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Preface to Fourth Edition

Just 20 years have passed since the first edition. During those years, the book
has gone through several phases starting with the two volume edition 1 and 2.
Finally in 2007, both volumes and the book on Synchrotron Radiation have been
combined into the Third-Edition as one volume to serve as a textbook for students
and beginners as well as a reference book for the practitioners. Now it has become
necessary to review the text and upgrade to include new developments. It also has
become apparent that the decision for the Third-Edition to eliminate introductory
accelerator physics was not correct. Use of this text for beginners is quite broad,
and the introduction to accelerator physics is desired. Therefore, three chapters
have been added at the beginning to introduce a variety of accelerators and their
functioning. In support to teaching, many problems with solutions have been added
for those chapters. The author also tried to distinguish between introductory chapters
and chapters which lead to more detailed subjects and show proofs. Chapters which
can be skipped on a first reading have been labeled with a star �:

As mentioned, the text includes many problems with and without solutions. The
idea was to give solutions for the beginners while more advanced problems are
not suitable for solutions in a textbook. Accelerator physics is not a collection
of homework problems. Many questions and problems are rather complex and
need to be treated in context with their impact on other systems. In most cases,
there is no one optimum solution. Individual parameter choices must be made and
modified according to their impact on other systems. Choices in beam dynamics,
for example, have an impact on magnet design or RF-system parameters, etc.
affecting the design of power supplies or financial budget. Straightforward design
choices permeate through almost all other components requiring careful evaluation.
Often the consequence of one parameter choice on other systems will become
apparent only after considerable further design optimization. Unfortunately, often
compromises must be made because of financial considerations. Work in accelerator
physics includes often several approximations, and the designer should not hesitate
to start over again with new insight. All this cannot be included in problem solutions
in a textbook. However, it seemed to the author interesting to throw up such design
problems which the interested reader can use to make his/her choices.
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viii Preface to Fourth Edition

Finally, in the last chapter on Free Electron Lasers, a short introduction into the
components of a SASE-FEL facility is given. This introduction must be short and
limited to the discussion of issues and function of main components in this text.
Much more detail is required to design such a facility and a dedicated textbook is
desirable.

I would like to thank all staff at Springer Publishing, especially the Editor Dr.
Christian Caron, Production Coordinator Mrs. Birgit Muench, the Production Editor
and Manager Ms. Shanthi Ramamoorthy, and Ms. Fathima Rizwana for their careful
editing, support, and help before and during the production process.

Chiang Mai, Thailand Helmut Wiedemann
February, 2015



Preface to Third Edition

This issue of Particle Accelerator Physics is intended to combine the content of two
earlier volumes and the volume on synchrotron radiation into one reference book.
This book is designed for the serious scientist and student to acquire the underlying
physics of electron accelerator physics. Introductory discussions on various types
of accelerators have been eliminated, being well documented in the literature. Beam
optics has been formulated in a general way as to be applicable also to proton and ion
beams. Following the requests of many readers many solutions to exercises are given
in the Appendix. Breaking with the author’s preference, Standard International units
are used in this edition. In Appendix B, transformation rules are given to convert
formulae between SI and cgs systems. In the process of rewriting the texts, known
typographical and real errors have been corrected. The author wishes to express his
sincere appreciation to all readers pointing out such errors.

I would like to thank all staff at Springer who have contributed to the publication
of this text. Foremost, I thank Dr. Christian Caron for his suggestion and encourage-
ment to combine several textbooks into one reference volume. For the expert editing
and cover design I thank Mrs. Birgit Muench and her staff. Finally, it is a pleasure to
thank Ms. Bhawna Narang from Techbooks for her patient and thorough preparation
of the proofs and final printing.

Nakhon Ratchasima, Thailand Helmut Wiedemann
March 2007
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Preface to First Edition, Volume I

The purpose of this book is to provide a comprehensive introduction into the
physics of particle accelerators and particle beam dynamics.Particle accelerators
have become important research tools in high energy physics as well as sources of
incoherent and coherent radiation from the far infra red to hard X-rays for basic and
applied research. During years of teaching accelerator physics, it became clear that
the single most annoying obstacle to get introduced into the field is the absence of
a suitable textbook. Indeed most information about modern accelerator physics is
contained in numerous internal notes from authors working mostly in high energy
physics laboratories all over the world.

This text intends to provide a broad introduction and reference book into the
field of accelerators for graduate students, engineers, and scientists summarizing
many ideas and findings expressed in such internal notes and elsewhere. In doing
so, theories are formulated in a general way to become applicable for any kind
of charged particles. Writing such a text, however, poses the problem of correct
referencing of original ideas. I have tried to find the earliest references among
more or less accessible notes and publications and have listed those although the
reader may have difficulty to obtain the original paper. In spite of great effort to be
historically correct, I apologize for possible omissions and misquotes. This situation
made it necessary to rederive again some of such ideas rather than quote the results
and refer the interested reader to the original publication. I hope this approach
will not offend the original authors, but rather provides a broader distribution
of their original ideas, which have become important to the field of accelerator
physics.

This text is split into two volumes. The first volume is designed to be self-
contained and is aimed at newcomers into the field of accelerator physics, but also
to those who work in related fields and desire some background on basic principles
of raccelerator physics. The first volume therefore gives an introductory survey of
fundamental principles of particle acceleration followed by the theory of linear beam
dynamics in the transverse as well as longitudinal phase space including a detailed
discussion of basic magnetic focusing units. Concepts of single and multi-particle
beam dynamics are introduced.
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xii Preface to First Edition, Volume I

Synchrotron radiation, its properties and effect on beam dynamics and electron
beam parameters, is described in considerable detail followed by a discussion of
beam instabilities on an introductory level, beam lifetime and basic lattice design
concepts. The second volume is aimed specifically to those students, engineers,
and scientists who desire to immerse themselves deeper into the physics of particle
accelerators. It introduces the reader to higher order beam dynamics, Hamiltonian
particle dynamics, general perturbation theory, nonlinear beam optics, chromatic
and geometric aberrations, and resonance theory. The interaction of particle beams
with rf fields of the accelerating system and beam loading effects are described
in some detail relevant to accelerator physics. Following a detailed derivation of
the theory of synchrotron radiation particle beam phenomena are discussed while
utilizing the Vlasov and Fokker Planck equations leading to the discussion of
beam parameters and their manipulation and collective beam instabilities. Finally,
design concepts and new developments of particle accelerators as synchrotron
radiation sources or research tools in high energy physics are discussed in some
detail.

This text grew out of a number of lecture notes for accelerator physics courses at
Stanford University, the Synchrotron Radiation Research Laboratory in Taiwan, the
University of Sao Paulo in Brazil, the International Center for Theoretical Physics
in Trieste and the US Particle Accelerator School as well as from interaction with
students attending those classes and my own graduate students.

During almost 30 years in this field, I had the opportunity to work with numerous
individuals and accelerators in laboratories around the world. Having learned
greatly from these interactions, I would like to take this opportunity to thank all
those who interacted with me and have had the patience to explain their ideas,
share their results, or collaborate with me. The design and construction of new
particle accelerators provides a specifically interesting period to develop and test
theoretically new ideas, to work with engineers and designers, to see theoretical
concepts become hardware and to participate in the excitement of commissioning
and optimization. I have had a number of opportunities for such participation at
the Deutsches Elektronen Synchrotron, DESY, in Hamburg, Germany and at the
Stanford University at Stanford, California and am grateful to all colleagues who
hosted and collaborated with me. I wished I could mention them individually and
apologize for not doing so.

A special thanks goes to the operators of the electron storage rings SPEAR and
PEP at the Stanford Linear Accelerator Center, specifically to T. Taylor, W. Graham,
E. Guerra, and M. Maddox, for their dedicated and able efforts to provide me during
numerous shifts over many years with a working storage ring ready for machine
physics experimentation.



Preface to First Edition, Volume I xiii

I thank Mrs. Joanne Kwong, who typed the initial draft of this text and introduced
me into the intricacies of TEX typesetting. The partial support by the Department
of Energy through the Stanford Synchrotron Radiation Laboratory in preparing
this text is gratefully acknowledged. Special thanks to Dr. C. Maldonado for
painstakingly reading the manuscript. Last but not least, I would like to thank my
family for their patience in dealing with an “absent” husband and father.

Palo Alto, CA, USA Helmut Wiedemann
December 1992





Preface to First Edition, Volume II

This text is a continuation of the first volume on “Basic Principles and Linear Beam
Dynamics”. While the first volume has been written as an introductory overview into
beam dynamics it does not include more detailed discussion of nonlinear and higher
order beam dynamics or the full theory of synchrotron radiation from relativistic
electron beams. Both issues are, however, of fundamental importance for the design
of modern particle accelerators. In this volume beam dynamics is formulated within
the realm of Hamiltonian dynamics leading to the description of multiparticle beam
dynamics with the Vlasov equation and including statistical processes with the
Fokker Planck equation. Higher order perturbations and aberrations are discussed
in detail including Hamiltonian resonance theory and higher order beam dynamics.
The discussion of linear beam dynamics in Vol. I is completed here with the
derivation of the general equation of motion including kinematic terms and coupled
motion. Building on the theory of longitudinal motion in Vol. I the interaction of
a particle beam with the rf system including beam loading, higher order phase
focusing and combination of acceleration and transverse focusing is discussed. The
emission of synchrotron radiation greatly affects the beam quality of electron or
positron beams and we therefore derive the detailed theory of synchrotron radiation
including spatial and spectral distribution as well as properties of polarization. The
results of this derivation are then applied to insertion devices like undulator and
wiggler magnets. Beam stability in linear and circular accelerators is compromised
by the interaction of the electrical charge in the beam with its environment leading
to instabilities. Theoretical models of such instabilities are discussed and scaling
laws for the onset and rise time of instabilities derived. Although this text builds up
on Vol. I, it relates to it only as a reference for basic issues of accelerator physics
which could be obtained as well elsewhere. This volume is aimed specifically to
those students, engineers and scientists who desire to acquire a deeper knowledge
of particle beam dynamics in accelerators. To facilitate the use of this text as a
reference many of the more important results are emphasized by a frame for quick
detection. Consistent with Vol. I we use the cgs system of units. However, for the
convenience of the reader who is used to the system of international units conversion
factors have been added whenever such conversion is necessary, e.g. whenever
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xvi Preface to First Edition, Volume II

electrical or magnetic units are used. These conversion factors are enclosed in
square brackets like

p
4��0 and should be ignored by those who use formulas in

the cgs system. The conversion factors are easy to identify since they include only
the constants c; �; �0; �0 and should therefore not mixed up with other factors in
square brackets. For the convenience of the reader the source of these conversion
factors is compiled in the appendix together with other useful tools.

I would like to thank Joanne Kwong, who typed the initial draft of this text and
introduced me into the intricacies of TEX typesetting and to my students who guided
me by numerous inquisitive questions. Partial support by the Division of Basic
Energy Sciences in the Department of Energy through the Stanford Synchrotron
Radiation Laboratory in preparing this text is gratefully acknowledged. Special
thanks to Dr. C. Maldonado for painstakingly reading the manuscript and to the
editorial staff of Springer Verlag for the support during the preparation of this text.

Palo Alto, CA, USA Helmut Wiedemann
March 1994
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Chapter 1
Introduction to Accelerator Physics

The development of charged particle accelerators and it’s underlying principles
has its basis on the theoretical and experimental progress in fundamental physical
phenomena. While active particle accelerator experimentation started seriously
only in the twentieth century, it depended on the basic physical understanding of
electromagnetic phenomena as investigated both theoretically and experimentally
mainly during the nineteenth and beginning twentieth century. In this introduction
we will recall briefly the history leading to particle accelerator development,
applications and introduce basic definitions and formulas governing particle beam
dynamics.

1.1 Short Historical Overview

The history and development of particle accelerators is intimately connected to
the discoveries and understanding of electrical phenomena and the realization that
the electrical charge comes in lumps carried as a specific property by individual
particles. It is reported that the Greek philosopher and mathematician Thales of
Milet, who was born in 625 BC first observed electrostatic forces on amber. The
Greek word for amber is electron or �����	o
 and has become the origin for
all designations of electrical phenomena and related sciences. For more than 2000
years this observation was hardly more than a curiosity. In the eighteenth century,
however, electrostatic phenomena became quite popular in scientific circles and
since have been developed into a technology which by now completely embraces
and dominates modern civilization as we know it.

It took another 100 years before the carriers of electric charges could be isolated.
Many systematic experiments were conducted and theories developed to formulate
the observed electrical phenomena mathematically. It was Coulomb, who in 1785
first succeeded to quantify the forces between electrical charges which we now call
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Coulomb forces. As more powerful sources for electrical charges became available,
glow discharge phenomena were observed and initiated an intensive effort on
experimental observations during most of the second half of the nineteenth century.
It was the observations of these electrical glow discharge phenomena that led the
scientific community to the discovery of elementary particles and electromagnetic
radiation which are both basic ingredients for particle acceleration.

Research leading to the discovery of elementary particles and to ideas for the
acceleration of such particles is dotted with particularly important milestones which
from time to time set the directions for further experimental and theoretical research.
It is obviously somewhat subjective to choose which discoveries might have been
the most influential. Major historical discoveries leading to present day particle
accelerator physics started to happen more than a 150 years ago:

1815 The physician and chemist W. Proust postulates, initially anonymous, that
all atoms are composed of hydrogen atoms and that therefore all atomic weights
come in multiples of the weight of a hydrogen atom.

1839 M. Faraday [1] publishes his experimental investigations of electricity and
described various phenomena of glow discharge.

1858 J. Plücker [2] reports on the observation of cathode rays and their deflection
by magnetic fields. He found the light to become deflected in the same spiraling
direction as Ampere’s current flows in the electromagnet and therefore postulated
that the electric light, as he calls it, under the circumstances of the experiment
must be magnetic.

1867 L. Lorenz working in parallel with J.C. Maxwell on the theory of electro-
magnetic fields formulates the concept of retarded potentials although not yet for
moving point charges.

1869 J.W. Hittorf [3], a student of Plücker, started his thesis paper with the
statement (translated from german): “The undisputed darkest part of recent
theory of electricity is the process by which in gaseous volumes the propagation
of electrical current is effected”. Obviously observations with glow discharge
tubes displaying an abundance of beautiful colors and complicated reactions
to magnetic fields kept a number of researchers fascinated. Hittorf conducted
systematic experiments on the deflection of the light in glow discharges by
magnetic fields and corrected some erroneous interpretations by Plücker.

1871 C.F. Varley postulates that cathode rays are particle rays.
1874 H. von Helmholtz postulates atomistic structure of electricity.
1883 J.C. Maxwell publishes his Treatise on Electricity and Magnetism.
1883 T.A. Edison discovers thermionic emission.
1886 E. Goldstein [4] observed positively charged rays which he was able to

isolate from a glow discharge tube through channels in the cathode. He therefore
calls these rays Kanalstrahlen.

1887 H. Hertz discoveries transmission of electromagnetic waves and photoelec-
tric effect.

1891 G.J. Stoney introduces the name electron.
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1895 H.A. Lorentz formulates electron theory, the Lorentz force equation and
Lorentz contraction.

1894 P. Lenard builts a discharge tube that allows cathode rays to exit to
atmospheric air.

1895 W. Röntgen discovers x-rays.
1895 E. Wiedemann [5] reports on a new kind of radiation studying electrical

sparks.
1897 J.J. Thomson measures the e/m-ratio for kanal and cathode rays with

electromagnetic spectrometer and found the e/m ratio for cathode rays to be
larger by a factor of 1,700 compared to the e/m ratio for kanal rays. He concluded
that cathode rays consist of free electricity giving evidence to free electrons.

1897 J. Larmor formulates concept of Larmor precession.
1898 A. Liènard calculates the electric and magnetic field in the vicinity of

a moving point charge and evaluated the energy loss due to electromagnetic
radiation from a charged particle travelling on a circular orbit.

1900 E. Wiechert derives expression for retarded potentials of moving point
charges.

1901 W. Kaufmann, first alone, and in 1907 together with A.H. Bucherer measure
increase of electron mass with energy. First experiment in support of theory of
special relativity.

1905 A. Einstein publishes theory of special relativity.
1906 J.J. Thomson [6] explains the emission of this radiation as being caused by

acceleration occurring during the collision of charged particles with other atoms
and calculated the energy emitted per unit time to be .2e2f 2/=.3V/, where e is
the charge of the emitting particle, f the acceleration and V the velocity of light.

1907 G.A. Schott [7, 8] formulated the first theory of synchrotron radiation in an
attempt to explain atomic spectra.

1909 R.A. Millikan starts measuring electric charge of electron.
1913 First experiment by J. Franck and G. Hertz to excite atoms by accelerated

electrons.
1914 E. Marsden produces first proton beam irradiating paraffin with alpha

particles.
1920 H. Greinacher [9] builts first cascade generator.
1922 R. Wideroe as a graduate student sketches ray transformer (betatron).
1924 G. Ising [10] invents as a student the electron linac with drift tubes and spark

gap excitation.
1928 R. Wideroe [11] reports first operation of linear accelerator with potassium

and sodium ions. Discusses operation of betatron and failure to get beam for lack
of focusing.

1928 P.A.M. Dirac predicts existence of positrons.
1931 R.J. Van de Graaff [12] builts first high voltage generator.
1932 Lawrence and Livingston [13] accelerate first proton beam from 1.2 MeV

cyclotron employing weak focusing.
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1932 J.D. Cockcroft and E.T.S. Walton [14] use technically improved cascade
generator to accelerate protons and initiate first artificial atomic reaction: Li C
p! 2He:

1932 in the same year, C.D. Andersen discovers positrons, neutrons were discov-
ered by J. Chadwick, and H.C. Urey discoveries deuterons.

1939 W.W. Hansen, R. Varian and his brother S. Varian invent klystron microwave
tube at Stanford.

1941 D.W. Kerst and R. Serber [15] complete first functioning betatron.
1941 B. Touschek and R. Wideroe formulate storage ring principle.
1944 D. Ivanenko and I.Ya. Pomeranchuk [16] and J. Schwinger [17] point out

independently an energy limit in circular electron accelerators due to synchrotron
radiation losses.

1945 V.I. Veksler [18] and E.M. McMillan [19] independently discover the
principle of phase focusing.

1945 J.P. Blewett [20] experimentally discovers synchrotron radiation by measur-
ing the energy loss of electrons.

1947 L.W. Alvarez [21] designs first proton linear accelerator at Berkeley.
1948 E.L. Ginzton et al. [22] accelerate electrons to 6 MeV with Mark I at

Stanford.
1949 McMillan et al. commissioned 320 MeV electron synchrotron.
1950 N. Christofilos [23] formulates concept of strong focusing.
1952 M.S. Livingston et al. [24] describe design for 2.2 GeV Cosmotron in

Brookhaven.
1951 H. Motz [25] builds first wiggler magnet to produce quasi monochromatic

synchrotron radiation.
1952 E. Courant et al. [26] publish first paper on strong focusing.
1954 R.R. Wilson et al. operate first AG electron synchrotron in Cornell at

1.1 GeV.
1954 Lofgren et al. accelerate protons to 5.7 GeV in Bevatron.
1955 M. Chodorow et al. [27] complete 600 MeV MARK III electron linac.
1955 M. Sands [28] define limits of phase focusing due to quantum excitation.
1959 E. Courant and Snyder [29] publish their paper on the Theory of the

Alternating-Gradient Synchrotron.

Research and development in accelerator physics blossomed significantly during
the 1950s supported by the development of high power radio frequency sources
and the increased availability of government funding for accelerator projects.
Parallel with the progress in accelerator technology, we also observe advances in
theoretical understanding, documented in an increasing number of publications.
It is beyond the scope of this text to only try to give proper credit to all major
advances in the past 60 years and refer the interested reader to more detailed
references.
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1.2 Particle Accelerator Systems

Particle accelerators come in many forms applying a variety of technical principles.
All are based on the interaction of the electric charge with static and dynamic
electromagnetic fields and it is the technical realization of these interactions that
leads to the different types of particle accelerators. Electromagnetic fields are used
over most of the available frequency range from static electric fieldsto ac magnetic
fields in betatrons oscillating at 50 or 60 Hz, to radio frequency fields in the MHz
to GHz range and ideas are being explored to use laser beams to generate high field
particle acceleration.

In this text, we will not discuss the different technical realization of particle
acceleration but rather concentrate on basic principles which are designed to help the
reader to develop technical solutions for specific applications meeting basic beam
stability requirements. For particular technical solutions we refer to the literature.
Further down we will discuss briefly basic accelerator types and their theoretical
back ground. Furthermore, to discuss basic principles of particle acceleration and
beam dynamics it is desirable to stay in contact with technical reality and reference
practical and working solutions. We will therefore repeatedly refer to certain types
of accelerators and apply theoretical beam dynamics solutions to exhibit the salient
features and importance of the theoretical ideas under discussion. In these references
we use mostly such types of accelerators which are commonly used and are
extensively publicized.

1.2.1 Main Components of Accelerator Facilities

In the following paragraphs we describe components of particle accelerators in
a rather cursory way to introduce the terminology and overall features. Particle
accelerators consist of two basic units, the particle source or injector and the main
accelerator. The particle source comprises all components to generate a beam of
desired particles.

Generally glow discharge columns are used to produce proton or ion beams,
which then are first accelerated in electrostatic accelerators like a Van de Graaff
or Cockcroft-Walton accelerator and then in an Alvarez-type linear accelerator. To
increase the energy of heavy ion beams the initially singly charged ions are, after
some acceleration, guided through a thin metal foil to strip more electrons off the
ions. More than one stripping stage may be used at different energies to reach the
maximum ionization for most efficient acceleration.

Much more elaborate measures must be used to produce antiprotons. Generally
a high energy proton beam is aimed at a heavy metal target, where, through
hadronic interactions with the target material, among other particles antiprotons
are generated. Emerging from the target, these antiprotons are collected by strong
focusing devices and further accelerated.
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Electrons are commonly generated from a heated cathode, also called a
thermionic gun, which is covered on the surface by specific alkali oxides or any
other substance with a low work function to emit electrons at technically practical
temperatures. Another method to create a large number of electrons within a short
pulse uses a strong laser pulse directed at the surface of a photo cathode. Systems
where the cathode is inserted directly into an accelerating rf field are called rf
guns. Positrons are created the same way as antiprotons by aiming high energy
electrons on a heavy metal target where, through an electromagnetic shower and
pair production, positrons are generated. These positrons are again collected by
strong magnetic fields and further accelerated.

Whatever the method of generating particles may be, in general they do not have
the time structure desired for further acceleration or special application. Efficient
acceleration by rf fields occurs only during a very short period per oscillation cycle
and most particles would be lost without proper preparation. For high beam densities
it is desirable to compress the continuous stream of particles from a thermionic
gun or a glow discharge column into a shorter pulse with the help of a chopper
device and/or a prebuncher. The chopper may be a mechanical device or a deflecting
magnetic or rf field moving the continuous beam across the opening of a slit. At the
exit of the chopper we observe a series of beam pulses, called bunches, to be further
processed by the prebuncher. Here early particles within a bunch are decelerated
and late particles accelerated. After a well defined drift space, the bunch length
becomes reduced due to the energy dependence of the particle velocity. Obviously
this compression works only as long as the particles are not relativistic while the
particle velocity can be modulated by acceleration or deceleration.

No such compression is required for antiparticles, since they are produced by
high energetic particles having the appropriate time structure. Antiparticle beams
emerging from a target have, however, a large beam size and beam divergence.
To make them suitable for further acceleration they are generally stored for some
time in a cooling or damping ring. Such cooling rings are circular “accelerators”
where particles are not accelerated but spend just some time circulating. Positrons
circulating in such storage rings quickly lose their transverse momenta and large
beam divergence through the emission of synchrotron radiation. In the case of
antiprotons, external fields are applied to damp the transverse beam size or
they circulate against a strong counterrotating electron beam loosing transverse
momentum through scattering.

Antiparticles are not always generated in large quantities. On the other hand, the
accelerator ahead of the conversion target can often be pulsed at a much higher rate
than the main accelerator can accept injection. In such cases, the antiparticles are
collected from the rapid cycling injector in an accumulator ring and then transferred
to the main accelerator when required.

Particle beams prepared in such a manner may now be further accelerated in
linear or circular accelerators. A linear accelerator consists of a linear sequence
of many accelerating units where accelerating fields are generated and timed such
that particles absorb and accumulate energy from each acceleration unit. Most
commonly used linear accelerators consist of a series of cavities excited by
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radio frequency sources to high accelerating fields. In the induction accelerator ,
each accelerating unit consists of a transformer which generates from an external
electrical pulse a field on the transformer secondary which is formed such as to allow
the particle beam to be accelerated. Such induction accelerators can be optimized to
accelerate very high beam currents to medium beam energies.

For very high beam energies linear accelerators become very long and costly.
Such practical problems can be avoided in circular accelerators where the beam is
held on a circular path by magnetic fields in bending magnets and passing repeatedly
every turn through accelerating sections, similar to those in a linear accelerator. This
way, the particles gain energy from the accelerating cavities at each turn and reach
higher energies while the fields in the bending magnets are raised.

The basic principles to accelerate particles of different kind are similar and
we do not need to distinguish between protons, ions, and electrons. Technically,
individual accelerator components differ more or less to adjust to the particular
beam parameters which have mostly to do with the particle velocities. For highly
relativistic particles the differences in beam dynamics vanish. Protons and ions
are more likely to be nonrelativistic and therefore vary the velocity as the kinetic
energy is increased, thus generating problems of synchronism with the oscillating
accelerating fields which must be solved by technical means.

After acceleration in a linear or circular accelerator the beam can be directed onto
a target, mostly a target of liquid hydrogen, to study high energy interactions with
the target protons. Such fixed target experimentation dominated nuclear and high
energy particle physics from the first applications of artificially accelerated particle
beams far into the 1970s and is still a valuable means of basic research. Obviously,
it is also the method in conjunction with a heavy metal target to produce secondary
particles like antiparticles for use in colliding beam facilities and mesons for basic
research.

To increase the center-of-mass energy for basic research, particle beams are
aimed not at fixed targets but to collide head on with another beam. This is one
main goal for the construction of colliding beam facilities or storage rings. In
such a ring, particle and antiparticle beams are injected in opposing directions and
made to collide in specifically designed interaction regions. Because the interactions
between counter orbiting particles is very rare, storage rings are designed to allow
the beams to circulate for many turns with beam life times of several hours to give
the particles ample opportunity to collide with other counter rotating particles. Of
course, beams can counter rotate in the same magnetic fields only if one beam is
made of the antiparticles of the other beam while two intersecting storage rings
must be employed to allow the collision of unequal particles.

The circulating beam in an electron storage ring emits synchrotron radiation
due to the transverse acceleration during deflection in the bending magnets. This
radiation is highly collimated in the forward direction, of high brightness and
therefore of great interest for basic and applied research, technology, and medicine.

Basically the design of a storage ring is the same as that for a synchrotron
allowing some adjustment in the technical realization to optimize the desired
features of acceleration and long beam lifetime, respectively. Beam intensities are
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generally very different in a synchrotron from that in a storage ring. In a synchrotron,
the particle intensity is determined by the injector and this intensity is much smaller
than desired in a storage ring. The injection system into a storage ring is therefore
designed such that many beam pulses from a linear accelerator, an accumulator ring
or a synchrotron can be accumulated. A synchrotron serving to accelerate beam
from a low energy preinjector to the injection energy of the main facility, which
may be a larger synchrotron or a storage ring, is also called a booster synchrotron
or short a booster.

Although a storage ring is not used for particle acceleration it often occurs that a
storage ring is constructed long after and for a higher beam energy than the injector
system. In this case, the beam is accumulated at the maximum available injection
energy. After accumulation the beam energy is slowly raised in the storage ring to
the design energy by merely increasing the strength of the bending and focusing
magnets.

Electron positron storage rings have played a great role in basic high-energy
research. For still higher collision energies, however, the energy loss due to
synchrotron radiation has become a practical and economic limitation. To avoid
this limit, beams from two opposing linear accelerators are brought into head
on collision at energies much higher than is possible to produce in circular
accelerators. To match the research capabilities in colliding beam storage rings,
such linear colliders must employ sophisticated beam dynamics controls, focusing
arrangements and technologies similar to X-ray laser systems now operating.

1.2.2 Applications of Particle Accelerators

Particle accelerators are mainly known for their application as research tools in
nuclear and high energy particle physics requiring the biggest and most energetic
facilities. Smaller accelerators, however, have found broad applications in a wide
variety of basic research and technology, as well as medicine. In this text, we will
not discuss the details of all these applications but try to concentrate only on the
basic principles of particle accelerators and the theoretical treatment of particle
beam dynamics and instabilities. An arbitrary and incomplete listing of applications
for charged particle beams and their accelerators is given for reference to the
interested reader:

Nuclear physics
Electron/proton accelerators
Ion accelerators/colliders
Continuous beam facility
High-energy physics
Fixed target accelerator
Colliding beam storage rings
Linear colliders

Power generation
Inertial fusion
Reactor fuel breeding
Industry
Radiography by x-rays
Ion implantation
Isotope production/separation
Materials testing/modification
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Food sterilization
X-ray lithography
Synchrotron radiation
Basic atomic and molecular physics
Condensed matter physics
Earth sciences
Material sciences
Chemistry
Molecular and cell biology
Surface/interface physics

Coherent radiation
Free electron lasers, X-FEL
Microprobe
Holography
Medicine
Radiotherapy
Health physics
Microsurgery with tunable FEL
Sterilization

This list is by no means exhaustive and additions must be made at an impressive
pace as the quality and characteristics of particle beams become more and more
sophisticated, predictable and controllable. Improvements in any parameter of
particle beams create opportunities for new experiments and applications which
were not possible before. More detailed information on specific uses of particle
accelerators as well as an extensive catalogue of references has been compiled by
Scharf [30].

1.3 Definitions and Formulas

Particle beam dynamics can be formulated in a variety units and it is therefore
prudent to define the units used in this text to avoid confusion. In addition, we
recall fundamental relations of electromagnetic fields and forces as well as some
laws of special relativity to the extend that will be required in the course of
discussions.

1.3.1 Units and Dimensions

A set of special physical units, selected primarily for convenience, are most
commonly used to quantify physical constants in accelerator physics. The use of
many such units is often determined more by historical developments than based on
the choice of a consistent set of quantities useful for accelerator physics.

Generally, accelerator physics theory is formulated in the metric mks-system
of units or SI-units which we follow also in this text. For readers used to cgs
units, we include here conversion tables for convenience. To measure the energy
of charged particles the unit Joule is actually used very rarely. The basic unit
of energy in particle accelerator physics is the electron Volt .eV/, which is the
kinetic energy a particle with one basic unit of electrical charge e would gain while
being accelerated between two conducting plates at a potential difference of 1 V.
Therefore, 1 eV is equivalent to 1:60217733 � 10�19 J: Specifically, we will often
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use derivatives of the basic units to express actual particle energies in a convenient
form:

1 keV D 1000 eV; 1MeV D 106 eV; 1GeV D 109 eV; 1TeV D 1012 eV

To describe particle dynamics we find it necessary to sometimes use the particle’s
momentum and sometimes the particle’s energy. The effect of the Lorentz force
from electric or magnetic fields is inversely proportional to the momentum of the
particle. Acceleration in rf fields, on the other hand, is most conveniently measured
by the increase in kinetic or total energy.

In an effort to simplify the technical jargon used in accelerator physics the term
energy is used for all three quantities although mathematically the momentum is
then multiplied by the velocity of light for dimensional consistency. There are still
numerical differences which must be considered for all but very highly relativistic
particles. Where we need to mention the pure particle momentum and quote a
numerical value, we generally use the total energy divided by the velocity of light
with the unit eV/c. With this definition a particle of energy cp D 1 eV would have a
momentum of p D 1 eV/c.

An additional complication arises in the case of composite particles like heavy
ions, consisting of protons and neutrons. In this case, the particle energy is not
quoted for the whole ion but in terms of the energy per nucleon.

The particle beam current is measured generally in Amperes, no matter what
general system of units is used but also occasionally in terms of the total charge or
number of particles. The current is then the total charge Q passing a point during
the time t: Depending on the time duration one gets an instantaneous current or
some average current. Therefore a quotation of the particle current requires also the
definition of the time structure of the beam. In circular accelerators, for example,
the average beam current I relates directly to the beam intensity or the number
of circulating particles N. If ˇc is the velocity of the particle and Z the charge
multiplicity, we get for the relation of beam current and beam intensity

I D eZ frevN ; (1.1)

where the revolution frequency frev D ˇc=C and C is the circumference of the
circular accelerator. This is the average circulating current to be distinguished from
the bunch current or peak bunch current, which is the charge per bunch q divided by
the duration of the bunch.

For a linear accelerator or beam transport line where particles come by only
once, the definition of the beam current is more subtle. We still have a simple case
if the particles come by in a continuous stream in which case the beam current is
proportional to the particle flux PN or I D eZ PN. This case, however, occurs very
rarely since particle beams are generally accelerated by rf fields. As a consequence
there is no continuous flux of particles reflecting the time varying acceleration of
the rf field. The particle flux therefore is better described by a series of equidistant
particle bunches separated by an integral number of wavelengths of the accelerating
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Table 1.1 Numerical
conversion factors

Quantity Replace cgs parameter by practical units

Potential 1 esu 300V

Electrical field 1 esu 3 104 V/m

Current 1 esu 0:1 � c A

Charge 1 esu 0:3333 10�9 C

Force 1 dyn 10�5 N

Energy 1 eV 1:602 10�19 J

1 eV 1:602 10�12 erg

rf field. Furthermore, the acceleration often occurs only in bursts or pulses producing
either a single bunch of particles or a string of many bunches. In these cases
we distinguish between different current definitions. The peak current is the peak
instantaneous beam current for a single bunch, while the average current is defined
as the particle flux averaged over the duration of the beam pulse or any other given
time period, e.g. 1 s.

Magnetic fields are quoted either in Tesla or Gauss.1 Similarly, field gradients
and higher derivatives are expressed in Tesla per meter or Gauss per centimeter.
Frequently we find the need to perform numerical calculations with parameters
given in different units. Some helpful numerical conversions from cgs to mks-units
are compiled in Table 1.1.

Similar conversion factors can be derived for electromagnetic quantities in
formulas by comparisons of similar equations in the MKS and cgs-system. Table 1.2
includes some of the most frequently used conversions. The absolute dielectric
constant is

"0 D 107

4�c2
C

Vm
D 8:854 � 10�12 C

Vm
(1.2)

and the absolute is

�0 D 4�10�7 Vs

Am
D 1:2566� 10�6 Vs

Am
(1.3)

Both constants are related by c2"0�0 D 1: Using these conversion factors it is
possible to convert formulas in cgs units into the equivalent form for mks-units.

1.3.2 Maxwell’s Equations

Predictable control of charged particles is effected only by electric and magnetic
fields and beam dynamics is the result of such interaction. We try to design and

1Because of its wide use, we use in rare cases the unit Gauss even though it is not a SI unit (1
Gauss = 0.0001 Tesla = 0.1 mT).
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Table 1.2 Conversion
factors for equations

Replace cgs-parameter
Quantity by mks-parameter

Potential Vcgs
p
4�"0Vmks

Electric field Ecgs
p
4�"0Emks

Current Icgs
1p
4�"0

Imks

Current density jcgs
1p
4�"0

jmks

Charge qcgs
1p
4�"0

qmks

Charge density 	cgs
1p
4�"0

	mks

Conductivity �cgs
1p
4�"0

�mks

Inductance Lcgs 4�"0 Lmks

Capacitance Ccgs
1

4�"0
Cmks

Magnetic field Hcgs
p
4��0Hmks

Magnetic induction Bcgs
4�
�0

Bmks

formulate electromagnetic fields in a way that can be used to accurately predict the
behavior of charged particles. To describe the general interaction of fields based on
electric currents in specific devices and free charged particles which we want to
preserve, guide and focus, we use as a starting point Maxwell’s equations:

r .�E/D 	

�0
; Coulomb’s law,

rB D 0;
r � ED� @

@t B; Faraday’s law,

r �
�
1
�

B
�
D�0 jC 1

c2
@
@t .�E/ : Ampère’s law,

(1.4)

consistent with the SI-system of units by inclusion of the unit scale factors �0
and �0: The quantities � and � are the relative dielectric constant and magnetic
permeability of the surrounding materials, respectively. Integration of one or the
other of Maxwell’s equations results, for example, in the fields from singly charged
particles or those of an assembly of particles travelling along a common path and
forming a beam. Applying Maxwell’s equations, we will make generous use of
algebraic relations which have been collected in Appendix A.

1.4 Primer in Special Relativity

In accelerator physics the dynamics of particle motion is formulated for a large
variety of energies from nonrelativistic to highly relativistic values and the equations
of motion obviously must reflect this. Relativistic mechanics is therefore a funda-
mental ingredient of accelerator physics and we will recall a few basic relations
of relativistic particle mechanics from a variety of more detailed derivations in
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generally available textbooks. Beam dynamics is expressed in a laboratory by a
fixed system of coordinates but some specific problems are better discussed in the
moving coordinate system of particles. Transformation between the two systems is
effected through a Lorentz transformation.

1.4.1 Lorentz Transformation

Physical phenomena can appear different for observers in different systems of
reference. Yet, the laws of nature must be independent of the reference sys-
tem. In classical mechanics, we transform physical laws from one to another
system of reference by way of the Galileo transformation z� D z � vt assum-
ing that one system moves with velocity v along the z-axis of the other sys-
tem.

As the velocities of bodies under study became faster, it became necessary
to reconsider this simple transformation leading to Einstein’s special theory of
relativity. Maxwell’s equations result in electromagnetic waves expanding at a finite
velocity and do not contain any reference to a specific system of reference. Any
attempt to find a variation of the “velocity of light” with respect to moving reference
systems failed, most notably in Michelson’s experiments. The expansion velocity
of electromagnetic waves is therefore independent of the reference system and is
finite.

Any new transformation laws must include the observation that no element of
energy can travel faster than the speed of light. The new transformation formulae
combine space and time and are for a reference system L� moving with velocity
vz D cˇz along the z-axis with respect to the stationary system L.

x D x�;
y D y�;
z D � .z� C ˇz ct�/ ;
ct D � . ˇz z� C ct�/ ;

(1.5)

where the relativistic factor is

� D 1p
1 � ˇ2z

(1.6)

with

ˇz D vz=c (1.7)

and where all quantities designated with � are defined in the moving system L�.
Of course, either system is moving relative to the other and we will use this
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relativity in various circumstances depending on whether quantities are known in
the laboratory or moving system. The Lorentz transformations can be expressed in
matrix formulation by0BB@

x
y
z
ct

1CCA D
0BB@
1 0 0 0

0 1 0 0

0 0 � Cˇ�
0 0 Cˇ� �

1CCA
0BB@

x�
y�
z�
ct�

1CCA DML

0BB@
x�
y�
z�
ct�

1CCA (1.8)

and the inverse transformation is the same except that the velocity or ˇ changes sign
.v! �v/.

Lorentz Transformation of Fields

Without proof, electromagnetic fields transform between reference systems in
relative motion like0BBBBBBB@

Ex

Ey

Ez

cBx

cBy

cBz

1CCCCCCCA
D

0BBBBBBB@

� 0 0 0 C�ˇz 0

0 � 0 ��ˇz 0 0

0 0 1 0 0 0

0 ��ˇz 0 � 0 0

C�ˇz 0 0 0 � 0

0 0 0 0 0 1

1CCCCCCCA

0BBBBBBB@

E�
x

E�
y

E�
z

cB�
x

cB�
y

cB�
z

1CCCCCCCA
: (1.9)

Again, for the inverse transformation only the sign of the relative velocity must
be changed, ˇz ! � ˇz: According to this transformation of fields, a pure static
magnetic field in the laboratory system L, for example, becomes an electromagnetic
field in the moving system L�. An undulator field, therefore, looks to an electron like
a virtual photon with an electromagnetic field like a laser field and both interactions
can be described by Compton scattering.

Lorentz Contraction

Characteristic for relativistic mechanics is the Lorentz contraction and time dilata-
tion, both of which become significant in the description of particle dynamics. To
describe the Lorentz contraction, we consider a rod at rest in the stationary system
L along the z-coordinate with a length ` D z2 � z1. In the system L�, which
is moving with the velocity vz in the positive z-direction with respect to L, the
rod appears to have the length `� D z�

2 � z�
1 : By a Lorentz transformation we

can relate that to the length in the L-system. Observing both ends of the rod at
the same time the lengths of the rod as observed from both systems relate like
` D z2 � z1 D �.z�

2 C vzt�2 / � �.z�
1 C vzt�1 / D �`� or

` D �`�: (1.10)
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A rod at rest in system L appears shorter in the moving particle system L� by a
factor � and is always longest in it’s own rest system. For example, the periodicity
of an undulator �p becomes Lorentz contracted to �p=� as seen by relativistic
electrons. Because of the Lorentz contraction, the volume of a body at rest in the
system L appears also reduced in the moving system L� and we have for the volume
of a body in three dimensional space

V D �V� : (1.11)

Only one dimension of this body is Lorentz contracted and therefore the volume
scales only linearly with � . As a consequence, the charge density 	 of a particle
bunch with the volume V is lower in the laboratory system L compared to the density
in the system moving with this bunch and becomes

	 D 	�
�
: (1.12)

Time Dilatation

Similarly, we may derive the time dilatation or the elapsed time between two events
occurring at the same point in both coordinate systems. Applying the Lorentz
transformations we get from (1.5) with z�

2 D z�
1

t D t2 � t1 D �
�

t�2 C
ˇzz�

2

c

�
� �

�
t�1 C

ˇzz�
1

c

�
(1.13)

or

t D �t�: (1.14)

For a particle at rest in the moving system L� the time t� varies slower than the
time in the laboratory system. This is the mathematical expression for the famous
twin paradox where one of the brothers moving in a space capsule at relativistic
speed would age slower than his twin brother staying back. This phenomenon
gains practical importance for unstable particles. For example, high-energy pions,
observed in the laboratory system, have a longer lifetime by the factor � compared
to low-energy pions with � D 1. As a consequence, high energy unstable particles,
like pions and muons, live longer and can travel farther as measured in the
laboratory system, because the particle decay time is a particle property and is
therefore measured in its own moving system. This is important. For example, in
medical applications when a beam of pions has to be transported from the highly
radioactive target area to a radiation free environment for the patient for cancer
treatment.
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1.4.2 Lorentz Invariance

Briefly, we have to introduce 4-vectors, because they will make later discussions
much easier and illuminate fundamental properties of synchrotron radiation which
is emitted in the particle system, but observed in the laboratory system as we will
see later in this section. Four-vectors have a special significance in physics. As their
name implies, four physical quantities can form a 4-vector which has convenient
properties when viewed in different reference systems. The components of space-
time, for example, form a 4-vector Qs D .x; y; z; ict/. To identify 4-vectors, we add a
tilde Qs to the symbols. All true 4-vectors transform like the space-time coordinates
through Lorentz transformations.

Qa DML Qa�: (1.15)

Invariance to Lorentz Transformations

The length of 4-vectors is the same in all reference systems and is therefore open to
measurements and comparisons independent of the location of the experimenter.
In fact, it can be shown (exercise) that even the product of two arbitrary 4-
vectors is Lorentz invariant. Take two 4-vectors in an arbitrary frame of reference
Qa�D �a�

1 ; a
�
2 ; a

�
3 ; ia

�
4

�
and Qb�D �b�

1 ; b
�
2 ; b

�
3 ; ib

�
4

�
and form the product Qa� Qb�

in com-

ponent form. A Lorentz transformation on both 4-vectors gives Qa� Qb� D QaQb; which
is the same in any reference system and is therefore Lorentz invariant. Specifically,
the length of any 4-vector is Lorentz invariant.

Space-Time

Imagine a light flash to originate at the origin of the coordinate system L.x; y; z/: At
the time t; the edge of this expanding light flash has expanded with the velocity of
light to

x2 C y2 C z2 D c2t2: (1.16)

Observing the same light flash from a moving system, we apply a Lorentz
transformation from the laboratory system L to the moving system L� and get

x�2 C y�2 C z�2 D c2t�2 (1.17)

demonstrating the invariance of the velocity of light c as has been experimentally
verified by Michelson and Morley in 1887. The velocity of light is the same in all
reference systems and its value is

c D 299; 792; 458 m/s. (1.18)



1.4 Primer in Special Relativity 19

The components of the space-time 4-vector are

Qs D .x1; x2; x3; x4/ D .x; y; z; ict/ ; (1.19)

where the time component has been multiplied by c to give all components the same
dimension. From the Lorentz invariant world time � , defined as

c� D
p
�Qs2 (1.20)

we get

cd� D
q

c2 .dt/2 � .dx/2 � .dy/2 � .dz/2 D
q

c2 � �v2x C v2y C v2z �dt

D
p

c2 � v2dt D
p
1 � ˇ2cdt; (1.21)

a relation, we know from the Lorentz transformation as time dilatation d� D 1
�

dt :
Other 4-vectors can be formulated and often become relevant in accelerator

physics as, for example, those listed below. More 4-vectors are listed in Appendix
B.

Four-Velocity

A velocity 4-vector can be derived from the space-time 4-vector by simple
differentiation

Qv D dQs
d�
D � dQs

dt
D � .Px; Py; Pz; ic/ : (1.22)

Evaluating the square of the velocity 4-vector we find Qv2 D �v2 � �c2 D �c2 in
the rest frame and in any other reference frame. The velocity of light is the same in
any reference system as experimentally verified by Michelson and Morley.

