field focusing of the bending magnets which
is justified in large high energy accelerators. This dispersion suppressor consists
of four FODO half cells following directly the regular FODO cells at a focusing
quadrupole QF as shown in Fig. 10.14. The strength of the bending magnets are
altered into two types with a total bending angle of all four magnets to be equal to
two regular bending magnets.

The matching conditions can be derived analytically from the transformation
matrix for the full dispersion suppressor as a function of the individual magnet
parameters. An algebraic manipulation program has been used to derive a result
that is surprisingly simple. If � is the bending angle for regular FODO cell bending
magnets and  the betatron phase for a regular FODO half cell, the bending angles
�1 and �2 are determined by [15]

�1 D �

�
1 � 1

4 sin2  

�
(10.106)

x

y

(z)

B1 B1 B2 B2 B B

Fig. 10.14 Dispersion suppressor lattice
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and

�2 D �

�
1

4 sin2  

�
; (10.107)

where

� D �1 C �2 : (10.108)

This elegant method requires several FODO cells to match the dispersion function
and is therefore most appropriately used in large systems. Where a compact lattice
is important, matching by quadrupoles as discussed earlier might be more space
efficient.

Magnet Free Insertions

An important part of practical lattice design is to provide magnet free spaces
which are needed for the installation of other essential accelerator components
or experimental facilities. Methods to provide limited magnet free spaces by
eliminating bending magnets in FODO lattices have been discussed earlier. Often,
however, much larger magnet free spaces are required and procedures to provide
such sections need to be formulated.

The most simple and straight forward approach is to use a set of quadrupoles
and focus the lattice functions ˇx; ˇy and � into a magnet free section such that
the derivatives ˛x; ˛y and �0 vanish in the center of this section. This method
is commonly applied to interaction areas in colliding beam facilities to provide
optimum beam conditions for maximum luminosity at the collision point. A typical
example is shown in Fig. 10.15.
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Fig. 10.15 Lattice of the SPEAR storage ring
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Fig. 10.16 Lattice of the
ADONE storage ring
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Another scheme to provide magnet free spaces is exercised in the SPEAR lattice
(Fig. 10.15) where the FODO structure remains unaltered except that the FODO
cells have been separated in the middle of the QF quadrupoles. A separation in
the middle of the QD quadrupoles would have worked as well. Since the middle
of FODO quadrupoles are symmetry points a modest separation can be made with
minimal perturbation to the betatron functions and no perturbation to the dispersion
function since �0 D 0 in the middle of FODO quadrupoles.

A more general design approach to provide magnet free spaces in a periodic
lattice is exercised in the storage ring shown in Fig. 10.16 [16] or the storage ring as
shown in Fig. 10.15 [17]. In the ADONE lattice the quadrupoles of a FODO lattice
are moved together to form doublets and alternate free spaces are filled with bending
magnets or left free for the installations of other components.

Collins Insertion

A simple magnet free insertion for dispersion free segments of the lattice has
been proposed by Collins [18]. The proposed insertion consists of a focusing and
a defocusing quadrupole of equal strength with a long drift space in between as
shown in Fig. 10.17. In thin lens approximation, the transformation matrix for the
insertion is

Mins D
�
1 d
0 1

��
1 0

1=f 1

��
1 D
0 1

��
1 0

�1=f 1

��
1 d
0 1

�
: (10.109)

This insertion matrix must be equated with the transformation matrix for this
same insertion expressed in terms of lattice functions at the insertion point with the
regular lattice

Mins D
 

cos C ˛ sin ˇ sin 
� 1C˛2

ˇ
sin cos � ˛ sin 

!
: (10.110)
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dd

f
2

f
1

Collins insertion
D

β−function

Fig. 10.17 Collins insertion

Both matrices provide three independent equations to be solved for the drift lengths
d and D and for the focal length f of the quadrupoles. After multiplications of all
matrices we equate matrix elements and get

D D ˛2

�
; d D 1

�
; and f D � ˛

�
: (10.111)

These relations are valid for both planes only if ˛x D �˛y. Generally, this is not
the case for arbitrary lattices but for a weak focusing FODO lattice this condition
is met well. We note that this design provides an insertion of length D which is
proportional to the value of the betatron functions at the insertion point and requires
that ˛ ¤ 0.