Four-Acceleration

From the velocity 4-vector, we derive the 4-acceleration

Qa D d Qv
d�
D � d

dt

�
�

dQs
dt

�
D �2 d2Qs

dt2
C � Qv d�

dt
D �2 d2Qs

dt2
C Qv�

3

c2
.va/ (1.23)

or in component form Qa D �Qax; Qay; Qaz; i Qat
�
; we get Qax D �2axC �4ˇx .ˇ a/ ; ::; Qat D

�4 .ˇ a/ where a D .Rx; Ry; Rz/ is the ordinary acceleration. The Lorentz invariance
of Qa2 becomes important to describe the emission of synchrotron radiation from a
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relativistic charged particle and observation in a laboratory reference frame. Con-
versely, experimental verification of the theory of synchrotron radiation validates
the invariance of Qa2:

Momentum-Energy 4-Vector

An important 4-vector is the 4-momentum or momentum-energy 4-vector defined
by the canonical momentum cp and total energy E

cQp D .cpx; cpy; cpz; iE/: (1.24)

The length of the energy-momentum 4-vector cQp D .cpx; cpy; cpz; iE/ can be
determined by going into the rest frame where the momentum is zero and we get

c2 Qp2 D c2p2x C c2p2y C c2p2z � E2 D �A2m2c4 ; (1.25)

where we have set E0 D Amc2 for a particle with atomic mass A. From this the total
energy is

E2 D c2p2 C A2m2c4; (1.26)

demonstrating the experimentally verifiable fact that the particle mass is Lorentz
invariant.

We look now for an expression of (1.26) without the use of velocities and derive
from the product of the velocity and momentum-energy 4-vectors

.�v;i�c/ .cp;iE/ D �v cp�c�E D �cAmc2 (1.27)

an expression for the momentum cp D �E�Amc2

�ˇ
since pkˇ . Inserting this into (1.26),

we get E2 D
�
�E�Amc2

�ˇ

�2 C A2m2c4;and with ˇ2�2 D �2 � 1

� D E

Amc2
(1.28)

defining the relativistic factor � in terms of energies. Sometimes, authors attach
this relativistic factor to the mass and assume thereby an increasing moving mass.
Einstein’s point of view is expressed in the following quote: “It is not good to
introduce the concept of the mass of a moving body M D �m0 for which no clear
definition can be given. It is better to introduce no mass concept other than the ‘rest
mass’ m0. Instead of introducing M it is better to mention the expression for the
momentum and energy of a body in motion.” In this book, we take the rest mass m0

as an invariant.
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The total energy of a particle is given by

E D �E0 D �Amc2; (1.29)

where E0 D Amc2 is the rest energy of the particle and A the atomic mass. For
electrons we assume that A D 1 and m D me. Since in this text we concentrate
mainly on electrons and protons, we assume A D 1: The kinetic energy is defined
as the total energy minus the rest energy

Ekin D E � E0 D .� � 1/mc2: (1.30)

The change in kinetic energy during acceleration is equal to the product of the
accelerating force and the path length over which the force acts on the particle.
Since the force may vary along the path we use the integral

Ekin D
Z

Lacc

Fds (1.31)

to define the energy increase. The length Lacc is the path length through the
accelerating field. In discussions of energy gain through acceleration, we consider
only energy differences and need therefore not to distinguish between total and
kinetic energy. The particle momentum finally is defined by

c2p2 D E2 � E20 (1.32)

or

cp D
q

E2 � E20 D mc2
p
�2 � 1 D �ˇmc2 D ˇE ; (1.33)

where ˇ D v=c. The simultaneous use of the terms energy and momentum might
seem sometimes to be misleading as we discussed earlier. In this text, however,
we will always use physically correct quantities in mathematical formulations even
though we sometimes use the term energy for the quantity cp. In electron accelera-
tors the numerical distinction between energy and momentum is insignificant since
we consider in most cases highly relativistic particles. For proton accelerators and
even more so for heavy ion accelerators the difference in both quantities becomes,
however, significant.

Often we need differential expressions or expressions for relative variations of
a quantity in terms of variations of another quantity. Such relations can be derived
from the definitions in this section. By variation of (1.33), for example, we get

dcp D mc2

ˇ
d� D dE

ˇ
D dEkin

ˇ
(1.34)
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and

dcp

cp
D 1

ˇ2
d�

�
:

Varying (1.32) and replacing d� from (1.33) we get

dcp D �3mc2 dˇ (1.35)

and

dcp

cp
D �2 dˇ

ˇ
:

Photon 4-Vector

An analogous 4-vector can be formulated for photons using deBroglie’s relations
p D „k and E D „! for cQk D .ckx; cky; ckz; i!/ : Since the energy-momentum
4-vector is derived from the canonical momentum, we will have to modify this 4-
vector when electromagnetic fields are present.

Force 4-Vector

The force 4-vector is the time derivative of the energy-momentum 4-vector�
cPp; i PE� ; which is consistent with the observation (so far) that the rest mass does

not change with time.

Electro-magnetic 4-Vector

The electromagnetic-potential 4-vector is .cA; i�/ :

1.4.3 Spatial and Spectral Distribution of Radiation

Of great importance in accelerator and synchrotron radiation physics is the Lorentz
invariance of the product of two 4-vectors. Electromagnetic fields emanating from
relativistic charges can be described by plane waves E� D E�

0 ei˚�
;where ˚� D

!�t� � k�n�r� is the phase of the wave in the particle system and is Lorentz
invariant. This invariance stems from the fact that the phase can be formulated as
the product of the photon and space-time 4-vectors

c Qp � Qs D Œckn;i!� Œz;ict� ; (1.36)
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where we have set k D nk with n being the unit vector in the direction of wave
propagation. Using k D !=c the phase as measured in the laboratory L is the same
as that in the particle frame of reference L�

!� ��n�
x x� C n�

y y� C n�
z z�� � ct�

	 D ! ��nxxC nyyC nzz
� � ct

	 D invariant.

To derive the relationships between similar quantities in both systems, we use
the Lorentz transformation (1.8), noting that the particle reference frame is the
frame, where the particle or radiation source is at rest, and replace the coordinates
.x�; y�; z�; ct�/ by those in the laboratory system for

!� ��n�
x x� C n�

y y� C n�
z z�� � ct�

	
D !� �n�

x xC n�
y yC n�

z .�z � ˇ�ct/ � .�ˇ�zC �ct/
	

(1.37)

D ! ��
nxxC nyyC nzz

� � ct
	
;

from which one can isolate, for example, a relation between !� and ! : Since
the space-time coordinates are independent from each other, we may equate their
coefficients on either side of the equation separately.

Spectral Distribution

In so doing, the ct-coefficients define the transformation of the oscillation frequency

!��
�
1C ˇzn

�
z

� D !; (1.38)

which expresses the relativistic Doppler effect. Looking parallel and opposite to the
direction of particle motion n�

z D 1; the observed oscillation frequency is increased
by the factor .1C ˇz/ � � 2� for highly relativistic particles. The Doppler effect
is reduced .red shifted/ if the radiation is viewed at some finite angle � with
respect to the direction of motion of the source. In these cases n�

z D cos��
and the frequency shift can be very large for highly relativistic particles with
� � 1.

Spatial Distribution

Similarly, we obtain the transformation of spatial directions from

nx D n�
x

�
�
1C ˇzn�

z

� ; ny D
n�

y

�
�
1C ˇzn�

z

� ; nz D ˇz C n�
z�

1C ˇzn�
z

� : (1.39)
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These transformations define the spatial distribution of radiation in the laboratory
system. In case of transverse acceleration the radiation in the particle rest frame is
distributed like cos2 �� about the direction of motion. This distribution becomes
greatly collimated into the forward direction in the laboratory system. With n�2

x C
n�2

y D sin2 �� and n2x C n2y D sin2 � � �2 and n�
z D cos��; we find

� � sin��

�.1C ˇ cos��/
: (1.40)

In other words, radiation from relativistic particles, emitted in the particle system
into an angle ��=2 < �� < �=2 appears in the laboratory system highly
collimated in the forward direction within an angle of

� � ˙ 1
�
: (1.41)

This angle is very small for highly relativistic electrons like those in a storage
ring, where � is of the order of 103–104.

1.4.4 Particle Collisions at High Energies

The most common use of high-energy particle accelerators has been for basic
research in elementary particle physics. Here, accelerated particles are aimed at a
target, which incidentally may be just another particle beam, and the researchers
try to analyze the reaction of high-energy particles colliding with target particles.
The available energy from the collision depends on the kinematic parameters of the
colliding particles. We define a center of mass coordinate system which is the system
that moves with the center of mass of the colliding particles. In this system the vector
sum of all momenta is zero and is preserved through the collision. Similarly, the total
energy is conserved and we may define a center of mass energy the same way the
rest energy of a single particle is defined by

E2cm D
�X

i
Ei

�2 � �X
i
cpi

�2
; (1.42)

where the summation is taken over all particles forming the center of mass system.
The center of mass energy includes all old particle masses but also new masses
of new particles which have not been there before. We apply this to two colliding
particles with masses m1 and m2 and velocities v1 and v2, respectively,

.m1; v1/ �!  � .m2; v2/ :
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The center of mass energy for this system of two colliding particles is then

E2cm D
"

2X
iD1

�
Ekin C mc2

�
i

#2
�
"

2X
iD1

cpi

#2
(1.43)

D .�1m1 C �2m2/
2 c4 � .�1ˇ1m1 C �2ˇ2m2/

2 c4

We apply these kinematic relations to a proton
�
m1 D mp

�
of energy � colliding with

a proton at rest in a target. For a target proton at rest with �2 D 1; m2 D mp; ˇ2 D 0
and ˇ� D p�2 � 1, the center of mass energy is

E2cm D .� C 1/2m2
pc4 � .�2 � 1/m2

pc4

or after some manipulations

Ecm D
p
2.� C 1/mpc2 : (1.44)

The available energy for high-energy reactions after conservation of energy and
momentum for the whole particle system is the center of mass energy minus
the rest energy of the particles that need to be conserved. If, for example, two
protons collide, high-energy physics conservation laws tell us that the hadron
number must be conserved and therefore the reaction products must include two
units of the hadron number. In the most simple case the reaction will produce just
two protons and some other particles with a total energy equal to the available
energy

Eavail D Ecm � 2mpc2 D
hp
2.� C 1/� 2

i
mpc2 : (1.45)

The energy available from such reactions increases only like the square root of the
energy of the accelerated particle which makes such stationary target physics an
increasingly inefficient use of high-energy particles. A significantly more efficient
way of using the energy of colliding particles can be obtained by head on collision
of two equal particles of equal energy. In this case �1 D �2 D � , the mass

of the colliding particles is m1 D m2 D mp, and ˇ1 D �ˇ2 D ˇ. In
this case, the center of mass energy is simply twice the energy of each of the
particles

Ecm D 2�mc2 D 2E : (1.46)

In colliding beam facilities, where particles collide with their antiparticles no parti-
cle type conservation laws must be obeyed and therefore the total energy of both par-
ticles becomes available for the production of new particles at the collision point. In
a similar way we may calculate the available energy for a variety of collision scenar-
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ios like the collision of an accelerated electron with a stationary proton, the head on
collision of electrons with protons or collisions involving high-energy heavy ions.

1.5 Principles of Particle-Beam Dynamics

Accelerator physics relates primarily to the interaction of charged particles with
electromagnetic fields. Detailed knowledge of the functionality of this interaction
allows the design of accelerators meeting specific goals and the prediction of
charged particle beam behavior in those accelerators. The interplay between
particles and fields is called beam dynamics. In this section, we recall briefly
some features of electromagnetic fields and fundamental processes of classical and
relativistic mechanics as they relate to particle beam dynamics.

1.5.1 Electromagnetic Fields of Charged Particles

Predictable control of charged particles is effected only by electric and magnetic
fields and beam dynamics is the result of such interaction. We try to design and
formulate electromagnetic fields in a way that can be used to accurately predict the
behavior of charged particles. To describe the general interaction of fields based on
electric currents in specific devices and free charged particles which we want to
preserve, guide and focus, we use as a starting point Maxwell’s equations (1.4).

Electric Field of a Point Charge

First, we apply Gauss’ theorem to a point charge q at rest. The natural coordinate
system is the polar system because the fields of a point charge depend only on the
radial distance from the charge. We integrate Coulomb’s law (1.4) over a spherical
volume containing the charge q at its center. With dV D 4�r2dr the integral
becomes

R rEdVD R R
0

1
r2

@
@r

�
r2Er

�
dV D 4�R2Er .R/, where R is the radial distance

from the charge. On the r.h.s. of Coulomb’s law (1.4), an integration over all the
charge q gives

R 	

�0�
dV D q

�0�
and the electric field of a point charge at distance

R is

Er .R/ D 1

4��0�

q

R2
: (1.47)

The electric field is proportional to the charge and decays quadratically with
distance R:
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Fields of a Charged Particle Beam

Many charged particles, travelling along the same path form a beam. This particle
beam generates an electric as well as a magnetic field. The proper coordinates are
now cylindrical and Coulomb’s law is

rE D 1

r

@

@r
.rEr/C 1

r

@E'
@'„ƒ‚…
D0

C @Ez

@z„ƒ‚…
D0

D 1

r

@

@r
.rEr/ D 	0

�0�
; (1.48)

where 	0 is the charge density in the particle beam. We assume a uniform continuous
beam and expect therefore no azimuthal or longitudinal dependence, leaving only
the radial dependence. Radial integration over a cylindrical volume of unit length
collinear with the beam gives with the volume element dV D 2�rdr; on the l.h.s.
jrErjr0 2� . The r.h.s. is 	0

�0�
�r2 and the electric field for a uniformly charged particle

beam with radius R is

Er .r/ D
(

	0
2�0�

r for r < R
	0
2�0�

R2

r for r > R
: (1.49)

The magnetic field for the same beam can be derived by applying Stoke’s theorem
on Ampere’s law to give after integration

B' .r/ D
(

1
2
�0�j0r for r < R
1
2
�0�j0

R2

r for r > R
: (1.50)

The fields increase linearly within the beam and decay again like 1=r outside
the beam. Real particle beams do not have a uniform distribution and therefore a
form function must be included in the integration. In most cases, the radial particle
distribution is bell shaped or Gaussian. Both distributions differ little in the core of
the beam and therefore a convenient assumption is that of a Gaussian distribution
for which the fields will be derived in Problem 1.3.

1.5.2 Vector and Scalar Potential

By virtue of Maxwell’s equation rB D 0 one can derive the magnetic field from
a vector potential A defined by B D r � A:Faraday’s law can be used to derive
also the electric field from potentials. The equation r � E D � @

@t B D � @
@t .r � A/

can be written like r �
�

EC PA
�
D 0; and solved by E D � @A

@t � rV; where we

added the gradient of a scalar potential function V which does not alter the validity
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of Maxwell’s equations for all fields so defined. To summarize, both, electric and
magnetic fields can be derived from a scalar V and vector A potential

B D r � A � rV; (1.51)

E D �@A
@t
� rV: (1.52)

These definitions of the magnetic and electric fields from potentials will not alter
the validity of Maxwell’s equations as can be verified by backinsertion.

1.5.3 Wave Equation

From Ampere’s law both the vector and scalar potentials can be derived. Replacing
in Ampère’s law r �B D �0� jC ��

c2
PE the fields with their expressions in terms of

potentials, we get r � .r � A/ D �0�jC ��

c2

�
� RA � r PV

�
and with r� .r�A/ D

r .rA/ � r2A

r2A� ��
c2
@2A
@t2
D ��0�jC r

�
rAC��

c2
PV
�

„ ƒ‚ …
D0

: (1.53)

At this point, we specify the potential function V such that it meets the condition

rAC ��

c2
PV D 0 (1.54)

thereby simplifying greatly (1.53) and separating both potentials. This condition is
called the Lorenz gauge and the resulting wave equation is

r2A � ��
c2
@2A
@t2
D ��0�j: (1.55)

The vector potential is clearly defined by the placement of electrical currents j.
We will use this property later in the design of, for example, magnets for particle
beam guidance. Similarly, the wave equation for the scalar potential is

r2V � 1

c2
@2V

@t2
D � 	

�0�
: (1.56)

Knowledge of the placement of electrical charges defines uniquely the scalar
potential function. However, because the velocity of electro-magnetic waves is
finite, the potentials at the observation point depend on the charges and currents
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at the retarded time, e.g. the location when the electro-magnetic waves have been
emitted. The second order differential equations (1.55), (1.56) can be integrated
readily and the potentials are

A.P; t/ D �0�

4�

Z
j.x; y; z/
R.x; y; z/

ˇ̌̌̌
tr

dxdydz (1.57)

and

V.P; t/ D 1

4��0�

Z
	.x; y; z/

R.x; y; z/

ˇ̌̌̌
tr

dxdydz: (1.58)

Integration over all currents and charges at the retarded distance Rtr from the
observation point P results in the definition of the vector and scalar potential at
the point P. Both electric and magnetic fields may be derived as discussed in the last
section.

The wave equation just derived has special relevance for static fields where the
Lorenz gauge reduces to the Coulomb gauge

rA D 0 (1.59)

and (1.55) and (1.56) reduce in a charge and current free environment to the Laplace
equation being equal to zero

A D 0; (1.60)

V D 0:
Static magnetic and electric fields used in beam dynamics will be derived from
theses potentials being solutions of the Laplace equation.

Lienard-Wiechert Potentials

For a point charge e at rest, we can integrate (1.57) readily to get A.R; t/ D 0 and
V.R; t/ D e

4��0�R
. On the other hand, in case of a moving point charge the potentials

cannot be obtained by simply integrating over the “volume” of the point charge. The
motion of the charge must be taken into account and the result of a proper integration
(see Chap. 25) are the Liénard-Wiechert potentials for moving charges [31, 32]

A.R; t/ D �0�c

4�

q

R

ˇ

1C nˇ

ˇ̌̌̌
tr

(1.61)

and

V.R; t/ D 1

4��0

q

R

1

1C nˇ

ˇ̌̌̌
tr

: (1.62)
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These potentials describe the radiation fields of synchrotron radiation being emitted
from relativistic electrons.

1.5.4 Induction

Applying Stokes’ theorem to Faraday’s law (1.4), we get on the l.h.s. a line integral
along the boundaries of the surface area S; which is equivalent to a voltage. On the
r.h.s. the magnetic flux passing through the surface S is integrated andZ

S
Œr � E� da D

I
Eds D �

Z
S

@B
@t

da D �@˚
@t
: (1.63)

By virtue of Faraday’s law, the time varying magnetic flux ˚ through the area S
generates an electromotive force along the boundaries of S. In accelerator physics
this principle is applied in the design of a betatron. Similarly, from the second term
on the right hand side in Ampère’s law (1.4), we get a magnetic induction from a
time varying electric field. Both phenomena play together to form the principle of
induction or, in a particular example, that of a transformer.

1.5.5 Lorentz Force

The trajectories of charged particles can be influenced only by electric and magnetic
fields through the Lorentz force

FL D qEC q .v � B/ : (1.64)

Guiding particles through appropriate electric or magnetic fields is called particle
beam optics or beam dynamics. Knowledge of the location and amplitudes of
electric and magnetic fields allows us to predict the path of charged particles. Closer
inspection of (1.64) shows that the same force from electric or magnetic fields can be
obtained if E D vB; where we have assumed that the particle velocity is orthogonal
to the magnetic field, v?B: For relativistic particles v � c and to get the same force
from an electric field as from, say a 1 Tesla magnetic field, one would have to have
an unrealistic high field strength of E � 300MV/m. For this reason, magnetic fields
are used to deflect or focus relativistic charged particles. For sub-relativistic particles
like ion beams with velocities v � c; on the other hand, electric fields may be more
efficient.
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1.5.6 Equation of Motion

Accelerator physics is to a large extend the description of charged particle dynamics
in the presence of external electromagnetic fields or of fields generated by other
charged particles. We use the Lorentz force to formulate particle dynamics under
the influence of electromagnetic fields. Whatever the interaction of charged particles
with electromagnetic fields and whatever the reference system may be, we depend in
accelerator physics on the invariance of the Lorentz force equation under coordinate
transformations. All acceleration and beam guidance in accelerator physics will be
derived from the Lorentz force. For simplicity, we use throughout this text particles
with one unit of electrical charge e like electrons and protons. In case of multiply
charged ions the single charge e must be replaced by eZ where Z is the charge
multiplicity of the ion. Both components of the Lorentz force are used in accelerator
physics where the force due to the electrical field is mostly used to actually increase
the particle energy while magnetic fields are used to guide particle beams along
desired beam transport lines. This separation of functions, however, is not exclusive
as the example of the betatron accelerator shows where particles are accelerated by
time dependent magnetic fields. Similarly electrical fields are used in specific cases
to guide or separate particle beams.

Relating the Lorentz force to particle momentum or kinetic energy, we know
from definitions in classical mechanics that

p D R FLdt
Ekin D

R
FLds



�!

dsDvdt
ˇcp D Ekin ; (1.65)

where ˇ D v=c: The Lorentz force can be expressed in terms of fields and the
change of kinetic energy becomes

Ekin D
Z

FLds D q
Z
ŒEC .v � B/� ds (1.66)

D q
Z

EdsC q
Z
.v � B/ v„ ƒ‚ …

D0
dt ;

which indicates that an electric field component in the direction of particle motion
does increase the particle’s kinetic energy, while the magnetic field does not
contribute any acceleration. Magnetic fields are used only to deflect a particle’s path
by changing the direction of its momentum vector.

It becomes obvious that the kinetic energy of a particle changes whenever it
travels in an accelerating electric field E and the acceleration occurs in the direction
of the electric field. This acceleration is independent of the particle velocity and
acts even on a particle at rest v D 0. The second component of the Lorentz force
in contrast depends on the particle velocity and is directed normal to the direction
of propagation and normal to the magnetic field direction. We find therefore from
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(1.66) the result that the kinetic energy is not changed by the presence of magnetic
fields since the scalar product .v � B/ v D 0 vanishes. The magnetic field causes
only a deflection of the particle trajectory.

The Lorentz force (1.64) in conjunction with (1.65) is used to derive the equation
of motion for charged particles in the presence of electromagnetic fields

dp
dt
D d

dt
.Am�v/ D eZEC eZ.v � B/ ; (1.67)

where Z is the charge multiplicity of the charged particle and A the atomic mass. For
simplicity we drop from here on the factors A and Z since they are different from
unity only for ion beams. For ion accelerators we note therefore that the particle
charge e must be replaced by eZ and the mass by Am.

Both relations in (1.65) can be used to describe the effect of the Lorentz force on
particles. However, ease of mathematics makes us use one or the other. We use the
first equation for dynamics in magnetic fields and the second for that in accelerating
fields. Since the energy or the particle velocity does not change in a magnetic field it
is straightforward to calculate p: On the other hand, accelerating fields do change
the particle’s velocity which must be included in the time integration to get p:

Calculating Ekin; we need to know only the spatial extend and magnitude of the
accelerating fields to perform the integration.

The particle momentum p D �mv and it’s time derivative

dp
dt
D m�

dv

dt
C mv

d�

dt
: (1.68)

With

d�

dt
D d‚

dˇ

dˇ

dt
D �3 ˇ

c

dv

dt
(1.69)

we get from (1.68) the equation of motion

F D dp
dt
D m

�
�

dv

dt
C �3 ˇ

c

dv

dt
v

�
: (1.70)

For a force parallel to the particle propagation v; we have Pvv D Pvv and (1.70)
becomes

dpk
dt
D m�

�
1C �2ˇ v

c

� dvk
dt
D m�3

dvk
dt
: (1.71)

On the other hand, if the force is directed normal to the particle propagation, we
have dv=dt D 0 and (1.70) reduces to

dp?
dt
D m�

dv?
dt
: (1.72)
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It is obvious from (1.71) and (1.72) how differently the dynamics of particle
motion is affected by the direction of the Lorentz force. Specifically the dynamics
of highly relativistic particles under the influence of electromagnetic fields depends
greatly on the direction of the force with respect to the direction of particle
propagation. The difference between parallel and perpendicular acceleration will
have a great impact on the design of electron accelerators. As we will see later, the
acceleration of electrons is limited due to the emission of synchrotron radiation.
This limitation, however, is much more severe for electrons in circular accelerators
where the magnetic forces act perpendicularly to the propagation compared to the
acceleration in linear accelerators where the accelerating fields are parallel to the
particle propagation. This argument is also true for protons or for that matter,
any charged particle, but because of the much larger particle mass the amount of
synchrotron radiation is generally negligibly small.

1.5.7 Charged Particles in an Electromagnetic Field

An electromagnetic field exerts a force on a charged particle. A magnetic field
or transverse electric field can deflect the beam and we use magnets as guiding
and focusing elements for particle beam dynamics. This dynamics guides the
particles on a path which is in equilibrium between the Lorentz force and the
centrifugal force. A charged particle in a magnetic field follows a path defined by
the equilibrium between centrifugal and Lorentz force

�mv2

	
nC e Œv � B� D 0; (1.73)

where n is the unit vector in the direction of the centrifugal force, 1=	 the local
curvature and m the mass of the particle with charge e. For a magnetic field
orthogonal to the velocity vector of the particle the vector product is always parallel
and opposite to n and (1.73) reduces to

�mv2

	
D �evB?; (1.74)

with the local bending radius

1

	
D ecB

ˇEtot
D ecB?

cp
: (1.75)

The plane of the particle path is orthogonal to the transverse magnetic field. In a
uniform magnetic field the particle follows the path of an arc with radius

1

	

�
m�1	 D 0:2995 B? ŒT�

cp ŒGV�
� 0:3 B? ŒT�

cp ŒGV�
(1.76)
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in more practical units:We have a similar situation with respect to a transverse
electrical field. Here, the centrifugal force is now

�mv2

	
C eE? D 0 (1.77)

or

1

	
D � eE?

�mc2ˇ2
D � eE?

ˇ2Etot
; (1.78)

or in more practical units

1

	

�
m�1	 D �E? ŒV/m�

ˇcp ŒGV�
: (1.79)

Here, some caution is appropriate, because during the deflection the unit vector
n is changing direction while the electric field may not change direction as in the
case of a field between parallel straight plates. However, if the electrodes are bend
along the expected particle path, the direction of the electric field is changing with
n or the deflection of the beam.

1.5.8 Linear Equation of Motion

We have now all ingrediences to formulate an equation of motion in linear
approximation. Analytical geometry tells us that the curvature is given in cartesian
coordinates by

� D �x"p
1C x023

: (1.80)

This equation can be simplified if we assume that x0 � 0: We recognize this from
light optics as the paraxial approximation where all trajectories or rays are assumed
to be close to the optical axis. This approximation suits beam dynamics very well
since we try hard to keep all particles within a rather narrow vacuum chamber.
Therefore (1.80) reduces with (1.75) to

� � �x" D ecBy

cp
: (1.81)

The magnetic fields will have two main components, the guiding field for bending
and a focusing field. Both fields together can be expressed by By D B0yC gx, where
B0y is the bending field and g the field gradient g D @By=@x: The particle beam is not
perfectly monochromatic and we account for this by expanding the particle energy
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to first order 1
cp � 1

cp0
.1 � ı/, where ı D p=p0:With this we get the equation of

motion

x" D ecBy

cp
D ec

cp0
.1 � ı/ �B0y C gx

�
or keeping only linear terms in x and ı

x"C kx D � 1
	0
C 1

	0
ı: (1.82)

Here we have introduced the quadrupole focusing strength k D ec
cp0

gx and the
bending radius is taken to be in the horizontal plane. The solution of this equation
of motion will be very complicated due to the arbitrary layout of the beam transport
line or 	0 .z/ : we are not interested in a mathematical formulation of this layout,
but are interested only on the deviation of a particle from the desired transport line
layout as defined by the location of magnets. We may transform away the beam line
layout by merely dropping the 1

	0
-term from (1.82) to get finally the linear equation

of motion for particle dynamics

x"C k .z/ x D C 1

	0 .z/
ı: (1.83)

Later we will introduce this coordinate system rigorously. This looks basically
like the differential equation of a harmonic oscillator if it were not for the fact
that the magnet strengths are functions of z:However, the solutions will be of
oscillatory nature describing the particle motion in the restoring fields of the
focusing devices. Actual analytical solutions will be discussed in great detail later
in this text.

1.5.9 Energy Conservation

The rate of work done in a charged particle-field environment is defined by the
Lorentz force and the particle velocity FLv D eEv C e .v � B/v: Noting that
.v � B/ v D 0; we set eEv D jE; and the total rate of work done by all particles
and fields can be obtained by integrating Ampère’s law(1.4) over all currents and
fields Z

jEdV D �0�
Z �

c2 .r � B/ � PE
�

EdV: (1.84)
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With the vector relation r.a � b/ D b .r � a/ � a .r � b/Z
j E dV D �0�

Z �
c2B r�E„ƒ‚…

D� PB
�c2r .E � B/ � PEE

i
dV (1.85)

D �
Z �

du

dt
C �0�c2r .E � B/

�
dV ;

where an energy density has been defined by

u D 1
2
�0
�
E2 C c2B2

�
: (1.86)

Applying Gauss’s theorem to the vector product in (1.85), we get an expression
for the energy conservation of the complete particle-field system

d

dt

Z
udV„ ƒ‚ …

change of

field energy

C
Z

jEdV„ ƒ‚ …
particle energy

loss or gain

C
I

Snda„ ƒ‚ …
radiation loss through

closed surface a

D 0 : (1.87)

This equation expresses the conservation of energy relating the change in field
energy and particle acceleration with a new quantity describing energy loss or gain
through radiation.

Poynting Vector

The third integral in (1.87) is performed over a surface enclosing all charges and
currents considered. The Poynting vector S is the energy loss/gain through a unit
surface element in the direction of the unit vector n normal to the surface defined by

S D 1

�0�
ŒE � B� : (1.88)

Equation (1.88) exhibits characteristic features of electromagnetic radiation.
Both, electric and magnetic radiation fields are orthogonal to each other .E?B/,
orthogonal to the direction of propagation .E?n; B? n/ ; and the vectors E; B; S
form a right handed orthogonal system. For plane waves n � E D cB and

S D 1

c�0�
E2 n : (1.89)

Knowing the electric fields we may determine the Poynting vector describing
electro-magnetic waves or synchrotron radiation.
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1.5.10 Stability of a Charged-Particle Beam

Individual particles in an intense beam are under the influence of strong repelling
electrostatic forces creating the possibility of severe stability problems. Particle
beam transport over long distances could be greatly restricted unless these space-
charge forces can be kept under control. First, it is interesting to calculate the
magnitude of the problem.

If all particles would be at rest within a small volume, we would clearly expect
the particles to quickly diverge from the center of charge under the influence of
the repelling space charge forces from the other particles. This situation may be
significantly different in a particle beam where all particles propagate in the same
direction. We will therefore calculate the fields generated by charged particles in
a beam and derive the corresponding Lorentz force due to these fields. Since the
Lorentz force equation is invariant with respect to coordinate transformations, we
may derive this force either in the laboratory system or in the moving system of the
particle bunch.

From (1.49) and (1.50) we determine the Lorentz force due to electro-magnetic
fields generated by the beam itself and acting on a particle within that beam. From
(1.49) and (1.50) we get

Fr D e
�
Er � vB'

� D e

2�0�

	0

�2
r: (1.90)

Only the radial component of the Lorentz force is finite. The Lorentz force remains
repelling but due to a relativistic effect we find that the repelling electrostatic
force at higher energies is increasingly compensated by the magnetic field. The
total Lorentz force due to space charges therefore vanishes like ��2 for higher
energies. Obviously this repelling space charge force is much stronger for proton
and especially for ion beams because of the smaller value for � and, in the case
of ions, because of the larger charge multiplicity which increases the space-charge
force by a factor of Z.

We find the same result if we derive the Lorentz force in the moving system L�
of the particle beam and then transform to the laboratory system. In this moving
system we have obviously only the repelling electrostatic force since the particles
are at rest and the only field component is the radial electrical field which is from
(1.49)

F�
r D eE�

r D
e

2�0�
	�

0 r�: (1.91)

Transforming this equation back into the laboratory system we note that the force
is purely radial and therefore acts only on the radial momentum. With Fr D dpr=dt
and pr D p�

r we find F� D �Fr since dt D �dt�. The charge densities in both
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systems are related by 	� D 	=� , the radii by r� D r, and the Lorentz force in the
laboratory system becomes thereby

Fr D e

2�0�

	0

�2
r (1.92)

in agreement with (1.90).
We obtained the encouraging result that at least relativistic particle beams

become stable under the influence of their own fields. For lower particle energies,
however, significant diverging forces must be expected and adequate focusing
measures must be applied. The physics of such space charge dominated beams is
beyond the scope of this book and is treated elsewhere, for example in considerable
detail in [33].

Problems

1.1 (S). Use the definition for ˇ, the momentum, the total and kinetic energy and
derive expressions p .ˇ;Ekin/, p .Ekin/ and Ekin .�/. Simplify the expressions for
very large energies, � � 1. Derive from these relativistic expressions the classical
nonrelativistic formulas.

1.2 (S). Prove the validity of the field equations Er D 1
2�0
	0r and B' D 1

2
�0ˇ	0r

for a uniform cylindrical particle beam with constant charge density 	0 within a
radius r < R. Derive the field expressions for r > R.

1.3 (S). Derive the electric and magnetic fields of a beam with a radial charge
distribution 	 .r; '; z/ D 	 .r/. Derive the field equations for a Gaussian charge
distribution with standard deviation � given by 	 .r/ D 	0 exp

��r2=
�
2�2

�	
. What

are the fields for r D 0 and r D �?

1.4 (S). A circular accelerator with a circumference of 300 m contains a uniform
distribution of singly charged particles orbiting with the speed of light. If the
circulating current is 1 amp, how many particles are orbiting? We instantly turn on
an ejection magnet so that all particles leave the accelerator during the time of one
revolution. What is the peak current at the ejection point? How long is the current
pulse duration? If the accelerator is a synchrotron accelerating particles at a rate of
10 acceleration cycles per second, what is the average ejected particle current?

1.5 (S). A proton with a kinetic energy of 1 eV is emitted parallel to the surface
of the earth. What is the bending radius due to gravitational forces? What are the
required transverse electrical and magnetic fields to obtain the same bending radius?
What is the ratio of electrical to magnetic field? Is this ratio different for a proton
energy of say 10 TeV? Why? (gravitational constant 6:67259� 10�11 m3kg�1s�2).
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1.6 (S). Consider a highly relativistic electron bunch of n D 1010 uniformly
distributed electrons. The bunch has the form of a cylindrical slug, ` D 1mm long
and a radius of R D 0:1�m. What is the electrical and magnetic field strength at
the surface of the beam. Calculate the peak electrical current of the bunch. If two
such beams in a linear collider with an energy of 500 GeV pass by each other at a
distance of 10�m (center to center), what is the deflection angle of each beam due
to the field of the other beam?

1.7 (S). Show that for plane waves n � E D cB .

1.8 (S). Show that the product of two 4-vectors is Lorentz invariant.

1.9 (S). Prove that the 4-acceleration is indeed given by (1.23).

1.10 (S). Using 4-vectors, derive the frequency of an outgoing photon from a head-
on Compton scattering process of an electron with a photon of frequency !L:

1.11 (S). Using 4-vectors, derive the frequency of an outgoing photon from a head-
on Compton scattering process of an electron with the field of an undulator with
period �u:

1.12. Protons are accelerated to a kinetic energy of 200 MeV at the end of the
Fermilab Alvarez linear accelerator. Calculate their total energy, their momentum
and their velocity in units of the velocity of light

�
mpc2 D 938:27 MeV

�
:

1.13. Consider electrons to be accelerated in the L D 3 km long SLAC linear
accelerator with a uniform gradient of 20 MeV/m. The electrons have a velocity
v D 1

2
c at the beginning of the linac. What is the length of the linac in the rest frame

of the electron? Assume the particles at the end of the 3 km long linac would enter
another 3 km long tube and coast through it. How long would this tube appear to be
to the electron?

1.14 (S). A positron beam of energy E accelerated in a linac hits a fixed hydrogen
target. What is the available energy from a collision with a target electron assumed
to be at rest? Compare this available energy with that obtained in a linear collider
where electrons and positrons from two similar linacs collide head on at the same
energy.

1.15 (S). The SPEAR colliding beam storage ring has been constructed originally
for electron and positron beams to collide head on with an energy of up to 3.5 GeV.
At 1.55 GeV per beam a new particle, the  =J-particle, was created. In a concurrent
fixed target experiment at BNL, such  =J-particle have been produced by protons
hitting a hydrogen target. What proton energy was required to produce the new
particle? Determine the positron energy needed to create =J-particles by collisions
with electrons in a fixed target.

1.16. A charged pion meson has a rest energy of 139:568MeV and a mean life time
of �0� D 26:029 ns in its rest frame. What are the life times �� , if accelerated to a
kinetic energy of 20 MeV? and 100 MeV? A pion beam decays exponentially like
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e�t=�� . At what distance from the source will the pion beam intensity have fallen to
50%, if the kinetic energy is 20 MeV? or 100 MeV?

1.17 (S). Assume you want to produce antiprotons by accelerating protons and
letting them collide with other protons in a stationary hydrogen target. What is the
minimum kinetic energy the accelerated protons must have to produce antiprotons?
Use the reaction pC p! pC pC pC Np.

1.18. Use the results of Problem 1.3 and consider a parallel beam at the beginning
of a long magnet free drift space. Follow a particle under the influence of the beam
self fields starting at a distance r0 D � from the axis. Derive the radial particle
distance from the axis as a function of z:

1.19. Show that (1.57) is indeed a solution of (1.55).

1.20. Express the equation of motion (1.67) for Z D 1 in terms of particle
acceleration, velocity and fields only. Verify from this result the validity of (1.71)
and (1.72).

1.21. Plot on log-log scale the velocity ˇ, total energy as a function of the kinetic
energy for electrons, protons, and gold ions AuC14. Vary the total energy from
0:01mc2 to 104mc2:Why does the total energy barely change at low kinetic energies.

1.22. The design for a Relativistic Heavy Ion Collider calls for the acceleration of
completely ionized gold atoms in a circular accelerator with a bending radius of
	 D 242:78m and superconducting magnets reaching a maximum field of 34.5 kg.
What is the maximum achievable kinetic energy per nucleon for gold ions AuC77
compared to protons? Calculate the total energy, momentum, and velocity of the
gold atoms (AAu=197).

1.23. Gold ions AuC14 are injected into the Brookhaven Alternating Gradient
Synchrotron AGS at a kinetic energy per nucleon of 72 MeV/u. What is the velocity
of the gold ions? The AGS was designed to accelerate protons to a kinetic energy
of 28.1 GeV. What is the corresponding maximum kinetic energy per nucleon for
these gold ions that can be achieved in the AGS? The circulating beam is expected
to contain 6 � 109 gold ions. Calculate the beam current at injection and at maximum
energy assuming there are no losses during acceleration. The circumference of
the AGS is CAGS D 807:1m. Why does the beam current increase although the
circulating charge stays constant during acceleration?

1.24. Particles undergo elastic collisions with gas atoms. The rms multiple scatter-

ing angle is given by �� � Z 20 .MeV/c/
ˇp

q
s
`r

, where Z is the charge multiplicity of the

beam particles, s the distance travelled and `r the radiation length of the scattering
material (for air the radiation length at atmospheric pressure is `r D 500m or
60:2 g/cm2). Derive an approximate expression for the beam radius as a function of s
due to scattering. What is the approximate tolerable gas pressure in a proton storage
ring if a particle beam is supposed to orbit for 20 h and the elastic gas scattering
shall not increase the beam size by more than a factor of two during that time?
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Chapter 2
Linear Accelerators

Before we address the physics of beam dynamics in accelerators it seems appropri-
ate to discuss briefly various methods of particle acceleration as they have been
developed over the years. It would, however, exceed the purpose of this text to
discuss all variations in detail. Fortunately, extensive literature is available on a
large variety of different accelerators and therefore only fundamental principles of
particle acceleration shall be discussed here. A valuable source of information for
more detailed information on the historical development of particle accelerators is
Livingston’s collection of early publications on accelerator developments [8].

The development of charged-particle accelerators has progressed along double
paths which by the appearance of particle trajectories are distinguished as linear
accelerators and circular accelerators. Particles in linear accelerators travel on
a straight line and pass only once through the accelerator structure while in a
circular accelerator they follow a closed orbit periodically for many revolutions
accumulating energy at every passage of the accelerating structure.

2.1 Principles of Linear Accelerators

No fundamental advantage or disadvantage can be claimed for one or the other
class of accelerators. It is mostly the particular application and sometimes the
available technology that determines the choice between both classes. Both types
have been invented and developed throughout the twentieth century, and continue
to be improved and optimized as associated technologies advance. In this chapter
we will concentrate on linear accelerators and postpone the discussion on circular
accelerators to the next chapter. In linear accelerators the particles are accelerated
by definition along a straight path by either electrostatic fields or microwave fields.
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2.1.1 Charged Particles in Electric Fields

In accelerator physics all forces on charged particles originate from electromagnetic
fields. For particle acceleration we consider only the electric-field term of the
Lorentz force. The nature of the electric field can be static, pulsed, generated
by a time varying magnetic field or a microwave field. Both the electric and
magnetic fields are connected by Maxwell’s equations. Such fields are generated
by appropriate sources hooked up to an accelerating section which, in the case of
electro-static fields, consists of just two electrodes with the particle source at the
potential of one electrode and a hole in the center of the other electrode to let the
accelerated particles pass through. Special resonant cavities are used as accelerating
sections with two holes on the axis of the cavity to let the beam pass through. Either
field can be represented by the plane wave equation

E. / D E0 ei .!t�ks/ D E0ei ; (2.1)

where ! is the frequency and k the wave number including the case of static fields
with ! D 0 and k D 0. The Lorentz force acting on an electric charge is

FL D d

dt
mc�ˇ D eE. / (2.2)

and the equation of motion for particles under this force is

d

dt
mc�ˇ D eE. /: (2.3)

Integration of (2.3) results in an expression for the momentum gain of the particle

p D mc .�ˇ � �0ˇ0/ D e
Z

E. / dt ; (2.4)

where mc�0ˇ0 is the initial momentum of the particle. Generally, it is somewhat
complicated to perform a time integration which requires the tracking of particles
though the accelerating cavity. To simplify the calculation, we look for the gain in
kinetic energy which reduces (2.4) to a spatial integration of the electric field in the
accelerating cavity. This integral is a property of the cavity and is independent of
particle motion. With ˇcp D Ekin the energy gain for particles passing through
the accelerating section is

Ekin D e
Z

Lcy

E. / ds ; (2.5)

where Lcy is the length of the accelerating section.
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The effectiveness of acceleration in a microwave field depends greatly on the
phase relationship of the field with the particle motion. For successful particle
acceleration we expect therefore the need to meet specific synchronicity conditions
to ensure acceleration.

2.1.2 Electrostatic Accelerators

In electrostatic accelerators the potential difference between two electrodes is used
for particle acceleration as shown in Fig. 2.1. The most simple such arrangement
has been used now for almost two centuries in glow discharge tubes for fundamental
research on the nature of plasmas, as light sources or as objects of aesthetic interest
due to colorful phenomena in such tubes. In another, more modern application
electrons are accelerated in an x-ray tube by high electrostatic fields and produce
after striking a metal target intense x-rays used in medicine and industry.

The voltages that can be achieved by straight voltage transformation and rectifi-
cation are quite limited by electrical breakdown effects to a few 10,000 V/cm. More
sophisticated methods of producing high voltages therefore have been developed to
reach potential differences of up to several million volts.

To distribute evenly the electric fields of high potential differences a series of
irises are distributed along the acceleration column and separated by appropriate
resistors to break down the high voltage into smaller steps between the irises. As an
added benefit we also gain focusing of the particle beam as will be discussed later
in this chapter.

A variety of techniques to obtain high voltages have been developed and applied
to particle acceleration with more or less success. We will discus briefly a few of
theses techniques because they are still used.

Fig. 2.1 Principle of
electrostatic accelerators cathode anode

electron beam

high voltage
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Cascade Generators

The basic method implemented in the cascade generator is that of a voltage
multiplier circuit which has been proposed by Greinacher [5] in 1914 and Schenkel
[10] in 1919 which allows to achieve a multiplication of the voltage across the
plates of a capacitor. A set of capacitors are charged through appropriately placed
diodes from an alternating current source (Fig. 2.2) in such a way that during the
positive half wave, half the capacitors are charged to a positive voltage and during
the negative half wave, the other half of the capacitors are charged to a negative
voltage thus providing twice the maximum ac voltage. By arranging 2N capacitors
in this way the charging voltage can be multiplied by the factor N.

While there is no fundamental limit to the total voltage, high voltage break down
will impose a technical limit on the maximum achievable voltage. Based on this
method Cockcroft and Walton [3] developed appropriate high-voltage techniques
and built the first high energy particle accelerator reaching voltages as high as
several million Volt. Applying the high voltage to a beam of protons they were
able for the first time to initiate through artificially accelerated protons a nuclear
reaction. In this case it was the conversion of a Lithium nucleus into two helium
nuclei, in the reaction

pC Li ! 2He : (2.6)

Such Cockcroft-Walton accelerators turned out to be very efficient and are still
used as the first step in modern proton accelerator systems. Obviously with this
kind of voltage generation it is not possible anymore to produce a continuous
stream of particles. Because of the switching process, there is a time to charge the
capacitors followed by a time to apply the multiplied voltage to particle acceleration.
As a consequence, we observe a pulsed particle beam from a Cockroft-Walton
accelerator.

U
0

diodescapacitors
U= U

0
 sinωt

0 2U
0 4U

0 6U
0

Fig. 2.2 Cascade generator (schematic)
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Van de Graaff Accelerator

Much higher voltages can be reached with a Van de Graaff accelerator [12]. Here,
electric charge is extracted by field emission from a pointed metal electrode and
sprayed onto an isolated endless belt. This belt is moved by motor action to carry
the charge to the inside of a hollow sphere, where the charge is stripped off again
by reverse field emission onto a pointed metal electrode which is connected to
the inside of the sphere. The principle of this electrostatic generator is shown in
Fig. 2.3. Electrical charges in a metallic conductor collect on the outside and it is
therefore possible to continuously accumulate electrical charge by deposition to the
inside surface of a hollow metallic sphere. If the whole system is placed into a high
pressure vessel filled with an electrically inert gas like Freon or SF6; voltages as
high as 20 million volts can be reached.

The high voltage can be used to accelerate electrons as well as protons or ions.
In the latter two cases more than double the accelerating voltage can be achieved
in a Tandem Van de Graaff accelerator. If a proton beam must be accelerated, the
accelerating process would start with negatively charged hydrogen ions H� from
a plasma discharge tube which are then accelerated say from ground potential
to the full Van de Graaff voltage CV . At that point the two electrons of the
negative hydrogen ion are stripped away by a thin foil or gas curtain resulting by
charge exchange in positively charged protons which can be further accelerated
between the potentialCV and ground potential to a total kinetic energy Ekin D e2V .

charging
belt

motor pulley
charging
electrode

high voltage
sphere

particle source

high voltage

acceleration
column

discharge
electrode

Fig. 2.3 Van de Graaff accelerator (schematic)
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High electrostatic voltages from a Van de Graaff generator cannot be applied
directly to just two electrodes as shown in Fig. 2.1. Because of the great distance
between the electrodes necessary to avoid voltage break down the fields would not
be distributed uniformly along the axis of the acceleration column. Therefore, the
voltage is applied to a series of resistors connected to iris electrodes which allow a
uniform distribution of the electrical field along the acceleration column as shown
in Fig. 2.3. A more detailed review of the development of electro-static high voltage
generators can be found in [13].

2.2 Electric Field Components

In our discussion we concentrate first on the interaction of particles with electro-
static fields. Such field components function both as focusing and accelera-
tion devices. Electro-static fields are commonly employed for low energy, non-
relativistic particles. As was discussed earlier, magnetic devices are most effective
at high energies when particle velocities are close to the speed of light. At lower
velocities, magnetic fields loose their efficiency and are often replaced by more
economic electric field devices and at very low energies electric fields are used
almost exclusively.

2.2.1 Electrostatic Deflectors

The electric field E between two parallel metallic electrodes is uniform and can be
used to deflect a particle beam. To get a uniform field, we generate equipotential
surfaces by placing metallic electrodes at, for example, x D ˙G Dconst. and
applying a voltage difference V between the electrodes. The Lorentz force of the
electric field on a charged particle is by virtue of d’Alembert’s principle equal to the
centrifugal force and is for a horizontal deflection

eZEx D �Amc2ˇ2

	
: (2.7)

Here we have assumed that the electric field is parallel to the vector from the
particle to the center of curvature. That is true for parallel plates which are curved to
follow the curvature or almost true for straight parallel plates if the deflection angle
is very small. Solving for the curvature, we get

1

	
D eZEx

�Amc2ˇ2
D eZ V

2G

1

Ekin

�

� C 1; (2.8)
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where 2G is the distance and V the voltage between the electrodes. We kept here the
relativistic notation to cover the rare use of electrostatic fields on high energy beams
for small deflections which cannot be done by magnetic fields. For nonrelativistic
particles, (2.8) reduces to 1

	
D eZEx

Amv2
or in case of an ion beam with charge

multiplicity Z and kinetic energy per nucleon Ekin D 1
2
mv2

1

	

�
m�1� D eZEx .V/m/

2AEkin .eV/
: (2.9)

where Ex D V= .2G/is the electric field between the electrodes.

2.2.2 Electrostatic Focusing Devices

The most simple electro-static device with focusing properties is an iris electrode
on some potential and coaxial with the path of a charged particle beam as shown in
Fig. 2.4.

To determine the field configuration and focusing properties, we note that
the electric potential distribution V.r; z/ in the vicinity of the iris is rotationally
symmetric and expanding into a Taylor series about r D 0 this symmetry requires
all odd terms of the expansion to vanish.

V.r; z/ D V0 .z/C 1

2
RV0 .z/ r2 C 1

24

@4V0 .z/

@r4
r4 C � � � : (2.10)

Derivatives with respect to r are indicated with a dot and derivatives with respect
to z with a prime: To be a real potential solution (2.10) must also be a solution of
the Laplace equation

V D @2V

@r2
C 1

r

@V

@r
C @2V

@z2
D 0 : (2.11)

V0

a z

r

iris aperture

Fig. 2.4 Iris electrode
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Inserting (2.10) into (2.11) results in

0 D RV0 C 1

2

@4V0
@r4

r2 C 1

2
«V0rC RV0 C 1

6

@4V0
@r4

r2 C V 00
0 C

1

2
RV 00
0 r2 C � � � ; (2.12)

where the coefficients of each term rn must be equal to zero separately to give 2 RV0C
V 00
0 D 0; «V0 D 0 and 2

3
@4V0
@r4
C 1

2
RV 00
0 D 0. Using these relations, we set @

4V0
@r4
D 3

8
@4V0
@z4

and the potential function is

V.r; z/ D V0 .z/ � 1
4

V 00
0 .z/ r2 C 1

64

@4V0 .z/

@z4
r4 C � � � : (2.13)

The on-axis .r D 0/ field component is

Ez D �V 0
0 .z/ ; (2.14)

and from rE D 0 or @Ez
@z D � 1r @

@r .rEr/ ; we get by integration

Er D � r

2

@Ez

@z
D 1

2
V 00
0 .z/ r : (2.15)

Knowing the field components, we can derive the focusing properties by
integrating the radial equation of motion mRr D mv2r00 D qEr ;where v and q are the
particle velocity and charge, respectively. We use Fig. 2.5 to define the integration

r0
2 � r0

1 D
q

mv2

Z z2

z1

Er dz D � q

2mv2

Z z2

z1

r
@Er

@z
dz

and solve in thin lens approximation .r D cost, v D cost/

r0
2 � r0

1 D �
q r1
2mv2

.E2 � E1/ : (2.16)

V0

zV1 V2

z1 z2

Ez2 = 0Ez1 = 0

thin lens

Fig. 2.5 Focusing by an iris electrode
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With 1
2
mv2 D qV0 and setting E D �V 0; (2.16) becomes r0

2 � r0
1 D r1

4

V0
2�V0

1

V0
and the

focal length of the iris electrode is

1

f
D V 0

2 � V 0
1

4V0
(2.17)

and the transformation matrix is finally

Miris D
 

1 0
V0
2�V0

1

V0
1

!
: (2.18)

From the transformation matrix or focal length it is obvious that there is no
focusing for a symmetric iris electrode where V 0

2 D V 0
1: On the other hand, an

asymmetric potential is not possible without additional electrodes. We investigate
therefore the properties of an iris doublet.

2.2.3 Iris Doublet

We now investigate the particle dynamics for an iris doublet as shown in Fig. 2.6.
Between both electrodes a distance d apart, the potential varies linearly from V1
to V2 : The doublet has three active parts, two iris electrodes and the drift space
between them. The transformation matrices for both iris electrodes are

M1 D
 

1 0
V2�V1
4dV1

1

!
and M2 D

 
1 0

V2�V1
4dV2

1

!
: (2.19)

The transformation matrix for the drift space between the electrodes can be
derived from the particle trajectory

r.z/ D r1 C
Z z

0

r0.Nz/ dNz D r1 C
Z z

0

r0 p1
p1 Cp.Nz/ dNz : (2.20)

z

V

z
V1

V(z)
V2

d
V1 V2

Fig. 2.6 Focusing by an iris doublet
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The particle momentum varies between the electrodes from p1 D p2mEkin to p1 C
p.Nz/ D

q
2m

�
Ekin C q V2�V1

d z
�

and the integral in (2.20) becomes

Z d

0

dNzq
1C V2�V1

Ekin d Nz
D 2Ekin d

q .V2 � V1/

s
1C q

V2 � V1
Ekin d

Nz
ˇ̌̌̌
ˇ
d

0

D 2d
p

V1p
V2 C

p
V1
:

(2.21)

The particle trajectory at the location of the second electrode is r.d/ D r2 D r1 C
2d

p
V1p

V2Cp
V1

r0
1 and its derivative r0

2 D r0
1

p
V1=
p

V2 from which we can deduce the
transformation matrix

Md D
0@1 2d

p
V1p

V2Cp
V1

0
p

V1p
V2

1A : (2.22)

We may now collect all parts and get the transformation matrix for the iris doublet

Mdb DM2MdM1 D
 

1
2
.RC 1/ 2d

1CR
.R2�1/.3RC1/

8dR2
3R�1
2R2

!
; (2.23)

where R D pV2=
p

V1: Unfortunately, this doublet is still not very convenient since
it still changes the energy of the particle as indicated by the fact that the determinant
det.Mdb/ D 1=R : As indicated earlier this focusing device is also an accelerating
structure. Any two adjacent irises along a high voltage accelerating structure act like
a focusing device while accelerating particles.

2.2.4 Einzellens

To obtain a focusing device that does not change the particle energy, we combine
two doublets to form a symmetric triplet as shown in Fig. 2.7. The transformation

z

V

z
V1

V(z) V2

d
V1 V2 V1d

V1

Fig. 2.7 Structure of an Einzellens
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matrix for such an Einzellens is then the product of two symmetric doublets

Mel DM2d .V2;V1/M1d .V1;V2/ D
�

m11 m12

m21 m22

�
; (2.24)

where

m11 D 4 � 3R
2
� 3

2R ; m12 D 2d
R
3R�1
1CR ;

m21 D 3.R2�1/.1�R/.3�R/

8dR ; m22 D 4 � 3
2R � 3R

2
;

(2.25)

and R D
p

V2p
V1
D

q
1C V

V1
D

q
1C qV

Ekin
: The Einzellens displays some

peculiar focusing properties depending on the potentials involved compared with
the particle’s kinetic energy. The focal length of the Einzellens is

1

f
D 3

8dR

�
1� R2

�
.R � 1/ .3 � R/ : (2.26)

Varying the potential V; we obtain varying focusing conditions as summarized in
the following table and plotted as a function of R in Fig. 2.8.

The results of focusing properties in an Einzellens are compiled in the follow-
ing table. Depending on the chosen voltage the Einzel-lens can be focusing or
defocusing.

V V < �V1 �V1 < V < 0 0 < V < 8V1 V > 8V1
R imaginary 0 < R < 1 1 < R < 3 R > 3
1=f no solution > 0 > 0 < 0

n/a focusing focusing de-focusing

0 1 2 3 4

-10

0

10

20

30

R

Fig. 2.8 Focusing 8d=3f from (2.26) in an Einzellens as a function of R
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The practical focusing regime is limited to 0 < R < 1: For 1 < R < 3 the
focusing is very weak and for R > 3 the Einzellens is defocusing.

2.3 Acceleration by rf Fields

The most successful acceleration of particles is based on the use of rf fields
for which by now powerful sources exist. Very high accelerating voltages can
be achieved in resonant rf cavities far exceeding those obtainable in electrostatic
accelerators of similar dimensions. Particle acceleration in linear accelerators as
well as in circular accelerators are based on the use of rf fields and we will in
the following sections and in the next chapter discuss the principles of the more
important types of particle accelerators.

2.3.1 Basic Principle of Microwave Linear Accelerators

The principle of the linear accelerator based on microwave fields and drift tubes
was proposed by Ising [6] and Wideroe. [14] The accelerator consists of a series
of coaxial metallic tubes where the accelerating field is generated in gaps between
adjacent tubes. In this method particles are accelerated by repeated application of rf
fields. Wideroe constructed such an accelerator and was able to accelerate potassium
ions up to 50 keV.

While the principle is simple, the realization requires specific conditions to
ensure that the particles are exposed to only accelerating rf fields. The particles
travel through the metallic tubes while the field is not suitable for acceleration as
shown in Fig. 2.9. The tubes shield the particles from external rf fields and the length
of the tube segments are chosen such that the particles reach the gap between two
successive tubes only when the rf field is accelerating.

Synchronicity Condition

For efficient acceleration the motion of the particles must be synchronized with the
rf fields in the accelerating sections. The distance between the center of two adjacent
gaps must be equal to the travel time of the particles from one gap to the next. The
length of the drift tubes are chosen such that the particles travel for most of the rf
period in the field free interior and emerge in a gap to the next drift tube at a moment
the field is accelerating. The length of the shielding tubes is therefore almost as long
as it take the particles to travel in a full rf period. In this case, we have synchronism
between particle motion and rf field and the length of the ith drift tube/section is

Li � vi Trf ; (2.27)
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Fig. 2.9 Wideroe linac structure (schematic)

where vi is the velocity of the particles in the ith section and Trf the rf period.
Stimulated by the successful acceleration of potassium ions by Wideroe, a group

led by Sloan and Lawrence at Berkeley were able to build a 50 kW rf generator
oscillating at 10 MHz and delivering a gap voltage of 42 kV. Applying this to 30
acceleration tubes they were able to accelerate mercury ions to a total kinetic energy
of 1.26 MeV [11].

In the 1920s when this principle was developed it was difficult to build high
frequency generators at significant power. In 1928 rf generators were available only
up to about 7 MHz and numerical evaluation of (2.27) shows that this principle was
useful only for rather slow particles like low energy protons and ions. The drift
tubes can become very long for low rf frequencies and particles traveling with, for
example, half the speed of light would require a drift tube length of 10.7 m at 7 MHz.
Such long drift tubes add up quickly to a very long accelerators before the particles
approach the speed of light. To reduce the length of the tubes, higher frequencies
are required.

Further progress in the development of rf linear accelerators therefore depended
greatly on the development of rf equipment at high frequency which happened
during World War II in connection with the development of radar systems. In
1937, Hansen and the Varian brothers invented the klystron at Stanford. Soon the
feasibility of high power klystrons had been established [2] which to this date is
one of the most efficient rf amplifiers available. The first klystron was developed
for 3,000 MHz which is still the preferred frequency for high energy electron linear
accelerators. The klystron principle is economically feasible from about 100 MHz
to more than 10 GHz. With such a wide range of high frequencies available, the
principle of rf acceleration in linear accelerators has gained quick and continued
prominence for the acceleration of protons as well as electrons.

Going to higher frequencies, however, the capacitive nature of the Wideroe
structure becomes very lossy due to electromagnetic radiation. To overcome this
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blrf

rf generator

Fig. 2.10 Alvarez linac structure (schematic)

difficulty, Alvarez [1] proposed to enclose the gaps between the tubes by metallic
cavities (Fig. 2.10). The acceleration section would now be composed of a series of
tubes forming, together with the outer enclosure, a resonant cavity.

This Alvarez structure is still the preferred preaccelerator to accelerate protons
and ions from a few hundred keV out of a Cockroft-Walton electrostatic generator
to a few hundred MeV for injection into a booster synchrotron. Because of the lower
velocity of protons and ions at up to a few hundred MeV the operating frequency
for proton linacs is generally around 200 MHz.

Radio frequencies of 3,000 MHz and higher are desired for electron acceleration.
In Chap. 18.4 we will discuss in more detail the basic features and scaling of high
frequency accelerating structures to give the interested reader the tools to understand
the scaling and limitations of basic linear accelerator physics. For more detailed
discussion of rf aspects in linear electron accelerators, the reader is referred to the
literature [4, 7, 9].

Problems

2.1 (S). Derive the geometry of electrodes for a horizontally deflecting electric
dipole with an aperture radius of 2 cm which is able to deflect an electron beam
with a kinetic energy of 10 MeV by 10 mrad. The dipole be 0.1 m long. What is the
electric field required between the electrodes?

2.2 (S). Calculate the minimum power rating for the motor driving the charging
belt of a Van de Graaff accelerator while producing a charge current of 100 mA at
5 MV.

2.3 (S). Calculate the length for the first four drift tubes of a Wideroe linac for
the following parameters: starting kinetic energy is 100 keV, the energy gain per
gap is 1 MeV, and the microwave frequency 7 MHz. Assume the gaps to be of
zero length for simplicity. Perform the calculations for both electrons and singly
charged potassium ions .AK D 39:0983 amu � 39I 1 amu � 1GeV/ and compare
the results.
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Chapter 3
Circular Accelerators

Parallel with the development of electrostatic and linear rf accelerators the potential
of circular accelerators was recognized and a number of ideas for such accelerators
have been developed over the years. Technical limitations for linear accelerators
encountered in the early 1920s to produce high-power rf waves stimulated the
search for alternative accelerating methods or ideas for accelerators that would use
whatever little rf fields could be produced as efficiently as possible.

Interest in circular accelerators quickly moved up to the forefront of accelerator
design and during the 1930s made it possible to accelerate charged particles to many
million electron volts. Only the invention of the rf klystron by the Varian brothers
at Stanford in 1937 gave the development of linear accelerators the necessary boost
to reach par with circular accelerators again. Since then both types of accelerators
have been developed further and neither type has yet outperformed the other. In
fact, both types have very specific advantages and disadvantages and it is mainly the
application that dictates the use of one or the other.

Circular accelerators are based on the use of magnetic fields to guide the charged
particles along a closed orbit. The acceleration in all circular accelerators but the
betatron is effected in one or few accelerating cavities which are traversed by the
particle beam many times during their orbiting motion. This greatly simplifies the
rf system compared to the large number of energy sources and accelerating sections
required in a linear accelerator. While this approach seemed at first like the perfect
solution to produce high energy particle beams, its progress soon became limited
for the acceleration of electrons by copious production of synchrotron radiation.

The simplicity of circular accelerators and the absence of significant synchrotron
radiation for protons and heavier particles like ions has made circular accelerators
the most successful and affordable principle to reach the highest possible proton
energies for fundamental research in high energy physics. Protons are being
accelerated into the TeV range in the Large Hadron Collider (LHC) at CERN in
Geneva, Switzerland [1].

59

https://doi.org/10.1007/978-3-319-18317-6_3

This chapter has been made Open Access under a CC BY 4.0 license. For details on rights

© The Author(s) 2015  

and licenses please read the Correction https://doi.org/10.1007/978-3-319-18317-6_28

H. Wiedemann, Particle Accelerator Physics, Graduate Text in Physics,



60 3 Circular Accelerators

For electrons the principle of circular accelerators has reached a technical and
economic limit at about 28 GeV [2] due to synchrotron radiation losses, which
make it increasingly harder to accelerate electrons to higher energies [3]. Further
progress in the attempt to reach higher electron energies is being pursued through
the principle of linear colliders [4, 5], where synchrotron radiation is avoided.

Many applications for accelerated particle beams, however, exist at significantly
lower energies and a multitude of well developed principles of particle acceleration
are available to satisfy those needs. We will discuss only the basic principles behind
most of these low- and medium-energy accelerators in this text and concentrate in
more detail on the beam physics in synchrotrons and storage rings. Well documented
literature exists for smaller accelerators and the interested reader is referred to the
bibliography at the end of this text.

3.1 Betatron

The first “circular electron accelerator” has been invented and developed a hundred
years ago in the form of an electrical current transformer. Here we find the electrons
in the wire of a secondary coil accelerated by an electro motive force generated by
a time varying magnetic flux through the area enclosed by the secondary coil. This
idea was picked up independently by several researchers [6, 7]. Wideroe finally
recognized the importance of a fixed orbit radius and formulated the Wideroe 1

2
-

condition, which is a necessary although not sufficient condition for the successful
operation of a beam transformer or betatron as it was later called, because it
functions optimally only for the acceleration of beta rays or electrons [8].

The betatron makes use of the transformer principle, where the secondary coil
is replaced by an electron beam circulating in a closed doughnut shaped vacuum
chamber. A time-varying magnetic field is enclosed by the electron orbit and the
electrons gain an energy in each turn which is equal to the electro-motive force
generated by the varying magnetic field. The principle arrangement of the basic
components of a betatron are shown in Fig. 3.1.

Fig. 3.1 The principle of acceleration in a betatron (schematic)
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The accelerating field is determined by integrating Maxwell’s equation

r � E D � @
@t

B (3.1)

and utilizing Stokes’s theorem, we obtain the energy gain per turnI
Eds D �@˚

@t
; (3.2)

where ˚ is the magnetic flux enclosed by the integration path, which is identical to
the design orbit of the beam. The particles follow a circular path under the influence
of the Lorentz force in a uniform magnetic field. We use a cylindrical coordinate
system .r; '; y/, where the particles move with the coordinate ' clockwise along
the orbit. From (1.74) we get for the particle momentum

cp D �cmv D ecrB?: (3.3)

The accelerating force is equal to the rate of change of the particle momentum and
can be obtained from the time derivative of (3.3). This force must be proportional to
the azimuthal electric field component E' on the orbit

dp

dt
D �e

�
dr

dt
B? C r

dB?
dt

�
D eE': (3.4)

Following Wideroe’s requirement for a constant orbit dr=dt D 0 allows the contain-
ment of the particle beam in a doughnut shaped vacuum chamber surrounding the
magnetic field. The induced electric field has only an angular component E' since
we have assumed that the magnetic field enclosed by the circular beam is uniform
or at least rotationally symmetric. While noting that for a positive rate of change for
the magnetic field the induced azimuthal electric field is negative, the left hand side
of (3.2) then becomes simplyI

Eds D �
Z

E'Rd' D �2�RE' : (3.5)

On the other hand, we have from (3.4)

eE' D �eR
dB?.R/

dt
(3.6)

and using (3.5), (3.6) in (3.2) we get

d˚

dt
D 2�R2

dB?.R/
dt

: (3.7)
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Noting that the complete magnetic flux enclosed by the particle orbit can also be
expressed by an average field enclosed by the particle orbit, we have˚ D �R2B.R/,
where B.R/ is the average magnetic induction within the orbit of radius R. The rate
of change of the magnetic flux becomes

d˚

dt
D �R2

dB?.R/
dt

(3.8)

and comparing this with (3.7) we obtain the Wideroe 1
2
-condition

B?.R/ D 1
2
B?.R/; (3.9)

which requires for orbit stability that the field at the orbit be half the average flux
density through the orbit. This condition must be met in order to obtain orbital-beam
stability in a betatron accelerator. By adjusting the total magnetic flux through the
particle orbit such that the average magnetic field within the orbit circle is twice the
field strength at the orbit, we are in a position to accelerate particles on a circle with
a constant radius R within a doughnut shaped vacuum chamber.

The basic components of a betatron, shown in Fig. 3.1, have rotational symmetry.
In the center of the magnet, we recognize two magnetic gaps of different aperture.
One gap at R provides the bending field for the particles along the orbit. The other
gap in the midplane of the central return yoke is adjustable and is being used to
tune the magnet such as to meet the Wideroe 1

2
-condition. The magnetic field is

generally excited by a resonance circuit cycling at the ac frequency of the main
electricity supply. In this configuration the magnet coils serve as the inductance and
are connected in parallel with a capacitor bank tuned to the ac frequency of 50 or
60 Hz.

The rate of momentum gain is derived by integration of (3.4) with respect to
time and we find that the change in momentum is proportional to the change in the
magnetic field

4 p D R
Z

dB?
dt

dt D eRB? : (3.10)

The particle momentum depends only on the momentary magnetic field and not on
the rate of change of the field. For slowly varying magnetic fields the electric field is
smaller but the particles will make up the reduced acceleration by travelling around
the orbit more often. While the magnet cycling rate does not affect the particle
energy it certainly determines the available flux of accelerated particles per unit
time. The maximum particle momentum is determined only by the orbit radius and
the maximum magnetic field at the orbit during the acceleration cycle

cpmax D ecRBmax.R/: (3.11)
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The betatron principle works for any charged particle and for all energies since
the stability condition (3.9) does not depend on particle parameters. In praxis,
however, we find that the betatron principle is unsuitable to the acceleration of heavy
particles like protons. The magnetic fields in a betatron as well as the size of the
betatron magnet set practical limits to the maximum momentum achievable. Donald
Kerst built the largest betatron ever constructed with an orbit radius of R D 1:23m,
a maximum magnetic field at the orbit of 8.1 kG and a total magnet weight of 350
tons reaching the maximum expected particle momentum of 300 MeV/c at 60 Hz.

For experimental applications we are interested in the kinetic energy of the
accelerated particles. In case of electrons the rest mass is small compared to the
maximum momentum of cp D 300MeV and therefore the kinetic electron energy
from this betatron is

Ekin � cp D 300MeV : (3.12)

In contrast to this result, we find the achievable kinetic energy for a proton to be
much smaller

Ekin � 1

2

.cp/2

mpc2
D 48MeV ; (3.13)

because of the large mass of protons.
The betatron produces a pulse of accelerated particles once per ac cycle. To gain

the maximum energy, the ac field is biased by a dc current and acceleration occurs
from the minimum ac field to the maximum ac field. At the maximum field the beam
can be ejected for applications.

Different, more efficient accelerating methods have been developed for protons,
and betatrons are therefore used exclusively for the acceleration of electrons as
indicated by it’s name. Most betatrons are designed for modest energies of up
to 45 MeV and are used to produce electron and hard x-ray beams for medical
applications or in technical applications to, for example, examine the integrity of
full penetration welding seams in heavy steel containers.

3.2 Weak Focusing

The Wideroe 1
2
-condition is a necessary condition to obtain a stable particle orbit

at a fixed radius R. This stability condition, however, is not sufficient for particles
to survive the accelerating process. Any particle starting out with, for example, a
slight vertical slope would, during the acceleration process, follow a continuously
spiraling path until it hits the top or bottom wall of the vacuum chamber and gets
lost. Constructing and testing the first, although unsuccessful, beam transformer,
Wideroe recognized [8] the need for beam focusing, a need which has become a
fundamental part of all future particle accelerator designs. First theories on beam
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stability and focusing have been pursued by Walton [9] and later by Steenbeck, who
formulated a stability condition for weak focusing and applied it to the design of
the first successful construction and operation of a betatron in 1935 at the Siemens-
Schuckert Company in Berlin reaching an energy of 1.9 MeV [10] although at a
very low intensity measurable only with a Geiger counter. The focusing problems in
a betatron were finally solved in a detailed orbit analysis by Kerst and Serber [11].

To derive the beam stability condition we note that (1.74) is true only at the ideal
orbit r D R. For any other orbit radius r the restoring force is

Fx D �mv2

r
� evBy : (3.14)

Here we use a cartesian coordinate system which moves with the particle along the
orbit with x pointing in the radial and y in the axial direction.

In a uniform magnetic field the restoring force would be zero for any orbit. To
include focusing we assume that the magnetic field at the orbit includes a gradient
such that for a small deviation x from the ideal orbit, r D RC x D R .1C x=R/, the
magnetic guide field becomes

By D B0y C @By

@x
x D B0y

�
1C R

B0y

@By

@x

x

R

�
: (3.15)

After insertion of (3.15) into (3.14) the restoring force is

Fx � �mv2

R

�
1 � x

R

�
� evB0y

�
1 � n

x

R

�
; (3.16)

where we assumed x� R and defined the field index

n D � R

B0y

@By

@x
: (3.17)

With (1.74) we get for the horizontal restoring force

Fx D ��mv2

R

x

R
.1 � n/: (3.18)

The equation of motion under the influence of the restoring force in the deflecting
or horizontal plane is with Fx D �mRx

RxC !2x x D 0; (3.19)

which has the exact form of a harmonic oscillator with the frequency

!x D v

R

p
1 � n D !0

p
1 � n; (3.20)
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where!0 is the orbital revolution frequency. The particle performs oscillations about
the ideal or reference orbit with the amplitude x.z/ and the frequency !x. Because
this focusing feature was discovered in connection with the development of the
betatron we refer to this particle motion as betatron oscillations with the betatron
frequency !x. From (3.20) we note a stability criterion, which requires that the
field index not exceed unity to prevent the betatron oscillation amplitude to grow
exponentially,

n < 1 : (3.21)

The particle beam stability discussion is complete only if we also can show that
there is stability in the vertical plane. A vertical restoring force requires a finite
horizontal field component Bx and the equation of motion becomes

�mRy D evBx: (3.22)

Maxwell’s curl equation @Bx
@y � @By

@x D 0 can be integrated and the horizontal field
component is with (3.15), (3.17)

Bx D
Z
@By

@x
dy D �

Z
n

B0y

R
dy D �n

B0y

R
y: (3.23)

Insertion of (3.23) and (1.74) into (3.22) results in the equation of motion for the
vertical plane in the form of

RyC !2y y D 0; (3.24)

where the vertical betatron oscillation frequency is

!y D !0
p

n: (3.25)

Particles perform stable betatron oscillations about the horizontal mid plane with
the vertical betatron frequency !y as long as the field index is positive

n > 0 : (3.26)

In summary, we have found that a field gradient in the magnetic guide field can
provide beam stability in both the horizontal and vertical plane provided that the
field index meets the criterion

0 < n < 1 ; (3.27)

which has been first formulated and applied by Steenbeck [10] and is therefore also
called Steenbeck’s stability criterion.
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A closer look at (3.20) shows that the field index actually provides defocusing
in the horizontal plane. The reason why we get focusing in both planes is that there
is a strong natural focusing from the sector type magnet which is larger than the
defocusing from the field gradient. This focusing is of geometric nature and relates
to the length of the orbit. A particle travelling, for example, parallel to and outside
the ideal orbit is deflected more because it follows a longer path in the uniform
magnetic field than a particle following the ideal orbit leading to effective focusing
toward the ideal orbit. Conversely, a particle traveling parallel to and inside the ideal
orbit is deflected less and therefore again is deflected toward the ideal orbit.

The stability condition (3.21) actually stipulates that the defocusing from the
field index in the horizontal plane be less than the focusing of the sector magnet
allowing to choose the sign of the field index such that it provides focusing in the
vertical plane. Basically the field gradient provides a means to distribute the strong
sector magnet focusing. This method of beam focusing is known as weak focusing
in contrast to the principle of strong focusing, which will be discussed extensively
in the remainder of this text.

3.3 Adiabatic Damping

During the discussion of transverse focusing we have neglected the effect of
acceleration. To include the effect of acceleration into our discussion on beam
dynamics, we use as an example the Lorentz force equation for the vertical motion.
The equation of motion is

d

dt
.�mPy/ D evzBx ; (3.28)

where we used the fields B D .Bx;By; 0/ in a cartesian coordinate system .x; y; z/.
Evaluating the differentiation, we get the equation of motion at the equilibrium orbit

�mRyC P�mPy D e!0RBx: (3.29)

Inserting (3.23) into (3.29) results in the equation of motion in the vertical plane
under the influence of accelerating electrical and focusing magnetic fields

RyC
PE
E
PyC n!20 y D 0; (3.30)

where PE is the energy gain per unit time. This is the differential equation of a damped
harmonic oscillator with the solution

y D y0e�˛yt cos!yt; (3.31)
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where !y � !0
p

n and the damping decrement

˛y D 1

2

PE
E
: (3.32)

For technically feasible acceleration PE the damping time �y D ˛�1
y is very long

compared to the oscillation period and we therefore may consider for the moment
the damping as a constant. The envelope ymax D y0e�˛yt of the oscillation (3.31)
decays like

dymax D �1
2

PE
E

ymaxdt ; (3.33)

which after integration becomes

ymax

y0;max
D
r

E0

E
: (3.34)

The betatron oscillation amplitude is reduced as the particle energy increases. This
type of damping is called adiabatic damping. Similarly, the slope y0 as well as the
horizontal oscillation parameters experience the same effect of adiabatic damping
during acceleration. This damping is due to the fact that the longitudinal particle
momentum is increasing during acceleration while the transverse momentum is not.
For a particle beam we define a beam emittance in both planes by the product �u D
umax u0

max, where u stands for x or y. Due to adiabatic damping this beam emittance
is reduced inversely proportional to the energy like

� 	 1

E
: (3.35)

No specific use has been made of the principle of betatron acceleration to derive
the effect of adiabatic damping. We therefore expect this effect to be generally valid
for any kind of particle acceleration.

The development of the betatron was important for accelerator physics for several
reasons. It demonstrated the need for particle focusing, the phenomenon of adiabatic
damping and stimulated Schwinger to formulate the theory of synchrotron radiation
[3]. He realized that the maximum achievable electron energy in a betatron must be
limited by the energy loss due to synchrotron radiation. Postponing a more detailed
discussion of synchrotron radiation to Chap. 24, we note that the instantaneous
synchrotron radiation power is given by P� / E2F2? ; where F? is the transverse
force on the particle and the energy loss per turn to synchrotron radiation in a
circular electron accelerator is given by (24.41). The energy loss increases rapidly
with the fourth power of energy and can lead quickly to an energy limitation of the
accelerator when the energy loss per turn becomes equal to the energy gain.
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3.4 Acceleration by rf Fields

Most types of circular particle accelerators utilize compact accelerating cavities,
which are excited by rf sources. Particles traverse this cavity periodically and
gain energy from the electromagnetic fields in each passage. The bending magnet
field serves only as a beam guidance system to allow the repeated passage of the
particle beam through the cavity. Technically, this type of accelerator seem to be
very different from the principle of the betatron. Fundamentally, however, there is
no difference. We still rely on the transformer principle, which in the case of the
betatron looks very much like the familiar transformers at low frequencies, while
accelerating cavities are transformer realizations for very high frequencies. Electric
fields are generated in both cases by time varying magnetic fields.

Since the cavity fields are oscillating, acceleration is not possible at all times and
for multiple accelerations we must meet specific synchronicity condition between
the motion of particles and the field oscillation. The time it takes the particles to
travel along a full orbit must be an integer multiple of the oscillation period for the
radio frequency field. This synchronization depends on the particle velocity, path
length, magnetic fields employed, and on the rf frequency. Specific control of one
or more of these parameters defines the different types of particle accelerators to be
discussed in the following subsections.

3.4.1 Microtron

The schematic configuration of a microtron [12] is shown in Fig. 3.2. Particles
emerging from a source pass through the accelerating cavity and follow then a
circular orbit in a uniform magnetic field By leading back to the accelerating cavity.
After each acceleration the particles follow a circle with a bigger radius till they
reach the boundary of the magnet.

The bending radius of the orbit can be derived from the Lorentz force equation
(1.74)

1

	
D ecB

cp
D ecBy

�ˇmc2
; (3.36)

and the revolution time for a particle traveling with velocity v is

� D 2�	

v
D 2�mc

e

�

By
: (3.37)

The revolution time is therefore proportional to the particle energy and inversely
proportional to the magnetic field. It is interesting to note that for subrelativistic
particles, where � � 1, the revolution time is constant even though the particle
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Fig. 3.2 The principle of a microtron accelerator (schematic)

momentum increases. The longer path length for the higher particle momentum
is compensated by the higher velocity. As particles reach relativistic energies,
however, this synchronism starts to fail. To still achieve continued acceleration,
specific conditions must be met.

A particle having completed the nth turn passes through the cavity and it’s energy
is increased because of acceleration. The change in the revolution time during the
.nC1/st turn compared to the nth turn is proportional to the energy increase� . The
increase in the revolution time must be an integer multiple of the radio frequency
period. Assuming that the revolution time along the first innermost circle, when the
particle energy is still � � 1, is equal to one rf period we conclude that synchronism
is preserved for all turns if

� D 1 (3.38)

or integer multiples. In order to make a microtron functional the energy gain from
the accelerating cavity in each passage must be

EeD 511 keV for electrons and

EpD 938MeV for protons. (3.39)

While it is possible to meet the condition for electrons it is technically impossible at
this time to achieve accelerating voltages of almost 1 GV in an accelerating cavity
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Fig. 3.3 Race track microtron [13] (schematic)

of reasonable length. The principle of microtrons is therefore specifically suited for
the acceleration of electrons.

The size of the magnet imposes a practical limit to the maximum particle energy.
A single magnet scales like the third power of the bending radius and therefore
the weight of the magnet also scales like the third power of the maximum particle
energy. Single magnet microtrons are generally used only to accelerate electrons to
energies up to about 25–30 MeV.

To alleviate the technical and economic limitations as well as to improve control
of the synchronicity condition, the concept of a race track microtron has been
developed [13, 14]. In this type of microtron the magnet is split in the middle and
normal to the orbit plane and pulled apart as shown in Fig. 3.3. The space opened
up provides space for a short linear accelerator which allows the acceleration of
electrons by several units in � thus reducing the number of orbits necessary to reach
the desired energy. The magnets are flat and scale primarily only like the square of
the bending radius.

3.4.2 Cyclotron

The synchronicity condition of a microtron proved to be too severe for the successful
acceleration of heavier particles like protons. In drawing this conclusion, however,
we have ignored the trivial synchronicity condition � D 0. This condition
demands that the particle energy be nonrelativistic which limits the maximum
achievable energy to values much less than the rest energy. This limitation is of
no interest for electrons since electro-static accelerators would provide much higher
energies than that. For protons, however, energies much less than the rest energy
of 938 MeV are of great interest. This was recognized in 1930 by Lawrence and
Edlefsen [15] in the process of inventing the principle of the cyclotron and the first
such device was built by Lawrence and Livingston in 1932 [16].
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Fig. 3.4 Principle of a
cyclotron [16] (schematic).
Vertical (top) and horizontal
(bottom) mid plane cross
section

The cyclotron principle employs a uniform magnetic field and an rf cavity that
extends over the whole aperture of the magnet as shown in Fig. 3.4. The accelerating
cavity has basically the form of a pill box cut in two halves, where the accelerating
fields are generated between those halves and are placed between the poles of the
magnet. Because of the form of the half pill boxes, these cavities are often called
the D’s of a cyclotron. The particle orbits occur mostly in the field free interior of
the D’s and traverse the accelerating gaps between the two D’s twice per revolution.
Due to the increasing energy, the particle trajectories spiral to larger and larger radii.
The travel time within the D’s is adjusted by the choice of the magnetic field such
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that it is equal to half the radio frequency period. The principle of the cyclotron is
basically the application of the Wideroe linac in a coiled up version to save space
and rf equipment. Fundamentally, however, the use of field free tubes or D’s with
increasing path length between accelerating gaps is the same.The revolution time in
a cyclotron is given by (3.37) where now � D 1 and the acceleration of ions with
a charge multiplicity Z is allowed. Keeping the magnetic field constant, we have a
constant revolution frequency and may therefore apply a constant radio frequency

frf D ZeBy

2�mc�
h D const: (3.40)

The principle of the cyclotron is limited to nonrelativistic particles. Protons
are sufficiently nonrelativistic up to kinetic energies of about 20–25 MeV or
about 2.5 % of the rest energy. As the particles become relativistic the revolution
frequency becomes smaller and the particles get out of synchronism with the radio
frequency frf.

The radio frequency depends on the charge multiplicity Z of the particles to
be accelerated and on the magnetic field By. Evaluating (3.40), the following
frequencies are required for different types of particles

frf ŒMHz�D 1:53 � ByŒkG� for protons,

D 0:76 � ByŒkG� for deuterons, (3.41)

D 0:76 � ByŒkG� for HeCC:

A closer inspection of the synchronicity condition, however, reveals that these
are only the lowest permissible rf frequencies. Any odd integer multiple of the
frequencies (3.41) would be acceptable too.

As long as particles do not reach relativistic energies, the maximum achievable
kinetic energy Ekin depends on the type of the particle, the magnetic field B, and the
maximum orbit radius R possible in the cyclotron and is given by

Ekin D 1
2
mv2 D .cp/2

2mc2
D Z2e2B2yR2

2mc2
: (3.42)

Examples of numerical relations are

EkinŒMeV�D 0:48B2yŒkG2�R2Œm2� for protons,

D 0:24B2yŒkG2�R2Œm2� for deuterons, (3.43)

D 0:48B2yŒkG2�R2Œm2� for HeCC:



3.4 Acceleration by rf Fields 73

The particle flux reflects the time structure of the radio frequency field. For a
continuous radio frequency field the particle flux is also “continuous” with micro
bunches at distances equal to the oscillation period of the accelerating field. For a
pulsed rf system obviously the particle flux reflects this macropulse structure on top
of the micropulses.

3.4.3 Synchro-Cyclotron

The limitation to nonrelativistic energies of the cyclotron principle is due only to
the assumption that the radio frequency be constant. This mode of operation for rf
systems is desirable and most efficient but is not a fundamental limitation. Technical
means are available to vary the radio frequency in an accelerating cavity.

As the technology for acceleration to higher and higher energies advances, the
need for particle beam focusing becomes increasingly important. In the transverse
plane this is achieved by the weak focusing discussed earlier. In the longitudinal
phase space stability criteria have not been discussed yet. Veksler [17] and McMillan
[18] discovered and formulated independently the principle of phase focusing,
which is a fundamental focusing property for high energy particle accelerators based
on accelerating microwave frequency fields and was successfully tested only one
year later [19]. We will discuss this principle of phase focusing in great detail in
Chap. 9.

Both the capability of varying the rf frequency and the principle of phase
focusing is employed in the synchro-cyclotron. In this version of the cyclotron, the
microwave frequency varies as the relativistic factor � deviates from unity. Instead
of (3.40) we have for the revolution frequency or microwave frequency

frf D ZeBy

2��mc
h; (3.44)

where h is an integer called the harmonic number. Since B D const the radio
frequency must be adjusted like

frf 	 1=�.t/ (3.45)

to keep synchronism. The momentary particle energy �.t/ can be derived from the
equation of motion 1=	 D ZeB=.cp/ which we solve for the kinetic energyp

Ekin.Ekin C 2mc2/ D eZBy	: (3.46)

The largest accelerator ever built based on this principle is the 184 inch synchro
cyclotron at the Lawrence Berkley Laboratory (LBL) in 1946 [20]. The magnet
weight was 4,300 tons, produces a maximum magnetic field of 15 kG and has a
maximum orbit radius of 2.337 m. From (3.46) we conclude that the maximum



74 3 Circular Accelerators

kinetic proton energy should be Ekin,max D 471MeV while 350 MeV have been
achieved. The discrepancy is mostly due to the fact that the maximum field of
15 kG does not extend out to the maximum orbit due to focusing requirements. The
principle of the synchro cyclotron allows the acceleration of particles to rather large
energies during many turns within the cyclotron magnet. This long path requires
the addition of weak focusing as discussed in connection with the betatron principle
to obtain a significant particle flux at the end of the acceleration period. From the
discussion in Sect. 3.2 we know that efficient focusing in both planes requires the
vertical magnetic field component to drop off with increasing radius. For equal
focusing in both planes the field index should be n D 1

2
and the magnetic field

scales therefore like

By.	/ 	 1p
	
: (3.47)

The magnetic field is significantly lower at large radii compared to the center of the
magnet.

This magnetic field dependence on the radial position leads also to a modification
of the frequency tracking condition (3.45). Since both the magnetic field and
the particle energy change, synchronism is preserved only if the rf frequency is
modulated like

frf 	 ByŒ	.t/�

�.t/
: (3.48)

Because of the need for frequency modulation, the particle flux has a pulsed macro
structure equal to the cycling time of the rf modulation. A detailed analysis of the
accelerator physics issues of a synchro-cyclotron can be found in [21].

3.4.4 Isochron Cyclotron

The frequency modulation in a synchro cyclotron is technically complicated and
must be different for different particle species. A significant breakthrough occurred
in this respect when Thomas [22] realized that the radial dependence of the magnetic
field could be modified in such a way as to match the particle energy � . The
condition (3.48) becomes in this case

frf 	 ByŒ	.t/�

�.t/
D const. (3.49)

To reconcile (3.49) with the focusing requirement, strong azimuthal variations of
the magnetic fields are introduced

@By.	; '/

@'
¤ 0: (3.50)
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In essence, the principle of weak focusing is replaced by strong focusing, to be
discussed later, with focusing forces established along the particle trajectory while
meeting the synchronicity condition only on average in each turn such that

1

2�

I
ByŒ	.t/; '�d' 	 �.t/ : (3.51)

Isochron cyclotrons produce a continuous beam of micro bunches at the rf frequency
and are used frequently for acceleration of protons and ions for cancer therapy.

The development of circular accelerators has finally made a full circle. Starting
from the use of a constant radio frequency field to accelerate particles we found the
need for frequency modulation to meet the synchronicity condition for particles
through the relativistic transition regime. Application of sophisticated magnetic
focusing schemes, which are now known as strong focusing, finally allowed to
revert back to the most efficient way of particle acceleration with constant fixed
radio frequency fields.

3.4.5 Synchrotron

The maximum particle energy is limited to a few hundred MeV as long as one stays
with the basic cyclotron principle because the volume and therefore cost for the
magnet becomes prohibitively large. Higher energies can be achieved and afforded
if the orbit radius R is kept constant. In this case the center of the magnet is not
needed anymore and much smaller magnets can be employed along the constant
particle orbit. Equation (3.36) is still applicable but we keep now the orbit radius
constant and have the design condition

1

R
D ecBy

cp
D const : (3.52)

This condition can be met for all particle energies by ramping the magnet fields
proportional to the particle momentum. Particles are injected at low momentum
and are then accelerated while the bending magnet fields are increased to keep the
particles on a constant radius while they gain energy. The particle beam from such a
synchrotron is pulsed with a repetition rate determined by the magnetic field cycling.
The synchronicity condition

frf D Z ecBy

2��mc2
h; (3.53)

is still valid, but because the magnetic field is varied proportional to the particle
momentum we expect the frequency to require adjustment as long as there is
sufficient difference between particle energy and momentum.
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Fig. 3.5 Magnet arrangement in a synchrotron [23]

For highly relativistic particles a solution for particle acceleration has been
found which does not require a prohibitively large magnet and where the radio
frequency fields can be of constant frequency for optimal efficiency. This is the
case for electron synchrotrons with an initial energy of at least a few tens of MeV.
For this reason electrons are generally injected into a synchrotron at energies of
more than about 10–20 MeV from a linear accelerator or a microtron. Figure 3.5
shows an example of a synchrotron used for the injection of electrons into a storage
ring [23].

For heavier particles, however, we are back to the need for some modest
frequency modulation during the early phases of acceleration. From (3.53) we
expect the revolution frequency to vary like

frev .t/ D Z ecBy

2�cp
ˇ .t/ / ˇ .t/ (3.54)

To preserve the synchronicity condition, the radio frequency must be an integer
multiple of the revolution frequency and must be modulated in proportion of the
varying revolution frequency. The ratio of the rf frequency to revolution frequency
is called the harmonic numberdefined by

frf D h frev: (3.55)

The maximum energy in a synchrotron is determined by the ring radius R, and
the maximum magnetic field By, and is

cpmax .GeV/ D
p

Ekin .Ekin C 2mc2/ D CpBy ŒT�R Œm� ; (3.56)
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where

Cp D 0:2997926GeV

Tm
: (3.57)

Early synchrotrons have been constructed with weak focusing bending magnets
which in addition to the dipole field component also included a field gradient
consistent with a field index meeting the focusing condition (3.27). More detailed
information about early weak focusing synchrotrons can be obtained from [21, 24].