Of course any arbitrary insertion with a unity transformation matrix I in both
planes is a valid solution as well. Such solutions can in principle always be enforced
by matching with a sufficient number of quadrupoles. If the dispersion function and
its derivative is zero such an insertion may also have a transformation matrix of
�I. This property of insertions is widely used in computer designs of insertions
when fitting routines are available to numerically adjust quadrupole strength such
that desired lattice features are met including the matching of the lattice functions
to the insertion point. A special version of such a solution is the low beta insertion
for colliding beam facilities.

Low Beta Insertions

In colliding beam facilities long magnet free straight sections are required to allow
the installation of high energy particle detectors. In the center of these sections,
where two counter rotating particle beams collide, the betatron functions must
reach very small values forming a narrow beam waist. This requirement allows to
minimize the destructive beam-beam effect when two beams collide and thereby
maximize the luminosity of the colliding beam facility [19].
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Fig. 10.18 Lattice functions of a colliding beam storage ring [21]. Shown is half the circumference
with the collision point, low beta and vanishing dispersion in the center

An example for the incorporation of such a low beta insertion is shown in
Fig. 10.18 representing one of many variations of a low beta insertion in colliding
beam facilities [20]. The special challenge in this matching problem is to provide
a very small value for the betatron functions at the collision point. To balance the
asymmetry of the focusing in the closest quadrupoles the betatron functions in both
planes are generally not made equally small but the vertical betatron function is
chosen smaller than the horizontal to maximize the luminosity. The length of the
magnet free straight section is determined by the maximum value for the betatron
function that can be accepted in the first vertically focusing quadrupole. The limit
may be determined by just the physical aperture available or technically possible in
these insertion quadrupoles or by the chromaticity and ability to correct and control
chromatic and geometric aberrations.

The maximum value of the betatron function at the entrance to the first
quadrupole, the minimum value at the collision point, and the magnet free section
are correlated by the equation for the betatron function in a drift space. Assuming
symmetry about the collision point, the betatron functions develop from there like

ˇ.z/ D ˇ� C z2

ˇ� ; (10.112)

where ˇ� is the value of the betatron function at the symmetry point, z the distance
from the collision point and 2Lins the full length of the insertion between the
innermost quadrupoles.
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The distance L tended to be quite large to allow the installation of large particle
detectors for high energy physics experiment. As a consequence, the betatron
function became very large in the first quadrupoles causing severe perturbations
and limitations in particle dynamics. This, of course, created a limit in the
achievable luminosity. In new colliding beam facilities, like B-factories, the low-
beta creating quadrupoles are incorporated deeply into the detectors, thus reducing
L and the maximum value for the betatron functions. This compromise resulted in
significantly higher luminosity of colliding beams.

10.3 FODO Lattice and Acceleration*

So far we have ignored the effect of acceleration in beam dynamics. In specific
cases, however, acceleration effects must be considered specifically if the particle
energy changes significantly along the beam line. In linear accelerators such a need
occurs at low energies when we try to accelerate a large emittance beam through
the small apertures of the accelerating sections. For example, when a positron beam
is to be created the positrons emerging from a target within a wide solid angle are
focused into the small aperture of a linear accelerator. After some initial acceleration
in the presence of a solenoid field along the accelerating structure it is desirable to
switch over to more economic quadrupole focusing. Even at higher energies when
the beam diameter is much smaller than the aperture strong focusing is still desired
to minimize beam break up instabilities.

10.3.1 Lattice Structure

A common mode of focusing uses a FODO lattice in conjunction with the linac
structure. We may, however, not apply the formalism developed for FODO lattices
without modifications because the particle energy changes significantly along the
lattice. A thin lens theory has been derived by Helm [22] based on a regular FODO
channel in the particle reference system. Due to Lorentz contraction the constant
quadrupole separations L� in the particle system become increasing distances in
the laboratory system as the beam energy increases. To show this quantitatively,
we consider a FODO channel installed along a linear accelerator and starting at the
energy �0 with a constant cell half length QL D �0L�. The tick-marks along the scale
in Fig. 10.19 indicate the locations of the quadrupoles and the distances between
magnets in the laboratory system are designated by L1;L2 : : : .