With the discovery of the principle of strong focusing by Christofilos [25] and
independently by Courant et. al. [26] in 1952 much more efficient synchrotrons
could be designed. The apertures in the magnets could be reduced by up to an order
of magnitude thus allowing the design of high-field magnets at greatly reduced
overall magnet size and cost. The physics of strong focusing will be discussed in
great detail in subsequent chapters.

Synchrotrons are the workhorse in particle acceleration and are applied for
electron acceleration as well as proton and ion acceleration to the highest energies.
In more modern proton accelerators superconducting magnets are employed to reach
energies in excess of 1 TeV.

3.4.6 Storage Ring

Although not an accelerator in the conventional sense, a particle storage ring can be
considered as a synchrotron frozen in time. While the basic functioning of a storage
ring is that of a synchrotron, particle beams are generally not accelerated but only
stored to orbit for long times of several hours. Bruno Touschek and R. Wideroe
invented this principle in 1941 while working (not completely by their own free
will) at the Hamburg University for application in high energy physics to bring
two counter rotating beams of particles and antiparticles into collision and study
high energy elementary particle processes. A newer and more copious application
of the storage ring principle arose from the dedicated production of synchrotron
radiation for basic and applied research and technology. The principles, details and
functioning of synchrotrons and storage rings will occupy most of our discussions
in this text.

3.4.7 Summary of Characteristic Parameters

It is interesting to summarize the basic principles for the different particle acceler-
ators discussed. All are based on two relations, the equation of motion (3.14) and
the synchronicity condition (3.37). Depending on which parameter in these two
relations we want to keep constant or let vary, different acceleration principles apply
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Table 3.1 Parameter properties for different acceleration principles

Principle Energy Velocity Orbit Field Frequency Particle flux

� v 	 B frf

Microtron var. c ~p const. const. const.a

Cyclotron 1 var. ~v const. const. const.a

Synchro-cyclotron var. var. ~p B.	/ ~ B.	/
�.t/ pulsed

Isochron cyclotron var. var. 	 .p/ B.	; '/ const. const.a

Proton synchrotron var. var. R ~p.t/ ~v.t/ pulsed

Electron synchrotron var. c R ~p.t/ const. pulsed
a continuous beam, although rf-modulated

with varying advantages and disadvantages. In Table 3.1 these parameters and their
disposition are compiled for the acceleration principles discussed above.

There are two particle parameters and three technical device parameters which
define the mode of accelerator operation. Interestingly enough, most of the dis-
cussed acceleration methods have their proper application and are used either as
stand alone accelerators for research and technology or are part of an acceleration
chain for high energy particle accelerators.

For example, it makes no sense to construct a proton synchrotron, where the
protons must be injected directly from the source at very low energies. The proper
way is to first accelerate the protons with electro-static fields, for example in a
Cockcroft-Walton accelerator followed by a medium energy linear accelerator (e.g.
an Alvarez structure) to reach a high enough energy of a few hundred MeV for
efficient injection into a synchrotron. Similarly, we accelerate an electron beam first
in a linac or microtron before injection into a synchrotron or storage ring.

Problems

3.1 (S). Consider the Kerst betatron cycling at 60 Hz. Electrons are injected at
50 keV kinetic energy into this betatron. Calculate the magnetic field on the orbit
at injection and the energy gain per turn for the first turn and at a time when the
electron has gained 20 MeV. Discuss the reason for the difference in the energy gain
per turn (use linear dependence of field, B � B0!t).

3.2 (S). What is the total excitation current in each of the two coils for a betatron
with an orbit radius of R D 0:4m, a maximum electron momentum of cp D 42MeV
and a gap of g D 10 cm between the poles (hint: apply Ampère’s law).

3.3 (S). Calculate the frequency variation required to accelerate protons or
deuterons in a synchro cyclotron from a kinetic energy of Ekin 0 D 100 keV to
an end energy of Ekin D 600MeV. Keep the magnetic field constant and ignore
weak focussing. Derive formula for the rf frequency as a function of the kinetic



References 79

energy and generate a graph of frf=frf,0 vs. Ekin from just a few points. How big
would the frequency swing be for electrons ?

3.4 (S). Calculate the electron beam current in the Kerst betatron that would
produce a total synchrotron radiation power of 1 Watt at cp D 300MeV.

3.5 (S). Try to “design” a microtron for a maximum electron energy of E D
25MeV at a magnetic field of B D 2140G. (a) What is the diameter of the
last circular trajectory at 25 MeV ? (b) Sketch a cross section of the magnet with
excitation coils. Magnet poles must extend radially at least by 1.5 gap heights
beyond the maximum orbit to obtain good field quality. Use a total coil cross section
of 5 cm2. Choose your own gap height. (c) What is the electrical power required to
operate each coil assuming copper and a copper fill factor of 75 %. That means
75 % of the coil cross section is copper and the rest is for insulation and cooling. Do
you think your coil needs water cooling? (for simplicity assume the coil length to
be equal to the length of the last trajectory plus 10 %.) (d) How does the electrical
power requirement change if you change the number of turns in the coil thereby
changing the electrical current. Keep in either case 75 % fill factor.

3.6 (S). Consider the Fermilab 400 GeV/c synchrotron which has a circumference
of 6,000 m. Protons are injected at 10 GeV/c momentum. Calculate the frequency
swing necessary for synchronicity during the acceleration cycle.
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Part II
Tools We Need



Chapter 4
Elements of Classical Mechanics*

Based on d’Alembert’s principle, we formulate Hamilton’s integral principle by
defining a function L D L.qi; Pqi; t/ such that for any mechanical system the variation
of the integral

R t1
t0

Ldt vanishes along any real path (Fig. 4.1) so that

ı

Z t1

t0

L.t/dt D 0: (4.1)

Here, the variables .qi; Pqi; t/ are the coordinates and velocities, respectively, and
t is the independent variable time. We may expand this function and get

ı

Z t1

t0

Ldt D
Z X

i

@L

@qi
ıqidtC

Z X
i

@L

@Pqi
ı Pqidt : (4.2)

The second term can be modified using the assumption of the variational theorem
which requires that ıqi D 0 at the beginning and end of the path. The second term
can be integrated by parts and isZ

@L

@Pqi
ı Pqidt D

Z
@L

@Pqi

d

dt
ıqidt D @L

@Pqi

d

dt
ıqi

ˇ̌̌̌t1
t0„ ƒ‚ …

D0

�
Z

d

dt

@L

@Pqi
ıqidt: (4.3)

Both terms can now be combined for

ı

Z t1

t0

Ldt D
Z X

i

�
@L

@qi
� d

dt

@L

@Pqi

�
ıqidt D 0: (4.4)
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Fig. 4.1 Variational principle

L(t0)

L(t1)

This integral is zero for any arbitrary path if and only if the integrand vanishes
for each component i independently. The resulting equations are called the Euler-
Lagrange equations

d

dt

@L

@Pqi
� @L

@qi
D 0: (4.5)

Bypassing a more accurate discussion [1], we guess at the nature of the Euler-
Lagrange equations by considering a falling mass m: The kinetic energy is T D
1
2
mv2 and the potential energy V D gx; where g is the gravitational force. If we

set L D T � V D 1
2
mv2 � gx and apply (4.5), we get m Pv D g which is the well

known classical equation of motion for a falling mass in a gravitational field. The
time independent Lagrangian can be defined by

L D T � V (4.6)

and the Lagrange function therefore has the dimension of an energy. Furthermore,
in analogy with basic mechanics like a falling mass, we can define the momenta of
a system by

Pi D @L

@Pqi
(4.7)

and call them the generalized canonical momenta. We use a capital P for the
canonical momentum to distinguish it from the ordinary momentum p. Both are
different only when electromagnetic fields are involved.
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4.1 How to Formulate a Lagrangian?

To formulate an expression for the Lagrangian is a creative process of physics.
Whatever expression one might propose, it should be independent of a particular
reference system and therefore Lorentz invariant. Earlier, we have learned that the
product of two 4-vectors is Lorentz invariant and the product of two, not necessarily
different, 4-vectors is therefore a good choice to form a Lagrangian. We investi-
gate, for example, the product of the momentum-energy

�
cp�

x ; cp�
y ; cp�

z ; iE
�� D�

0; 0; 0; imc2
�

and the differential space-time 4-vectors .dx�;dy�;dz�;icd�/ in the
particle rest frame and get

1

c

�
dx�; dy�; dz�; icd�

� �
cp�

x ; cp�
y ; cp�

z ; iE
�� D �mc2d� D �mc2

p
1 � ˇ2dt:

(4.8)

This expression has the dimension of an energy and is Lorentz invariant. We
consider therefore this as the Lagrangian for a particle at rest being observed from
a relatively moving laboratory system

L D �mc2
p
1 � ˇ2: (4.9)

The conjugate momentum is from (4.7) for the x-component

Px D �m
�vxp
1 � ˇ2 D �mvx (4.10)

and the equation of motion d
dt
@L
@vx
� @L

@x becomes

dPx

dt
D 0 (4.11)

indicating that the particle is in uniform motion with velocity ˇ.
The Lagrangian (4.9) is consistent with classical experience if we set ˇ � 1

and L D �mc2
p
1 � ˇ2 � �mc2 C 1

2
mv2: Since we use only derivatives of the

Lagrangian, we may ignore the constant �mc2 and end up with the kinetic energy
of the free particle.

4.1.1 The Lagrangian for a Charged Particle in an EM-Field

The interaction between charged particle and electromagnetic field depends only on
the particle charge and velocity and on the field. We try therefore the product of field
and velocity 4-vector. Formulating this product in the laboratory system, where the
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fields have been generated, we get.

e
�
Ax;Ay;Az; i�

�
�
�
vx; vy; vz; i

� D e� .Av � �/ . (4.12)

Noting that �d� Ddt; the extension to the Lagrange function in the presence of
electromagnetic fields is

L D �mc2
p
1 � ˇ2 C eAv � e�: (4.13)

The canonical momentum is from (4.7)

P D mvp
1 � ˇ2 C eA D �mvC eA D pC eA; (4.14)

where p is the ordinary momentum. Equation (4.13) is consistent with L D T � V;
where the potential V D e� � eAv:

4.2 Lorentz Force

The conjugate momenta in Cartesian coordinates r D .x; y; z/ can be derived from
(4.5) with (4.13)

PP D @L

@r
D er .Av/� er� D e .vr/AC e Œv � .r � A/�� er�; (4.15)

where we used the algebraic relation (A.18). Insertion into

d

dt

@L

@Pr D
dP
dt
D d

dt
.pC eA/ D e .vr /AC e Œv � .r � A/� � er�

results with Pr D v and dA
dt D @A

@t C .vr /A in an expression for the ordinary
momentum p

d p
dt
D �e

@A
@t
C e Œv � .r � A/� � e r�: (4.16)

Converting potentials to fields, we recover the Lorentz force FL D d p
dt or

FL D eEC e .v � B/ : (4.17)
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4.3 Frenet-Serret Coordinates

A particle trajectory follows a path described by

r.z/ D r0.z/C ır.z/: (4.18)

Here r0.z/ is the ideal path for beam dynamics and an orthogonal coordinate system
moves along this path with its origin at r0.z/ as shown in Fig. 4.2. For this Frenet-
Serret coordinate system we define three vectors

ux.z/ unit vector? to trajectory
uz.z/ D dr0.z/

dz unit vector k to trajectory
uy.z/ D uz.z/ � ux.z/ unit binormal vector

(4.19)

to form an orthogonal coordinate system moving along the trajectory with a
reference particle at r0.z/. In beam dynamics, we identify the plane defined by
vectors ux and uz.z/ as the horizontal plane and the plane orthogonal to it as the
vertical plane, parallel to uy. Change in vectors are determined by curvatures.

dux.z/

dz
D �xuz.z/; and

duy.z/

dz
D �yuz.z/; (4.20)

where
�
�x; �y

�
are the curvatures in the horizontal and vertical plane respectively.

The particle trajectory can now be described by

r.x; y; z/ D r0.z/C x.z/ux.z/C y.z/uy.z/; (4.21)

individual particle trajectory

x
ideal beam path

x

y

ρ
0

z

y

s

Fig. 4.2 Frenet-Serret coordinate system
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where r0.z/ is the location of the coordinate system’s origin (reference particle)
and .x; y/ are the deviations of a particular particle from r0.z/: The derivative with
respect to z is then

d

dz
r.x; y; z/ D dr0

dz
C x.z/

dux.z/

dz
C y.z/

duy.z/

dz
C x0.z/ux.z/C y0.z/uy.z/ (4.22)

or with (4.19) and (4.20)

dr D uxdxC uydyC uzhdz; (4.23)

where

h D 1C �0xxC �0yy: (4.24)

Using these Frenet-Serret coordinates, we are able to describe particle trajectories
much more efficient than we could do in Cartesian coordinates. Essentially, we
have transformed away the ideal path or the geometry of the design beam transport
line which is already well known to us from the placement of beam guidance
elements. The new coordinates measure directly the deviation of any particles from
the reference particle.

We may use these relations to introduce a transformation, from the Cartesian
coordinate system to curvilinear Frenet-Serret coordinates, in the Lagrangian
L D �mc2

p
1 � ˇ2 C ePrA � e� : In the new coordinates,

p
1 � ˇ2 Dq

1 � 1
c2
.Px2 C Py2 C h2Pz2/, PrA D PxAx C PyAy C hPzAz and the Lagrangian becomes in

curvilinear coordinates of beam dynamics

L D �mc2
q
1 � 1

c2
.Px2 C Py2 C h2Pz2/C e

�PxAx C PyAy C hPzAz
�� e�: (4.25)

4.4 Hamiltonian Formulation

Like any other mechanical system, particle beam dynamics in the presence of
external electromagnetic fields can be described and studied very generally through
the Hamiltonian formalism. The motion of particles in beam transport systems,
expressed in normalized coordinates, is that of a harmonic oscillator and deviations
caused by nonlinear restoring forces appear as perturbations of the harmonic
oscillation. Such systems have been studied extensively in the past and powerful
mathematical tools have been developed to describe the dynamics of harmonic
oscillators under the influence of perturbations. Of special importance is the
Hamiltonian formalism which we will apply to the dynamics of charged particles.
Although this theory is well documented in many text books, for example in [1, 2],
we will shortly recall the Hamiltonian theory with special attention to the application
in charged particle dynamics.



4.4 Hamiltonian Formulation 89

The canonical variables in the Hamiltonian theory are the coordinates and
momenta rather than coordinates and velocities used in the Lagrangian. We use
a coordinate transformation .qi; Pqi; t/ H) .qi;Pi; t/ through the definition of the
momenta Pi D @L=@Pqi and define the Hamiltonian function by

H.qi; pi/ D
X
Pqi Pi � L.qi; Pqi/: (4.26)

In analogy to the Lagrangian, we find that PqiPi D 2T and the Hamiltonian which
does not depend on the time explicitly is therefore the sum of kinetic and potential
energy

H D T C V: (4.27)

This will become useful later since we often know forces acting on particles
which can be derived from a potential. Similar to the Euler-Lagrange equations, we
define Hamiltonian equations by

@H

@qi
D �PPi; and

@H

@Pi
D CPqi: (4.28)

With L D �mc2
p
1 � ˇ2 C eAv � e� and replacing velocities with momenta the

Hamiltonian becomes

H.qi;Pi/ D
X
PqiPi C mc2

p
1 � ˇ2 � eAPqC e�; (4.29)

where q D .q1; q2; ::; qi; ::/ and A D .A1;A2; ::;Ai; ::/ ; etc. and the canonical
momentum is defined in (4.14). The canonical momentum P is from (4.14) the
combination of the ordinary particle momentum p D �mPq and field momentum
eA. Insertion into the Hamiltonian and reordering gives .H � e�/2 D m2c4 C
c2 .P � eA/2 ; or

c2 .P � eA/2 � .H � e�/2 D �m2c4; (4.30)

The Hamiltonian (4.30) is equal to the square of the length of the energy
momentum 4-vector ŒcP;iE� ; where E D H�e�, and is therefore Lorentz invariant.
A more familiar form is

H D e� C
q

c2 .P � eA/2 C m2c4: (4.31)

In nonrelativistic mechanics, the Hamiltonian becomes with ˇ� 1 and ignoring
the constant mc2

Hclass � 1
2
mv2 C e�; (4.32)

which is the sum of kinetic and potential energy.
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4.4.1 Cyclic Variables

The solution of the equations of motion become greatly simplified in cases, where
the Hamiltonian does not depend on one or more of the coordinates or momenta.
In this case one or more of the Hamiltonian equations (4.28) are zero and the
corresponding conjugate variables are constants of motion. Of particular interest
for particle dynamics or harmonic oscillators are the cases where the Hamiltonian
does not depend on say the coordinate qi but only on the momenta Pi. In this case
we have

H D H.q1; : : : qi�1; qiC1 : : : ;P1;P2 : : : ;Pi; : : :/ (4.33)

and the first Hamiltonian equation becomes

@H

@qi
D �PPi D 0 or Pi D const : (4.34)

Coordinates qi which do not appear in the Hamiltonian are called cyclic coordinates
and their conjugate momenta are constants of motion. From the second Hamiltonian
equation we get with Pi D const.

@H

@pi
D Pqi D ai D const ;

which can be integrated immediately for

qi.t/ D aitC ci; (4.35)

where ci is the integration constant. It is obvious that the complexity of a mechanical
system can be greatly reduced if by a proper choice of canonical variables some or
all dependence of the Hamiltonian on space coordinates can be eliminated. We will
derive the formalism that allows the transformation of canonical coordinates into
new ones, where some of them might be cyclic.

Example: Assume that the Hamiltonian does not depend explicitly on the time,
then @H

@t D 0 and the momentum conjugate to the time is a constant of motion.
From the second Hamilton equation, we have @H

@pi
D d

dt t D 1 and the momentum
conjugate to the time is therefore the total energy pi D H Dconst. The total energy
of a system with a time independent Hamiltonian is constant and equal to the value
of the Hamiltonian.

4.4.2 Canonical Transformations

For mechanical systems which allow in principle a formulation in terms of cyclic
variables, we need to derive rules to transform one set of variables to another
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set, while preserving their property of being conjugate variables appropriate to
formulate the Hamiltonian for the system. In other words, the coordinate transfor-
mation must preserve the variational principle (4.1). Such transformations are called
canonical transformations Nqk D fk.qi;Pi; t/ and NPk D gk.qi;Pi; t/, where .qi;Pi; t/
are the old and .Nqk; NPk; t/ the new coordinates. The variational principle reads now

ı

Z  X
k

PqkPk �H

!
dt D 0 and ı

Z  X
k

PNqk
NPk �H

!
dt D 0: (4.36)

The new Hamiltonian H need not be the same as the old Hamiltonian H nor need
both integrands be the same. Both integrands can differ, however, only by a total
time derivative of an otherwise arbitrary function G

X
k

PqkPk �H D
X

k

PNqk
NPk � H C dG

dt
: (4.37)

After integration
R

dG
dt dt becomes a constant and the variation of the integral

obviously vanishes under the variational principle (Fig. 4.1). The arbitrary function
G is called the generating function and may depend on some or all of the old and
new variables

G D G.qk; Nqk; Pk; NPk; t/ with 0 
 k 
 N: (4.38)

The generating functions are functions of only 2N variables, coordinates and
momenta. Of the 4N variables only 2N are independent because of another 2N
transformation equations (4.36). We may now choose any two of four variables to be
independent keeping only in mind that one must be an old and one a new variable.
Depending on our choice for the independent variables, the generating function may
have one of four forms

G1D G1.q; Nq; t/; G3D G3.P; Nq; t/;
G2D G2.q; NP; t/; G4D G4.P; NP; t/; (4.39)

where we have set q D .q1; q2; : : : qN/ etc. We take, for example, the generating
function G1, insert the total time derivative

dG1

dt
D
X

k

@G1

@qk

@qk

@t
C
X

k

@G1

@pk

@Pk

@t
C @G1

@t
(4.40)

in (4.37) and get after some sorting

X
k

Pqk

�
Pk � @G1

@qk

�
�
X

k

PNqk

�
NPk C @G1

@Nqk

�
�
�

H � H C @G1

@t

�
D 0: (4.41)
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Both, old and new variables are independent and the expressions in the brackets
must therefore vanish separately leading to the defining equations

Pk D @G1

@qk
; NPk D �@G1

@Nqk
; H D H�@G1

@t
: (4.42)

Variables for which (4.42) hold are called canonical variables and the transforma-
tions (4.36) are called canonical.

Generating functions for other pairings of new and old canonical variables can
be obtained from G1 by Legendre transformations of the form

G2.q; NP; t/ D G1.q; Nq; t/C q NP: (4.43)

Equations (4.42) can be expressed in a general form for all four different
types of generating functions. We write the general generating equation as G D
G.xk; Nxk; t/;where the variables xk and Nxk can be either coordinates or momenta.
Furthermore, xk and Nxk are the old and new coordinates or momenta respectively
and the .yk;Nyk/ are the conjugate coordinates or momenta to .xk; Nxk/ : Then

yk D ˙ @

@xk
G.xk; Nxk; t/;

Nyk D � @

@Nxk
G.xk; Nxk; t/; (4.44)

H D NH � @

@t
G.xk; Nxk; t/:

The upper signs are to be used if the derivatives are taken with respect to coordinates
and the lower signs if the derivatives are taken with respect to momenta. It is not
obvious which type of generating function should be used for a particular problem.
However, the objective of canonical transformations is to express the problem at
hand in as many cyclic variables as possible. Any form of generating function
that achieves this goal is therefore appropriate. To illustrate the use of generating
functions for canonical transformations, we will discuss a few very examples. For
an identity transformation we use a generating function of the form

G D q1 NP1 C q2 NP2 C : : : (4.45)

and get with (4.44) and i D 1; 2; : : :N the identities

Pi D �@G

@qi
D NPi; and Nqi D C @G

@ NPi
D qi: (4.46a)
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A transformation from rectangular .x; y; z/ to cylindrical .r; '; z/ coordinates is
defined by the generating function

G.P; Nq/ D �Pxr cos' � Pyr sin ' � Pzz (4.47)

and the transformation relations are

x D � @G
@px
D r cos'; Pr D � @G

@r D CPx cos' C Py sin ';

y D � @G
@py
D r sin'; P' D � @G

r@' D �Px sin ' C Py cos';

z D � @G
@pz
D z; Pz D � @G

@z D Pz:

(4.48)

Similarly, relations for the transformation from rectangular to polar coordinates
can be derived from the generating function

G D �Pxr cos' sin# � Pyr sin' sin# � Pzr cos#: (4.49)

It is not always obvious if a coordinate transformation is canonical. To identify a
canonical transformation, we use Poisson brackets [1] defined by

�
fk.qi;Pj/; gk.qi;Pj/

	 DX
i

�
@fk
@qi

@gk

@Pj
� @fk
@Pj

@gk

@qi

�
: (4.50)

It can be shown [1] that the new variables Nqk; NPk or (4.36) are canonical if and only
if the Poisson brackets

Œ NPi; NPj� D 0 ŒNqi; Nqj� D 0 ŒNqi; NPj� D �ıij; (4.51)

where ıij is the Kronecker symbol and the factor � is a scale factor for the
transformation. To preserve the scale in phase space, the scale factor must be
equal to unity, � D 1. While the formalism for canonical transformation is
straight-forward, we do not get a hint as to the optimum set of variables for a
particular mechanical system. In the next sections we will see, however, that specific
transformations have been identified and developed which prove especially useful
for a whole class of mechanical systems.

4.4.3 Curvilinear Coordinates

The choice of a particular coordinate system, of course, must not alter the physical
result and from this point of view any coordinate system could be used. However, it
soon becomes clear that the pursuit of physics solutions can be mathematically much
easier in one coordinate system that in another. For systems which are symmetric
about a point we would use polar coordinates, for systems which are symmetric
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about a straight line we use cylindrical coordinates. In beam dynamics there is no
such symmetry, but we have a series of magnets and other components aligned along
some, not necessarily straight, line. The collection of these elements is what we call
a beam line. The particular arrangement of elements is in most cases not determined
by physics but other more practical considerations. The matter of fact is that we
know about the “ideal” path and that all particle should travel along a path being
defined by the physical centers of the beam line elements. In a Cartesian coordinate
system fixed to the stars the result of “ideal” beam dynamics would be a complicated
mathematical expression trying to describe the “ideal” path in which we have no
interest, since we already know where it is. What we are interested in is the deviation
a particular particle might have from the ideal path. The most appropriate coordinate
system would therefore be one which moves along the ideal path. In Sect. 4.3 we
have introduced such a curvilinear reference system also known as the Frenet-Serret
reference system. The transformation from Cartesian to Frenet-Serret coordinates
can be derived from the generating function formed from the old momenta and the
new coordinates

G.z; x; y;Pc,z;Pc,x;Pc,y/ D � .cPc � ecAc/
�
r0.z/C xux.z/C yuy.z/

	
: (4.52)

The momenta and fields in the old Cartesian coordinate system are designated with
the index c and the new canonical momenta P in the Frenet-Serret system are then
in both systems while noting that the transverse momenta are the same

.cPz � ecAzh/ D �@G

@z
D .cPz � ecAz/c h;

.cPx � ecAx/ D �@G

@x
D .cPx � ecAx/c ; (4.53)

�
cPy � ecAy

� D �@G

@y
D �cPy � ecAy

�
c ;

with h as defined in (4.24). The Hamiltonian Hc D e� C c
q

m2c2 C .P � eA/2c
in Cartesian coordinates transforms to the one in curvilinear coordinates of beam
dynamics

H D e� C c

s
m2c2 C .Pz � eAzh/

h2

2

C .Px � eAx/
2 C �Py � eAy

�2
: (4.54)

For a particle travelling through a uniform field By, we have A D .0; 0;Az/ D�
0; 0;�Byx

�
; Px;y D px;y; and the Hamiltonian is with Az D Ac,zh

Hh D e� C c

r
m2c2 C p2x C p2y C

1

h2
�
Pz C eByhx

�2
: (4.55)
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The distinction, we make here on fields in curvilinear and Cartesian coordinates
stems from the practice to build magnets in a certain way. Dipole magnets are
designed carefully to have a uniform field in the beam area along the curved path,
which is not consistent with the transformation of a uniform dipole field in Cartesian
coordinates.

4.4.4 Extended Hamiltonian

The Hamiltonian as derived so far depends on the canonical variables .qi;Pi/

and the independent variable t or z defined for individual particles. This separate
treatment of the independent variable can be eliminated by formulating an extended
Hamiltonian in which all coordinates are treated the same.

Starting with H.q1; q2 : : : qf;P1;P2;P3 : : :Pf; t/; we introduce the independent
variables .q0;P0/ by setting

q0 D t and P0 D �H (4.56)

and obtain a new Hamiltonian

H.q0; q1; q2 : : : qf;P0;P1;P2;P3 : : :Pf/ D H C P0 D 0 (4.57)

and Hamilton’s equations are then

dqi
dt D @H

@Pi
dPi
dt D � @H@qi

)
for i D 0; 1; 2 : : : (4.58)

In particular for i D 0 the equations are

dq0
dt
D 1! q0 D tC C1 (4.59)

and

dP0
dt
D �@H

@q0
D �dH

dt
H) P0 D �HC C2 : (4.60)

The momentum conjugate to the time is equal to the Hamiltonian and since H ¤
H .t/ for static fields, it follows that

dP0
dt
D 0 H) H D const. (4.61)
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Now, the independent variable is no more distinguishable from all other coordi-
nates, the Hamiltonian is expressed as a function of coordinates and momenta only.

4.4.5 Change of Independent Variable

Since no particular coordinate is designated as the independent variable, we may use
any of the coordinates as that. For example, we prefer often to use the longitudinal
coordinate z as the independent variable rather than the time t. More generally,
consider to change the independent variable from qi to qj : Defining, for example, q3
as the new independent variable, we solve H for P3

P3 D �K.q0; q1; q2; q3 : : : qf; P0;P1;P2;P4; : : :Pf/ (4.62)

and define a new extended Hamiltonian

K D P3 C K D 0 : (4.63)

Then the equations

@K
@P3
D dq3

dq3
D 1; (4.64a)

� @K
@q3
D dP3

dq3
D � @K

@q3
; (4.64b)

@K
@Pi¤3

D dqi¤3
dq3

D @K

@Pi¤3
; (4.64c)

� @K
@qi¤3

D dPi¤3
dP3

D � @K

@qi¤3
(4.64d)

with the Hamiltonian

K D �p3 : (4.65)

As an example, to use the longitudinal coordinate z rather than the time t as the
independent variable, we start with (4.54)

H .x; y; z; t/ D e� C
r
1

h2
.cPz � ecAzh/

2 C c2p2? Cm2c4; (4.66)
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where p2? D p2x C p2y : The longitudinal momentum is

cPz D ceAzhC h
q
.H � e�/2 � .cp?/2 � m2c4 D ceAzhC h

q
c2p2 � c2p2?;

(4.67)

where E2 D .H � e�/2 D .cp/2 C �mc2
�2

has been used. We further normalize to
the momentum p and use trajectory slopes, x0 D dx=dz D px=pz etc. rather than
momenta. With this, the new Hamiltonian is K .x; x0; y; y0; z/ D �Pz=p or using

Pz=p D eAz=pC h
q
1 � p2?=p2 and p2?=p2 � x0 2 C y0 2

K.x; x0; y; y0; z/ D �eAzh

p
� h

p
1 � x02 � y02: (4.68)

In beam dynamics, we restrict ourselves to paraxial beams, where x0 � 1 and
y0 � 1; and the momentum p � pz. Note, p may not be the canonical momentum
if there is an electromagnetic field present, but P D pC eA is canonical. In this last
step, we seem to have lost terms involving transverse vector potential components.
This meets with the requirements of almost all beam transport lines, where we
use predominantly transverse fields which can be derived from the Az-component
only. This is not true when we consider, for example, solenoid fields which occur
rather seldom and will be treated separately as perturbations. Finally, we separate
the ideal particle momentum p0 from the momentum deviation ı D p=p0 and
while ignoring higher order terms in ı replace 1=p D 1= Œp0 .1C ı/� � 1

p0
.1 � ı/

in the Hamiltonian for

K.x; x0; y; y0; z/ � �eAzh

p0
.1 � ı/ � h

p
1 � x02 � y02: (4.69)

As discussed before, magnetic fields for particle beam dynamics can be derived
from a single component Az of the vector potential and the task to determine
equations of motion is now reduced to that of determining the vector potential for
the magnets in use. The equations of motion are from (4.69)

@K
@x D �x00 D � ec

cp0
@Azh
@x .1 � ı/ � �0x

p
1 � x02 � y02;

@K
@y D �y00 D � ec

cp0
@Azh
@y .1 � ı/ � �0y

p
1 � x02 � y02:

(4.70)

With hBy D � @Azh
@x and hBx D @Azh

@y the equations of motion become finally in
paraxial approximation

x00 C ec
cp0

Byh .1 � ı/� �0x D 0;
y00 � ec

cp0
Bxh .1 � ı/� �0y D 0: (4.71)
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These are the equations of motion in curvilinear coordinates under the influence of
the magnetic field

�
Bx;By

�
.

Problems

4.1 (S). Show that the Hamiltonian transforms like H' D dt
d'Ht, if the independent

variable is changed from t to '.

4.2 (S). Derive from the Lagrangian (4.25) the equation of motion.

4.3. Show that the transformations [a.), c.) for upper signs, d.) for � D 0� are
canonical and [b.), c.) for lower signs, d.) for � ¤ 0 ] are not:

a:/
q1 D x1 p1 D Px1
q2 D x2 p2 D Px2 b:/ q D r cos ; p D r sin 

c:/
q1 D x1; p1 D Px1 ˙ Px2;
q2 D x1 ˙ x2; p2 D Px2 d:/ q D q0e�; p D p0e�

Show the formalism you use.
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Chapter 5
Particle Dynamics in Electro-Magnetic Fields

The most obvious components of particle accelerators and beam transport systems
are those that provide the beam guidance and focusing system. Whatever the
application may be, a beam of charged particles is expected by design to follow
closely a prescribed path along a desired beam transport line or along a closed orbit
in case of circular accelerators. The forces required to bend and direct the charged
particle beam or provide focusing to hold particles close to the ideal path are known
as the Lorentz forces and are derived from electric and magnetic fields through the
Lorentz equation.

5.1 The Lorentz Force

For a particle carrying a single basic unit of electrical charge the Lorentz force is

F D eEC e Œv � B� ; (5.1)

where e is the basic unit of electrical charge [1].
The vectors E and B are the electrical and magnetic field vectors, respectively,

and v is the velocity vector of the particle. The evolution of particle trajectories
under the influence of Lorentz forces is called beam dynamics or beam optics.
The basic formulation of beam dynamics relies only on linear fields which are
independent of or only linearly dependent on the distance of a particular particle
from the ideal trajectory. The mathematical description of particle trajectories in the
presence of only such linear fields is called linear beam dynamics.

The Lorentz force has two components originating from either an electrical field
E or a magnetic field B: For relativistic particles (v � c) we find that the force from
a magnetic field of 1 T, for example, is equivalent to that for an electrical field of
300 MV/m. Since it is technically straight forward to generate magnetic fields of the
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order of 1 T, but rather difficult to establish the equivalent electric fields of 3 MV/cm,
it becomes apparent that most beam guidance and focusing elements for relativistic
particle beams are based on magnetic fields. At low particle energies .v � c/ this
preference is less clear and justified since the effectiveness of magnetic fields to
bend particles is reduced proportional to the particle velocity ˇ D v=c.

5.2 Fundamentals of Charged Particle Beam Optics

Magnetic as well as electric fields can be produced in many ways and appear
in general in arbitrary directions and varying strength at different locations. It
is impossible to derive a general mathematical formula for the complete path of
charged particles in an arbitrary field distribution. To design particle beam transport
systems, we therefore adopt some organizing and simplifying requirements on the
characteristics of electro-magnetic fields used.

The general task in beam optics is to transport charged particles from point A to
point B along a desired path. We call the collection of bending and focusing magnets
installed along this ideal path the magnet lattice and the complete optical system
including the bending and focusing parameters a beam transport system. Two
general cases can be distinguished in beam transport systems. Systems that display
neither symmetry nor periodicity and transport systems that include a symmetric or
periodic array of magnets. Periodic or symmetric transport systems can be repeated
an arbitrary number of times to produce longer transport lines. A specific periodic
magnet lattice is obtained if the arrangement of bending magnets forms a closed
loop. In our discussions of transverse beam dynamics, we will make no particular
distinction between open beam transport lines and circular lattices except in such
cases when we find the need to discuss special eigensolutions for closed periodic
lattices. We will therefore use the terminology of beam transport systems when we
discuss beam optics results applicable to both types of lattices and refer to circular
accelerator lattices when we derive eigenfunctions characteristic only to periodic
and closed magnet lattices.

5.2.1 Particle Beam Guidance

To guide a charged particle along a predefined path, magnetic fields are used which
deflect particles as determined by the equilibrium of the centrifugal force and
Lorentz force

m�v2�C eŒv � B� D 0 ; (5.2)

where � D .�x; �y; 0/ is the local curvature vector of the trajectory which is pointing
in the direction of the centrifugalforce.
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We assume in general that the magnetic field vector B is oriented normal to the
velocity vector v. This means we restrict the treatment of linear beam dynamics
to purely transverse fields. The restriction to purely transverse field components
has no fundamental reason other than to simplify the formulation of particle beam
dynamics. The dynamics of particle motion in longitudinal fields will be discussed
in Chap. 9. As mentioned earlier, the transverse components of the particle velocities
for relativistic beams are small compared to the particle velocity vz, .vx � vz; vy �
vz; vz � vs/. While we use a curvilinear coordinate system .x; y; z/ following the
ideal path, we sometimes need to follow a particular particle trajectory for which
we use the coordinate s: With these assumptions, the bending radius for the particle
trajectory in a magnetic field is from (5.2) with p D �mv

�x;y D � ec

ˇE
By;x (5.3)

and the angular frequency of revolution of a particle on a complete orbit normal to
the field B is

!L D
ˇ̌̌ec

E
B
ˇ̌̌
; (5.4)

which is also called the cyclotron or Larmor frequency [2]. The sign in (5.3) has
been chosen to meet the definition of curvature in analytical geometry where the
curvature is negative if the tangent to the trajectory rotates counterclockwise. Often,
the beam rigidity, defined as

jB	j D p0
e
; (5.5)

is used to normalize the magnet strength. Using more practical units the expressions
for the beam rigidity and bending radius become

B	 .T m/ D 10

2:998
ˇE .GeV/ (5.6)

and

1

	

�
m�1� D B

B	
D 0:2998 jB .T/ j

ˇE .GeV/
; (5.7)

where we have dropped the sign for the bending radius. For relativistic particles this
expression is further simplified since ˇ � 1. The deflection angle in a magnetic
field is

� D
Z

dz

	
(5.8)
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or for a uniform field like in a dipole magnet of arc length `m the deflection angle is
� D `m=	:

In this textbook, singly charged particles will be assumed unless otherwise noted.
For multiply charged particles like ions, the electrical charge e in all equations must
be replaced by e Z if, for example, ions of net charge Z are to be considered. Since it
is also customary not to quote the total ion energy, but the energy per nucleon, (5.7)
becomes for ions

1

	

�
m�1� D 0:2998Z

A

jB .T/ j
ˇE .GeV=u/

; (5.9)

where E is the total energy per nucleon and A the atomic mass.
Beam guiding or bending magnets and focusing devices are the most obvious

elements of a beam transport system and we will shortly discus such magnets in
more detail. Later, in Chap. 6, we will introduce all multipole magnets in a more
formal way.

5.2.2 Particle Beam Focusing

Similar to the properties of light rays, particle beams also have a tendency to spread
out due to an inherent beam divergence. To keep the particle beam together and
to generate specifically desired beam properties at selected points along the beam
transport line, focusing devices are required. In photon optics that focusing is
provided by glass lenses. The characteristic property of such focusing lenses is that
a light ray is deflected by an angle proportional to the distance of the ray from the
center of the lens (Fig. 5.1). With such a lens a beam of parallel rays can be focused
to a point and the distance of this focal point from the lens is called the focal length.

focal point
α

f
focal lengthfocusing lens

r

Fig. 5.1 Principle of focusing
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Any magnetic field that deflects a particle by an angle proportional to its
distance r from the axis of the focusing device will act in the same way as a glass
lens does in the approximation of paraxial, geometric optics for visible light. If f is
the focal length, the deflection angle ˛ is defined from Fig. 5.1 by

˛ D � r

f
: (5.10)

A similar focusing property can be provided for charged particle beams by the use
of azimuthal magnetic fields B' with the property

˛ D � `
	
D � ec

ˇE
B'` D � ec

ˇE
gr` ; (5.11)

where ` is the path length of the particle trajectory in the magnetic field B' and g
is the field gradient defined by B' D gr or by g D dB'=dr. Here we have assumed
the length ` to be short compared to the focal length such that r does not change
significantly within the magnetic field. If this is not allowable, the product B'`must
be replaced by the integral

R
B' d� .

To get the focusing property (5.10) we require a linear dependence on r of either
the magnetic field B' or of the magnet length. We choose the magnetic field to
increase linearly with the distance r from the axis of the focusing device while the
magnet length remains constant.

A magnetic field that provides the required focusing property of (5.11) can be
found, for example, in a conductor carrying a uniform current density. Clearly,
such a device does not seem very useful for particle beam focusing. To improve
the “transparency” for particles, Panofsky and Baker [3] proposed to use a plasma
lens “which contains a longitudinal arc of nearly uniform current density” and a
similar device has been proposed in [4]. Still another variation of this concept is the
idea to use an evenly distributed array of wires, called the wire lens [5], simulating
a uniform longitudinal current distribution. The strength of such lenses, however,
is not sufficient for focusing of high energy particles even if we ignore the obvious
scattering problems. Both issues, however, become irrelevant, where focusing is
required in combination with particle conversion targets. Here, for example, a
Lithium cylinder, called a Lithium lens, carrying a large pulsed current can be used
to focus positrons or antiprotons emerging from conversion targets [6, 7].

A different type of focusing device is the parabolic current sheet lens. In its
simplest form, the current sheet lens is shown in Fig. 5.2. The rotational symmetric
lens produces an azimuthal magnetic field which scales inversely proportional to r,
B' 	 1=r. Since the length of the lens scales like ` 	 r2, the deflection of a particle
trajectory increases linear with r as desired for a focusing lens.

The field strength depends on the particular parameter of the paraboloid used for
the current sheet and the electrical current. The magnetic field is from Maxwell’s



104 5 Particle Dynamics in Electro-Magnetic Fields

Fig. 5.2 Parabolic current sheet lens (schematic)

equation

B' .T/ D �0

2�

I .A/

r .m/
(5.12)

and with ` D a r2 the product of the field gradient g D @B'=@r and the length ` is

g` .T/ D �0

2�
a
�
m�1� I .A/ : (5.13)

The use of a parabolic shape for the current sheet is not fundamental. Any form
with the property ` 	 r2 will provide the desired focusing properties. A geometric
variation of such a system is used in high energy physics to focus a high energy
K-meson beam emerging from a target into the forward direction [8, 9]. Since the
decaying kaon beam produces neutrinos among other particles this device is called
a neutrino horn. On a much smaller scale compared to the neutrino horn a similar
focusing devices can be used to focus positrons from a conversion target into the
acceptance of a subsequent accelerator [10, 11].

This type of lens may be useful for specific applications but cannot be considered
a general focusing device, where an aperture, free of absorbing material, is required
to let particles pass without being scattered. The most suitable device that provides
a material free aperture and the desired focusing field is called a quadrupole magnet.
As will be discussed in Chap. 6 the magnetic field can be derived in Cartesian
coordinates from the scalar potential V D �gxy

�@V

@x
D Bx D gy; (5.14)

�@V

@y
D By D gx: (5.15)
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Fig. 5.3 Magnetic field
pattern for a quadrupole
magnet B

x
∝ y

x

y

B
y

∝ x

Such fields clearly deflect a particle trajectory proportional to its distance from
the optical axis as we would expect for a focusing element. Magnetic equipotential
surfaces with a hyperbolic profile will be suitable to create the desired fields. The
field pattern of a quadrupole magnet is shown schematically in Fig. 5.3

In beam dynamics, it is customary to define an energy independent focusing
strength. Similar to the definition of the bending curvature in (5.3) we define a
focusing strength k by

k D e

p
g D ec

ˇE
g (5.16)

and the focal length of the magnetic device is from (5.11)

f �1 D k` : (5.17)

In more practical units, the focusing strength is given in analogy to (5.7) by

k
�
m�2� D 0:2998 g .T=m/

ˇE .GeV/
: (5.18)

Multiplication with Z=A gives the focusing strength for ions of charge multiplicity
Z and atomic weight A. Consistent with the sign convention of the Frenet-Serret
coordinate system, the field directions are chosen such that a positively charged
particle like a proton or positron moving at a distance x > 0 parallel to the z-axis is
deflected toward the center (focusing), while the same particle with a vertical offset
from the z-axis .y > 0/ becomes deflected upward (defocusing).

Quadrupole magnets are focusing only in one plane and defocusing in the other.
This property is a result of Maxwell’s equations but does not diminish the usefulness
of quadrupole magnets as focusing elements. A combination of quadrupoles can
become a system that is focusing in both planes of a Cartesian coordinate system.
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From paraxial light optics it is known that the total focal length of a combination of
two lenses with focal lengths f1 and f2 and separated by a distance d is given by

1

f
D 1

f1
C 1

f2
� d

f1 f2
: (5.19)

A specific solution is f1 D �f2 and a quadrupole doublet with this property is
focusing in both the horizontal and vertical plane with equal focal length 1=f D
d=j f1 f2j. Equation (5.19) allows many other solutions different from the simple
assumption made here. The fundamental observation is here that there exist indeed
combinations of focusing and defocusing quadrupoles which can be made focusing
in both planes and are therefore useful for charged particle beam focusing.

5.3 Equation of Motion

We use magnetic fields to guide charged particles along a prescribed path or at least
keep them close by. This path, or reference trajectory, is defined geometrically by
straight sections and bending magnets only. In fact it is mostly other considerations,
like the need to transport from an arbitrary point A to point B in the presence of
building constraints, that determine a particular path geometry. We place dipole
magnets wherever this path needs to be deflected and have straight sections in
between. Quadrupole and higher order magnets do not influence this path but
provide the focusing forces necessary to keep all particles close to the reference
path.

The most convenient coordinate system to describe particle motion is the Frenet-
Serret system that follows with the particle along the reference path. In other words,
we use a curvilinear coordinate system as defined mathematically by (4.19). The
curvatures are functions of the coordinate z and are nonzero only where there are
bending magnets. In deriving the equations of motion, we limit ourselves to the
horizontal plane only. The generalization to both horizontal and vertical plane is
straightforward. We calculate the deflection angle of an arbitrary trajectory for an
infinitesimal segment of a bending magnet with respect to the ideal trajectory. Using
the notation of Fig. 5.4 the deflection angle of the ideal path is d'0 D dz=	0 or
utilizing the curvature to preserve the directionality of the deflection

d'0 D C�0 dz; (5.20)

where �0 is the curvature of the ideal path. The deflection angle for an arbitrary
trajectory is then given by

d' D C� ds: (5.21)
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Fig. 5.4 Particle trajectories
in deflecting systems.
Reference path z and
individual particle trajectory s
have in general different
bending radii

dz

ρ
0

dϕ

u

ds

individual
particle trajectory

dϕ
0

ρ

reference
path

The ideal curvature �0 is evaluated along the reference trajectory u D 0 for
a particle with the ideal momentum. In linear approximation with respect to the
coordinates the path length element for an arbitrary trajectory is

ds D .1C �0 u/ dzCO.2/; (5.22)

where u D x or y is the distance of the particle trajectory from the reference
trajectory in the deflecting plane.