L1 L2 L3 L4 L5 L6

Fig. 10.19 FODO channel and acceleration
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With the acceleration ˛ in units of the rest energy per unit length and �0 the
particle energy at the center of the first quadrupole, the condition to have a FODO
channel in the particle system is

L� D
Z L1

0

dz

1C ˛ z
�0

D �0

˛
ln

�
1C ˛L1

�0

�
: (10.113)

The quantity 2L� is the length of a FODO cell in the particle system and L1 is the
distance between the first and second quadrupole in the laboratory system. Solving
for L1 we get

L1 D L� e� � 1

�
; (10.114)

where

� D ˛

�0
L�: (10.115)

At the same time the beam energy has increased from �0 to

�1 D �0 C ˛L1 : (10.116)

Equation (10.113) can be applied to any of the downstream distances between
quadrupoles. The nth distance Ln, for example, is determined by an integration from
zn�1 to zn or equivalently from 0 to Ln

L� D
Z Ln

0

dz

1C ˛ z
�n�1

D �n�1
˛

ln

�
1C ˛Ln

�n�1

�
: (10.117)

While solving for Ln, we express the energy �n�1 by addition of the energy
gains �n�1 D Pn�1

i ��i D ˛
Pn�1

i Li and taking the distances Li from expressions
(10.114) and (10.117) we get for � � 1

Ln D L� e� � 1

�
e.n�1/� : (10.118)

In thin lens approximation, the distances between successive quadrupoles
increase exponentially in the laboratory system like (10.118) to resemble the
focusing properties of a regular FODO channel with a cell length 2L� in the particle
system under the influence of an accelerating field.

Such FODO channels are used to focus large emittance particle beams in linear
accelerators as is the case for positron beams in positron linacs. For strong focusing
as is needed for low energies where the beam emittance is large, the thin lens
approximation, however, is not accurate enough and a more exact formulation of
the transformation matrices must be applied [23], which we will derive here in some
detail.
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10.3.2 Transverse Beam Dynamics and Acceleration

Transverse focusing can be significantly different along a linear accelerator due
to the rapid changing particle energy compared to a fixed energy transport line
and the proper beam dynamics must be formulated in the presence of longitudinal
acceleration. To derive the correct equations of motion we consider the particle
dynamics in the presence of the complete Lorentz force including electrical fields

Pp D eE C e ŒPr � B� : (10.119)

To solve this differential equation we consider a straight beam transport line with
quadrupoles aligned along the z-coordinate as we would have in a linear accelerator.
The accelerating fields are assumed to be uniform with a finite component only
along the z-coordinate. At the location r D .x; y; z/, the fields can be expressed by
E D .0; 0; ˛=e/ and B D .gx; gy; 0/, where the acceleration ˛ is defined by

˛ D e jEj : (10.120)

To evaluate (10.119), we express the time derivative of the momentum, Pp D
�mPr by

Pp D P�mPr C �mRr ; (10.121)

From cPp D PE=ˇ we find that P� D ˛ˇ=mc2 and (10.121) becomes for the x-
component

cPpx D ˛ˇmPx C 1

c
E Rx : (10.122)

In this subsection, we make ample use of quantities ˛; ˇ; � being acceleration
and relativistic parameters which should not be confused with the lattice functions,
which we will not need here. Bowing to convention, we refrain from introducing
new labels.

The variation of the momentum with time can be expressed also with the Lorentz
equation (10.119) and with the specified fields, we get

Ppx D �c eˇ g x : (10.123)

We replace the time derivatives in (10.122) by derivatives with respect to the
independent variable z

Px D ˇ c x0 ; (10.124)

Rx D ˇ2 c2 x00 C ˛

�3 m
x0 ;
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and after insertion into (10.122) and equating with (10.123) the equation of motion
becomes

d2x

dz2
C ˛

ˇ2E

dx

dz
C c e g

ˇE
x D 0 ; (10.125)

where we used the relation ˇ2 C 1=�2 D 1. With ˛
ˇ

D dcp=dz
cp0

and defining the
quantity

�0 D dp=dz

p0
D ˛

ˇcp0
; (10.126)

we get for the equation of motion in the horizontal plane, u D x

d2u

dz2
C �0

1C �0 z

du

dz
C k0
1C �0 z

u D 0 ; (10.127)

introducing the quadrupole strength k0 D eg
p0

. Equation (10.127) is valid also for
the vertical plane u D y if we only change the sign of the quadrupole strength k0.
Equation (10.127) is a Bessel’s differential equation, which becomes obvious by
defining a new independent variable

� D 2ˇ

�0

p
k0.1C �0z/ (10.128)

transforming (10.127) into

d2 u

d�2
C 1

�

du

d�
C u D 0 ; (10.129)

which is the equation of motion in the presence of both transverse and longitudinal
fields.

Analytical Solutions

The solutions of the differential equation (10.129) are Bessel’s functions of the first
and second kind in zero order

u.z/ D C1 I0.�/ C C2 Y0.�/ : (10.130)

In terms of initial conditions .u0; u0
0/ for z D 0 we can express the solutions in

matrix formulation

�
u.z/
u0.z/

�
D 


p
k

�0

 �I0 Y0p
kI1p

1C�0z

p
kY1p
1C�0z

! 
Y10

Y00p
k

I10
I00p

k

!�
u0

u0
0

�
: (10.131)
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Here we defined Zi D Zi

�
2ˇ

�0

p
k.1C �0z/

�
and Zi0 D Zi0

�
2ˇ

�0

p
k
�

where Zi stands

for either of the Bessel’s functions Ii or Yi and i D 0; 1.

Transformation Matrices

The transformation matrix for a drift space can be obtained from (10.131) by letting
k ! 0, but it is much easier to just integrate (10.127) directly with k D 0. We get
from (10.127) u00

u0
D � �0

1C�0z , and after logarithmic integration u0 D 1
1C�0zC const.

After still another integration

u D u0 C u0
0

�0
log .1C �0z/ (10.132)

or for a drift space of length L

�
u.L/
u0.L/

�
D
 
1 1
�0

log .1C �0L/

0 1
1C�0L

!�
u0

u0
0

�
: (10.133)

For most practical purposes we may assume that 2
p

k
�0

� 1 and may, therefore,
use asymptotic expressions for the Bessel’s functions. In this approximation the
transformation matrix of a focusing quadrupole of length ` is

Mf D
 

� cos�� �p
k

sin��

��3pk sin�� �3 cos��

!
(10.134)

C
0
@

�
8

�
3
�0

C 1
2

�
sin�� �

8
p

k

��

�0�`
cos��

3�3

8

��

�0�`

p
k cos�� � �3

8

�
1
�0

C 3
2

�
sin��

1
A ;

where

�4 D 1

1C �0`
(10.135)

and with �� D �` � �0 ;

�0 D 2

�0

p
k0 and (10.136)

�` D 2

�0

p
k.1C �0`/ : (10.137)
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Similarly we get for a defocusing quadrupole

Md D
 

� cosh�� �p
k

sinh��

��3pk sinh�� �3 cosh��

!
(10.138)

C
0
@

�
8

�
3
�0

C 1
2

�
sinh�� �

8
p

k

��

�0�`
cosh��

3�3

8

��

�0�`

p
k cosh�� � �3

8

�
1
�0

C 3
2

�
sinh��

1
A ;

These transformation matrices can be further simplified for low accelerating fields
noting that �0`

4
� 1. In this case �` � �0 � p

k` D  and with

� D 1

8

�
3

�0
C 1

�`

�
� 1

8

�
3

�`
C 1

�0

�
(10.139)

we get for a focusing quadrupole the approximate transformation matrix

Mf D
�
� 0

0 �3

�" 
cos 1p

k
sin 

�p
k sin cos 

!
(10.140)

C
�
� sin 0

0 �� sin 

��
:

and similar for a defocusing quadrupole

Md D
�
� 0

0 �3

�" 
cosh 1p

k0
sinh 

�p
k0 sinh cosh 

!
(10.141)

C
�
� sinh 0

0 �� sinh 

��
:

Finally, the transformation matrix for a drift space of length L in an accelerating
system can be derived from either (10.140) or (10.141) by letting k ! 0 for

M0 D
 
1 � 1

�0
log �4

0 �4

!
; (10.142)

where �4 D 1=.1 C �0L/ in agreement with (10.122). In the limit of vanishing
accelerating fields �0 ! 0 and we obtain back the well-known transformation
matrices for a drift space. Similarly, we may test (10.140) and (10.141) for
consistency with regular transformation matrices.

In Eqs. (10.140)–(10.142) we have the transformation matrices for all elements
to form a FODO channel in the presence of acceleration. We may now apply all
formalisms used to derive periodic betatron, dispersion functions or beam envelopes
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as derived in Sect. 10.1 for regular FODO cells. Considering one half cell we note
that the quadrupole strength k of the first half quadrupole is determined by the last
half quadrupole of the previous FODO half cell. We have therefore two variables
left, the half cell drift length L and the strength k1 of the second half quadrupole of
the FODO half cell, to fit the lattice functions to a symmetric solution by requiring
that ˛x D 0 and ˛y D 0.