The magnetic fields depend on z in such a way that the fields are zero in magnet
free sections and assume a constant value within the magnets. This assumption
results in a step function distribution of the magnetic fields and is referred to as the
hard edge model, generally used in beam dynamics. The path is therefore composed
of a series of segments with constant curvatures. To obtain the equations of motion
with respect to the ideal path we subtract from the curvature � for an individual
particle the curvature �0 of the ideal path at the same location.

Since u is the deviation of a particle from the ideal path, we get for the equation
of motion in the deflecting plane with respect to the ideal path from Fig. 5.4 and
(5.20), (5.21) with u00 D �.d'=dz� d'0=dz/,

u00 D �.1C �0u/� C �0; (5.23)

where the derivations are taken with respect to z. In particle beam dynamics, we
generally assume paraxial beams, u02 � 1 since the divergence of the trajectories
u0 is typically of the order of 10�3 rad or less and terms in u02 can therefore be
neglected. Where this assumption leads to intolerable inaccuracies the equation of
motion must be modified accordingly.

The equation of motion for charged particles in electromagnetic fields can be
derived from (5.23) and the Lorentz force. In case of horizontal deflection, the
curvature is � D �x and expressing the general field by its components, we have
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from (5.3)

�x D 1

1C ı
�
�0x C kxC 1

2
mx2 C : : : � ; (5.24)

where we expanded the field into components up to second order. Such magnetic
field expansions will be discussed in much detail in Chap. 6. Here, we use just the
three lowest order multipoles, a bending magnet, a quadrupole and a sextupole.

A real particle beam is never monochromatic and therefore effects due to small
momentum errors must be considered. This can be done by expanding the particle
momentum in the vicinity of the ideal momentum p0

1

p
D 1

p0.1C ı/ �
1

p0
.1 � ı C : : :/ : (5.25)

We are now ready to apply (5.23) to the horizontal plane, set u D x and � D �x and
get with (5.23), (5.24), while retaining only linear and quadratic terms in ı; x and
y, the equation of motion

x00 C .kC �20x/x D �0x.ı � ı2/C .kC �20x/xı

� 1
2
mx2 � �0kx2 CO.3/: (5.26)

Here, we have used energy independent field strength parameters as defined in (5.3)
and (5.16).

It is interesting to identify each term with well known observations and terminol-
ogy from geometric light optics. The .kC �20x/x-term describes the focusing effects
from quadrupoles and a pure geometrical focusing from bending in a sector magnet.
Sector magnets are the natural bending magnets for a curvilinear coordinate system.
However, in a uniform field sector magnet particles travel longer path for x > 0

and a shorter path for x < 0 leading directly to a focusing effect in the deflecting
plane. In the nondeflecting plane there is no focusing. A dispersive effect arises
from �0x.ı � ı2/ which reflects the varying deflection angle for particles which
do not have the ideal design energy. Focusing is also energy dependent and the
term .k C �20x/xı gives rise to chromatic aberrations describing imaging errors due
to energy deviation. The term �k�0xx2 has no optical equivalent (it would be a
focusing prism) and must be included only if there is focusing and bending present
in the same magnet like in a synchrotron magnet. The last term we care about
here is the sextupole term � 1

2
mx2 which introduces both chromatic and geometric

aberration. The chromatic aberration from sextupoles can be used to cancel some
of the chromatic aberration (chromaticity) from quadrupoles, but in doing so we
introduce a quadratic effect which leads to geometric aberrations. This is similar to
the chromatic correction in optical systems by using different kinds of glasses. We
will discuss these perturbatory effects in much more detail later.
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The equation of motion in the vertical plane can be derived in a similar way by
setting u D y in (5.23) and � D �y. Consistent with the sign convention of the
Frenet-Serret coordinate system (5.24) becomes for the vertical plane

�y D �0y C kyC mxyC : : :O.3/ (5.27)

and the equation of motion in the vertical plane is

y00 � .k � �20y/y D �0yı � .k � �20y/yı C mxyC �0yky2 CO.3/: (5.28)

Of course, in most cases �0y D 0: In particular, we find for cases, where the
deflection occurs only in one plane say the horizontal plane, that the equation of
motion in the vertical plane becomes simply

y00 � ky D �kyı C mxyCO.3/; (5.29)

which to the order of approximation considered is independent of the strength of the
horizontal bending field.

The magnet parameters �0; k, and m are functions of the independent coor-
dinate z. In real beam transport lines, these magnet strength parameters assume
constant, non zero values within individual magnets and become zero in drift spaces
between the magnets. The task of beam dynamics is to distribute magnets along the
beam transport line in such a way that the solutions to the equations of motion result
in the desired beam characteristics.

5.4 Equations of Motion from the Lagrangian
and Hamiltonian*

In this section, we will formulate the Lagrangian and Hamiltonian suitable for
the study of particle beam dynamics. Specifically, we will work in the curvilinear
coordinate system and use the longitudinal coordinate z as the independent variable
rather than the time t: This is of particular importance because the time is measured
along each particular trajectory and is therefore evolving differently for each particle
in relation to the z-coordinate. The time is related to the particle position s D vt
along its trajectory and through its velocity while the z-coordinate can function as a
general reference for all particles.

We will study both the Lagrangian and Hamiltonian formulation together to
clearly define canonical momenta and facilitate the study of particle dynamics with
the support of the full Hamiltonian theory. Depending on the problem at hand, it
may be easier to start with one or the other formulation.
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5.4.1 Equations of Motion from Lagrangian

In Chap. 4 we have derived the Lagrangian (4.25) in the curvilinear coordinate
system of beam dynamics

L D �mc
p

c2 � Px2 � Py2 � h2Pz2 C e
�Px Ax C PyAy C hPzAc,z

� � e�; (5.30)

which controls the movement of charged particles in an electromagnetic field. The
magnetic fields can be derived from the potentials by

B D r � A (5.31)

D 1

h

�
@.hAc,z/

@y
� @Ay

@z

�
xC 1

h

�
@Ax

@z
� @.h Ac,z/

@x

�
yC

�
@Ay

@x
� @Ax

@y

�
z ;

where h D 1C �xxC �yy, while the electric fields are E D �rV : The equations of
motion are the Lagrangian equations and are in component form

d

dt
.�m Px/ D �mh �x Pz2 C e

�Py Bz � h Pz By
�C eEx ; (5.32a)

d

dt
.�mPy/ D �mh �y Pz2 C e .�Px Bz C h Pz Bx/C eEy ; (5.32b)

d

dt
.�m h Pz/ D ��m

�
�x PxC �y Py

� PzC e
�Px By � Py Bx

�C eEz ; (5.32c)

where ˇ D 1
c

pPx2 C Py2 C h2Pz2 and � the relativistic factor: The first two equations
describe the transverse particle motion which we will later call betatron motion or
betatron oscillations. The third equation describes the longitudinal or synchrotron
oscillation, where the main restoring force comes from the accelerating microwave
field eEz.

It is customary to replace the time variable by the position variable z along the
ideal path. Each particle travels along its own path s at a velocity v Dds=dt and we
change the independent variable with the substitution

d

dt
D v d

ds
D v dz

ds

d

dz
D v

s0
d

dz
; (5.33)

where the quantity

s0 D
p

x02 C y02 C h2: (5.34)

The primes are used to indicate a derivation with respect to z like s0 D ds=dz: The
Lagrangian with z as the independent variable rather than t can be derived from
(5.30) with (5.33) to give with the momentum deviation ı D .p � p0/ =p0 from the
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ideal momentum p0

QL.x; x0; y; y0; z/ D s0 C .1 � ı/ e

p0
.x0Ax C y0Ay C hAc;z/� s0 e�

�mv2
: (5.35)

Applying this to (5.32), the equations of motion are with p D m�v

x00 � s00

s0 x0 D �xh � .1 � ı/ e

p0
s0 �hBy � y0Bz

�C s02 eEx

�mv2
; (5.36a)

y00 � s00

s0 y0 D �yhC .1 � ı/ e

p0
s0 �hBx � x0Bz

�C s02 eEy

�mv2
; (5.36b)

s00

s0 D
1

h

�
�0

xxC �0
yyC 2 ��xx0 C �yy0�	 (5.36c)

� 1 � ı
h

e

p0
s0 �x0By � y0Bx

� � s02 eEz

�mv2
:

So far, no approximations were made and the equations of motion are fully
Hamiltonian or symplectic. Equations (5.36), however, are not suited for analytical
treatment and we use therefore often the paraxial approximation also known from
geometric light optics where particle trajectories are assumed to stay in the vicinity
of the optical path keeping all slopes small .x0 � 1; y0 � 1; s0 � 1/. Equation in
(5.36c) describes again synchrotron motion and degenerates in the case where there
are no electric fields to an equation that can be used to replace the factor s00=s0 in the
betatron equations. Since s02 � 1 for paraxial beams and terms like

�
�0

x; �
0
y

�
vanish

in this approximation, we have s00=s0 � 0 and (5.36) becomes

x00 � �xh � .1 � ı/ e

p0

�
hBy � y0Bz

�C eEx

�mv2
; (5.37a)

y00 � �yhC .1 � ı/ e

p0

�
hBx � x0Bz

�C eEy

�mv2
: (5.37b)

Of course, strictly speaking, these equations are not anymore symplectic, which
is of no practical consequence as far as beam optics goes. Yet, in modern circular
accelerators, particle beam stability can often be assured only by numerical tracking
calculations. This process applies the equations of motion very often and even small
approximations or deviations from symplecticity can introduce false dissipating
forces leading to erroneous results.
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5.4.2 Canonical Momenta

The Lagrangian (5.35) defines the canonical momenta by derivation with respect to
velocities

Px D @ QL
@x0 D

@s0

@x0

�
1 � e�

�mv2

�
C .1 � ı/ e

p0
Ax (5.38a)

D x0

s0

�
1 � e�

�mv2

�
C .1 � ı/ e

p0
Ax ;

Py D @ QL
@y0 D

@s0

@y0

�
1 � e�

�mv2

�
C .1 � ı/ e

p0
Ay (5.38b)

D y0

s0

�
1 � e�

�mv2

�
C .1 � ı/ e

p0
Ay :

Note, in this formulation, the canonical momenta are dimensionless because they
are normalized to the total momentum p:

5.4.3 Equation of Motion from Hamiltonian

Knowledge of the Lagrangian and canonical momenta gives us the means to
formulate the Hamiltonian of the system. In doing so, we use conjugate coordinates

.qi;Pi/ only, ignore the electric field and get from (5.38) x0 D
�

Px � e
p Ax

�
s0; etc.

and the Hamiltonian H D H.x;Px; y;Py; z/ is by definition with (5.35)

H D x0Px C y0Py � L
�
x; x0; y; y0; z

�
(5.39)

D � e

p
Azh � s0

"
1 �

�
Px � eAx

p

�2
�
�

Py � eAy

p

�2#

From (5.34) and (5.38), we have s02 D s02
�

Px � e
p Ax

�2�s02
�

Py � e
p Ay

�2Ch2 or

.h=s0/2 D 1�
�

Px � e
p Ax

�2��Py � e
p Ay

�2
and introducing this in the Hamiltonian,

we get finally

H.x;Px; y;Py; z/ D � e

p
Azh � h

s
1 �

�
Px � eAx

p

�2
�
�

Py � eAy

p

�2
; (5.40)

where for practical applications, we set e=p � .1 � ı/ e=p0 : We may restrict

ourselves further to paraxial beams for which
�

Px;y � e
p Ax;y

�
� 1 allowing to
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expand the square root and the Hamiltonian is in lowest order

H � � .1 � ı/ e

p0
Azh � h

C 1
2
h

�
Px � .1 � ı/ eAx

p0

�2
C 1

2
h

�
Py � .1 � ı/ eAy

p0

�2
: (5.41)

Replacing in (5.40) the normalized canonical momenta
�
Px;Py

�
by normalized

ordinary momenta
�
px; py

�
and setting px D x0 and py D y0; the Hamiltonian

assumes a more familiar form

K.x; x0; y; y0; z/ � � e

p0
Azh .1 � ı/� h

p
1 � x02 � y02; (5.42)

where the momenta px;y or .x0; y0/ in the presence of fields are not canonical anymore
and where second order terms in ı are dropped. As we will see, however, beam
dynamics is based predominantly on fields which can be derived from a potential
of the form A.0; 0;Az/ and consequently, the ordinary momenta are indeed also
canonical. We seem to have made a total circle coming from velocities .Px; Py/ to
slopes .x0; y0/ in the Lagrangian to normalized canonical momenta

�
px; py

�
back to

slopes .x0; y0/ which we know now to be canonical momenta for most of the fields
used in beam dynamics.

The equations of motion can now be derived from the Hamiltonian (5.42) in
curvilinear coordinates.

@K

@x
D �P0

x ; (5.43)

where Px D x0� e
p Ax and P0

x D x00: The magnetic field hBy D
�
@Ax
@z � @hAz

@x

�
does not

depend on z; e.g. @Ax=@z D 0: While ignoring any coupling into the vertical plane
.y � 0/ ; the equation of motion (5.43) is,

� x00 D � e

p0
.1 � ı/ @h Az

@x
� �x

p
1� x02 � y02; (5.44)

or with �x ¤ 0 , �y D 0, h D 1 C �xx and expanding only to second order in
x; x0; y; y0; ı

x00 D � 1
	
.1 � ı/ hC �x

p
1 � x02 � y02 (5.45)

� � 1
	
.1 � ı/ hC �x

�
1 � 1

2
x02 � 1

2
y02�

� � 1
	
C 1

	
ı � .1 � ı/ 1

	
�xxC �x CO .3/ :
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The general curvature � can be expanded into, for example, a dipole �x, a quadrupole
kx and a sextupole field 1

2
mx2 for 1

	
D �xCkxC 1

2
mx2CO.3/ resulting in the equation

of motion
x00 D ��x � k x � 1

2
mx2 C �xı C kxı � �2x xC �2x xı � k�xx2 C �x CO .3/ ; or

x00 C �kC �2x � x D �xı C
�
kC �2x

�
xı � 1

2
mx2 � k�xx2 CO .3/ (5.46)

in agreement with (5.26). Similarly, we may derive the equation of motion for the
vertical plane and get with 1

	y
D � eBx

p0
D ��y C kyC mxyCO.3/

y00 � �k � �2y � y D �yı �
�
k � �2y

�
yı CmxyC k�yy2 CO .3/ (5.47)

in agreement with (5.28).

5.4.4 Harmonic Oscillator

Particle dynamics will be based greatly on the understanding of harmonic oscillators
under the influence of perturbations. We therefore discuss here the Hamiltonian for
a harmonic oscillator. To do that, we start from (5.42), eliminate the magnetic field
Az D 0; ignore the curvature .h D 1/ and remember that we have to reintroduce the
potential by a function V: Furthermore, we use the time t D z=c as the independent
variable again. With this, we derive from (5.42) the Hamiltonian

K.x; x0; z/ � �V �
p
1 � x02 � �V � �1 � 1

2
x02� : (5.48)

The potential for a harmonic oscillator derives from a restoring force�Dx and is
� 1
2
Dx2: A new Hamiltonian is then

K D 1
2
x02 C 1

2
Dx2 (5.49)

and the equations of motion are

@K
@x
D �x00 D Dx ; (5.50)

@K
@x0 D x0 D x0 : (5.51)

The Hamiltonian could have been formulated directly considering that it is equal
to the sum of kinetic T and potential V energy K D T C V:
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5.4.5 Action-Angle Variables

Particularly important for particle beam dynamics is the canonical transformation
from Cartesian coordinates .w; Pw; '/ to action-angle variables .J;  ; '/. This class
of transformations is best suited for harmonic oscillators like charged particles
under the influence of focusing restoring forces. We assume the equations of
motion to be expressed in normalized coordinates of particle beam dynamics
with the independent variable ' instead of the time. As we will discuss later,
it is necessary in beam dynamics to transform ordinary Cartesian coordinates
.x; x0; z/ into normalized coordinates .w; Pw; '/. The generating function for the
transformation to action-angle variables .J;  ; '/ is of the form G1 in (4.39) which
can be written with some convenient constant factors as

G D � 1
2

w2 tan. � #/; (5.52)

where # is an arbitrary phase. Applying (4.44) to the generating function (5.52) we
get with Pw Ddw=d'

@G

@w
D Pw D �
w tan. � #/; (5.53a)

@G

@ 
D �J D �1

2


w2

cos2. � #/ : (5.53b)

Solving for w and Pw the equations take the form

w D
r
2J



cos. � #/ ; (5.54a)

Pw D �p2
J sin. � #/ : (5.54b)

To determine whether the transformation to action-angle variables has led us
to cyclic variables we will use the unperturbed Hamiltonian, while ignoring per-
turbations, and substitute the old variables by new ones through the transformations
(5.54). The generating function (5.52) does not explicitly depend on the independent
variable ' and the new Hamiltonian is therefore given by

H D 
J: (5.55)

The independent variable  is obviously cyclic and from @H=@ D 0 D PJ we
find the first invariant or constant of motion

J D const: (5.56)
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The second Hamiltonian equation

@H

@J
D P D 
 (5.57)

defines the frequency of the oscillator which is a constant of motion since the action
J is invariant. The betatron frequency or tune


 D 
0 D const ; (5.58)

and the angle variable  is the betatron phase. Eliminating the betatron phase  
from (5.54), we obtain an expression of the action in normalized coordinates

J D 1
2

0w2 C 1

2

Pw2

0
: (5.59)

Both terms on the r.h.s. can be associated with the potential and kinetic energy
of the oscillator, respectively, and the constancy of the action J is synonymous with
the constancy of the total energy of the oscillator.

5.5 Solutions of the Linear Equations of Motion

Equations (5.26), (5.28) are the equations of motion for strong focusing beam
transport systems [12, 13], where the magnitude of the focusing strength is a free
parameter. No general analytical solutions are available for arbitrary distributions
of magnets. We will, however, develop mathematical tools which make use of
partial solutions to the differential equations, of perturbation methods and of
particular design concepts for magnets to arrive at an accurate prediction of particle
trajectories. One of the most important “tools” in the mathematical formulation of a
solution to the equations of motion is the ability of magnet builders and alignment
specialists to build magnets with almost ideal field properties and to place them
precisely along a predefined ideal path. In addition, the capability to produce almost
monochromatic particle beams is of great importance for the determination of the
properties of particle beams. As a consequence, all terms on the right-hand side
of (5.26), (5.28) can and will be treated as small perturbations and mathematical
perturbation methods can be employed to describe the effects of these perturbations
on particle motion.

We further notice that the left-hand side of the equations of motion resembles
that of a harmonic oscillator although with a time dependent frequency. By a proper
transformation of the variables we can, however, express (5.26), (5.28) exactly in
the form of the equation for a harmonic oscillator with constant frequency. This
transformation is very important because it allows us to describe the particle motion
mostly as that of a harmonic oscillator under the influence of weak perturbation
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terms on the right-hand side. A large number of mathematical tools developed
to describe the dynamics of harmonic oscillators become therefore available for
charged particle beam dynamics.

5.5.1 Linear Unperturbed Equation of Motion

In our attempt to solve the equations of motion (5.26), (5.28), we first try to solve
the homogeneous differential equation

u00 C K u D 0 ; (5.60)

where u stands for x or y and where, for the moment, we assume K to be constant
with K D k C �2x or K D �.k � �2y /, respectively. The principal solutions of this
differential equation are for K > 0

C.z/ D cos
�p

Kz
�

and S.z/ D 1p
K

sin
�p

Kz
�
; (5.61)

and for K < 0

C.z/ D cosh
�p
jKjz

�
and S.z/ D 1pjKj sinh

�p
jKjz

�
: (5.62)

These linearly independent solutions satisfy the following initial conditions

C.0/ D 1; C0.0/ D dC=dz D 0;
S.0/ D 0; S0.0/ D dS=dz D 1: (5.63)

Any arbitrary solution u.z/ can be expressed as a linear combination of these two
principal solutions

u.z/ D C.z/u0 C S.z/u0
0; (5.64)

u0.z/ D C0.z/u0 C S0.z/u0
0;

where u0; u0
0 are arbitrary initial parameters of the particle trajectory and derivatives

are taken with respect to the independent variable z.
In a general beam transport system, however, we cannot assume that the magnet

strength parameter K remains constant and alternative methods of finding a solution
for the particle trajectories must be developed. Nonetheless it has become customary
to formulate the general solutions for K D K.z/ similar to the principal solutions
found for a harmonic oscillator with a constant restoring force. Specifically,
solutions can be found for any arbitrary beam transport line which satisfy the
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initial conditions (5.63). These principal solutions are the so-called sine like and
cosine like solutions and we will derive the conditions for such solutions. For the
differential equation

u00 C K.z/u D 0 (5.65)

with a time dependent restoring force K.z/, we make an ansatz for the general
solutions in the form (5.64). Introducing the ansatz (5.64) into (5.65) we get after
some sorting

ŒS00.z/C K.z/S.z/�u0 C ŒC00.z/C K.z/C.z/�u0
0 D 0:

This equation must be true for any pair of initial conditions .u0; u0
0/ and therefore

the coefficients must vanish separately

C00.z/C K.z/C.z/ D 0;
S00.z/C K.z/S.z/ D 0: (5.66)

The general solution of the equation of motion (5.65) can be expressed by a linear
combination of a pair of solutions satisfying the differential equations (5.66) and the
boundary conditions (5.63).

It is impossible to solve (5.66) analytically in a general way that would be correct
for arbitrary distributions of quadrupoles K.z/. Purely numerical methods to solve
the differential equations (5.66) maybe practical but are conceptually unsatisfactory
since this method reveals little about characteristic properties of beam transport
systems. It is therefore not surprising that other more revealing and practical
methods have been developed to solve the beam dynamics of charged particle beam
transport systems.

5.5.2 Matrix Formulation

The solution (5.64) of the equation of motion (5.65) may be expressed in matrix
formulation �

u.z/
u0.z/

�
D
�

C.z/ S.z/
C0.z/ S0.z/

� �
u0
u0
0

�
: (5.67)

If we calculate the principal solutions of (5.65) for individual magnets only, we
obtain such a transformation matrix for each individual element of the beam
transport system. Noting that within each of the beam line elements, whether it
be a drift space or a magnet, the restoring forces are indeed constant, we may
use within each single beam line element the simple solutions (5.61) or (5.62) for
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the equation of motion (5.65). With these solutions, we are immediately ready to
form transformation matrices for each beam line element. In matrix formalism, we
are able to follow a particle trajectory along a complicated beam line by repeated
matrix multiplications from element to element. This procedure is widely used
in accelerator physics and lends itself particularly effective for applications in
computer programs. With this method we have completely eliminated the need to
solve the differential equation (5.65), which we could not have succeeded in doing
anyway without applying numerical methods. The simple solutions (5.61), (5.62)
will suffice to treat most every beam transport problem.

5.5.3 Wronskian

The transformation matrix just derived has special properties well-known from the
theory of linear homogeneous differential equation of second order [14]. Only a few
properties relevant to beam dynamics shall be repeated here. We consider the linear
homogeneous differential equation of second order

u00 C v.z/u0 C w.z/u D 0: (5.68)

For such an equation, the theory of linear differential equations provides us with a
set of theorems describing the properties of the solutions

• there is only one solution that meets the initial conditions u.z0/ D u0 and
u0.z0/ D u0

0 at z D z0 ;

• because of the linearity of the differential equation, c u.z/ is also a solution if
both u.z/ is a solution and if c D const: ;

• if u1.z/ and u2.z/ are two solutions, any linear combination thereof is also a
solution.

The two linearly independent solutions u1.z/ and u2.z/ can be used to form the
Wronskian determinant or short the Wronskian

W D
ˇ̌̌̌

u1.z/ u2.z/
u0
1.z/ u0

2.z/

ˇ̌̌̌
D u1u

0
2 � u2u

0
1: (5.69)

This Wronskian has remarkable properties which become of great fundamental
importance in beam dynamics. Both u1 and u2 are solutions of (5.68). Multiplying
and combining both equations like

u00
1 C v.z/u0

1 C w.z/u1 D 0 j � �u2
u00
2 C v.z/u0

2 C w.z/u2 D 0 j � u1
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gives

.u1u
00
2 � u2u

00
1/C v.z/.u1u0

2 � u2u
0
1/ D 0 ;

which will allow us to derive a single differential equation for the Wronskian.
Making use of (5.69) and forming the derivative dW=dz D u1u00

2 � u2u00
1 , we obtain

the differential equation

dW

dz
C v.z/W.z/ D 0 ; (5.70)

which can be integrated immediately to give

W.z/ D W0e� R z
z0
v.Nz/ dNz

: (5.71)

In the case of linear beam dynamics, we have v.z/ � 0 as long as we do
not include dissipating forces like acceleration or energy losses into synchrotron
radiation and therefore W.z/ D W0 D const. We use the sine and cosine like
solutions as the two independent solutions and get from (5.69) with (5.63)

W0 D C0S0
0 � C0

0S0 D 1 : (5.72)

For the transformation matrix of an arbitrary beam transport line with negligible
dissipating forces, we finally get the general result

W.z/ D
ˇ̌̌̌

C.z/ S.z/
C0.z/ S0.z/

ˇ̌̌̌
D 1 : (5.73)

This result will be used repeatedly to prove useful general characteristics of
particle beam optics, in particular, this is another formulation of Liouville’s theorem
stating that the phase space density under these conditions is preserved. From the
generality of the derivation, we conclude that the Wronskian is equal to unity, or
phase space preserving, for any arbitrary beam line that is described by (5.68) if
v.z/ D 0 and w.z/ D K.z/.

5.5.4 Perturbation Terms

The principal solutions of the homogeneous differential equation give us the basic
solutions in beam dynamics. We will, however, repeatedly have the need to evaluate
the impact of perturbations on basic particle motion. These perturbations are
effected by any number of terms on the r.h.s. of the equations of motion (5.26),
(5.28). The principal solutions of the homogeneous equation of motion can be used
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to find particular solutions P.z/ for inhomogeneous differential equations including
perturbations of the form

P00.z/C K.z/P.z/ D Qp.z/; (5.74)

where Qp.z/ stands for any one or more perturbation terms in (5.26), (5.28). For
simplicity, only the z-dependence is indicated in the perturbation term although in
general they also depend on the transverse particle coordinates. A solution P.z/ of
this equation can be found from

P.z/ D
Z z

0
Qp.Qz/G.z; Qz/dQz; (5.75)

where G.z; Qz/ is a Green’s function which can be constructed from the principal
solutions of the homogeneous equation

G.z; Qz/ D S.z/C.Qz/� C.z/S.Qz/: (5.76)

After insertion into (5.75) a particular solution for the perturbation can be found
from

P.z/ D S.z/
Z z

0
Qp.Qz/C.Qz/dQz� C.z/

Z z

0
Qp.Qz/S.Qz/dQz: (5.77)

The general solution of the equations of motion (5.26), (5.28) then is given by the
combination of the two principal solutions of the homogenous part of the differential
equation and a particular solution for the inhomogeneous differential equation

u.z/ D aCu.z/C bSu.z/C ıPu.z/; (5.78)

where the coefficients a and b are arbitrary constants to be determined by the initial
parameters of the trajectory. We have also used the index u to indicate that these
functions must be defined separately for u D x and y:

Because of the linearity of the differential equation we find a simple superposi-
tion of the general solutions of the homogeneous equation and a particular solution
for the inhomogeneous equations for any number of small perturbations. This is an
important feature of particle beam dynamics since it allows us to solve the equation
of motion up to the precision required by a particular application. While the basic
solutions are very simple, corrections can be calculated for each perturbation term
separately and applied as necessary. However, these statements, true in general,
must be used carefully. In special circumstances even small perturbations may have
a great effect on the particle trajectory if there is a resonance or if a particular
instability occurs. With these caveats in mind one can assume that in a well defined
particle beam line with reasonable beam sizes and well designed and constructed
magnets the perturbations are generally small and that mathematical perturbations
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methods are applicable. Specifically, we will in most cases assume that the .x; y/
amplitudes appearing in some of the perturbation terms can be replaced by the
principal solutions of the homogeneous differential equations.

Dispersion Function

One of the most important perturbations derives from the fact that the particle beams
are not quite monochromatic but have a finite spread of energies about the nominal
energy cp0. The deflection of a particle with the wrong energy in any magnetic
or electric field will deviate from that for an ideal particle. The variation in the
deflection caused by such a chromatic error p in bending magnets is the lowest
order of perturbation given by the term ı=	0, where ı D p=p0� 1. We will ignore
for now all terms quadratic or of higher order in ı and use the Green’s function
method to solve the perturbed equation

u00 C K.z/u D �0u.z/ı: (5.79)

In (5.78) we have derived a general solution for the equation of motion for any
perturbation and applying this to (5.79), we get

u.z/ D aCu.z/C bSu.z/C ıDu.z/;
u0.z/ D aC0

u.z/C bS0
u.z/C ıD0

u.z/;
(5.80)

where we have set Pu.z/ D ıDu.z/ and used (5.77) to obtain

Du.z/ D
Z z

0
�0u.Qz/ŒSu.z/Cu.Qz/ � Cu.z/Su.Qz/�dQz: (5.81)

We have made use of the fact that like the perturbation the particular solution must
be proportional to ı as well. The function Du.z/ is called the dispersion function and
the physical interpretation is simply that the function ıDu.z/ determines the offset
of the reference trajectory from the ideal path for particles with a relative energy
deviation ı from the ideal momentum cp0.

This result shows that the dispersion function generated in a particular bending
magnet does not depend on the dispersion at the entrance to the bending magnet
which may have been generated by upstream bending magnets. The dispersion
generated by a particular bending magnet reaches the value Du.Lm/ at the exit of
the bending magnet of length Lm and propagates from there on through the rest of
the beam line just like any other particle trajectory. This can be seen from (5.81),
where we have for z > Lm

Du.z/ D Su.z/
Z Lm

0
�u.Qz/Cu.Qz/dQz � Cu.z/

Z Lm

0
�u.Qz/Su.Qz/dQz; (5.82)
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which has exactly the form of (5.64) describing the trajectory of a particle starting
with initial parameters at the end of the bending magnet given by the integrals. With
the solution (5.80) we can expand the 2 � 2-matrix in (5.67) into a 3 � 3-matrix,
which includes the first order chromatic correction0@ u.z/

u0.z/
ı

1A D
0@Cu.z/ Su.z/ Du.z/

C0
u.z/ S0

u.z/ D0
u.z/

0 0 1

1A0@ u.z0/
u0.z0/
ı

1A (5.83)

Here we have assumed that the particle energy and energy deviation remains
constant along the beam line. This representation of the first order chromatic
aberration will be used extensively in particle beam optics.

Problems

5.1 (S). Derive (5.32a) and (5.32 c) from the Lagrange equations. Show all steps.

5.2 (S). Derive the Lagrangian (5.35) from (5.30) (Hint: Its the variational principle
ı
R

Ldt D 0 that needs to be transformed).

5.3 (S). Verify the numerical validity of (5.7).

5.4 (S). Show that (5.77) is indeed a solution of (5.74).

5.5 (S). Transform the Hamiltonian (5.49) of a harmonic oscillator into action-
angle variables and show that the frequency is 
 D pD. Derive the equation of
motion.

5.6. Show the validity of the transformation equations (5.54a) and (5.54b). Interpret
the physical meaning of (5.56) and (5.57).
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Chapter 6
Electromagnetic Fields

Beam dynamics is effected by electromagnetic fields. Generally, magnetic fields
are used for relativistic particle guidance and focusing while electric fields are
mostly used in the form of electro-static fields or microwaves for acceleration of
the particles. In this chapter, we will discuss in more detail the magnetic fields and
their generation as they are used in beam dynamics. From (1.52), (1.51) we know
how to derive static electric and magnetic fields from a vector or scalar potential by
solving their Laplace equations.

6.1 Pure Multipole Field Expansion

Special desired effects on particle trajectories require specific magnetic fields.
Dipole fields are used to bend particle beams and quadrupole magnets serve,
for example, as beam focusing devices. To obtain an explicit formulation of the
equations of motion of charged particles in an arbitrary magnetic field, we derive
the general magnetic fields consistent with Maxwells equations.

Although we have identified a curvilinear coordinate system moving together
with particles to best fit the needs of beam dynamics, we use in this section first,
for simplicity, a fixed, right-handed Cartesian coordinate system .x; y; z/: By doing
so, we assume straight magnets and neglect the effects of curvature. Later in this
chapter, we will derive both the electromagnetic fields and equations of motion in
full rigor.
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6.1.1 Electromagnetic Potentials and Fields
for Beam Dynamics

Earlier we have derived the potentials from the wave equation in a charge and
current free static environment. This is the beam environment and we want to
formulate fields for beam dynamics there. In the same environment Maxwell’s
equations reduce to rB D 0 and r � B D 0 and can be used directly: Based
on these equations, the magnetic fields can be derived from potentials by (1.51) as
previously defined. Electrostatic fields are derived from a scalar potential alone
according to (1.52).

In beam dynamics we use mostly purely transverse magnetic fields and from
the definition of the magnetic field by the vector potential we find that only the
component Az ¤ 0 collapsing practically to a scalar. To simplify math, we try to
formulate a complex potential for transverse only fields and set

P .z/ D Az .z/C iV .z/ ; (6.1)

where z D xCiy: We define also a complex field which we hope to derive from
the complex potential. The usual derivation of fields from potentials with B D
BxCiBy D � @P

@z ; however, does not work as can be shown by back-substitution.
On the other hand, the conjugate complex form

B� D Bx � iBy D i
@P

@z
(6.2)

is a valid, Maxwell compliant formulation. This is true because only the second
formulation is an analytical function f .z/ D u .x; y/Civ .x; y/ meeting the Cauchy-
Riemann conditions

@u

@x
D @v

@y
and

@u

@y
D �@v

@x
(6.3)

and are solutions of the Laplace equation. Evaluating (6.2) we get while dropping
the index z in the non-zero component of the vector potential .Az D A/

B� D Bx � iBy D i
@P

@z
D i

@AC i@V

@xC i@y
D i

@A
@x C i @V

@x

1C i @y
@x

D i
@A

@x
� @V

@x
(6.4)

because x?y: Similarly,

B� D Bx � iBy D i
@P

@z
D i

@AC i@V

@xC i@y
D i

@A
@y C i @V

@y

@x
@y C i

D @A

@y
C i

@V

@y
(6.5)
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Equating real and imaginary terms on both sides we may now express the field
components like

Bx D �@V

@x
and By D �@V

@y
; or (6.6a)

Bx D C@A

@y
and By D �@A

@x
; (6.6b)

which are just the Cauchy-Riemann conditions for the complex magnetic field B�.
Both field definitions are valid definitions.

The potential of real magnets can be expanded into a power series defining all
multipoles. Any function of an analytical function is also an analytical function.
Especially, the power series

P .z/ D
X
n�0

Cn .xC iy/n D
X
n�0

Cnzn D
X
n�0

Cnrnein' (6.7)

is an analytical function and therefore all components Pn are complex solutions of
the Laplace equation with complex amplitudes

Cn D �n C i�n: (6.8)

The coefficients �n are for upright multipoles while the �n are those of skew
multipoles. Upright multipoles are characterized by midplane symmetry which
requires that for y D 0 the horizontal fields vanish Bx.y D 0/ D 0 and only
vertical field components exist By.y D 0/ ¤ 0: In beam dynamics we almost
exclusively use upright magnets. This ansatz is not the most general solution of the
Laplace equation, but includes all main multipole fields used in beam dynamics.
Later, we will derive a solution that includes all terms allowed by the Laplace
equation in a curvilinear coordinate system. Both, the real and imaginary part, are
two independent solutions of the same Laplace equation. All coefficients �n; �n are
still functions of z although we do not indicate this explicitly.

We distinguish between the electrical potential Ve and the magnetic potential Vm.
Since the Laplace equation is valid for both the electric as well as the magnetic field
in a material free region, no real distinction between both fields had to be made.
In reality, we rarely design devices which include more than one term of the field
expansion. It is therefore appropriate to decompose the general field potential in
(6.7) into its independent multipole terms. To keep the discussion simple, we ignore
here electric fields.
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6.1.2 Fields, Gradients and Multipole Strength Parameter

In (6.7) we used general coefficients which must be related to fields and field
gradients. Furthermore, we are looking for energy independent magnet strength
parameters which are almost exclusively used in beam dynamics. The particular
field patterns for multipole magnets can be derived from the complex potential by
differentiation to get the fields (6.6a). Although fields can be derived from both the
vector and scalar potential, we will use only the latter to define the fields for beam
dynamics.

The first term in (6.7) C0 is a constant and will not contribute to transverse fields.
However C0 .z/ and will therefore show up for longitudinal fields which we will
discuss in Sect. 6.6. In Table 6.1 the scalar potentials are listed for the first five
multipoles. In this list we have already introduced more practical quantities to be
further defined. The coefficients .�n; �n/ have been replaced by field gradients

�n D � 1
nŠ

sn and (6.9)

�n D � 1
nŠ

sn ;

which are defined for upright and skew magnets of order n by

sn
�
T/mn�1� D C @n�1By

@xn�1

ˇ̌̌̌
xD0
yD0

; n D 1; 2; 3 : : : and (6.10a)

sn

�
T/mn�1� D � @n�1Bx

@xn�1

ˇ̌̌̌
xD0
yD0

; (6.10b)

respectively. Following common practice we use special letters for fields and
gradients in low order multipoles (see Table 6.2, left column). In anticipation of
formulating equations of motion we further introduce energy independent field
gradients. Fields and gradients are not convenient for beam dynamics where
we design energy independent beam transport systems. This we can do by a
normalization that includes a general energy factor called the beam rigidity or just

Table 6.1 Magnetic multipole potentials

Dipole �V1 D �Bxx � Byy

Quadrupole �V2 D � 1
2
g .x2 � y2/C gxy ;

Sextupole �V3 D � 1
6
s3
�
x3 � 3xy2

�C 1
6
s3
�
3x2y � y3

�
;

Octupole �V4 D � 1
24

s4
�
x4 � 6x2y2 C y4

�C 1
24

s4
�
x3y � xy3

�
;

Decapole �V5 D � 1
120

s5
�
x5 � 10x3y2 C 5xy4

� C 1
120

s5
�
5x4y � 10x2y3 C y5

�



6.1 Pure Multipole Field Expansion 129

Table 6.2 Field gradient
nomenclature for low order
multipoles

Dipole By
e

p0
By D 1

	

Quadrupole
@By

@x D g e
p0

@By

@x D k

Sextupole
@2By

@x2 D s e
p0

@By

@x D m

Octupole
@3By

@x3 D s4
e

p0

@By

@x D r

Decapole
@4By

@x4 D s5
e

p0

@By

@x D S5

the “Brho”from its mathematical form as

Rb D B	 D p0
e
D ˇE

ce
D 1

0:29979
ˇE .GV/ : (6.11)

This normalization factor is different for electrical and magnetic fields

Rb,m D ˇE .GV/

0:29979
for magnetic fields, and (6.12)

Rb,e D ˇ2E .GV/

0:29979
for electric fields. (6.13)

This difference will obviously vanish for highly relativistic particles .ˇ � 1/. In
beam dynamics we use for relativistic beams mostly magnets and therefore we will
use in this book the beam rigidity for magnetic fields Rb,m unless otherwise noted.
For low order magnet strength parameters we use �y; k;m for bending magnets,
quadrupoles and sextupoles, respectively as shown in the right column of Table 6.2.
In Chap. 4 the particle path in a uniform field B has been derived as an arc with
radius 	

1

	
D ec

ˇE
By: (6.14)

This equation illustrates directly the normalization with a factor equal to the product
of B	: Applied to a bending magnet, for example, we find that the curvature �x D
1=	 is the normalized quantity for the uniform bending field By. Since we rarely
deal with vertical bending magnets we drop the index y in By and the index x in �x:

In (6.14) the curvature or the field can be treated very generally not just as the
properties of a bending magnet. Equation (6.19) can be used as the general field and
we obtain by multiplication with the beam rigidity

1

	
D 1

	0
C kxC 1

2
mx2 C 1

6
rx3 C : : : : D

1X
nD1

Snxn�1; (6.15)
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Table 6.3 Upright multipole fields

Dipole e
p0

Bx D 0 e
p0

By D e
p0

By0

Quadrupole e
p0

Bx D ky e
p0

By D kx

Sextupole e
p0

Bx D mxy e
p0

By D 1
2
m
�
x2 � y2

�
Octupole e

p0
Bx D 1

6
r
�
3x2y � y3

�
e

p0
By D 1

6
s4
�
x3 � 3xy2

�
Decapole e

p0
Bx D C 1

24
s5
�
x3y � xy3

�
e

p0
By D C 1

24
s5
�
x4 � 6x2y2 C y4

�
Table 6.4 Rotated or skew multipole fields

Dipole (90ı/ e
p0

Bx D e
p0

Bx0
e

p0
By D 0

Quadrupole (45ı) e
p0

Bx D �kx e
p0

By D Cky

Sextupole (30ı) e
p0

Bx D � 1
2
m
�
x2 � y2

�
e

p0
By D Cmxy

Octupole (22:5ı) e
p0

Bx D � 1
6
r
�
x3 � 3xy2

�
e

p0
By D � 1

6
r
�
3x2y � y3

�
Decapole (18ı) e

p0
Bx D � 1

24
s5
�
x4 � 6x2y2 C y4

�
e

p0
By D C 1

24
s5
�
x3y � xy3

�
The angles indicate the orientation of the central pole with respect to the y-axis (the y-axis is at
90ı/

where 1
	0

is the pure dipole field and the multipole magnet strengths

Sn D ec

ˇE
sn (6.16)

or in more practical units

Sn .m�n/ D 0:29979 � sn
�
T/mn�1� : (6.17)

This gives us immediately the normalization for quadrupoles, sextupoles and
higher order multipoles. These parameters are used in beam dynamics as the energy
independent magnet strengths while field gradients would scale with beam energy.
From Table 6.1 we get by differentiation for upright multipoles the fields for low
order upright multipole magnets which are compiled in Table 6.3.

The other class of magnets does not have mid-plane symmetry but the magnets
have the same field patterns as the corresponding upright magnets, yet are rotated
about the z-axis by an angle �n D �=.2n/, where n is the order of the multipole.
These magnets are rarely used in beam dynamics and if so mostly as corrections to
field errors. For example, misaligned quadrupoles can create a skew field causing
undesired coupling of particle motion between horizontal and vertical plane. Such
coupling can be compensated by installing skew quadrupoles. From the expressions
for the multipole potentials in Table 6.1 we obtain again the multipole field
components which are compiled up to decapoles in Table 6.4.

The characteristic difference between the two sets of field solutions is that the
fields of upright linear magnets in Table 6.3 do not cause coupling for particles
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traveling in the horizontal or vertical midplane, in contrast to the rotated magnet
fields of Table 6.4 which would deflect particles out of the horizontal midplane. In
linear beam dynamics, where we use only dipole and upright quadrupole magnets,
the particle motion in the horizontal and vertical plane are completely independent.
This is a highly desirable “convenience” without which particle beam dynamics
would be much more complicated and less predictable. Since there is no particular
fundamental reason for a specific orientation of magnets in a beam transport
systems, we may as well use that orientation that leads to the simplest and most
predictable results. We will therefore use exclusively upright magnet orientation for
the main magnets and treat the occasional need for rotated magnets as a perturbation.
In summary, the general magnetic field equation including only the most commonly
used upright multipole elements are given by

e

p0
Bx D CkyCmxyC 1

6
r
�
3x2y � y3

�C : : : (6.18a)

e

p0
By D 1

	0
C kxC 1

2
m
�
x2 � y2

�C 1
6
r
�
x3 � 3xy2

�C : : : (6.18b)

Sometimes it is interesting to investigate the particle motion only in the horizon-
tal midplane, where y D 0. In this case we expect the horizontal field components
Bx of all multipoles to vanish and any deflection or coupling is thereby eliminated.
In such circumstances, the particle motion is completely contained in the horizontal
plane and the general fields to be used are given by

e

p0
Bx D 0 (6.19a)

e

p0
By D 1

	0
C kxC 1

2
mx2 C 1

6
rx3 C : : :C 1

.n � 1/ŠSnxn�1 (6.19b)

6.1.3 Main Magnets for Beam Dynamics

The feasibility of any accelerator or beam transport line design depends fundamen-
tally on the parameters and diligent fabrication of technical components composing
the system. Not only need the magnets be designed such as to minimize undesirable
higher order multipole fields but they also must be designed such that the desired
parameters are within technical limits. Most magnets constructed for beam transport
lines are electromagnets rather than permanent magnets. The magnets are excited
by electrical current carrying coils wound around magnet poles or in the case of
superconducting magnets by specially shaped and positioned current carrying coils.
In this section, we will discuss briefly some fundamental design concepts and limits
for most commonly used iron dominated bending and quadrupole magnets as a
guide for the accelerator designer towards a realistic design. For more detailed
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discussions on technical magnet designs we refer to related references, for example
[1, 2].

Iron dominated magnets are the most commonly used magnets for particle beam
transport systems. Only where very high particle energies and magnetic fields are
required, superconducting magnets are used with maximum magnetic fields of 6–
10 T compared to the maximum field in an iron magnet of about 2 T. Although
saturation of ferromagnetic material imposes a definite limit on the strength of iron
dominated magnets, most accelerator design needs can be accommodated within
this limit.

We are now in a position to determine the fields for any multipole. This will be
done in this section for magnetic fields most commonly used in particle transport
systems, the bending field and the focusing quadrupole field. Only for very special
applications are two or more multipole field components desired in the same magnet
like in a gradient bending magnet or synchrotron magnet.

Deflecting Magnets

For the bending field n D 1 and we get from (6.7) the magnetic potential

P1.x; y/ D A1 C iV1 D C1 .xC iy/ D .�1x � �1y/C i .�1yC �1x/ : (6.20)

in case of bending magnets, the skew type is a vertical bending magnet which is
used in beam dynamics very rarely. The equipotential lines in the transverse .x; y/-
plane along which the scalar potential is constant are determined for the first order
potential by

V1 D �1yC �1x D const (6.21)

and the corresponding electromagnetic field is given in component formulation by
the vector

B D .��1;��1; 0/ : (6.22)

Equation (6.22) defines the lowest order transverse field in beam guidance or beam
transport systems, is uniform in space and is called a dipole field. To simplify the
design of beam transport systems it is customary to use dipole fields that are aligned
with the coordinate system such as to exert a force on the particles only in the
horizontal x- or only in the vertical y-direction. With these definitions, we have for
a horizontally deflecting magnet .�1 ¤ 0; �1 D 0/ and for a vertically deflecting
magnet .�1 D 0; �1 ¤ 0/ :To design a pure dipole magnet, we would place iron
surfaces at equipotential lines. Specifically, for a horizontally deflecting magnet the
equipotential lines are at

y D ˙G (6.23)
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to define a uniform vertical field within a vertical magnet aperture of 2G. Infinitely
long magnets are assumed and the equipotential surface is defined by the same line
anywhere along z:

As mentioned above, vertical bending magnets are rarely used in accelerator
physics. Yet, there are special instances, especially in beam transport lines where
vertical bending magnets are required. In those cases we would just introduce a
vertical curvature �y in (6.18a) or (6.19a) cover the vertical dispersion function.
Outside the bending magnet the dispersion behaves just like a particle trajectory
and therefore the quadrupoles do not have to be rotated or modified.

Focusing Device

The most suitable device that provides a material free aperture and a desired
focusing field is a quadrupole magnet. The magnetic field can be derived from the
term n D 2 of the scalar potential (6.7)

P2.x; y/ D C2 .xC iy/2 D C2 .x
2 � y2 C i2xy/: (6.24)

Similar to the dipole case, both the real and imaginary parts are two independent
solutions of the same Laplace equation and therefore the potential for both
components can be written in the form

P2.x; y/ D A2C iV2 D �2.x2 � y2/� 2�2xyC i
�
2�2xyC �2

�
x2 � y2

�	
: (6.25)

Both the real and imaginary solutions are independent solutions with independent
coefficients. Coefficient �2�2 D g is equal to the field gradient for an upright
quadrupole and �2�2 Dg, which is the field gradient of a skew quadrupole.
Separating both solutions, equipotential lines in the transverse .x; y/-plane for both
second order potentials can be defined by

x2 � y2 D const; for the skew quadrupole and (6.26a)

xy D const. for the upright quadrupole. (6.26b)

Magnetic equipotential surfaces with a profile following the desired scalar
potential (6.1.3) will be suitable to create the desired fields. The field pattern of an
upright quadrupole magnet (6.26b) is shown schematically in Fig. 6.1 (left) together
with the pole configuration for a rotated quadrupole Fig. 6.1 (right).

Synchrotron Magnet

Sometimes a combination of both, the dipole field of a bending magnet and the
focusing field of a quadrupole, is desired for compact beam transport lines to form
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Fig. 6.1 Pole shape of an upright quadrupole (left) and of a rotated quadrupole magnet (right)
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Fig. 6.2 Pole profile for a synchrotron magnet (schematic)

what is called a synchrotron magnet. The name comes from the use of such magnets
for early synchrotron accelerators. The fields can be derived just like the dipole and
quadrupole fields from the two-term potential (6.7) with n D 1 and n D 2:

Such a magnet actually is nothing but a transversely displaced quadrupole. The
field in a quadrupole displaced by x0 from the beam axis is By D g.x�x0/ D gx�gx0

and a particle traversing this quadrupole at x D 0 will be deflected by the field By D
gx0. At the same time, we still observe focusing corresponding to the quadrupole
field gradient g. The pole cross section of such a magnet is shown in Fig. 6.2.
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The deviation from parallelism of the magnet poles at the reference trajectory is
often quantified by the characteristic length defined by

`ch D By

g
D 1

	0k
: (6.27)

Geometrically this characteristic length is equal to the distance from the reference
trajectory to that point at which the tangents from the two magnet poles at the
vertical reference plane would touch (Fig. 6.2).

Higher Order Multipole Magnets

In a general beam transport line we use bending and quadrupole magnets to guide
and focus a particle beam. For more sophisticated systems, however, we experience
chromatic aberrations as is known from light optics. Particles with slightly different
energies are focused differently and the image becomes blurred. In light optics such
aberrations are partially corrected by the use of glasses with different refractive
indices. In particle optics we use sextupoles. As the name indicates this magnet is
composed of six poles. The complex potential is

P3 .z/ D A3 C iV3 D C3 .xC iy/3 D �3
�
x3 � 3xy2

� � �3 �3x2y � y3
�

C i
�
�3
�
3x2y � y3

�C �3 �x3 � 3xy2
�	
: (6.28)

Only upright sextupoles are used in beam dynamics for which �6�3 D s3 the ideal
fields are

e

p0
Bx D �mxy and

e

p0
By D �1

2
m
�
x2 � y2

�
: (6.29)

The pole profile is given by the scalar potential V3

V3 D 3x2y � y3 D const (6.30)

which describes the center poles along the vertical axis. To get the other poles one
must rotate the center pole by 60ı: The aperture radius R must be chosen like in the
case of the quadrupole from other consideration related to the application and beam
requirement. The actual sextupole profile (6.30) is then given for the center pole by

3x2y � y3 D �R3: (6.31)

The magnet pole shapes for sextupole octupole or higher order magnets are
shown in Fig. 6.3. Odd order multipoles like dipoles, sextupoles, decapoles etc.
are characterized by central poles along the vertical axis (Fig. 6.3 left). Even order
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Fig. 6.3 Pole profile for an upright sextupole (left) and octupole (right) magnet

multipoles have no poles along the horizontal or vertical axis (Fig. 6.3 right). The
profile can be derived directly from the respective potential (6.7). Only the profile of
one pole must be determined since the other poles are generated by simple rotation
of the first pole by multiples of the angle 90ı=n, where n is the order of the multipole.
Multipoles of higher order than sextupoles are rarely used in accelerator physics but
can be derived from the appropriate multipole potentials.

For an arbitrary single higher order multipole the field components can be derived
from its potential (6.7)

Pn.x; y/ D An C iVn D Cn .xC i y/n: (6.32)

From this equation it is straight forward to extract an expression for the potential
of any multipole field satisfying the Laplace equation. Since both electrical and
magnetic fields may be derived from the Laplace equation, we need not make any
distinction here and may use (6.32) as an expression for the electrical as well as the
magnetic potential.

As mentioned before, it is useful to keep both sets of solutions .�n;�n/ separate
because they describe two distinct orientations of multipole fields. For a particular
multipole both orientations can be realized by a mere rotation of the element about
its axis. Only the solution �n has what is called midplane symmetry with the
property that Bny.x; y/ D Bny.x;�y/. In this symmetry, there are no horizontal field
components in the midplane, Bnx.x; 0/ � 0, and a particle travelling in the horizontal
mid plane will remain in this plane. We call all magnets in this class upright magnets.
The magnets defined by �n ¤ 0 we call rotated or skew magnets since they

differ from the upright magnets only by a rotation about the magnet axis. In real
beam transport systems, we use almost exclusively magnetic fields with midplane
symmetry.
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Fig. 6.4 Simulation of the dipole field through a vacuum chamber which is magnetic (� D 1:8/

(left). The same situation is shown on the right side after annealing of the vacuum chamber

Vacuum Chamber Material

We have made great efforts to optimize the multipole field quality, but much of
this can be destroyed again with the installation of a vacuum chamber. The vacuum
chamber must be made of material which is non-magnetic. This is no problem with
Aluminum or Copper but great care must be exercised with steel chambers. Non-
magnetic material with a permeability of some � D 1:01 or D 1:02 should be
used. If the permeability is greater, the vacuum chamber walls concentrate magnetic
flux which distorts the desired field. A field simulation with vacuum chamber is
shown in Fig. 6.41 where we note the field concentration in two parts of the vacuum
chamber (left) which has a permeability of � D 1:8: The simulation is for the
NSRRC booster where beam could not be stored at injection energy of 150 MeV
because of the magnetic properties of the vacuum chamber. After annealing to about
1,050 ıC the permeability was reduced to � � 1:01 � 1:02 and the effect of the
vacuum chamber has been clearly eliminated (right). Similar effects on the ideal
magnetic field can occur in any other multipole. While the perturbation seems small
and barely noticeable it is big enough to prevent storage of a beam in a circular
accelerator.

6.1.4 Multipole Misalignment and “Spill-down”

In beam dynamics it is very important to align magnets very precise. However, there
are limits and we need to know what happens if we misalign magnets. We consider
first only a rotational misalignment by the angle ı: The scalar potential is then

Pn .r; '/ D Cnrnein.'�ı/: (6.33)

1The author thanks Jyh-Chyuan Jan, Cheng-Ying Kuo and Ping J. Chou from NSRRC, Taiwan for
the pictures showing the effect of a magnetized vacuum chamber based on simulations.
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Expanding this, we get for small rotations such that nı � 1

Pn .r; '/ D Cnrnein'e�inı � Cnrnein' .1� inı/ : (6.34)

The rotational error ı has not altered the original magnetic field, but has added
a small skew component of the same magnet. Much more dramatic are lateral
misalignments. Here, we start from (6.32) and misplace the magnet by the amount
ız D ıxCiıy:

Pn .x; y/ D Cn .zC ız/n : (6.35)

This can be expanded for

Pn .x; y/ D Cn .zC ız/n (6.36)

� Cnzn C Cn
��n
1

�
zn�1ızC �n

2

�
zn�2ız2 C : : :C �n

n

�
ızn
	
:

The original field is still preserved, but now many lower order terms appear.
Actually, for a lateral misalignment all lower order magnetic field components
appear, a phenomenon that is called “spill-down”. These lower order fields cause
orbit distortions, focusing errors and errors in the chromaticity, which all have to be
compensated.

6.2 Main Magnet Design Criteria

In this section we will shortly discuss the design criteria for the main beam dynamics
magnets like bending magnets and quadrupoles. For more detailed studies on
magnets the reader is referred to relevant texts like [2].

6.2.1 Design Characteristics of Dipole Magnets

The expressions for the magnetic potentials give us a guide to design devices that
generate the desired fields. Multipole fields are generated mostly in one of two ways:
as iron dominated magnets, or by proper placement of electrical current carrying
conductors. The latter way is mostly used in high field superconducting magnets,
where fields beyond the general saturation level of about 2 T for iron are desired.

In iron dominated magnets, fields are determined by the shape of the iron
surfaces. Just like metallic surfaces are equipotential surfaces for electrical fields,
so are surfaces of ferromagnetic material, like iron in the limit of infinite magnetic
permeability, equipotential surfaces for magnetic fields. Actually, for practical
applications the permeability only has to be large just like the conductivity must be
large to make a metallic surface an equipotential surface. This approximate property
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of iron surfaces can be exploited for the design of unsaturated or only weakly satu-
rated magnets. For preliminary design calculations, we assume infinite permeability.
Where effects of finite permeability or magnetic saturation become important, the
fields are determined numerically by mathematical relaxation methods. In this text,
we will not be able to discuss the details of magnet design and construction but
will concentrate only on the main magnet features from a beam dynamics point of
view. A wealth of practical experience in the design of iron dominated accelerator
magnets, including an extensive list of references, is compiled in a review article by
Fischer [1] and a monograph by Tanabe [2].

Excitation Current and Saturation in a Bending Magnet

A dipole field can be generated, for example, in an electromagnet as shown in
Fig. 6.5 where the beam would travel normal to the cross section into the center
of the magnet.

The magnetic field B is generated by an electrical current I in current carrying
coils surrounding magnet poles. A ferromagnetic return yoke surrounds the excita-
tion coils providing an efficient return path for the magnetic flux. The magnetic field
is determined by Ampere’s law

r � B
�r
D �0 j; (6.37)

where �r is the relative permeability of the ferromagnetic material and j is the
current density in the coils. Integrating (6.37) along a closed path like the one shown
in Fig. 6.5 and using Stokes’ theorem gives

2GB0 C
Z

iron

B
�r

d� D �0Itot; (6.38)

return
choke

pole gap

excitation
coil

integration pathmagnet pole

B2G

Fig. 6.5 Cross section of a dipole magnet (schematic)
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where B0 is the magnetic field in the center of the magnet aperture between and
normal to the parallel magnet poles with a gap distance of 2G. The integral term
in (6.38) is zero or negligibly small in most cases assuming infinite or a very large
permeability within the magnetic iron. Itot D 2Icoil is the total current flowing in the
complete cross section of both coils. Solving (6.38) for the total current in each coil
we get in more practical units

Icoil.A/ D 1

�0
B0 .T/G .m/ ; (6.39)

which is proportional to the magnetic field and the aperture between the magnet
poles.

As a practical example, we consider a magnetic field of 1 T in a dipole magnet
with an aperture of 2G D10 cm. From (6.39), a total electrical excitation current
of about 40,000 A is required in each of two excitation coils to generate this field.
Since the coil in general is composed of many turns, the actual electrical current is
much smaller by a factor equal to the number of turns and the total coil current Icoil

is therefore often measured in units of Ampere�turns. For example, a coil composed
of 40 windings with sufficient cross section to carry an electrical current of 1,000 A
would provide the total required current of 40,000 A�turns.

As a rule of thumb to get a good field quality within an aperture width equal to the
full gap height the pole width should be at least 3-times the full gap height. Narrower
pole profiles require shimming of the pole profile. There are elaborate way to shape
the pole profile for a bending magnet [2] but there are also more simple ways. The
drop-off of the field towards the side of the poles can be to some extend extended
further out by adding to the pole profile a straight line shim to slightly reduce the
pole gap around the edges of the poles. This shim need not be more elaborate than
a line segment to reduce the gap followed by a horizontal section to the edge of the
pole. Such shims may start around half a full gap size from the center with a gentle
slope and rarely a thickness of more than 0:5–1mm. We will discuss such shims in
more detail in connection with quadrupole design.

Saturation effects are similar to those in a quadrupole magnet which will be
discussed in the next section. Like in any magnet the first sign of saturation show up
most likely at the pole root where the poles join the return yoke. That is so because
much magnetic flux comes into the pole from the sides along the length of the pole
thus increasing the magnetic flux density. One way out is to shape the pole pieces
like wedges with increasing cross section towards the return yoke. Any saturation
in the return yoke is easily avoided by increasing the thick ness of the iron in the
return yoke.

6.2.2 Quadrupole Design Concepts

Quadrupoles together with bending magnets are the basic building blocks for
charged particle beam transport systems and serve as focusing devices to keep
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the particle beam close to the desired beam path. The magnet pole profile for a
quadrupole can be derived the same way as that for a dipole magnet. Placing an iron
boundary in the shape of a hyperbola generates the equipotential surface required
for an upright quadrupole, or mathematically

xy D const : (6.40)

The inscribed radius of the iron free region is R and the constant in (6.40) is

therefore .R=
p
2/
2 D 1

2
R2 as shown in Fig. 6.1. The pole shape or pole profile

for a quadrupole with bore radius R is then defined by the equation

xy D ˙ 1
2
R2: (6.41)

Similarly, the pole profile of a rotated quadrupole is given by

x2 � y2 D ˙R2: (6.42)

This is the same hyperbola as (6.41) but rotated by 45ı. Both (6.41) and (6.42)
describe four symmetrically aligned hyperbolas which become the surfaces of
the ferromagnetic poles producing an ideal quadrupole field. Magnetization at
alternating polarity of each pole generates a sequence of equally strong north and
south poles.

In a real quadrupole, we cannot use infinitely wide hyperbolas but must cut-
off the poles at some width. In Fig. 6.6 some fundamental design features and
parameters for a real quadrupole are shown and we note specifically the finite pole
width to make space for the excitation coils. Since only infinitely wide hyperbolic
poles create a pure quadrupole field, we expect the appearance of higher multipole
field errors characteristic for a finite pole width.

Pole Profile Shimming

While in an ideal quadrupole the field gradient along, say, the x-axis would be
constant, we find for a finite pole width a drop off of the field and gradient
approaching the corners of poles. Different magnet designer apply a variety of pole
shimming methods. In this text we use tangent shimming as described below. The
field drop off at the pole edge can be reduced to some extend if the hyperbolic pole
profile continues into its tangent close to the pole corner as indicated in Fig. 6.6.

This adds some iron to increase the field where the field would otherwise fall
below the desired value. The starting point of the tangent determines greatly the
final gradient homogeneity in the quadrupole aperture. In Fig. 6.7 the gradient along
the x-axis is shown for different starting points of the tangent. There is obviously an
optimum point for the tangent to minimize the gradient error over a wide aperture.
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Fig. 6.6 Quadrupole design features
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Fig. 6.7 Empirical field gradient and pole profile shimming for a particular quadrupole as
determined by numerical simulations with the program MAGNET [3]

Application of tangent shimmingmust be considered as a fine adjustment of the
field quality rather than a means to obtain a large good field aperture as becomes
apparent from Fig. 6.7. The good field aperture is basically determined by the width
of the pole. While optimizing the tangent point, we find an empirical correlation
between gradient tolerance (Fig. 6.8) within an aperture region x 
 XF and the pole
width expressed by the minimum pole distance A. The good field region increases
as the pole gets wider. For initial design purposes, we may use Fig. 6.8 to determine
the pole width from A based on the desired good field region XF and gradient field
quality.

The final design of a magnet pole profile is made with the help of computer codes
which allow the calculation of magnet fields from a given pole profile with satura-
tion characteristics determined from a magnetization curve. Widely used computer
codes for magnet design are, for example, MAGNET [3] and POISSON [4].
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Fig. 6.8 Field gradient tolerances as a function of pole profile parameters calculated with
MAGNET

Field errors in iron dominated magnets have two distinct sources, the finite pole
width and mechanical manufacturing and assembly tolerances. From symmetry
arguments, we can deduce that field errors due to the finite pole width produce only
select multipole components. In a quadrupole, for example, only .2nC 1/ � 4-pole
fields like 12-pole or 20-pole fields are generated. Similarly in a dipole of finite pole
width only .2nC 1/ � 2-pole fields exist. We call these multipole field components
often the allowed multipole errors. Manufacturing and assembly tolerances on the
other hand do not exhibit any symmetry and can cause the appearance of any
multipole field error.

The particular choice of some geometric design parameters must be checked
against technical limitations during the design of a beam transport line. One basic
design parameter for a quadrupole is the bore radius R which depends on the
aperture requirements of the beam. Addition of some allowance for the vacuum
chamber and mechanical tolerance between chamber and magnet finally determines
the quadrupole bore radius.

Excitation Current and Saturation

The field gradient is determined by the electrical excitation current in the quadrupole
coils. Similar to the derivation for a bending magnet, we may derive a relation
between field gradient and excitation current from Maxwell’s curl equation. To
minimize unnecessary mathematical complexity, we choose an integration path as
indicated in Fig. 6.9 which contributes to the integral

H
Bsds only in the aperture of

the quadrupole.
Starting from the quadrupole axis along a path at 45ı with respect to the

horizontal or vertical plane toward the pole tip, we have

1

�r

I
Bsds D

Z R

0

Brdr D �0Itot: (6.43)
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Fig. 6.9 Determination of
the field gradient from the
excitation current iron yoke

integration
path

Since Bx D gy and By D gx; the radial field component is Br D
q

B2x C B2y D gr

and the excitation current from (6.43) is given by

Itot.A � turns/ D 1

2�0
g

�
T

m

�
R2.m/ : (6.44)

The space available for the excitation coils or coil slot in a real quadrupole
design determines the maximum current carrying capability of the coil. Common
materials for magnet coils are copper or aluminum. The electrical heating of the
coils depends on the current density and a technically feasible balance between
heating and cooling capability must be found. As a practical rule the current density
in regular beam transport magnets should not exceed about 6–8 A/mm2. This is
more an economical than a technical limit and up to about a factor of two higher
current densities could be used for special applications. The total required coil
cross section, however, including an allowance for insulation material between coil
windings and about 15–20 % for water cooling holes in the conductor depends on the
electrical losses in the coil. The aperture of the water cooling holes is chosen such
that sufficient water cooling can be provided with an allowable water temperature
increase which should be kept below 40 ıC to avoid boiling of the cooling water at
the surface and loss of cooling power. A low temperature rise is achieved if the water
is rushed through the coil at high pressure in which case undesirable vibrations of
the magnets may occur. The water cooling hole in the conductor must therefore be
chosen with all these considerations in mind. Generally the current density averaged
over the whole coil cross section is about 60–70 % of that in the conductor.

In practical applications, we find the required coil cross section to be significant
compared to the magnet aperture leading to a long pole length and potential
saturation. To obtain high field limits due to magnetic saturation, iron with a
low carbon content is used for most magnet applications in particle beam lines.
Specifically, we require the carbon content for most high quality magnets to be no
more than about 1 %. In Fig. 6.10 the magnetization curve and the permeability as
a function of the excitation are shown for iron with 0.5 % carbon content. We note
a steep drop in the permeability above 1.6 T reaching full saturation at about 2 T.
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Fig. 6.10 Magnetization and
permeability of typical low
carbon steel as a function of
excitation
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A magnet has an acceptable saturation level if the magnetic permeability anywhere
over the cross section of the magnet remains large compared to unity, �r � 1.

Severe saturation effects at the corners of the magnet pole profile can be avoided
if the maximum field gradient, as a rule of thumb, is chosen such that the pole tip
field does not exceed a value of Bp D 0:8 � 1 T. This limits the maximum field
gradient to gmax D Bp=R and the quadrupole length must therefore be long enough
to reach the focal length desired in the design of the beam transport line. Saturation
of the pole corners introduces higher-order multipoles and must therefore be kept to
a minimum.

Other saturation effects may occur at the pole root where all magnetic flux from
a pole including fringe fields are concentrated. If the pole root is too narrow, the
flux density is too high and saturation occurs. This does not immediately affect
the field quality in the central aperture, but requires higher excitation currents. A
similar effect may occur in the return yokes if the field density is too high because
of too small an iron cross section. In Fig. 6.11 a permeability plot is shown for a
magnet driven into severe saturation. Low values of the permeability indicate high
saturation, which is evident in the pole root.

By increasing the width of the pole root the saturation is greatly reduced as shown
in Fig. 6.12. To minimize pole root saturation the pole length should be as short as
possible because less flux is drawn through the side of the pole. Unfortunately, this
also reduces the space available for the excitation coils leading to excessively large
current densities. To reduce this conflict, the pole width is usually increased at the
pole root rather than shortening the pole length.

In addition to pole root saturation, we may also experience return yoke saturation,
which is easily avoided by increasing its thickness.

6.3 Magnetic Field Measurement

The quality of the magnetic fields translates immediately into the quality and
stability of the particle beam. The precision of the magnetic fields determines
the predictability of the beam dynamics designs. While we make every effort to
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Fig. 6.11 Permeability values are plotted in a grid over the iron cross section of a highly excited
quadrupole. We note the significantly reduced permeability (� � 100) in the narrow pole root
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Fig. 6.12 Permeability values are plotted in a grid over the iron cross section of a highly excited
quadrupole. We note the significantly reduced permeability (� � 100) in the narrow pole root
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construct magnets as precise as possible, we cannot avoid the appearance of higher
multipole fields due to finite pole widths or machining and assembly tolerances.
Therefore, precise magnetic field measurements are required. While detailed dis-
cussions of magnetic field measurement technology exceeds the goals of this book,
the issue is too important to ignore completely and we will discuss this topic in an
introductory way. For more detailed information, please consult texts like [2].

6.3.1 Hall Probe

The Hall probe is the most commonly used device to measure the magnetic field.
Its principle is based on the Lorentz force on moving charges. Use a small piece
of metallic foil, say 1 � 1 mm2, send an electrical current in one direction through
the foil and place the foil into a magnetic field such that the field penetrates the
plane of the foil. The moving electrons feel the Lorentz force due to the presence
of the magnetic field and are pulled off a straight path, thus accumulating charge
on one side of the foil. That charge accumulation causes with the other side of
the foil a potential difference, the Hall voltage, which can be measured and which
is proportional to the magnetic field component passing orthogonally through the
foil. The material of commercial Hall probes is not a metallic foil but some material
which contains many electrons with great mobility to maximize the sensitivity of the
probe. The size of the probe is made very small for maximum resolution because
the probe measures the average field across the area of the foil. Typical areas of a
Hall probe may be in the �m range which provides a high resolution as desired in
magnetic field measurements for beam dynamics. Figure 6.13 shows the principle
functioning of a Hall Probe.

By computer controlled precise movement of the Hall probe from point to point
within the magnet aperture, the magnetic field can be mapped to high precision. The
measurements can then be analysed as to field errors, multipole content and fringe
field effects.

Fig. 6.13 Hall probe
(schematic) (I activation
current, B magnetic field, ve

velocity of electrons, FL

Lorentz force, ˙V signal
voltage) B

ve

FL+V -V

+
+
+
+
+
+

-
-
-
-
-
-

I



148 6 Electromagnetic Fields

Fig. 6.14 Rotating coil in a
magnet to determine higher
order multipole components

B(s)

s
θ

B

6.3.2 Rotating Coil

In practice, however, the particles in a beam integrate through a whole magnet and
we are therefore bound to do the same with Hall probe measurements. A faster
method, and actually more precise method for higher order multipole fields, is a
rotating coil as shown in Fig. 6.14. Here, a coil wound of very thin electrical wire
is installed coaxial within the magnet aperture. Rotating the coil produces a time
dependent voltage which includes all fields within the cross section of the coil and
integrated along the length of the coil. The length of most coils extends well beyond
the ends of the magnet while very short coils may be used to specifically probe local
fields like fringe fields in the ends of magnets. As the coil rotates the induced voltage
is recorded measuring the integrated field along the length of the coil. The induced
voltage is V D � d˚

dt and the magnetic flux

˚ D Leff

Z
B .s/ ds; (6.45)

where Leff is the effective length of the magnet. The integration is taken from the
axis to the radial extent of the coil. With d˚

dt D d˚
ds

ds
dt D LeffB .s/

ds
dt the induced

voltage is V D �LeffB .s/
ds
dt and the integrated voltage isZ

Vdt D �Leff

Z r

0

B .s/ ds: (6.46)

With Bx D @A
@y and By D � @A

@x , we get B .s/ D �Bx sin � C By cos � D � dA
ds andZ

Vdt D �Leff A .�/ D
X

n

Œpn cos .n� C  n/C qn sin .n� C  n/� ; (6.47)

where we have also introduced the Fourier transform of the signal. The vector
potential is used to determine the fields because of simplicity of math. The Fourier
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transform will help us to determine the multipole strength and orientation. For the
n-multipole Z

Vdt

ˇ̌̌̌
n

D �LeffAn (6.48)

D �Leff jCnj rn
0 .cos n� cos n � sin n� sin n/

D pn cos .n� C  n/C qn sin .n� C  n/ ;

where r0 is the radius of the coil and An D Re Pn D jCnj rn
0 cos .n� C  n/ : To

maximize the signal, the coil radius r0 should be about 80 % of the aperture radius.
Larger coils would not fit the magnet aperture. The phase  n defines the orientation
of the n-multipole. From (6.48) the multipole strength is

Leff jCnj D
p

p2n C q2n
rn
0

(6.49)

and the orientation

 n D � arctan
qn

pn
: (6.50)

From the Fourier coefficients .pn; qn/ of the measured signal
R

Vdt and knowledge
of the coil size r0 we can determine the strength Cn and orientation  n of all
multipole limited only by the sensitivity of the experimental setup. The magnetic
fields are given by

Bnx � iBny D iP0 D inCn jzjn�1 ei.n�1/� (6.51)

D n jCnj rn�1
0 f� sin Œ.n � 1/ � C  n�C i cos Œ.n � 1/ � C  n�g

or

Bnx D �nrn�1
0 Œ��n cos .n � 1/ � C �n sin .n � 1/ �� ; and

Bny D �nrn�1
0 ŒC�n cos .n � 1/ � � �n sin .n � 1/ �� : (6.52)

with

jCnj sin n D ��n D an
Bmain .r0/

nrn�1
0

and

jCnj cos n D C�n D �bn
Bmain .r0/

nrn�1
0

: (6.53)
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Fig. 6.15 Twin coil to determine higher order multipole components

The field components at an arbitrary radius r are finally

Bnx

Bmain
D
�

r

r0

�n�1
Œbn sin .n � 1/ � C an cos .n� 1/ �� ; and

Bny

Bmain
D
�

r

r0

�n�1
Œbn cos .n � 1/ � C an sin .n� 1/ �� ; (6.54)

where Bmain is the main magnet field at r0:The signal obtained from a rotating coil
can be used to determine the strength and orientation of higher multipoles.

Practical Considerations

The signals from higher multipoles are measured in the presence of the strong main
field. The dynamic range of the equipment and integrator may not be wide enough
to yield precise multipole information. It would be a great advantage if the signal
from the main field could be compensated or at least be reduced to the level of the
multipole signal. This is possible with multiple coils as shown in Fig. 6.15.

Here the signals from two coils are processed such that the main field is “bucked”
out. There is an outer coil at r1; r3 and an inner coil r2; r4: The signal from the outer
coil is Z

Vdt

ˇ̌̌̌
outer coil

D Leff mo

X
n

jCnj
�
rn
1 � rn

3

�
cos .n� C  n/ (6.55)

and from the inner coilZ
Vdt

ˇ̌̌̌
inner coil

D Leff mi

X
n

jCnj
�
rn
2 � rn

4

�
cos .n� C  n/ (6.56)
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forming a combined signalZ
Vdt

ˇ̌̌̌
compensated

D Leff

X
n�0
jCnj

�
mo
�
rn
1 � rn

3

�C mi
�
rn
2 � rn

4

�	
cos .n� C  n/ :

(6.57)

Here, mo and mi are the turns in the outer and inner coil, respectively. Defining

ˇ1 D
ˇ̌̌

r3
r1

ˇ̌̌
; ˇ1 D

ˇ̌̌
r4
r2

ˇ̌̌
; 	 D r2

r1
and � D mi

mo
the combined signal (6.57) is for the

signal from the uncompensated outer coilZ
Vdt

ˇ̌̌̌
uncompensated

D Leff mo

X
n�0
jCnj rn

1SN cos .n� C  n/ (6.58)

and for the compensated coil signalZ
Vdt

ˇ̌̌̌
compensated

D Leff mo

X
n�0
jCnj rn

1 sn cos .n� C  n/ : (6.59)

The signal sensitivity for the uncompensated coil is

SN D 1 � .�ˇ1/N (6.60)

where N represents the order of the main magnet field and the compensated coil has
the sensitivity sn for the nth-order multipole

sn D 1 � .�ˇ1/n � �	n Œ1 � .�ˇ2/n� ; (6.61)

where n represents the nth order multipole. By choosing parameters such that sn

becomes zero for the desired values of n, we may eliminated electronically the large
signal from the main magnet field. For example, in case of a quadrupole, we would
like to compensate the quadrupole field and the dipole field which may appear as a
“spill-down” from a misaligned quadrupole. In this case, we would want to set s1 D
1C ˇ1 � �	 Œ1C ˇ2� � 0 and s2 � 1� ˇ21 � �	

�
1 � ˇ22

	 D 0 and build a specific
measurement coil for quadrupoles: Selecting arbitrarily � D 2 and 	 D 0:625 the
desired sensitivity will be zero with ˇ1 D 0:5 and ˇ2 D 0:2: All other sensitivities
are at least 60 % and well known to be included in the analysis. It is not necessary
that the main fields are bucked perfectly. It’s sufficient if their signal is reduced to
the level of the higher order multipole signals.

The whole magnetic measurement would record the signals from both coils
separately and produce the strength and orientation of the main field for n D N
according to (6.49) and (6.50) while the same multipole parameters are derived from
the same equations based on the compensated signal and including the calculated
sensitivities.
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Magnetic field measurements have developed very far and have reached a level of
accuracy and precision that fully meets the demands of beam dynamics. Especially,
the determination of the multipole content is important to ensure the stability of a
beam in, for example, a storage ring. While the effects of multipole fields cannot
be analyzed analytically, we may track particles many times around the storage
ring in the presence of these multipole fields and thus define beam stability and the
dynamic aperture.

6.4 General Transverse Magnetic-Field Expansion*

In the previous section, we discussed solutions to the Laplace equation which
included only pure transverse multipole components in a cartesian coordinate
system thus neglecting all kinematic effects caused by the curvilinear coordinate
system of beam dynamics. These approximations eliminate many higher-order
terms which may become of significance in particular circumstances. In preparation
for more sophisticated beam transport systems and accelerator designs aiming, for
example, at ever smaller beam emittances it becomes imperative to consider higher-
order perturbations to preserve desired beam characteristics. To obtain all field
components allowed by the Laplace equation, a more general ansatz for the field
expansion must be made. Here we restrict the discussion to scalar potentials only
which are sufficient to determine all fields [5, 6].

Since we use a curvilinear coordinate system for beam dynamics, we use the
same for the magnetic-field expansion and express the Laplace equation for the
complex potential P in these curvilinear coordinates

V D 1

h

�
@

@x

�
h
@V

@x

�
C @

@y

�
h
@V

@y

�
C @

@z

�
1

h

@V

@z

��
D 0; (6.62)

where h D 1C�xxC�yy and �x; �y the ideal curvatures in the horizontal and vertical
plane, respectively. We also assume that the particle beam may be bend horizontally
as well as vertically. For the general solution of the Laplace equation (6.62) we use
an ansatz in the form of a power expansion

ec

ˇE
V.x; y; z/ D �

X
p;q�0

Apq.z/
xp

pŠ

yq

qŠ
; (6.63)

where we have added the beam rigidity to facilitate the quantities for application in
beam dynamics and where the coefficients Apq.z/ are functions of z: Terms with
negative indices p and q are excluded to avoid nonphysical divergences of the
potential at x D 0 or y D 0. We insert this ansatz into (6.62), collect all terms
of equal powers in x and y and get

X
p�0

X
q�0

˚
Fpq
 xp

.p� 2/Š
yq

.q� 2/Š � 0 ; (6.64)
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where fFpqg represents the collection of all coefficients for the term xpyq. For (6.64)
to be true for all values of the coordinates x and y; we require that every coefficient
Fpq must vanish individually. Setting Fpq D 0 leads to the recursion formula

Ap;qC2 C ApC2;q D ��x.3pC 1/ApC1;q � �y.3qC 1/Ap;qC1
�3�yqApC2;q�1 � 3�xpAp�1;qC2
�2�x�0yq.3pC 1/ApC1;q�1 � 2�x�yp.3qC 1/Ap�1;qC1

�3�2y q.q� 1/ApC2;q�2 � 3�2x p.p� 1/Ap�2;qC2

��3x p.p2 � 3pC 2/Ap�3;qC2 � �3y q.q2 � 3qC 2/ApC2;q�3

��x�
2
y q.q � 1C 3pq� 3p/ApC1;q�2 (6.65)

��2x�yp.p � 1C 3pq� 3q/Ap�2;qC1

��yq.3�2x p2 � �2x pC �2y q2 � 2�2y qC �2y /Ap;q�1

��xp.3�2y q2 � �2y qC �2x p2 � 2�2x pC �2x /Ap�1;q

�.3p � 1/p�2x Ap;q � .3q� 1/q�2y Ap;q

�A00
p;q � �xpA00

p�1;q � �yqA00
p;q�1 � �0

xpA0
p�1;q � �0

yqA0
p;q�1

which allows us to determine all coefficients Apq. We note that all terms on the right
hand side are kinematic terms originating from the curvilinear coordinate system.
The derivatives, indicated by a prime, are understood to be taken with respect to the
independent variable z, like A0 D dA=dz, etc. Equation (6.65) is a recursion formula
for the field coefficients Apq and we have to develop a procedure to obtain all terms
consistent with this expression.

6.4.1 Pure Multipole Magnets

The Laplace equation is of second order and therefore we cannot derive coefficients
of quadratic or lower order from the recursion formula. The lowest-order coefficient
A00 represents a constant potential independent of the transverse coordinates x and
y and since this term does not contribute to a transverse field component, we will
ignore it in this section. However, since this term depends on z we cannot neglect
this term where longitudinal fields such as solenoid fields are important. Such fields
will be discussed separately in Sect. 6.6 and therefore we set here for simplicity

A00 D 0 : (6.66)



154 6 Electromagnetic Fields

The terms linear in x or y are the curvatures in the horizontal and vertical plane as
defined previously

A10 D ��y and A01 D �x ; (6.67)

and

�x D �x" D C e
p By with

ˇ̌̌
e
p By

ˇ̌̌
D 1

	x
;

�y D �y" D � e
p Bx with

ˇ̌̌
e
p Bx

ˇ̌̌
D 1

	y
:

(6.68)

Finally, the quadratic terms proportional to x and y are identical to the quadrupole
strength parameters

A20 D �k; A11 D k ; A02 D k: (6.69)

With these definitions of the linear coefficients, we may start exploiting the
recursion formula. All terms on the right-hand side of (6.65) are of lower order than
the two terms on the left-hand side which are of order n D pC qC 2. The left-hand
side is composed of two contributions, one resulting from pure multipole fields of
order n and the other from higher-order field terms of lower-order multipoles.

In (6.65) we identify and separate from all other terms the pure multipole terms
of order n which do not depend on lower-order multipole terms like kinematic terms
by setting

ApC2;q;n C Ap;qC2;n D 0 for pC qC 2 
 n (6.70)

and adding the index n to indicate that these terms are the pure nth-order multipoles.
Only the sum of two terms can be determined which means both terms have the
same value but opposite signs. For n D 3 we have, for example, A30 D �A12 or
A21 D �A03 and a comparison with the potentials of pure multipoles of Table 6.5
shows that A30 D �m and A21 D m: Similar correlations can be formulated for all
higher order multipole.2 Analogous to dipoles and quadrupole magnets, we may get
potential expressions for all other multipole magnets. The results up to fifth order
are compiled in Table 6.6.

Each expression for the magnetic potential is composed of both the real and the
imaginary contribution. Since both components differ only by a rotational angle, real
magnets are generally aligned such that only one or the other component appears.
Only due to alignment errors may the other component appear as a field error which
can be treated as a perturbation.

2Consistent with the definitions of magnet strengths, the underlined quantities represent the magnet
strengths of rotated multipole magnets.
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Table 6.5 Correspondence between the potential coefficients and multipole strength parameters

A00
A10 A01

A20 A11 A02
A30 A21 A12 A03

A40 A31 A22 A13 A04

A50 A41 A32 A23 A14 A05

m
0

��y �x

�k k k

�m m m �m

�r r r r �r

�d d d �d �d d

Table 6.6 Magnetic multipole potentials

Dipole � e
p0

V1 D ��yx C �xy

Quadrupole � e
p0

V2 D � 1
2
k .x2 � y2/C kxy ;

Sextupole � e
p0

V3 D � 1
6
m
�
x3 � 3xy2

�C 1
6
m
�
3x2y � y3

�
;

Octupole � e
p0

V4 D � 1
24

r
�
x4 � 6x2y2 C y4

�C 1
24

r
�
x3y � xy3

�
;

Decapole � e
p0

V5 D � 1
120

d
�
x5 � 10x3y2 C 5xy4

� C 1
120

d
�
5x4y � 10x2y3 C y5

�

6.4.2 Kinematic Terms

Having identified the pure multipole components, we concentrate now on using the
recursion formula for other terms which so far have been neglected. First, we note
that coefficients of the same order n on the left-hand side of (6.65) must be split
into two parts to distinguish pure multipole components Ajk;n of order n from the
nth-order terms A�

jk of lower-order multipoles which we label by an asterisk �. Since
we have already derived the pure multipole terms, we explore (6.65) for the A�
coefficients only

A�
p;qC2 C A�

pC2;q D r.h.s. of .6.65/: (6.71)

For the predetermined coefficients A10, A01 and A11 there are no corresponding
terms A� since that would require indices p and q to be negative. For p D 0 and
q D 0 we have

A�
02 C A�

20 D ��0xA10 � �0yA01 D 0: (6.72)
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This solution is equivalent to (6.70) and does not produce any new field terms.
The next higher-order terms for p D 0 and q D 1 or for p D 1 and q D 0 are
determined by the equations

A�
03 C A�

21 D ��0xg � �0yg��00
xD C;

A�
12 C A�

30 D ��0ygC �0xgC �00
y D D;

(6.73)

where we set in preparation for the following discussion the right-hand sides equal
to the as yet undetermined quantities C and D. Since we have no lead how to separate
the coefficients we set

A�
21 D fC; A�

03 D .1 � f /C;
A�
12 D gD; A�

30 D .1 � g/D;
(6.74)

where 0 
 . f ; g/ 
 1 and f D g. The indeterminate nature of this result is an
indication that these terms may depend on the actual design of the magnets.

Trying to interpret the physical meaning of these terms, we assume a magnet
with a pure vertical dipole field in the center of the magnet, By.0; 0; 0/ 6D 0, but no
horizontal or finite longitudinal field components, Bx.0; 0; 0/ D 0 and Bz.0; 0; 0/ D
0. Consistent with these assumptions the magnetic potential is

ec

ˇE
V.x; y; z/ D �A01y � 1

2
A�
21x

2y � 1
2
A�
12xy2 (6.75)

� 1
6
A�
30x

3 � 1
6
A�
03y

3 C O.4/:

From (6.73) we get D � 0, C D �B00
y and with (6.74) A�

12 D A�
30 D 0. The

magnetic-field potential reduces therefore to

ec

ˇE
V.x; y; z/ D ��xyC 1

2
f�00

x x2yC 1
6
.1 � f /�00

x y3 (6.76)

and the magnetic-field components are

ec
ˇE Bx D �f�00

x xy;
ec
ˇE By D C�x � 1

2
f�00

x x2 � 1
2
.1 � f /�00

x y2:
(6.77)

The physical origin of these terms becomes apparent if we investigate the
two extreme cases for which f D 0 or f D 1 separately. For f D 0

the magnetic fields in these cases are
�

ec
ˇE Bx D 0; ec

ˇE By D �x � 1
2
�00

x y2
�

and�
ec
ˇE Bx D ��00

x xy; ec
ˇE By D �x � 1

2
�00

x x2
�

for f D 1: Both cases differ only in the

�00
x -terms describing the magnet fringe field. In the case of a straight bending

magnet (By 6D 0) with infinitely wide poles in the x-direction, the horizontal field
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Fig. 6.16 Dipole end field configuration for f D 0
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Fig. 6.17 Dipole end field configuration for 0 < f < 1

component Bx must vanish consistent with f D 0. The field configuration in the
fringe field region is of the form shown in Fig. 6.16 and independent of x.

Conversely, the case 0 < f < 1 describes the field pattern in the fringe field
of a bending magnet with poles of finite width in which case finite horizontal field
components Bx appear off the symmetry planes. The fringe fields not only bulge
out of the magnet gap along z but also spread horizontally due to the finite pole
width as shown in Fig. 6.17, thus creating a finite horizontal field component off the
midplane. While it is possible to identify the origin of these field terms, we are not
able to determine the exact value of the factor f in a general way but may apply
three-dimensional magnet codes to determine the field configuration numerically.
The factor f is different for each type of magnet depending on its actual mechanical
dimensions.

Following general practice in beam dynamics and magnet design, however, we
ignore these effects of finite pole width, since they are specifically kept small by
design, and we may set f D g D 0. In this approximation we get

A�
21 D A�

12 D 0 (6.78)

and

A�
03 D ��xk��yk � �00

x ;

A�
30 D ��ykC �xkC �00

x :
(6.79)

Similar effects of finite pole sizes appear for all multipole terms. As before, we
set f D 0 for lack of accurate knowledge of the actual magnet design and assume
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that these terms are very small by virtue of a careful magnet design within the
good field region provided for the particle beam. For the fourth-order terms we have
therefore with A�

22 � 0 and

A�
40 D �xm � �ym � 4�x�ykC 4�2x kC k00 C 2�x�

00
y C 2�0

x�
0
y;

A�
04 D �ym � �xm � 4�x�yk � 4�2y k � k00 � 2�y�

00
x � 2�0

y�
0
x:

(6.80)

In the case p D q; we expect Aij D Aji from symmetry and get

2A�
13 D 2A�

31 D ��xm � �ymC 2�2x kC 2�2y k � k00

C2�y�
00
y � 2�x�

00
x � �x�

0
x C �y�

0
y: (6.81)

With these terms we have finally determined all coefficients of the magnetic
potential up to fourth order. Higher-order terms can be derived along similar
arguments. Using these results, the general magnetic-field potential up to fourth
order is from (6.63)

� ec

ˇE
V.x; y; z/ D CA10xC A01y (6.82)

C 1
2
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24
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04y

4 C O.5/:

From the magnetic potential we obtain the magnetic field expansion by differen-
tiation with respect to x or y for Bx and By, respectively. Up to third order we obtain
the transverse field components in energy independent formulation

ec

ˇE
Bx D ��y � kxC ky (6.84)
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and

ec

ˇE
By D C�xCkyC kx (6.85)
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x�2�0
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3 CO.4/;

where m D e
p s3 and r D e

p s4: The third component of the gradient in a curvilinear

coordinate system is Bz D � 1h @V
@z and collecting all terms up to second order we get

ec

ˇE
Bz D C�0

xy � �0
yxC .�y�

0
y � �x�

0
x C k0/xy

C .�x�
0
y � 1

2
k0/x2 � .�y�

0
x � 1

2
k0/y2 CO.3/: (6.86)

Upon closer inspection of (6.84)–(6.86) it becomes apparent that most terms
originate from a combination of different multipoles. These equations describe
the general fields in any magnet, yet in practice, special care is taken to limit the
number of fundamentally different field components present in any one magnet. In
fact most magnet are designed as single multipoles like dipoles or quadrupoles or
sextupoles etc. A beam transport system utilizing only such magnets is also called
a separated-function lattice since bending and focusing is performed in different
types of magnets. A combination of bending and focusing, however, is being used
for some special applications and a transport system composed of such combined-
field magnets is called a combined-function lattice. Sometimes even a sextupole
term is incorporated in a magnet together with the dipole and quadrupole fields.
Rotated magnets, like rotated sextupoles s3 and octupoles s4 are either not used or
in the case of a rotated quadrupole the chosen strength is generally weak and its
effect on the beam dynamics is treated by perturbation methods.