Adiabatic Damping

Transformation matrices derived in this section are not phase space conserving
because their determinant is no more equal to unity. The determinant for a drift
space with acceleration is, for example,

detM0 D �4 D 1

1C �0z
(10.143)

which is different from unity if there is a finite acceleration. The two-dimensional
.x; x0/-phase space, for example, is not invariant anymore. For example, the area of
a rhombus in phase space, defined by the two vectors x0 D .x; 0/ and x0

0 D �
0; x0

0

�
,

is reduced according to (10.143) to

ˇ̌
x; x0ˇ̌ D 1

1C �0z

ˇ̌
x0; x0

0

ˇ̌
(10.144)

and the beam emittance, defined by x and x0, is therefore not preserved in the
presence of accelerating fields. This phenomenon is known as adiabatic damping
under which the beam emittance varies like

� D 1

1C �0z
�0 D p0

p
�0 : (10.145)

where �0�z D �E=E0 is the relative energy gain along the length �z of the
accelerator. From this we see immediately that the normalized phase space area
cp � is conserved in full agreement with Liouville’s theorem. In beam transport
systems where the particle energy is changing it is therefore more convenient and
dynamically correct to use the truly invariant normalized beam emittance defined by

�n D ˇ�� : (10.146)

This normalized emittance remains constant even when the particle energy is
changing due to external electric fields. In the presence of dissipating processes like
synchrotron radiation, scattering or damping, however, even the normalized beam
emittance changes because Liouville’s theorem of the conservation of phase space
is not valid anymore.
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From (10.144) we obtain formally the constancy of the normalized beam
emittance by multiplying with the momenta p0 and p D p0.1C �0z/ for

jx; .1C �0 z/p0 x0j D jx0; p0 x0
0j (10.147)

or with the transverse momenta p0 x0 D p0x and .1C �0z/ p0x0 D px

j x; px j D jx0; p0xj D const: (10.148)

This can be generalized to a six-dimensional phase space, remembering that in this

case det.M0/ D
�

1
1C�0z

�3
since the matrix has the form

 
1 � 1

�0
log �4

0 �4

!

M0 D

0
BBBBBBB@

1 � 4
�0

log �4 0 0 0 0

0 �4 0 0 0 0

0 0 1 � 4
�0

log�4 0 0

0 0 0 �4 0 0

0 0 0 0 1 A
0 0 0 0 0 �4

1
CCCCCCCA
; (10.149)

where A is an rf related quantity irrelevant for our present arguments. For the
six-dimensional phase space with coordinates x; px; y; py; �; �E, where px; py

are the transverse momenta, � the longitudinal position of the particle with
respect to a reference particle and �E the energy deviation we get finally with

jx0; p0x; y0; p0y; �0; �E0j D

0
BBBBBBB@

x0 0 0 0 0 0

0 p0x 0 0 0 0

0 0 y0 0 0 0

0 0 0 p0y 0 0

0 0 0 0 �0 0

0 0 0 0 0 �4

1
CCCCCCCA

jx; px; y; py; �; �Ej D jx0; p0x; y0; p0y; �0; �E0j D const : (10.150)

These results do not change if we had included focusing in the transformation
matrix. From (10.140), (10.141), we see immediately that the determinants for both
matrices are

det.Mf/ � det.Md/ � �4 (10.151)

ignoring small terms proportional to �.
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Problems

Use thin lens approximation unless otherwise noted.

10.1 (S). Produce a conceptual design for a separated function proton synchrotron
to be used to accelerate protons from a kinetic energy of 10–150GeV/c. The
circular vacuum chamber aperture has a radius of R D 20mm and is supposed
to accommodate a beam with a uniform beam emittance of � D 5mm mrad in both
planes and a uniform momentum spread of �E=E D ˙0:1%. The peak magnetic
bending field is B D 1:8T at 150 GeV/c.

10.2 (S). Specify a FODO cell to be used as the basic lattice unit for a 50 GeV
synchrotron or storage ring. The quadrupole aperture for the beam shall have a
radius of R D 3 cm. Adjust parameters such that a Gaussian beam with an emittance
of � D 5mm mrad in the horizontal plane, of � D 0:5mm mrad in the vertical plane
and an energy spread of �E=E0 D 0:01 would fit within the quadrupole aperture.
Ignore wall thickness of the vacuum chamber.

(a) Considering the magnetic field limitations of conventional magnets, adjust
bending radius, focal length and if necessary cell length to stay within realistic
limits for conventional magnets.

(b) What is the dipole field and the pole tip field of the quadrupoles? Adjust the
total number of cells such that there is an even number of FODO cells and the
tunes are far away from an integer or half integer resonance?