No mention has been made about electric field patterns. However, since the
Laplace equation for electrostatic fields in material free areas is the same as for
magnetic fields we conclude that the electrical potentials are expressed by (6.82)
as well and the electrical multipole field components are also given by (6.84)–
(6.86) after replacing the magnetic field (Bx;By;Bz) by electric-field components
(Ex;Ey;Ez).
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Fig. 6.18 Frenet-Serret
coordinate system
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6.5 Third-Order Differential Equation of Motion*

Equations of motions have been derived in Chap. 5 for the transverse .x; z/ and
.y; z/ planes up to second order which is adequate for most applications. Sometimes,
however, it might be desirable to use equations of motion in higher order of
precision or to investigate perturbations of higher order. A curvilinear Frenet-Serret
coordinate system moving along the curved trajectory of the reference particle r0.z/,
was used and we generalize this system to include curvatures in both transverse
planes as shown in Fig. 6.18.

In this .x; y; z/-coordinate system, a particle at the location s and under the
influence of a Lorentz force follows a path described by the vector r as shown in
Fig. 6.18. The change in the momentum vector per unit time is due only to a change
in the direction of the momentum while the magnitude of the momentum remains
unchanged in a static magnetic fields. Therefore p D pdr=ds where p is the value
of the particle momentum and dr=ds is the unit vector along the particle trajectory.
With dp

d� D dp
dsˇc, where � D s

ˇc ; the particle velocity vs D dr
d� D dr

dsˇc, and we
obtain the differential equation describing the particle trajectory under the influence
of a Lorentz force FL: From dp

d� D FL D e Œvs � B� we get

d2r
ds2
D ec

ˇE

�
dr
ds
� B

�
(6.87)

and to evaluate (6.87) further, we note that

dr
ds
D dr=dz

ds=dz
D r0

s0 (6.88)

and

d2r
ds2
D 1

s0
d

dz

�
r0

s0

�
: (6.89)



6.5 Third-Order Differential Equation of Motion* 161

With this, the general equation of motion is from (6.87)

d2r
dz2
� 1

2s02
dr
dz

ds02

dz
D ec

ˇE
s0
�

dr
dz
� B

�
:

In the remainder of this section, we will re-evaluate this equation in terms of more
simplified parameters. From Fig. 6.18 or (4.21) we have r D r0C xuxC yuy ; where
the vectors ux, uy and uz are the unit vectors defining the curvilinear coordinate
system. To completely evaluate (6.89), the second derivative d2r=dz2 must be
derived from (4.23) with duz D ��xuxdz � �yuydz and h D 1C �xxC �yy for

d2r
dz2
D .x00 � �xh/ux C .y00 � �yh/uy C .2�xx0 C 2�yy

0 C �0
xxC �0

yy/uz; (6.90)

and (6.89) becomes with (4.23) and s0 2 D r0 2
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uz D ec

ˇE
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dr
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�
: (6.91)

Here the quantities �x and �y are the curvatures defining the ideal particle
trajectory or the curvilinear coordinate system. This is the general equation of
motion for a charged particles in a magnetic field B. So far no approximations have
been made. For practical use we may separate the individual components and get
the differential equations for transverse motion

x00 � �xh�1
2

x0

s02
ds02

dz
D ec

ˇE
s0Œy0Bz � hBy�; (6.92a)

y00 � �yh � 1
2

y0

s02
ds02

dz
D ec

ˇE
s0ŒhBx � x0Bz�: (6.92b)

Chromatic effectsoriginate from the momentum factor ec
ˇE which is different for

particles of different energies. We expand this factor into a power series in ı

ec

ˇE
D e

p0
.1 � ı C ı2 � ı3 C : : :/; (6.93)

where ı D p=p0 and cp0 D ˇE0 is the ideal particle momentum. A further
approximation is made when we expand s0 to third order in x and y while restricting
the discussion to paraxial rays with x0 � 1 and y0 � 1

s0 � hC 1
2
.x02 C y02/.1 � �xx � �yy/C : : : : (6.94)
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Evaluating the derivative ds02=dz2 second-order derivatives x00 and y00 appear
which, neglecting fourth-order terms, can here be replaced by the unperturbed
equations of motion x00C.�2xCk/x D 0 and y00C.�2yCk/y D 0. For the magnetic field
components, we insert in (6.92a), (6.92b) expressions (6.84)–(6.86) while making
use of (6.93) and (6.94). Keeping all terms up to third order in x; y; x0; y0 and ı;
we finally obtain equations of motion for a particle with charge e in an arbitrary
magnetic field derivable from a scalar potential. For the horizontal and vertical plane
the general equations of motion in a curvilinear coordinate system and including
chromatic terms up to third-order in .x; y; ı/ are (6.95) and (6.96), respectively.
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2 C �xı

3 � .kC �x�y/y (6.95)

� .mC 2�xkC 2�ykC 2�2x�y/xy � 1
2
m.x2 � y2/

� .�3x C 2�xk/x
2 � .�x�

2
y � 1

2
�xkC 2

3
�yk � 1

2
�00

x / y2

C 1
2
�x.x

02 � y02/C �0
x.xx0 C yy0/C �0

y.x
0y � xy0/C �yx0y0

� 1
6
rx.x2 � 3y2/C 1

6
ry.y2 � 3x2/

C 1
12
.�ym � 11�xmC 2�2y k � 10�2x kC k00 � �y�

00
y

C�x�
00
x � �0

y
2 C �0

x
2
/ x3

�.2�xmC �ymC �2x kC 2�x�yk/ x2y

C 1
4
.5�xm � 7�ymC 6�2x kC k00 � �y�

00
y � 2�2y k

C5�x�
00
x C �0

x
2 � �0

y
2 � �x�yk/ xy2

C 1
6
.10�x�ykC 8�00

x �y C �xmC 4�2y kC k00 C 2�0
x�

0
y C 5�ym/ y3

�.2�2x C 3
2
k/ xx02 � .�0

x�y C �x�
0
y/ xx0y � �x�

0
x x2x0

� 1
2
k0x2y0 � �y�

0
yx

0y2 � �x�yxx0y0 � 1
2
.kC 3�x�y/ x02y

Ck0xyy0 � 1
2
.kC �2x /xy02 � .2�2y � k/x0yy0 C 1

2
k0y2y0 � 1

2
kyy02

C.2�2x C k/xı C .2�x�y C k/yı � �0
xyy0ı C �0

yxy0ı

C 1
2
�x.x

02 C y02/ı C . 3
2
�ykC �x�

2
y � 1

2
�xk � 1

2
�00

x � 1
2
m/y2ı

C. 1
2
mC 2�xkC �3x /x2ı C .mC 2�2x�y C 2�ykC 2�xk/xyı

�.kC 2�2x /xı2 � .kC 2�x�y/yı
2 CO.4/ :

y00 C .�2y � k/y D C�yı � �yı
2 C �yı

3 � .kC �x�y/x (6.96)

C .m � 2�ykC 2�xk � 2�x�
2
y /xy � 1

2
m.x2 � y2/



6.5 Third-Order Differential Equation of Motion* 163
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In spite of our attempt to derive a general and accurate equation of motion,
we note that some magnet boundaries are not correctly represented. The natural
bending magnet is of the sector type and wedge or rectangular magnets require
the introduction of additional corrections to the equations of motion which are not
included here. This is also true for cases where a beam passes off center through a
quadrupole, in which case theory assumes a combined function sector magnet and
corrections must be applied to model correctly a quadrupole with parallel pole faces.
The magnitude of such corrections is, however, in most cases very small. Equation
(6.95) shows an enormous complexity which in real beam transport lines, becomes
very much relaxed due to proper design and careful alignment of the magnets.
Nonetheless (6.95) and (6.96) for the vertical plane, can be used as a reference
to find and study the effects of particular perturbation terms. In a special beam
transport line one or the other of these perturbation terms may become significant
and can now be dealt with separately. This may be the case where strong multipole
effects from magnet fringe fields cannot be avoided or because large beam sizes
and divergences are important and necessary. The possible significance of any
perturbation term must be evaluated for each beam transport system separately.
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In most beam transport lines the magnets are built in such a way that different
functions like bending, focusing etc., are not combined thus eliminating all terms
that depend on those combinations like �x�y, �xk or m�x etc. As long as the terms
on the right-hand sides are small we may apply perturbation methods to estimate
the effects on the beam caused by these terms. It is interesting, however, to try to
identify the perturbations with aberrations known from light optics.

Chromatic terms �x.ı � ı2 C ı3/, for example, are constant perturbations for off
momentum particles causing a shift of the equilibrium orbit which ideally is the
trivial solution x � 0 of the differential equation x00C .kC�2x /x D 0. Of course, this
is not quite true since �x is not a constant but the general conclusion is still correct.
This shift is equal to x D �x.ı � ı2C ı3/=.kC �2x / and is related to the dispersion
function D by D D x=ı. In light optics this corresponds to the dispersion of colors
of a beam of white light (particle beam with finite energy spread) passing through
a prism (bending magnet). We may also use a different interpretation for this term.
Instead of a particle with an energy deviation ı in an ideal magnet �x we can interpret
this term as the perturbation of a particle with the ideal energy by a magnetic field
that deviates from the ideal value. In this case, we replace �x .ı � ı2 � ı3/ by ��x

and the shift in the ideal orbit is then called an orbit distortion. Obviously, here and
in the following paragraphs the interpretations are not limited to the horizontal plane
alone but apply also to the vertical plane caused by similar perturbations. Terms
proportional to x2 cause geometric aberrations, where the focal length depends on
the amplitude x while terms involving x0 lead to the well-known phenomenon of
astigmatism or a combination of both aberrations. Additional terms depend on the
particle parameters in both the vertical and horizontal plane and therefore lead to
more complicated aberrations and coupling.

Terms depending also on the energy deviation ı, on the other hand, give rise
to chromatic aberrations which are well known from light optics. Specifically,
the term .k C 2�2x /xı is the source for the dependence of the focal length on the
particle momentum. Some additional terms can be interpreted as combinations of
aberrations described above.

It is interesting to write down the equations of motion for a pure quadrupole
system where only k 6D 0 in which case (6.95) becomes

x00 C kx D kx.ı � ı2 � ı3/ (6.97)

� 1
12

k00x.x2 C 3y2/ � 3
2
k xx02 C k x0yy0 C k0xyy0 CO.4/:

We note that quadrupoles produce only second order chromatic aberrations and
geometric perturbations only in third order.
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6.6 Longitudinal Field Devices

General field equations have been derived in this chapter with the only restriction
that there be no solenoid fields, which allowed us to set A00 D 0 in (6.66), and
concentrate on transverse fields only. Longitudinal fields like those produced in a
solenoid magnet are used in beam transport systems for very special purposes and
their effect on beam dynamics cannot be ignored. We assume now that the lowest-
order coefficient A00 in the potential (6.63) does not vanish

A00.z/ 6D 0 : (6.98)

Longitudinal fields do not cause transverse beam deflection although there can
be some amplitude dependent focusing or coupling. We may therefore choose a
cartesian coordinate system along such fields by setting �x D �y D 0 ; and the
recursion formula (6.65) reduces to

A02 C A20 D �A00
00 : (6.99)

Again, we have a solution where A02 C A20 D 0, which is a rotated quadrupole
as derived in (6.25) and can be ignored here. The additional component of the field
is A�

02 C A�
20 D �A00

00 and describes the endfields of the solenoid. For reasons of
symmetry with respect to x and y we have A�

02 D A�
20 and

A�
02 D A�

20 D � 12A00
00: (6.100)

With this, the potential (6.63) for longitudinal fields is

� Vs.x; y; z/ D A00 � 1
4
A00
00.x

2 C y2/ D A00 � 1
4
A00
00r

2; (6.101)

where we have made use of rotational symmetry. The longitudinal field component
becomes from (6.101) in linear approximation

Bz D CA0
00 (6.102)

and the transverse components

BrD � 12A00
00r D � 12B0

zr; (6.103)

B'D 0:

The azimuthal field component obviously vanishes because of symmetry. Radial
field components appear whenever the longitudinal field strength varies as is the
case in the fringe field region at the end of a solenoid shown in Fig. 6.19.

The strength B0 in the center of a long solenoid magnet can be calculated in the
same way we determined dipole and higher-order fields utilizing Stokes’ theorem.
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Fig. 6.19 Solenoid field integration path
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The integral
H

Bdz is performed along a path as indicated in Fig. 6.19. The only
contribution to the integral comes from the integral along the field at the magnet
axis. All other contributions vanish because the integration path cuts field lines at
a right angles, where Bdz D 0 or follows field lines to infinity where Bz D 0. We
have therefore I

Bd z D B0z D �0�rJz; (6.104)

where J is the total solenoid current per unit length. The solenoid field strength is
therefore given by

B0 .x D 0; y D 0/ D �0�rJ: (6.105)

The total integrated radial field
R

Brdz can be evaluated from the central field
for each of the fringe regions. We imagine a cylinder concentric with the solenoid
axis and with radius r to extend from the solenoid center to a region well outside
the solenoid. In the center of the solenoid a total magnetic flux of �r2B0 enters this
cylinder. It is clear that along the infinitely long cylinder the flux will exit the surface
of the cylinder through radial field components. We have therefore

�r2B0 D
Z 1

0

2�rBr.r/dz; (6.106)

where we have set z D 0 at the center of the solenoid. The integrated radial field per
fringe field is then Z 1

0

Br.r/dz D � 1
2
B0r: (6.107)

The linear dependence of the integrated radial fields on the distance r from
the axis constitutes linear focusing capabilities of solenoidal fringe fields. Such
solenoid focusing is used, for example, around a conversion target to catch a highly
divergent positron beam. The positron source is generally a small piece of a heavy
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metal like tungsten placed in the path of a high energy electron beam. Through
an electromagnetic cascade, positrons are generated and emerge from a point like
source into a large solid angle. If the target is placed in the center of a solenoid
the radial positron motion couples with the longitudinal field to transfer the radial
particle momentum into azimuthal momentum. At the end of the solenoid, the
azimuthal motion couples with the radial field components of the fringe field to
transfer azimuthal momentum into longitudinal momentum. In this idealized picture
a divergent positron beam emerging from a small source area is transformed or
focused into a quasi-parallel beam of larger cross section. Such a focusing device is
called a �=4-lens, since the particles follow one quarter of a helical trajectory in the
solenoid.

In other applications large volume solenoids are used as part of elementary
particles detectors in high energy physics experiments performed at colliding-beam
facilities. The strong influence of these solenoidal detector fields on beam dynamics
in a storage ring must be compensated in most cases. In still other applications
solenoid fields are used just to contain a particle beam within a small circular
aperture like that along the axis of a linear accelerator.

6.7 Periodic Wiggler Magnets

Particular arrays or combinations of magnets can produce desirable results for a
variety of applications. A specially useful device of this sort is a wiggler magnet
[7] which is composed of a series of short bending magnets with alternating field
excitation. Most wiggler magnets are used as sources of high brightness photon
beams in synchrotron radiation facilities and are often also called undulators. There
is no fundamental difference between both. We differentiate between a strong field
wiggler magnet and an undulator, which is merely a wiggler magnet at low fields,
because of the different synchrotron radiation characteristics. As long as we talk
about magnet characteristics in this text, we make no distinction between both types
of magnets. Wiggler magnets are used for a variety of applications to either produce
coherent or incoherent photon beams in electron accelerators, or to manipulate
electron beam properties like beam emittance and energy spread. To compensate
anti-damping in a combined function synchrotron a wiggler magnet including a
field gradient has been used for the first time to modify the damping partition
numbers [8]. In colliding-beam storage rings wiggler magnets are used to increase
the beam emittance for maximum luminosity [9]. In other applications, a very
small beam emittance is desired as is the case in damping rings for linear colliders
or synchrotron radiation sources which can be achieved by employing damping
wiggler magnets in a different way [10].

Wiggler magnets are generally designed as flat magnets as shown in Fig. 6.20
[7] with field components only in one plane or as helical wiggler magnets [11–
13] where the transverse field component rotates along the magnetic axis. In this
discussion, we concentrate on flat wigglers which are used in growing numbers to
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Fig. 6.20 Permanent magnet
wiggler showing the
magnetization direction of
individual blocks (schematic)

particle
path

permanent magnet pieces

generate, for example, intense beams of synchrotron radiation from electron beams,
to manipulate beam parameters or to pump a free electron laser.

6.7.1 Wiggler Field Configuration

Whatever the application may be, the wiggler magnet deflects the electron beam
transversely in an alternating fashion without introducing a net deflection on the
beam. Wiggler magnets are generally considered to be insertion devices installed in
a magnet free straight section of the lattice and not being part of the basic magnet
lattice. To minimize the effect of wiggler fields on the particle beam, the integrated
magnetic field through the whole wiggler magnet must be zeroZ

wiggler

B?dz D 0 : (6.108)

Since a wiggler magnet is a straight device, we use a fixed cartesian coordinate
system .x; y; z/ with the z-axis parallel to the wiggler axis to describe the wiggler
field, rather than a curvilinear system that would follow the oscillatory deflection
of the reference path in the wiggler. The origin of the coordinate system is placed
in the middle of one of the wiggler magnets. The whole magnet may be composed
of N equal and symmetric pole pieces placed along the z-axis at a distance �p=2

from pole center to pole center as shown in Fig. 6.21. Each pair of adjacent wiggler
poles forms one wiggler period with a period length �p and the whole magnet is
composed of N=2 periods. Since all periods are assumed to be the same and the
beam deflection is compensated within each period no net beam deflection occurs
for the complete magnet.

Upon closer inspection of the precise beam trajectory we observe a lateral
displacement of the beam within a wiggler magnet. To compensate this lateral beam
displacement, the wiggler magnet should begin and end with only a half pole of
length �p=4 to allow the beams to enter and exit the wiggler magnet parallel with
the unperturbed beam path.

The individual magnets comprising a wiggler magnet are in general very short
and the longitudinal field distribution differs considerable from a hard-edge model.
In fact most of the field will be fringe fields. We consider only periodic fields which
can be expanded into a Fourier series along the axis including a strong fundamental
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Fig. 6.21 Field distribution
in a wiggler magnet
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component with a period length �p and higher harmonics expressed by the ansatz
[14]

By D B0
X
n�0

b2nC1.x; y/ cosŒ.2nC 1/kpz� ; (6.109)

where the wave number kp D 2�=�p. The functions bi.x; y/ describe the variation
of the field amplitude orthogonal to the beam axis for the harmonic i. The content
of higher harmonics is greatly influenced by the particular design of the wiggler
magnet and the ratio of the period length to the pole gap aperture. For very
long periods relative to the pole aperture the field profile approaches that of a
hard-edge dipole field with a square field profile along the z-axis. For very short
periods compared to the pole aperture, on the other hand, we find only a significant
amplitude for the fundamental period and very small perturbations due to higher
harmonics.

We may derive the full magnetic field from Maxwell’s equations based on a
sinusoidal field along the axis. Each field harmonic may be determined separately
due to the linear superposition of fields. To eliminate a dependence of the magnetic
field on the horizontal variable x; we assume a pole width which is large compared
to the pole aperture. The fundamental field component is then

By.y; z/ D B0b1.y/ cos kpz : (6.110)

Maxwell’s curl equation is in the wiggler aperture r � B D 0, @Bz
@y D @By

@z and with
(6.110) we have

@Bz

@y
D @By

@z
D �B0b1.y/kp sin kpz : (6.111)
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Integration of (6.111) with respect to z gives the vertical field component

By D �B0kpb1.y/
Z z

0
sin kpNz dNz : (6.112)

We have not yet determined the y-dependence of the amplitude function b1.y/. From
rB D 0 and the independence of the field on the horizontal position we get with
(6.110)

@Bz

@z
D �@By

@y
D �B0

@b1.y/

@y
cos kpz : (6.113)

Forming the second derivatives @2 Bz=.@y @z/ from (6.111), (6.113) we get for the
amplitude function the differential equation

@2b1.y/

@y2
D k2pb1.y/ ; (6.114)

which can be solved by the hyperbolic functions

b1.y/ D a cosh kpyC b sinh kpy : (6.115)

Since the magnetic field is symmetric with respect to y D 0 and b1.0/ D 1, the
coefficients are a D 1 and b D 0. Collecting all partial results, the wiggler magnetic
field is finally determined by the components

Bx D 0 ;
By D B0 cosh kpy cos kpz ;
Bz D �B0 sinh kpy sin kpz ;

(6.116)

where Bz is obtained by integration of (6.111) with respect to y.
The hyperbolic dependence of the field amplitude on the vertical position intro-

duces higher-order field-errors which we determine by expanding the hyperbolic
functions

cosh kpy D 1C .kpy/2

2Š
C .kpy/4

4Š
C .kpy/6

6Š
C .kpy/8

8Š
C : : : ; (6.117)

sinh kpy D C.kpy/C .kpy/3

3Š
C .kpy/5

5Š
C .kpy/7

7Š
C : : : : (6.118)

Typically the vertical gap in a wiggler magnet is much smaller than the period
length or y � �p to avoid drastic reduction of the field strength. Due to the
fast convergence of the series expansions (6.117) only a few terms are required
to obtain an accurate expression for the hyperbolic function within the wiggler
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aperture. The expansion (6.117) displays higher-order field components explicitly
which, however, do not have the form of higher-order multipole fields and we cannot
treat these fields just like any other multipole perturbation but must consider them
separately.

To determine the path distortion due to wiggler fields, we follow the reference
trajectory through one quarter period starting at a symmetry plane in the middle of a
pole. At the starting point z D 0 in the middle of a wiggler pole the beam direction
is parallel to the reference trajectory and the deflection angle at a downstream point
z is given by

#.z/ D e

p

Z z

0

By .Nz/ dNz D e

p
B0 cosh kpy

Z z

0

cos kpNz dNz (6.119)

D e

p
B0
1

kp
cosh kpy sin kpz :

The maximum deflection angle is equal to the deflection angle for a quarter period
or half a wiggler pole and is from (6.119) for y D 0 and kpz D �=2

� D e

p
B0
�p

2 �
: (6.120)

This deflection angle is used to define the wiggler strength parameter

K D ˇ�� D ce

2�mc2
B0�p ; (6.121)

where m c2 is the particle rest energy and � the particle energy in units of the rest
energy. In more practical units this strength parameter is

K D CKB0 .T/ �p .cm/ � B0 .T/ �p .cm/ ; (6.122)

where

CK D ce

2� mc2
D0:93373T�1cm�1 :

The parameter K is a characteristic wiggler constant defining the wiggler strength
and is not to be confused with the general focusing strength K D �2 C k. Coming
back to the distinction between wiggler and undulator magnet, we speak of a wiggler
magnet if K � 1 and of an undulator if K � 1: Of course, many applications
happen in a gray zone of terminology when K � 1:
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6.8 Electrostatic Quadrupole

A different focusing device based on electrostatic fields can be designed very much
along the strategy for a magnetic quadrupole. We pick the first term on the r.h.s.
of (6.25) and modify the expression to reflect the beam rigidity (6.12) for electric
fields

V2.x; y/ D �RbˇA20 12 .x
2 � y2/ D �g 1

2
.x2 � y2/; (6.123)

where the field gradient, g D @Ex=@x . Such a device can be constructed by placing
metallic surfaces in the form of a hyperbola

x2 � y2 D ˙R D const. (6.124)

where R is the aperture radius of the device as shown in Fig. 6.22 (left)
The potential of the four electrodes is alternately V D ˙ 1

2
gR2: This design can

be somewhat simplified by replacing the hyperbolic metal surfaces by equivalently
sized metallic tubes as shown in Fig. 6.22 (right). Numerical computer simulation
programs can be used to determine the degradation of the quadrupole field due to
this simplification.

+V

+V

-V-V
R

r = R

Fig. 6.22 Electric field quadrupole, ideal pole profile (left), and an example of a practical approach
with cylindrical metallic tubes (right)
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Problems

6.1 (S). Show that the electrical power in the excitation coil is independent of the
number of turns. Show also that the total electrical power in a copper coil depends
only on the total weight of the copper used and the current density.

6.2 (S). Design an electrostatic quadrupole which provides a focal length of 10 m
in the horizontal plane for particles with a kinetic energy of 10 MeV. The device
shall have an aperture with a diameter of 10 cm and an effective length of 0.1 m.
What is the form of the electrodes, their orientation and potential?

6.3 (S). In the text, we have derived the fields from a scalar potential. We could
also derive the magnetic fields from a vector potential A through the differentiation
B D r � A. For purely transverse magnetic fields, show that only the longitudinal
component Az ¤ 0 must be non zero. Derive the vector potential for a dipole
and quadrupole field and compare with the scalar potential. What is the difference
between the scalar potential and the vector potential?

6.4 (S). Derive the pole profile (aperture radius r D 1 cm) for a combined function
magnet including a dipole field to produce for a particle beam of energy E D
50GeV a bending radius of 	 D 300m, a focusing strength k D 0:45m�2 and a
sextupole strength of m D 23:0m�3.

6.5 (S). Strong mechanical forces exist between the magnetic poles when a magnet
is energized. Are these forces attracting or repelling the poles? Why? Consider a
dipole magnet ` D1 m long, a pole width w D 0:2m and a field of B D 1:5T .
Estimate the total force between the two magnet poles ?

6.6 (S). Following the derivation of (5.7) for a bending magnet, derive a similar
expression for the electrical excitation current in A�turns of a quadrupole with an
aperture radius R and a desired field gradient g. What is the total excitation current
necessary in a quadrupole with an effective length of ` D1 m and R D 3 cm to
produce a focal length of f D 50m for particles with an energy of cp D 500GeV?

6.7 (S). Consider a coil in the aperture of a magnet as shown in Fig. 6.14. All n
windings are made of very thin wires and are located exactly on the radius R. We
rotate now the coil about its axis at a rotation frequency 
. Such rotating coils are
used to measure the multipole field components in a magnet. Show analytically that
the recorded signal is composed of harmonics of the rotation frequency 
. What is
the origin of the harmonics?

6.8 (S). Explain why a quadrupole with finite pole width does not produce a pure
quadrupole field. What are the other allowed multipole field components ignore
mechanical tolerances and why?

6.9 (S). Through magnetic measurements the following vertical magnetic multi-
pole field components in a quadrupole are determined. At x D 1:79 cm and y D 0

cm: B2 D 0:3729 T, B3 D 1:25� 10�4 T, B4 D 0:23� 10�4 T, B5 D 0:36� 10�4 T,
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B6 D 0:726�10�4 T, B7 D 0:020�10�4 T, B8 D 0:023�10�4 T, B9 D 0:0051�10�4
T, B10 D 0:0071 � 10�4 T. Calculate the relative multipole strengths at x D 1 cm
normalized to the quadrupole field at 1 cm. Why do the 12-pole and 20-pole
components stand out with respect to the other multipole components?

6.10 (S). Derive the equation for the pole profile of an iron dominated upright
octupole with a bore radius R. Ignore longitudinal variations. To produce a field
of 0.2 T at the pole tip .R D 3cm/ what total current per coil is required?

6.11 (S). Calculate and design the current distribution for a pure air coil, super-
conducting dipole magnet to produce a field of B0 D 5T in an aperture of radius
R D 3 cm without exceeding an average current density of O| D 1;000A/mm2.

6.12. Derive an expression for the current distribution in air coils to produce a
combination of a dipole, quadrupole and sextupole field. Express the currents in
terms of fields and field gradients.
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Part III
Beam Dynamics



Chapter 7
Single Particle Dynamics

The general equations of motion, characterized by an abundance of perturbation
terms on the right-hand side of, for example, (6.95), (6.96) have been derived in the
previous chapter. If these perturbation terms were allowed to become significant in
real beam transport systems, we would face almost insurmountable mathematical
problems trying to describe the motion of charged particles in a general way.
For practical mathematical reasons it is therefore important to design components
for particle beam transport systems such that undesired terms appear only as
small perturbations. With a careful design of beam guidance magnets and accurate
alignment of these magnets we can indeed achieve this goal.

Most of the perturbation terms are valid solutions of the Laplace equation
describing higher order fields components. Virtually all these terms can be mini-
mized to the level of perturbations by proper design of beam transport magnets.
Specifically, we will see that the basic goals of beam dynamics can be achieved
by using only two types of magnets, bending magnets and quadrupoles which
sometimes are combined into one magnet. Beam transport systems, based on only
these two lowest order magnet types, are called linear systems and the resulting
theory of particle dynamics in the presence of only such magnets is referred to as
linear beam dynamics or linear beam optics.

In addition to the higher order magnetic field components, we also find purely
kinematic terms in the equations of motion due to large amplitudes or due to the
use of curvilinear coordinates. Some of these terms are generally very small for
particle trajectories which stay close to the reference path such that divergences are
small, x0 � 1 and y0 � 1. The lowest order kinematic effects resulting from the use
of a curvilinear coordinate system, however, cannot generally be considered small
perturbations. One important consequence of this choice for the coordinate system
is that the natural bending magnet is a sector magnet which has very different beam
dynamics properties than a rectangular magnet which would be the natural magnet
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type for a Cartesian coordinate system. While a specific choice of a coordinate
system will not change the physics, we must expect that some features are expressed
easier or more complicated in one or the other coordinate system. We have chosen to
use the curvilinear system because it follows the ideal path of the particle beam and
offers a simple direct way to express particle trajectories deviating from the ideal
path. In a fixed Cartesian coordinate system we would have to deal with geometric
expressions relating the points along the ideal path to an arbitrary reference point.
The difference becomes evident for a simple trajectory like a circle of radius r and
center at .x0; y0/ which in a fixed orthogonal coordinate system would be expressed
by .x � x0/

2 C .y � y0/2 D r2. In the curvilinear coordinate system this equation
reduces to the simple identity x.z/ D 0.

7.1 Linear Beam Transport Systems

The theory of beam dynamics based on quadrupole magnets for focusing is called
strong focusing beam dynamics in contrast to the case of weak focusing, which
utilizes the focusing of sector magnets in combination with a small gradient in
the bending magnet profile. Such focusing is employed in circular accelerators
like betatrons or some cyclotrons and the first generation of synchrotrons. The
invention of strong focusing by Christofilos [1] and independently by Courant et al.
[2] changed quickly the way focusing arrangements for large particle accelerators
are determined. One of the main attraction for this kind of focusing was the ability
to greatly reduce the magnet aperture needed for the particle beam since the stronger
focusing confines the particles to a much smaller cross section compared to weak
focusing. A wealth of publications and notes have been written during the fifties
to determine and understand the intricacies of strong focusing, especially the rising
problems of alignment and field tolerances as well as those of resonances. Particle
stability conditions from a mathematical point of view have been investigated by
Moser [3].

In this chapter, we will discuss the theory of linear charged particle beam dynam-
ics and apply it to the development of beam transport systems, the characterization
of particle beams, and to the derivation of beam stability criteria. The bending and
focusing function may be performed either in separate magnets or be combined
within a synchrotron magnet. The arrangement of magnets in a beam transport
system, called the magnet lattice, is often referred to as a separated function or
combined function lattice depending on whether the lattice makes use of separate
dipole and quadrupole magnets or uses combined function magnets, respectively.

Linear equations of motion can be extracted from (6.95), (6.96) to treat beam
dynamics in first or linear approximation. For simplicity and without restricting
generality we assume the bending of the beam to occur only in one plane,
the x-plane. The linear magnetic fields for bending and quadrupole magnets are
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expressed by

Bx D �g y; (7.1a)

By D By0 C gx ; (7.1b)

where By0 is the dipole field and g the gradient of the quadrupole field. With these
field components we obtain from (6.95), (6.96) the equations of motion in the
approximation of linear beam dynamics

x00 C �k0C�20x

�
x D 0 ; (7.2a)

y00 � k0y D 0 : (7.2b)

Both, the focusing from the bending magnet and that from a quadrupole may be
combined into one parameter

K.z/ D k0.z/C �20x.z/: (7.3)

So far no distinction has been made between combined or separated function
magnets and the formulation of the equations of motion based on the magnet
strength parameter K as defined in (7.3), is valid for both types of magnets. For
separated function magnets either k0 or �0x is set to zero while for combined function
magnets both parameters are nonzero.

7.1.1 Nomenclature

Focusing along a beam transport line is performed by discrete quadrupoles placed to
meet specific particle beam characteristics required at the end or some intermediate
point of the beam line. The dependence of the magnet strength on z is, therefore,
a priori indeterminate and is the subject of lattice design in accelerator physics.
To describe focusing lattices simple symbols are used to point out location and
sometimes relative strength of magnets. In this text we will use symbols from
Fig. 7.1 for bending magnets, quadrupoles, and sextupoles or multipoles.

All magnets are symbolized by squares along the z-axis and the length of the
symbol may represent the actual magnetic length. The symbol for pure dipole
magnets is a square centered about the z-axis while bending magnets with a gradient
are shifted vertically to indicate the sign of the focusing. Positive squares are
used to indicate horizontal focusing and negative squares for horizontal defocusing
quadrupoles.
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Fig. 7.1 Symbols for
magnets in lattice design
and typical distributions
of magnets along a beam
transport line

bending magnet focusing quadrupole

sextupole/multipole

z

defocusing quadrupole

Using such symbols, a typical beam transport line may have general patterns like
that shown in Fig 7.1. The sequence of magnets and their strength seems random
and is mostly determined by external conditions to be discussed later. More regular
magnet arrangements occur for circular accelerators or very long beam transport
lines composed of periodic sections.

7.2 Matrix Formalism in Linear Beam Dynamics

The seemingly arbitrary distribution of focusing parameters in a beam transport
system makes it impossible to formulate a general solution of the differential
equations of motion (7.2). To describe particle trajectories analytically through a
beam transport line composed of drift spaces, bending magnets, and quadrupoles,
we will derive mathematical tools which consist of partial solutions and can be used
to describe complete particle trajectories.

In this section we will derive and discuss the matrix formalism [4] as a method to
describe particle trajectories. This method makes use of the fact that the magnet
strength parameters are constant at least within each individual magnet. The
equations of motion become very simple since the restoring force K is constant
and the solutions have the form of trigonometric functions. The particle trajectories
may now be described by analytical functions at least within each uniform element
of a transport line including magnet free drift spaces.

These solutions can be applied to any arbitrary beam transport line, where the
focusing parameter K changes in a step like function as shown in Fig. 7.1. Cutting
this beam line into its smaller elements so that K D const. in each of these pieces
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we will be able to follow the particle trajectories analytically step by step through
the whole transport system. This is the model generally used in particle beam optics
and is called the hard edge model.

In reality, however, since nature does not allow sudden changes of physical
quantities (natura non facit saltus) the hard edge model is only an approximation,
although for practical purposes a rather good one. In a real magnet the field strength
does not change suddenly from zero to full value but rather follows a smooth
transition from zero to the maximum field. Sometimes, the effects due to this smooth
field transition or fringe field are important and we will derive the appropriate
corrections later in this section. For now, we continue using the hard edge model
for beam transport magnets and keep in mind that in some cases a correction may
be needed to take into account the effects of a smooth field transition at the magnet
edges.

Using this approximation, where 1=	0 and k are constants, and ignoring pertur-
bations, the equation of motion is reduced to that of a harmonic oscillator,

u00 C Kuu D 0; where Ku D ku0 C �20u D const : (7.4)

The principal solutions have been derived in Sect. 5.5.1 and are expressed in matrix
formulation by �

u.z/
u0.z/

�
D
�

Cu.z/ Su.z/
C0

u.z/ S0
u.z/

��
u0
u0
0

�
; (7.5)

where u may be used for either x or y. We have deliberately separated the motion
in both planes since we do not consider coupling. Formally, we could combine the
two 2 � 2 transformation matrices for each plane into one 4 � 4 matrix describing
the transformation of all four coordinates0BB@

x.z/
x0.z/
y.z/
y0.z/

1CCA D
0BB@

Cx.z/ Sx.z/ 0 0

C0
x.z/ S0

x.z/ 0 0

0 0 Cy.z/ Sy.z/
0 0 C0

y.z/ S0
y.z/

1CCA
0BB@

x0
x0
0

y0
y0
0

1CCA : (7.6)

Obviously the transformations are still completely decoupled but in this form we
could include coupling effects, where, for example, the x-motion depends also on
the y-motion and vice versa. This can be further generalized to include any particle
parameter like the longitudinal position of a particle with respect to a reference
particle, or the energy of a particle, the spin vector, or any particle coordinate
that may depend on other coordinates. In the following paragraphs we will restrict
the discussion to linear .2 � 2/ transformation matrices for a variety of beam line
elements.
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7.2.1 Driftspace

In a driftspace of length ` or in a weak bending magnet, where �20x � 1 and k0 D 0,
the focusing parameter K D 0 and the solution of (7.4) in matrix formulation can
be expressed by �

u.z/
u0.z/

�
D
�
1 `

0 1

��
u0
u0
0

�
: (7.7)

A more precise derivation of the transformation matrices for bending magnets of
arbitrary strength will be described later in this chapter. Any drift space of length
` D z � z0, therefore, is represented by the simple transformation matrix

Md.`j0/ D
�
1 `

0 1

�
: (7.8)

We recognize the expected features of a particle trajectory in a field free drift
space. The amplitude u changes only if the trajectory has an original non vanishing
slope u0

0 ¤ 0 while the slope itself does not change at all.

7.2.2 Quadrupole Magnet

For a pure quadrupole the bending term �0x D 0 and the field gradient or quadrupole
strength k.z/ ¤ 0 can be positive as well as negative. With these assumptions we
solve again (7.4) and determine the integration constants by initial conditions. For
k > 0 we get the transformation for a focusing quadrupole

�
u.z/
u0.z/

�
D
 

cos 1p
k

sin 

�pk sin cos 

!�
u.z0/
u0.z0/

�
; (7.9)

where  D pk.z � z0. This equation is true for any section within the quadrupole
as long as both points z0 and z are within the active length of the quadrupole.

For a full quadrupole of length ` and strength k we set ' D pk` and the
transformation matrix for a full quadrupole in the focusing plane is

MQF .` j0/ D
 

cos' 1p
k

sin'

�pk sin ' cos'

!
: (7.10)



7.2 Matrix Formalism in Linear Beam Dynamics 183

Fig. 7.2 Example of a beam
transport line (schematic)

z

k(z)

M1 M2 M3 M4 M5 M6 M7 M8

Similarly, we get in the other plane with k < 0 the solution for a defocusing
quadrupole

�
u.z/
u0.z/

�
D
 

cosh 1pjkj sinh pjkj sinh cosh 

!�
u.z0/
u0.z0/

�
; (7.11)

where  D pjkj .z� z0/. The transformation matrix in the defocusing plane
through a complete quadrupole of length ` with ' Dpjkj` is therefore

MQD .` j0/ D
 

cosh' 1pjkj sinh'pjkj sinh' cosh'

!
: (7.12)

These transformation matrices make it straight forward to follow a particle
through a transport line. Any arbitrary sequence of drift spaces, bending magnets
and quadrupole magnets can be represented by a series of transformation matrices
Mi. The transformation matrix for the whole composite beam line is then just equal
to the product of the individual matrices. For example, by multiplying all matrices
along the path in Fig. 7.2 the total transformation matrix M for the eight magnetic
elements of this example is determined by the product

M DM8: : :M4M3M2M1 (7.13)

and the particle trajectory transforms through the whole composite transport line
like �

u.z/
u0.z/

�
DM .z jz0 /

�
u.z0/
u0.z0/

�
; (7.14)

where the starting point z0 in this case is at the beginning of the drift space M1 and
the end point z is at the end of the magnet M8.
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7.2.3 Thin Lens Approximation

As will become more apparent in the following sections, this matrix formalism
is widely used to calculate trajectories for individual particle or for a virtual
particle representing the central path of a whole beam. The repeated multiplication
of matrices, although straightforward, is very tedious and therefore, most beam
dynamics calculations are performed on digital computers. In some cases, however,
it is desirable to analytically calculate the approximate properties of a small set of
beam elements. For these cases it is sufficient to use what is called the thin lens
approximation. In this approximation it is assumed that the length of a quadrupole
magnet is small compared to its focal length .`� f / and we set

`! 0 ; (7.15)

while keeping the focal strength constant,

f �1 D Ck l D const : (7.16)

This result is analogous to geometric light optics, where we assume the glass lenses
to be infinitely thin. As a consequence ' D pk ` ! 0 and the transformation
matrices (7.10,) (7.12) are the same in both planes except for the sign of the
focal length �

u.z/
u0.z/

�
D
 
1 `

� 1f 1

!�
u0
u0
0

�
; (7.17)

where

f �1 D k ` > 0 in the focusing plane
f �1 D k ` < 0 in the defocusing plane.

(7.18)

The transformation matrix has obviously become very simple and exhibits only the
focusing property in form of the focal length. Quite generally one may regard for
single as well as composite systems the matrix element M21 as the element that
expresses the focal strength of the transformation.

In thin lens approximation it is rather easy to derive focusing properties of
simple compositions of quadrupoles. A quadrupole doublet composed of two
quadrupole magnets separated by a drift space of length L is described by the total
transformation matrix

Mdb .L j0/ D
 
1 0

� 1
f2
1

!�
1 L
0 1

� 
1 0

� 1
f1
1

!
(7.19)

D
�
1 � L=f1 L
�1=f � 1 � L=f2

�
;
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Fig. 7.3 Reversed lattice

M Mr

where we find the well known expression from geometric paraxial light optics

1

f � D
1

f1
C 1

f2
� L

f1 f2
: (7.20)

Such a doublet can be made focusing in both planes if, for example, the quadrupole
strengths are set such that f1 D �f2 D f . The total focal length then is f � D
CL=f 2 > 0 in both the horizontal and the vertical plane.

This simple result, where the focal length is the same in both planes, is a valid
solution only in thin lens approximation. For a doublet of finite length quadrupoles
the focal length in the horizontal plane is always different from that in the vertical
plane as can be verified by using the transformations (7.10), (7.12) to calculate the
matrix Mdb. Since individual matrices are not symmetric with respect to the sign of
the quadrupole field, the transformation matrices for the horizontal plane Mdb;x and
the vertical plane Mdb;y must be calculated separately and turn out to be different. In
special composite cases, where the quadrupole distribution is symmetric as shown
in Fig. 7.3, the matrices for both of the two symmetric half sections are related in a
simple way. If the matrix for one half of the symmetric beam line is

M D
�

a b
c d

�
(7.21)

then the reversed matrix for the second half of the beam line is

Mr D
�

d b
c a

�
(7.22)

and the total symmetric beam line has the transformation matrix

Mtot DMr M D
�

adC bc 2bd
2ac adC bc

�
: (7.23)
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Fig. 7.4 Symmetric
quadrupole triplet

M Mr

We made no particular assumptions for the lattice shown in Fig. 7.3 except for
symmetry and the relations (7.21), (7.22) are true for any arbitrary but symmetric
beam line.

The result for the reversed matrix is not to be confused with the inverse matrix,
where the direction of the particle path is also reversed. The inverses matrix of
(7.21) is

Mi D
�

d �b
�c a

�
: (7.24)

Going through an arbitrary section of a beam line and then back to the origin
again results in a total transformation matrix equal to the unity matrix

Mtot DMi M D
�
1 0

0 1

�
: (7.25)

These results allow us now to calculate the transformation matrix Mtr for a
symmetric quadrupole triplet. With (7.19), (7.24) the transformation matrix of a
quadrupole triplet as shown in Fig. 7.4 is

Mtr DMr M D
�
1 � 2L2=f 2 2L .1C L=f /
�1=f � 1 � 2L2=f 2

�
; (7.26)

where f � is defined by (7.20) with f1 D �f2 D f .
Such a triplet is focusing in both planes as long as f > L. Symmetric triplets

as shown in Fig. 7.4 have become very important design elements of long beam
transport lines or circular accelerators since such a triplet can be made focusing
in both planes and can be repeated arbitrarily often to provide a periodic focusing
structure called a FODO-channel. The acronym is derived from the sequence of
focusing (F) and defocusing (D) quadrupoles separated by non-focusing elements
(O) like a drift space or a bending magnet.
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Fig. 7.5 Field profile in a real quadrupole with a bore radius of R = 3 cm and an iron length of
`iron = 15.9 cm

7.2.4 Quadrupole End Field Effects

In defining the transformation through a quadrupole we have assumed the strength
parameter k.z/ to be a step function with a constant nonzero value within the
quadrupole and zero outside. Such a hard edge field distribution is only approx-
imately true for a real quadrupole. The strength parameter in a real quadrupole
magnet varies in a gentle way from zero outside the quadrupole to a maximum
value in the middle of the quadrupole. In Fig. 7.5 the measured gradient of a real
quadrupole along the axis is shown.

The field extends well beyond the length of the iron core and the effective
magnetic length, defined by

`eff D
R

g dz

g0
; (7.27)

where g0 is the field gradient in the middle of the quadrupole, is longer than the iron
length by about the radius of the bore aperture

`eff � `iron C R : (7.28)

This is the effective or hard edge magnet length `0 with strength k: The real
field distribution can be approximated by a trapezoid such that

R
g dz is the same

in both cases (see Fig. 7.5). To define the trapezoidal approximation we assume
a fringe field extending over a length equal to the bore radius R as shown in
Fig. 7.5. End field effects must therefore be expected specifically in quadrupoles
with large bore radii and short iron cores. It is interesting to investigate as to what
extend the transformation characteristics for a real quadrupole differ from the hard
edge model. The real transformation matrix can be obtained by slicing the whole
axial quadrupole field distribution in thin segments of varying strength. Treating
these segments as short hard edge quadrupoles the full transformation matrix is the
product of the matrices for all segments.
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Fig. 7.6 Decomposition of an actual quadrupole field profile into segments of hard edge
quadrupoles. (k0; `0 are for the hard edge model, k; ` for the hard edge model with real fringe
fields, � and L are used for mathematical evaluation only)

While it is possible to obtain an accurate transformation matrix this way the
variations of the matrix elements due to this smooth field distribution turn out to
be mostly small and in practice, therefore, the hard edge model is used to develop
beam transport lattices. Nonetheless after a satisfactory solution has been found,
these real transformation matrices should be used to check the solution and possibly
make small adjustment to the idealized hard edge model design.