10.3 (S). Consider a ring composed of an even number 2nc of FODO cells. To
provide two component free spaces, we cut the ring at a symmetry line through the
middle of two quadrupoles on opposite sides of the ring and insert a drift space
of length 2` which is assumed to be much shorter than the value of the betatron
function at this symmetry point ` � ˇ0. Derive the transformation matrix for this
ring and compare with that of the unperturbed ring. What is the tune change of
the accelerator. The betatron functions will be modified. Derive the new value of
the horizontal betatron function at the symmetry point in units of the unperturbed
betatron function. Is there a difference to whether the free section is inserted in the
middle of a focusing or defocusing quadrupole? How does the �-function change?

10.4 (S). Sometimes two FODO channels of different parameters must be matched.
Show that a lattice section can be designed with a phase advance of� x D � y D

=2, which will provide the desired matching of the betatron functions from the
symmetry point of one FODO cell to the symmetry point of the other cells. Such a
matching section is also called a quarter wavelength transformer and is applicable
to any matching of symmetry points. Does this transformer also work for curved
FODO channels, where the dispersion is finite?

10.5 (S). The quadrupole lattice of the synchrotron in Fig. 10.11 forms a pure
FODO lattice. Yet the horizontal betatron function shows some beating perturbation
while the vertical betatron function is periodic. What is the source of perturbation
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for the horizontal betatron function? An even stronger perturbation is apparent for
the dispersion function. Explain why the dispersion function is perturbed.

10.6. For one example determine the real quadrupole length required to produce
the quoted betatron phase advances per FODO cell in Table 10.1. Compare with
thin lens quadrupole strengths.

10.7. Calculate the values of the betatron functions in the center of the quadrupoles
for ]1 and ]2 FODO cells in Table 10.1 and compare with the actual thick lens
betatron functions in Figs. 10.6 and 10.7. Discuss the difference.

10.8. The original lattice of Problem 10.4 is to be expanded to include dispersion
free cells. Incorporate into the lattice two symmetric dispersion suppressors based
on the FODO lattice of the ring following the scheme shown in Fig. 10.14. Adjust
the bending magnet strength to retain a total bending angle of 2
 in the ring.
Incorporate the two dispersion suppressors symmetrically into the ring and make
a schematic sketch of the lattice.

10.9. In the dispersion free region of Problem 10.8 introduce a symmetric Collins
insertion to provide a long magnet free section of the ring. Determine the parameters
of the insertion magnets and drift spaces. Use thin lens approximation to calculate a
few values of the betatron functions in the Collins insertions and plot betatron and
dispersion functions through the Collins insertion.

10.10. For the complete ring lattice of Problem 10.9 make a parameter list including
such parameters as circumference, revolution time, number of cells, tunes (use
simple numerical integration to calculate the phase advance in the Collins insertion),
max. beam sizes, magnet types, length, strengths, etc.

10.11. The fact that a Collins straight section can be inserted into any transport line
without creating perturbations outside the insertion makes these insertions also a
periodic lattice. A series of Collins straight sections can be considered as a periodic
lattice composed of quadrupole doublets and long drift spaces in between. Construct
a circular accelerator by inserting bending magnets into the drift spaces d and
adjusting the drift spaces to D D 5m. What is the phase advance per period?
Calculate the periodic �-function and make a sketch with lattice and lattice functions
for one period.

10.12. Consider a regular FODO lattice as shown in Fig. 10.11, where some
bending magnets are eliminated to provide magnet free spaces and to reduce the
�-function in the straight section. How does the minimum value of the �-function
scale with the phase per FODO cell. Show if conditions exist to match the �-function
perfectly in the straight section of this lattice?

10.13. How many protons would produce a circulating beam of 1 A in the ring
of Problem 10.1? Calculate the total power stored in that beam at 150 GeV/c. By
how many degrees could one liter of water be heated up by this energy? The proton
beam emittance be �x;y D 5mm mrad at the injection energy of 10 GeV/c. Calculate
the average beam width at 150 GeV/c along the lattice and assume this beam to hit
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because of a sudden miss-steering a straight piece of vacuum chamber at an angle
of 10 mrad. If all available beam energy is absorbed in a 1 mm thick steel vacuum
chamber by how much will the strip of steel heat up? Will it melt? (specific heat
cFe D 0:11 cal/g/ıC, melting temperature TFe D 1528 ıC.
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