In this section, we will discuss an analytical estimate of the correction to
be expected for a real field distribution [5] by looking for the “effective” hard
edge model parameters .k; `/ which result in a transformation matrix equal to the
transformation matrix for the corresponding real quadrupole. The transformation
matrix for the real quadrupole be

MQ D
�

C S
C0 S0

�
; (7.29)

where the matrix elements are the result of multiplying all “slice” matrices for the
quadrupole segments as shown in Fig. 7.6 over the length L.

We assume now that this real quadrupole can be represented by a hard edge
model quadrupole of length ` with adjacent drift spaces � as indicated in Fig. 7.6.
The transformation through this system for a focusing quadrupole is given by [5]

�
1 �

0 1

� 
cos' 1p

k
sin '

�pk sin' cos'

!�
1 �

0 1

�

D
 

cos' �pk� sin ' 2� cos' � 1p
k

sin '

�pk sin ' cos' �pk� sin'

!
(7.30)
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with ' D pk `0. This hard edge transformation matrix must be the same as
the actual matrix (7.29) and we will use this equality to determine the effective
quadrupole parameters k; `. First, we note that the choice of the total length L D
`0 C 2� is arbitrary as long as it extends over the whole field profile, and both,
the “slices” and hard edge matrices extend over the whole length L by employing
drift spaces if necessary. Equating (7.29) and (7.30) we can compose two equations
which allow us to determine the effective parameters k; ` from known quantities

Cf� 12LC0
f
D cos'f C 1

2
'f sin 'f ;

C0
f
`f D �'f sin 'f :

(7.31)

Here we have added the index f to indicate a focusing quadrupole. The first of these
equations can be solved for 'f since the quantities Cf ;C

0
f
, and L are known. The

second equation then is solved for `f and kf D '2f =`f . Two parameters are sufficient
to equate the 2 � 2 matrices (7.29), (7.30) since two of the four equations are
redundant for symmetry reasons, M11 D M22 D C D S0, and the determinant of the
matrices on both sides must be unity. Similarly, we get for a defocusing quadrupole

Cd � 1
2
LC0

d
D cosh'd � 1

2
'd sinh'd ;

C0
d
`d D �'d sinh'd :

(7.32)

Equations (7.31) and (7.32) define a hard edge representation of a real quadrupole.
However, we note that the effective quadrupole length ` and strength k are different
from the customary definition, where k0 is the actual magnet strength in the middle
of the quadrupole and the magnet length is defined by `0 D 1

k0

R
k.z/ dz. We also

observe that the effective values ` and k are different for the focusing and defocusing
plane. Since the endfields are not the same for all quadrupoles but depend on the
design parameters of the magnet we cannot determine the corrections in general. In
practical cases, however, it turns out that the corrections k D k � k0 and ` D
` � `0 are small for quadrupoles which are long compared to the aperture and are
larger for short quadrupoles with a large aperture. In fact the differences k and
` turn out to have opposite polarity and the thin lens focal length error k` is
generally very small.

As an example, we use the quadrupole of Fig. 7.5 and calculate the corrections
due to end field effects. We calculate the total transformation matrix for the real field
profile as discussed above by approximating the actual field distribution by a series
of hard edge “slice” matrices in both planes as a function of the focusing strength k0
and solve (7.31), (7.32) for the effective parameters .kf; `f/ and .kd; `d/, respectively.
In Fig. 7.7 these relative fringe field corrections to the quadrupole strength k=k0
and to the quadrupole length `=`0 are shown as functions of the strength k0. The
effective quadrupole length is longer and the effective quadrupole strength is lower
than the pure hard edge values. In addition the corrections are different in both
planes. Depending on the sensitivity of the beam transport system these corrections
may have to be included in the final optimization.
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Fig. 7.7 Fringe field
correction for the quadrupole
of Fig. 7.5 with a bore radius
of R D 3.0 cm and a steel
length of `iron D 15:9 cm

10 20 30 40 50

-0.14
-0.12

-0.1

-0.08

-0.06
-0.04

-0.02

0
0.02

0.04

0.06
0.08

0.1

0.12

k0(m
-2)

Δk/k0

defocusing plane

focusing plane

Δl/l0

defocusing plane

focusing plane

7.3 Focusing in Bending Magnets

Bending magnets have been treated so far just like drift spaces as far as focusing
properties are concerned. This is a good approximation for weak bending magnets
which bend the beam only by a small angle. In cases of larger deflection angles,
however, we observe focusing effects which are due to the particular type of magnet
and its end fields. In Chap. 6 we discussed the geometric focusing term �2 which
appears in sector magnets only. Other focusing terms are associated with bending
magnets and we will discuss in this section these effects in a systematic way.
Specifically, the focusing of charged particles crossing end fields at oblique angles
will be discussed.

The linear theory of particle beam dynamics uses a curvilinear coordinate system
following the path of the reference particle and it is assumed that all magnetic fields
are symmetric about this path. The “natural” bending magnet in this system is one,
where the ideal path of the particles enters and exits normal to the magnet pole faces.
Such a magnet is called a sector magnet as shown in Fig. 7.8. The total deflection
of a particle depends on the distance of the particle path from the ideal path in the
deflecting plane which, for simplicity, we assume to be in the horizontal x-plane.
Particles following a path at a larger distance from the center of curvature than the
ideal path travel a longer distance through this magnet and, therefore, are deflected
by a larger angle than a particle on the ideal path. Correspondingly, a particle passing
through the magnet closer to the center of curvature is deflected less.

This asymmetry leads to a focusing effect which is purely geometric in nature.
On the other hand, we may choose to use a magnet such that the ideal path of the
particle beam does not enter the magnet normal to the pole face but rather at an
angle. Such a configuration has an asymmetric field distribution about the beam
axis and therefore leads to focusing effects. We will discuss the effects of fringe
fields in more detail in Sect. 7.3.2.
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Fig. 7.8 Focusing in a sector magnet, where �0 D �e D 0

7.3.1 Sector Magnets

The degree of focusing in a sector magnet can be evaluated in any infinitesimal
sector of such a magnet by calculating the deflection angle as a function of the
particle position x. With the notation from Fig. 7.8 we get for the deflection angle
while keeping only linear terms in x

d� D �0d� D �0 .1C �0x/ dz : (7.33)

The first term on the r.h.s. merely defines the ideal path, while the second x-
dependent term of the deflection angle in (7.33) describes the particle motion in
the vicinity of the ideal path. With respect to the curvilinear coordinate system
following the ideal path we get the additional deflection

ı� D �20 xdz : (7.34)

This correction is to be included in the differential equation of motion as an
additional focusing term

x00 D �ı�
dz
D ��20 x (7.35)

to the straight quadrupole focusing leading to the equation of motion

x00 C �kC �20� x D 0 ; (7.36)

which is identical to the result obtained in Sect. 5.3.
The differential equation (7.36) has the same form as that for a quadrupole and

therefore the solutions must be of the same form. Using this similarity we replace k
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by .kC �20/ and obtain immediately the transformation matrices for a general sector
magnet. For K D kC �20 > 0 and

� D pK` (7.37)

we get from (7.10) the transformation matrix

Msy;f.` j 0/ D
 

cos� 1p
K

sin�

�pK sin� cos�

!
; (7.38)

where ` is the arc length of the sector magnet and where both the focusing term
k and the bending term �0 may be nonzero. Such a magnet is called a synchrotron
magnet since this magnet type was first used for lattices of synchrotrons.

For the defocusing case, where K D k C �20 < 0 and � D pjKj`; we get from
(7.12)

Msy;d.`j0/ D
 

cosh� 1pjKj sinh�pjKj sinh� cosh�

!
: (7.39)

Note that the argument � is equal to the deflection angle � only in the limit
k! 0 because these transformation matrices include bending as well as focusing in
the same magnet. Obviously, in the nondeflecting plane �0 D 0 and such a magnet
acts just like a quadrupole with strength k and length `.

A subset of general sector magnets are pure dipole sector magnets, where we
eliminate the focusing by setting k D 0 and get the pure dipole strength K D �20 > 0.
The transformation matrix for a pure sector magnet of length ` and bending angle
� D �0` in the deflecting plane becomes from (7.38)

Ms;	.`j0/ D
�

cos � 	0 sin �
��0 sin� cos�

�
: (7.40)

If we also let �0 ! 0 we arrive at the transformation matrix of a sector magnet in
the nondeflecting plane

Ms;0.`j0/ D
�
1 `

0 1

�
; (7.41)

which has the form of a drift space. A pure dipole sector magnet therefore behaves
in the non-deflecting plane just like a drift space of length `. Note that ` is the arc
length of the magnet while the engineering magnet length might be given as the
straight length between entry and exit point.
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Fig. 7.9 End field profile in a dipole magnet and fringe field focusing

7.3.2 Fringe Field Effects

The results obtained above are those for a hard edge model and do not reflect
modifications caused by the finite extend of the fringe fields. The hard edge model
is again an idealization and for a real dipole we consider the gradual transition of
the field from the maximum value to zero outside the magnet. The extend of the
dipole fringe field is typically about equal to the gap height or distance between the
magnet poles.

We assume magnet poles which are very wide compared to the gap height
and therefore transverse field components in the deflecting plane, here Bx; can be
neglected. At the entrance into a magnet the vertical field component By increases
gradually from the field free region to the maximum value in the middle of the
magnet (Fig. 7.9). We will discuss the effects on the particle dynamics caused by
this fringe field and compare it with the results for a hard edge model magnet.

For the following discussion we consider both a fixed orthogonal Cartesian
coordinate system (u; v;w), used in the fringe area, as well as a moving curvilinear
system (x; y; z). The origin of the fixed coordinate system is placed at the point
P0 where the field starts to rise (Fig. 7.9). At this point both coordinate systems
coincide. The horizontal field component vanishes for reasons of symmetry

Bu D 0 (7.42)

and the vertical field component in the fringe region may be described by

Bv D F.w/ : (7.43)

With Maxwell’s curl equation @Bw=@v � @Bv=@w D 0 we get after integration the
longitudinal field component Bw D

R
.@Bv=@w/ dv or

Bw D y
@F.w/

@w
; (7.44)
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where y D v and where a linear fringe field (see Fig. 7.9) was assumed with
@F.w/=@w D const. These field components must be expressed in the curvilinear
coordinate system .x; y; z/. Within the fringe field Bw .z/ can be split into Bx and Bz

as shown in Fig. 7.9. The horizontal field component is then Bx D Bw sin ı where ı
is the deflection angle at the point z defined by

ı D e

p0

Z z

0
F.Nz/ dNz : (7.45)

With

Bw D y
@F.w/

@w
D y

@F.w/

@z

dz

dw
� y

@F.z/

@z

1

cos ı
(7.46)

we get

Bx.z/ D y F0.z/ tan ı ; (7.47)

where F0.z/ D dF=dz. The vertical fringe field component is with @Bx=@y �
@By=@x D 0 and integration

By.z/ D By0 C x F0.z/ tan ı : (7.48)

The longitudinal field component is from (7.46) and with Bz D Bw cos ı

Bz.z/ D y F0.z/ : (7.49)

The field components of the fringe field depend linearly on the transverse
coordinates and therefore fringe field focusing [6] must be expected. With the
definition of the focal length from (7.3) we get

1

f
D
Z zf

0

K.Nz/ dNz ; (7.50)

where K.z/ is the focusing strength parameter defined in ./. In the deflecting plane
the fringe field focusing is with k.z/ D .e=p0/ @By.z/=@x and (7.48)

1

fx
D
Z zf

0

.�0 tan ı C �2/ dNz ; (7.51)

where we have set �.z/ D .e=p0/F.z/. For small deflection angles ı in the fringe
field tan ı � ı D R zf

0 � dNz and after integration of (7.48) by parts through the full
fringe field we get the focal length while neglecting higher order terms in ıf

1

fx
D �0 ıf ; (7.52)
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where �0 D 1=	0 is the curvature in the central part of the magnet and ıf is the total
deflection angle in the fringe field region.

This result does not deviate from that of the hard edge model, where for a small
deflection angle ı we have from (7.40) 1=fx � �0 ı agreeing with (7.52). We obtain
therefore the convenient result that in the deflecting plane of a sector magnet there
is no need to correct the focusing because of the finite extend of the fringe field.

7.3.3 Finite Pole Gap

In the vertical plane this situation is different since we expect vertical focusing from
(7.47) while there is no focusing in the approximation of a hard edge model. Using
the definition (7.50) of the focal length in the vertical plane gives with K.z/ D �k.z/
and (7.47)

1

fy
D �

Z zf

0
�0 tan ı dNz � �

Z zf

0
�0.Nz/ ı.Nz/ dNz : (7.53)

The fringe field of a sector magnet therefore leads to a defocusing effect which
depends on the particular field profile. We may approximate the fringe field by a
linear fit over a distance approximately equal to the pole gap 2G which is a good
approximation for most real dipole magnets. We neglect the nonlinear part of the
fringe field and approximate the slope of the field strength by �0 D �0=2G Dconst.
The focal length for the full fringe field of length zf D 2G is therefore with �.z/ D
�0z; 0 
 z 
 zf and

ı.z/ D
Z z

0
�0Nz dNz D �0

4G
z2 (7.54)

given by

1

fy
D �

Z 2G

0
�0ı.Nz/ dNz D � 1

3
�20 G D � 1

3
�0 ıf ; (7.55)

where

ıf D �0 G : (7.56)

This is the focusing due to the fringe field at the entrance of a sector magnet. At
the exit we have the same effect since the sign change of �0 is compensated by the
need to integrate now from full field to the field free region which is just opposite
to the case in the entrance fringe field. Both end fields of a sector magnet provide a
small vertical defocusing. We note that this defocusing is quadratic in nature, since
ıf / �0 and therefore independent of the sign of the deflection.
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With these results we may now derive a corrected transformation matrix for a
sector magnet by multiplying the hard edge matrix (7.41)on either side with thin
length fringe field focusing 

1 0

� 1
fy
1

! �
1 `

0 1

�  
1 0

� 1
fy
1

!
(7.57)

and get with (7.55) and � D `=	0 for the transformation matrix in the vertical,
non-deflecting plane of a sector magnet instead of (7.41)

Ms;0.` j 0/ D
 
1C 1

3
� ıf `

2
3
ıf
	0
� 1

9

ı2f
	20
` 1C 1

3
� ıf

!
: (7.58)

The second order term in the M21-matrix element can be ignored for practical
purposes but is essential to keep the determinant equal to unity.

7.3.4 Wedge Magnets

In a more general case compared to a sector magnet we will allow the reference path
of the particle beam to enter and exit the magnet at an arbitrary angle with the pole
face. Figure 7.10 shows such a wedge magnets and we will derive its transformation
matrices. First, we note that the fringe field effect is not different from the previous
case of a sector magnet except that now the angle ı.z/ must be replaced by a new
angle �C ı.z/ where the pole rotation angle � and the sign convention is defined in
Fig. 7.10.

x
zdh0>0

h0+d

he<0 Bw

Bz

Bx

exit facemagnet

entrance face

reference
path

Fig. 7.10 Fringe field focusing in wedge magnets
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Different from the case of a sector magnet, we cannot replace the tangent
in (7.51) by its argument since the angle � may be large to prohibit such an
approximation. As a further consequence of a large value of �; we must take into
account the actual path length in the fringe field. To calculate the focal length fx, we
have instead of (7.51)

1

fx
D
Z zf

0

�
�0 tan .�C ı/C �2	 dNz (7.59)

Expanding for small angles ı � 1 we get tan .�C ı/ � tan � C ı. This
approximation is true only as long as ı tan � � 1 or for entrance angles � not
too close to 90ı and the argument in the integral (7.59) becomes �0 tan �C�0ıC�2.
In addition to the terms for a sector magnet, a new term .�0 tan �/ appears and the
focal length of the fringe field is

1

fx
D
Z zf

0

�0 tan � dNzC �0ıf D �0 tan �C �0ıf ; (7.60)

where the integral extends over the whole fringe field. Since to first order the path
length through the fringe field is

zf D 2G

cos�
; (7.61)

where 2G is the pole gap height, we have

ıf D
Z 2G= cos �

0

� dNz : (7.62)

The term �0ıf describes again the well-known focusing of a sector magnet in the
deflecting plane while the term �0 tan � provides the correction necessary for non-
normal entry of the beam path into the magnet. For the case shown in Fig. 7.10,
where � > 0; we obtain beam focusing in the deflecting plane from the fringe field.
Similarly, we get a focusing or defocusing effect at the exit fringe field depending on
the sign of the pole rotation. The complete transformation matrix of a wedge magnet
in the horizontal deflecting plane is obtained by multiplying the matrix of a sector
magnet with thin lens matrices to take account of edge focusing. For generality,
however, we must assume that the entrance and the exit angle may be different. We
will therefore distinguish between the edge focusing for the entrance angle � D �0
and that for the exit angle � D �e and get for the transformation matrix in the
deflecting plane

Mw,	 .`; 0/ D
"

1 0

� 1
	0

tan �e 1

#"
cos � 	0 sin �
� 1
	0

sin � cos �

#"
1 0

� 1
	0

tan �0 1

#
: (7.63)
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In the vertical plane the focal length is similar to (7.53) and for not too large angles �

1

fy
D �

Z zf

0

�0 tan .�C ı/ dNz � ��0 tan � �
Z zf

0

�0ı dNz : (7.64)

Again we have the additional focusing term which is now focusing in the vertical
plane for � < 0. For a linear fringe field the focal length is in analogy to (7.55)

1

fy
D ��0 tan �C 1

3
�0ıf ; (7.65)

where

ıf D
Z 2G= cos �

0

� dNz D �0 2G2

cos3 �
D �0G

cos2 �
; (7.66)

since � .z/ � �0z and �0 D �0= .G= cos�/. The complete transformation matrix in
the vertical plane for a horizontally deflecting wedge magnet becomes then

Mw,0 .`; 0/ D
"

1 0

� 1
	0

�
tan �e C 1

3
ıfe

�
1

#�
1 `

0 1

�"
1 0

� 1
	0

�
tan �0 C 1

3
ıf0

�
1

#
:

(7.67)

Equations (7.63) and (7.67) are for bending magnets with arbitrary entrance
and exit angles �0 and �e. We note specifically that the transformation in the
nondeflecting plane becomes different from a simple drift space and find a focusing
effect due to the magnet fringe fields which depends on the entrance and exit angles
between particle trajectory and pole face.

This general derivation of the focusing properties of a wedge magnet must be
taken with caution where the pole face rotations are very large. In spite of the finite
pole rotation angles we have assumed that the particles enter the fringe field at the
same location z along the beam line independent of the transverse particle amplitude
x. Similarly, the path length of the trajectory in such a wedge magnet depends on
the particle amplitude x and slope x0. Obviously these are second order effects but
may become significant in special cases.

7.3.5 Rectangular Magnet

A particular case of a wedge magnet is the rectangular magnet which has parallel
end faces. If we install this magnet symmetrically about the intended particle
trajectory the entrance and exit angles equal to half the bending angle as shown
in Fig. 7.11.
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Fig. 7.11 Rectangular magnet

For a deflection angle � ; �0 D �e D ��=2 and the transformation matrix in the
deflecting plane is from (7.63)

Mr;	 .` j 0/ D
 

1 0

� tan�e
	0

1

! 
cos � 	0 sin �
� sin �

	0
cos �

! 
1 0

� tan �0
	0

1

!
(7.68)

D
�
1 	0 sin �
0 1

�
:

A rectangular dipole magnet transforms in the deflecting plane like a drift space
of length 	0 sin � and does not focus the beam. Note, that the “magnet length” `
defined by the deflection angle � D `=	0 is the arc length and is related to the
straight magnet length L by

L D 2	0 sin
�

2
D 2	0 sin

`

2	0
: (7.69)

In the vertical plane we observe a focusing with the focal length

1

fy
D C 1

	0

�
tan

�

2
� ı�=2

3

�
: (7.70)

From (7.66) ı�=2 D G=Œ	0 cos.�=2/� and with (7.69) ı�=2 D 2G tan.�=2/=L.
Inserting this in (7.70), we obtain for the transformation matrix of a rectangular
bending magnet in the nondeflecting plane

Mr;0.`j0/ D
 
1 0

� 1
fy
1

! �
1 `

0 1

�  
1 0

� 1
fy
1

!
D
 

1 � `
fy

`

� 2
fy
C `

f 2y
1 � `

fy

!
; (7.71)
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where

1

fy
D 1

	0

�
1 � 2G

3L cos .�=2/

�
tan

�
�

2

�
: (7.72)

In a rectangular dipole magnet we find just the opposite edge focusing properties
compared to a sector magnet. The focusing in the deflecting plane of a sector magnet
has shifted to the vertical plane in a rectangular magnet and focusing is completely
eliminated in the deflecting plane. Because of the finite extend of the fringe field,
however, the focusing strength is reduced by the fraction 2G= Œ3Lcos .�=2/� where
2G is the gap height and L the straight magnet length.

7.3.6 Focusing in a Wiggler Magnet

The derivation of fringe field focusing in ordinary dipole magnets as discussed in
previous sections can be directly applied to wiggler magnets. The beam path in a
wiggler magnet is generally not parallel to the reference trajectory z because of the
transverse deflection in the wiggler field and follows a periodic sinusoidal form
along the reference path. For this reason the field component Bz appears to the
particle partially as a transverse field B� D Bz tan# � Bz #; where we use for a
moment � as an auxiliary transverse coordinate normal to and in the plane of the
actual wiggling beam path. We also assume that the wiggler deflection angle is
small, # � 1. The field component B� can be expressed with (6.116), (6.117) more
explicitly by

e

p
B� D �

�
1

	0
sin
�
kpz
��2 sinh

�
kpy
�

cosh
�
kpy
�

kp
(7.73)

where 1=	0 D e
p B0 is the inverse bending radius in the center of a wiggler pole at

which point the field reaches the maximum value B0. With the expansions (6.119)
we have finally

e

p
B� D �

�
1

	0
sin
�
kpz
��2

.yC 2
3
k2py3 C : : : / : (7.74)

The linear y-dependence is similar to that found to produce vertical focusing in
wedge magnets. Since the wiggler field appears quadratically in (7.73) B�.z/ D
B�.�z/ and B�.B0/ D B�.�B0/. In other words, the transverse field has the same
sign along all wiggler poles independent of the polarity of the vertical main wiggler
field. The integrated field gradient per wiggler half pole is from (7.74)

ky` D � 1
	20

Z �p=4

0

sin2 kpz dz D � 1
8

�p

	20
(7.75)
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Fig. 7.12 Wiggler magnet
with parallel pole end faces
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where ` is the effective length of the focusing element and kp D 2�
�p

. The integrated
equivalent quadrupole strength or inverse focal length for each half pole is

ky` � 1
fy
D �1

8

�
eB0
p0

�2
�p D � �p

8	20
: (7.76)

For N wiggler poles we have 2N times the focusing strength and the focal length
of the total wiggler magnet of length Lw D 1

2
N�p expressed in units of the wiggler

strength parameter K becomes

1

fy
D K2

2�2
k2pLw: (7.77)

Tacitly, a rectangular form of the wiggler poles has been assumed (Fig. 7.12) and
consistent with our sign convention, we find that wiggler fringe fields cause focusing
in the nondeflecting plane. Within the approximation used there is no corresponding
focusing effect in the deflecting plane. This is the situation for most wiggler magnets
or poles except for the first and last half pole where the beam enters the magnetic
field normal to the pole face.

A reason to possibly use wiggler magnets with rotated pole faces like wedge
magnets originates from the fact that the wiggler focusing is asymmetric and
not part of the lattice focusing and may therefore need to be compensated. For
moderately strong wiggler fields the asymmetric focusing in both planes can mostly
be compensated by small adjustments of lattice quadrupoles. The focusing effect
of strong wiggler magnets, however, may generate a significant perturbation of the
lattice focusing structure or create a situation where no stable solution for betatron
functions exists anymore. The severity of this problem can be reduced by designing
the wiggler poles as wedge magnets in such a way as to split the focusing equally
between both the horizontal and vertical plane. In this case local correction can be
applied efficiently in nearby lattice quadrupoles.

We will therefore discuss the focusing and transformation matrix through a
wiggler pole in the case of arbitrary entry and exit angles. To derive the complete
and general transformation matrices, we note that the whole wiggler field can be
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Fig. 7.13 Wiggler magnet
with wedge shaped poles
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treated in the same way as the fringe field of ordinary magnets. The focal length of
one half pole in the horizontal deflecting plane is from (7.60)

1

fx
D
Z �p=4

0

�0
x� dzC �x0 ıf ; (7.78)

where the pole face rotation angle � has been assumed to be small and of the order
of the wiggler deflection angle per pole (Fig. 7.13). With �x D �x0 cos kpz the field
slope is

�0
x D �x0kp sin kpz (7.79)

and after integration of (7.78), the focal length for the focusing of a wiggler half
pole is

1

fx
D �x0 .ıf C �/ ; (7.80)

where ıf is given by (7.56) and in the case of a wiggler magnet is equal to the
deflection angle of a half pole. In the case of a rectangular wiggler pole � D �ıf

and the focusing in the deflecting plane vanishes as we would expect. In the
nondeflecting plane (7.53) applies and the focal length is for small angles � and ı

1

fy
D �

Z �p=4

0

�0
xŒ�C ı.Nz/� dNz : (7.81)

The focal length per wiggler half pole is after integration

1

fy
D ��x0.�C ıf/� �

4
�x0 ıf : (7.82)

Here again setting � D �ıf restores the result obtained in (7.77).
The focusing in each single wiggler pole is rather weak and we may apply thin

lens approximation to derive the transformation matrices. For this we consider the
focusing to occur in the middle of each wiggler pole with drift spaces of length �p=4
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on each side. With 2=f being the focal length of a full pole in either the horizontal
plane (7.80) or vertical plane (7.82) the transformation matrix for each wiggler pole
is finally

Mpole D
�
1 �p=4

0 1

��
1 0

�2=f 1

��
1 �p=4

0 1

�
(7.83)

D
0@1 � �p

2 f
�p

f

�
1 � �p

4 f

�
� 2f 1 � �p

2 f

1A�  1 1
2
�p

� 2f 1

!
;

where the approximation �p � f was used. For a wiggler magnet of length Lw D
1
2
N�p; we have N poles and the total transformation matrix is

Mwiggler DMN
pole : (7.84)

This transformation matrix can be applied to each plane and any pole rotation
angle �. Specifically, we set � D �K=� for a rectangular pole shape and � D 0 for
pole rotations orthogonal to the path like in sector magnets.

7.3.7 Hard-Edge Model of Wiggler Magnets

Although the magnetic properties of wiggler magnets are well understood and easy
to apply it is nonetheless often desirable to describe the effects of wiggler magnets
in the form of hard-edge models. This is particularly true when numerical programs
are to be used which do not include the feature of properly modeling a sinusoidal
wiggler field. On the other hand accurate modeling is important since frequently
strong wiggler magnets are to be inserted into a beam transport lattice.

For the proper modeling of linear wiggler magnet properties we choose three
conditions to be fulfilled. The deflection angle for each pole should be the same
as that for the equivalent hard-edge model. Similarly the edge focusing must be
the same. Finally, like any other bending magnet in an electron circular accelerator,
a wiggler magnet also contributes to quantum excitation and damping of the beam
emittance and beam energy spread. The quantum excitation is in first approximation
proportional to the third power of the curvature while the damping scales like the
square of the curvature similar to focusing.

Considering now a wiggler field

B.z/ D B0 sin kpz ; (7.85)

we try to model the field for a half pole with parallel endpoles by a hard-edge
magnet. Three conditions should be met. The deflection angle of the hard-edge
model of length ` and field B must be the same as that for a wiggler half pole,
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Fig. 7.14 Hard edge model
for a wiggler magnet period
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Here we use 	h for the bending radius of the equivalent hard-edge model and 	0
for the bending radius at the peak wiggler field B0. The edge focusing condition can
be expressed by

1

f
D `h

	2h
D 1

	20

Z
halfpole

sin2 kpz dz D �p

8	20
: (7.87)

Modeling a wiggler field by a single hard-edge magnet requires in linear beam
optics only two conditions to be met which can be done with the two parameters
B.z/ and ` available. From (7.86), (7.87) we get therefore the hard-edge magnet
parameters (Fig. 7.14)

	h D 4
�
	0 and `h D 2

�2
�p: (7.88)

For a perfect modeling of the equilibrium energy spread and emittance due to
quantum excitation in electron storage rings we would also like the cubic term to be
the same

`h

	3h

‹D 1

	30

Z
halfpole

sin3 kpz dz D �p

3� 	30
: (7.89)

Since we have no more free parameters available, we can at this point only
estimate the mismatch. With (7.87), (7.88) we get from (7.89) the inequality

1

3�
¤ �

32
(7.90)

which indicates that the quantum excitation from wiggler magnets is not correctly
treated although the error is only about 8 %.



7.4 Elements of Beam Dynamics 205

Similarly, one could decide that the quadratic and cubic terms must be equal
while the deflection angle is let free. This would be a reasonable assumption since
the total deflection angle of a wiggler is compensated anyway. In this case the
deflection angle would be underestimated by about 8 %. Where these mismatches
are not significant, the simple hard-edge model (7.89) can be applied. For more
accuracy the sinusoidal wiggler field must be segmented into smaller hard-edge
magnets.

7.4 Elements of Beam Dynamics

The most basic elements of a beam transport line are drift spaces, bending magnets
and focusing magnets or quadrupoles. Obviously, in a drift space of length `

the electric or magnetic field vanishes. Bending magnets act as beam guidance
devices while quadrupoles will focus the beam. In the following section, we will
discuss building blocks made up of bending magnets and quadrupoles, which exhibit
features known from light optics thus justifying our extensive use of terminology
from optics in particle beam dynamics.

7.4.1 Building Blocks for Beam Transport Lines

With special arrangements of bending and focusing magnets it is possible to
construct lattice sections with particular properties. We may desire a lattice section
with specific chromatic properties, achromatic or isochronous sections. In the next
paragraphs we will discuss such lattice elements with special properties.

General Focusing Properties

The principal solutions and some elements of transformation matrices through an
arbitrary beam transport line can reveal basic beam optical properties of this beam
line. A close similarity to paraxial light optics is found in the matrix element C0.z/.
As shown schematically in Fig. 7.15, parallel trajectories

�
u0

0 D 0
�

are deflected
by the focusing system through the matrix element C0.z/ and emerge with a slope
u0.z/ D C0.z/ u0.

From light optics we know that �u0=u0.z/ is defined as the focal length of the
system. In analogy, we define therefore also a focal length f for a composite focusing
system by setting

f �1 D C0.z/: (7.91)

The focal point is defined by the condition u .zf/ D 0 and is, therefore, located
where the cosine like solution becomes zero or C.zf/ D 0.
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Fig. 7.16 Point to point imaging

More similarities with paraxial light optics can be identified. Point to point
imaging, for example, is defined in particle beam optics by the sine like function
S.z/, starting at the object plane at z D z0. The image point is located where the
sine-like function crosses again the reference axis or where S.ziC z0/ D 0 as shown
in Fig. 7.16.

By definition such a section of a beam transport system has a betatron phase
advance of 180ı. The beam size or object size H0 at z0 is transformed by the
cosine like function to become at the image point H.zi/ D jC.zi C z0/jH0 and
the magnification of the beam optical system is given by the absolute value of the
cosine like function at the image point

M D jC.zi C z0/j: (7.92)

Chromatic Properties

Very basic features can be derived for the chromatic characteristics of a beam
transport line. In (5.81), we have already derived the dispersion function

D.z/ D S.z/
Z z

0
�.Qz/C.Qz/ dQz � C.z/

Z z

0
�.Qz/ S.Qz/ dQz : (7.93)
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From this expression we conclude that there is dispersion only if at least one
of the two integrals in (7.93) is nonzero. That means only dipole fields can cause
a dispersion as a consequence of the linear chromatic perturbation term �ı. All
other perturbation terms in (6.95), (6.96) are of higher order in ı or depend on
the transverse particle coordinates and therefore contribute only to higher order
corrections of the dispersion function.

Specifically, we find from (5.26) the lowest order chromatic quadrupole pertur-
bation to be kxı. Since any arbitrary particle trajectory is composed of an energy
independent part xˇ and an energy dependent part Dı, expressed by x D xˇ C Dı;
we find the lowest chromatic quadrupole perturbation to the dispersion function to
be the second order term kDı2 which does not contribute to linear dispersion.

While some dispersion cannot be avoided in beam transport systems where
dipole magnets are used, it is often desirable to remove this dispersion at least in
some parts of the beam line. As a condition for that to happen at say z D zd, we
require that D.zd/ D 0. From ( 7.93) this can be achieved if

S.zd/

C.zd/
D
R zd

0 � .Qz/ S .Qz/ dQzR zd
0 � .Qz/C .Qz/ dQz ; (7.94)

a condition that can be met by proper adjustments of the focusing structure.

Achromatic Lattices

A much more interesting case is the one, where we require both the dispersion
and its derivative to vanish, D.zd/ D 0 and D0.zd/ D 0. In this case we have no
dispersion function downstream from the point z D zd up to the point, where the
next dipole magnet creates a new dispersion function. The conditions for this to
happen are

D.zd/ D 0 D �S.zd/ Ic C C.zd/ Is ;

D0.zd/ D 0 D �S0.zd/ Ic C C0.zd/ Is;
(7.95)

where we have set Ic D
R zd

0 �C dQz and Is D
R zd

0 �S dQz. We can solve (7.95) for Ic or
Is and get

ŒC.zd/ S0.zd/� S.zd/C0.zd/� Ic D 0 ;
ŒC.zd/ S0.zd/� S.zd/C0.zd/� Is D 0 : (7.96)

Since C.zd/S0.zd/ � S.zd/C0.zd/ D 1, the conditions for a vanishing dispersion
function are

Ic D
R zd

0 �.Qz/C.Qz/ dQz D 0 ;
Is D

R zd
0 �.Qz/ S.Qz/ dQz D 0 : (7.97)
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A beam line is called a first order achromat or short an achromat if and only if
both conditions (7.97) are true. The physical characteristics of an achromatic beam
line is that at the end of the beam line, the position and the slope of a particle
trajectory is independent of the energy.

7.4.2 Isochronous Systems

For the accelerating process we will find that the knowledge of the path length is
of great importance. The path length L of any arbitrary particle trajectory can be
derived by integration to give

L D
Z

ds D
Z L0

0

ds

dQz dQz D
Z L0

0

q
x0 2 C y0 2 C .1C �xx/2 dQz ; (7.98)

where L0 is the length of the beam line along the ideal reference path. For simplicity
we have ignored a vertical deflection of the beam. The path length variation due to
a vertical bend would be similar to that for a horizontal bend and can therefore be
easily derived form this result. Since x0; y0 and �xx are all small compared to unity,
we may expand the square root and get in keeping only second order terms

L D
Z L0

0
Œ1C �x xC 1

2
.x0 2 C y0 2 C �2x x2/� dQzCO.3/ : (7.99)

Utilizing (5.83) we get from (7.99) for the path length difference

.L � L0/sectorD x0

Z L0

0
�x.Qz/C.Qz/ dQzC x0

0

Z L0

0
�x.Qz/S.Qz/ dQz (7.100)

Cı
Z L0

0
�x.Qz/D.Qz/ dQz :

The variation of the path length has two contributions. For ı D 0 the path length
varies due to the curvilinear coordinate system, where dipole fields exist. This is a
direct consequence of the coordinate system which selects a sector magnet as its
natural bending magnet. The ideal path enters and exits this type of dipole magnet
normal to its pole face as shown in Fig. 7.17. It becomes obvious from Fig. 7.17
that the path length difference depends on the particle position with respect to the
reference path and is in linear approximation

d` D ` � `0 D .	0 C x/ d' � 	0 d' : (7.101)
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indeal path

individual trajectory
sector magnet

dϕ

dl

x

Fig. 7.17 Path length in a sector magnet

dϕ

ηe< 0η0>0

Fig. 7.18 Path length in a wedge magnet

Figure 7.18 displays the general situation for a wedge magnet with arbitrary
entrance and exit pole face angles. The path length differs from that in a sector
magnet on either end of the magnet. The first integral in (7.100) therefore must
be modified to take into account the path length elements in the fringe field. For a
wedge magnet we have therefore instead of (7.100)

.L � L0/wedgeD x0

Z L0

0
�x.Qz/C.Qz/ dQz

C ŒC.z0/x0 C 	0��0 C ŒC.ze/x0 C 	0��e

� x0C.z0/ tan �0 � x0 C.ze/ tan �e

C x0
0

Z L0

0
�x.Qz/S.Qz/ dQzC ı

Z L0

0
�x.Qz/D.Qz/ dQz (7.102)

� .L � L0/sector CO.2/ :

Here ŒC.z/ x0 C 	0� � is the arc length through the wedge-like deviations from a
sector magnet which must be compensated by the decrease or increase C.z/ x0 tan �
in the adjacent drift space. For small edge angles both terms compensate well and
the total path length of a wedge magnet is similar to that of a sector magnet. In
general we therefore ignore path length variations in wedge magnets with respect to
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sector magnets as well as those in the adjacent drift spaces. For large edge angles,
however, this assumption should be reconsidered.

Equation (7.100) imposes quite severe restrictions on the focusing system if the
path length is required to be independent of initial condition and the energy. Since
the parameters x0; x0

0 and ı are independent parameters for different particles, all
three integrals in (7.100) must vanish separately. An isochronous beam transport
line must therefore be a first order achromat (7.97) with the additional condition
that

R
�x D dQz D 0.

For highly relativistic particles .ˇ � 1/ and this condition is equivalent to being
an isochronous beam line. In general, any beam line becomes isochronous if we
require the time of flight rather than the path length to be equal for all particles.
In this case we have to take into account the velocity of the particles as well as its
variation with energy. The variation of the particle velocity with energy introduces
in (7.100) an additional chromatic correction and the variation of the time of flight
becomes

ˇc.T � T0/ D x0 Ic C x0
0 Is C ı.Id � ��2/ : (7.103)

In straight beam lines, where no bending magnets are involved, (7.103) vanishes
and higher than linear terms must be considered. From (7.99) it is obvious that
the bending independent terms are quadratic in nature and therefore isochronicity
cannot be achieved exactly since

ˇcT D
Z L0

0
.x0 2 C y0 2/dQz > 0 : (7.104)

This integral is positive for any particle oscillating with a finite betatron amplitude.
A straight beam transport line is therefore an isochronous transport system only in
first order.

Problems

7.1 (S). Sketch a quadrupole doublet and draw the sine- and cosine-like trajectories
through the quadrupole doublet to the focal point for the horizontal and vertical
plane. Verify that (7.20) is indeed true. (hint: first define from where to where you
need to measure the combined focal length f /:

7.2 (S). Consider a thin quadrupole doublet with a drift space of 1 m between them.
The quadrupole strengths are to be adjusted to make a focal point in both planes
at a point 5 m from the second quadrupole. Determine the quadrupole strengths
and calculate the combined doublet focal length in both planes. Sketch the doublet
focusing and define in this sketch the calculated combined focal lengths.
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7.3 (S). Consider a quadrupole doublet made of thin lenses. a) Calculate the focal
length of a quadrupole doublet with jf1j D jf2j D 5m and a distance between the
magnets of d D 1m. Plot for this doublet the focal length as a function of particle
momentum�5% < p=p < 5%. b) Use a parallel beam of radius r0 and maximum
divergence r0 and calculate the beam radius r at the focal point of this doublet. c)
Plot the magnification r=r0 as a function of momentum�5% < p=p < 5%. What
is the chromatic aberration .r � r0/ =r0 of the spot size?

7.4 (S). Sector and rectangular magnets have opposite focusing properties. Deter-
mine the geometry of a wedge magnet with equal focusing in both planes (ignore
the gap effect).

7.5 (S). In an arbitrary open beam transport line, we assume that at the point z0 the
particle beam is kicked in the horizontal or vertical plane by the deflection angle
# . What is the betatron amplitude for the beam at any point z downstream from z0?
To maximize the betatron amplitude at z how should the lattice functions, betatron
function and/or phase, be chosen at z0 and z?

7.6 (S). Design a beam bump within three cells of a symmetric FODO lattice 1
2
QF1-

QD1-QF2-QD2-QF3-QD3- 12QF4 with a betatron phase advance  F D 90ı per cell.
Further assume there are special coils in the quadrupoles to produce dipole fields
which can be used to deflect the beam. a) Construct a symmetric beam bump which
starts at QF1, ends at QF4 and reaches an amplitude AM D 2 cm in the center of
QD2. How many trim coils need to be activated? b) Derive the relative kick angles
required to construct the beam bump and calculate the beam displacement in each
quadrupole. Is AM the maximum amplitude of the beam bump? Why? Why not?
(hint: do not use betatron and phase functions, but use thin lens approximation)

7.7. a) Design a symmetric thin lens triplet with a focal point for both planes at the
same point z D zf: b) Calculate and plot the betatron function for the quadrupole
triplet and some drift space extending beyond the focal point. The value for the
betatron function be ˇ D 8m at the entrance to the triplet z D 0 where we also
assume ˛ D 0 c) Derive the phase advance in one plane between z D 0 and z D zf

both from the elements of the transformation matrix and by integrating the betatron
function. Both method should give the same results. (note: do the integration roughly
from the drawing of the betatron function with linear interpolation).
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Chapter 8
Particle Beams and Phase Space

The solution of the linear equations of motion allows us to follow a single charged
particle through an arbitrary array of magnetic elements. Often, however, it is
necessary to consider a beam of many particles and it would be impractical to
calculate the trajectory for every individual particle. We, therefore, look for some
representation of the whole particle beam.

To learn more about the collective motion of particles, we observe their dynamics
in phase space. Each particle at any point along a beam transport line is represented
by a point in six-dimensional phase space with coordinates .x; px; y; py; s;E/ where
px � p0 x0 and py � p0 y0 are the transverse momenta with cp0 D ˇE0, s the
coordinate along the individual trajectory, E0 the ideal particle energy and E the
particle energy. Instead of the energy E often the momentum cp or the momentum
deviation from the ideal momentum p D p � p0 or the relative momentum
deviationp=p0 may be used. We use the momentum to study particle dynamics in
the presence of magnetic field. In accelerating systems, like linear accelerators, the
use of the particle’s kinetic energy is more convenient. Similarly, when the beam
energy stays constant, we use instead of the transverse momenta rather the slope
of the trajectories x0; y0 which are proportional to the transverse momenta and are
generally very small so we may set sin x0 � x0, etc.

The coupling between the horizontal and vertical plane is being ignored in linear
beam dynamics or treated as a perturbation as is the coupling between transverse
and longitudinal motion. Only the effect of energy errors on the trajectory will be
treated in this approximation. First, however, we setE D 0 and represent the beam
by its particle distribution in the horizontal .x; x0/ or vertical .y; y0/-phase space
separately. Because of the absence of coupling between degrees of freedom in this
approximation we may split the six-dimensional phase space into three independent
two-dimensional phase planes.
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214 8 Particle Beams and Phase Space

8.1 Beam Emittance

Particles in a beam occupy a certain region in phase space which is called the
beam emittance and we define three independent two-dimensional beam emittances.
Their numerical values multiplied by � are equal to the area occupied by the beam
in the respective phase plane. The beam emittance is a measure of the transverse
or longitudinal temperature of the beam and depends on the source characteristics
of a beam or on other effects like quantized emission of photons into synchrotron
radiation and its related excitation and damping effects.

A simple example of a beam emittance and its boundaries is shown in Fig. 8.1,
where particles emerge from a disk with radius w and where the direction of the
particle trajectories can be anywhere within˙90ı with respect to the surface of the
source. The proper phase space representation of this beam at the surface of the
source is shown in Fig. 8.1(left). All particles are contained in a narrow strip within
the boundaries xmax D ˙w but with a large distribution of transverse momenta
(px D p0 tan x0).

Any real beam emerging from its source will be clipped by some aperture
limitations of the vacuum chamber. We assume a simple iris as the aperture
limitation located at a distance d from the source and an opening with a radius
of R D w. The fact that we choose the iris aperture to be the same as the size of the
source is made only to simplify the arguments. Obviously many particles emerging
from the source will be absorbed at the iris. The part of the beam which passes the
iris occupies a phase space area at the exit of the iris like the shaded area shown
in Fig. 8.1 (right). Among all particles emerging from the source with an amplitude
x D ˙w only those will pass the iris for which the slope of the trajectory is between
x0 D 0 and x0 D � 2w=`. This beam now has a measurable beam emittance as
determined by the source and iris aperture.

w

z

x'

x
w-w

phase space
representation

w

z

x'

x

w-w

phase space 
representation

iris

w/d

-w/d

Fig. 8.1 Beam from a diffuse source in real space and in phase space (left). Reduction of phase
space (shaded area) due to beam restriction by an iris aperture (right)
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The concept of describing a particle beam in phase space will become very
powerful in beam dynamics since we can prove that the density of particles in
phase space does not change along a beam transport line, where the forces acting
on particles can be derived from macroscopic electric and magnetic fields. In other
words particles that are within a closed boundary in phase space at one point of
the beam line stay within that boundary. This is Liouville’s theorem which we will
prove for the fields used in beam dynamics.

8.1.1 Liouville’s Theorem*

In Chap. 7 we have learned to follow individual particles through an arbitrary beam
transport line made up of drift spaces, dipole and quadrupole magnets. Since this is
true for any particle with known initial parameters .x0; x0

0; y0; y
0
0/ it is in principle

possible to calculate trajectories along a beam line for a large number of particles
forming a particle beam. This is impractical, and we are therefore looking for more
simple mathematical methods to describe the beam as a whole. To this end, we make
use of methods in statistical mechanics describing the evolution of a large number
of particles forming a particle beam.

Liouville’s theorem is of specific importance in this respect and we will use it
extensively to describe the properties of a particle beam as a whole. This theorem
states that under the influence of conservative forces the particle density in phase
space stays constant. Since ((7.1), (7.2)) is equivalent to the equation of a free
harmonic oscillator, we know that the motion of many particles in phase space
follow Liouville’s theorem. A more direct proof of the validity of Liouville’s
theorem in particle beam dynamics can be obtained by observing the time evolution
of an element in the six-dimensional phase space.

If � is the particle density in phase space, the number of particles within a six-
dimensional, infinitesimal element is

�.x; y; z; px; py; pz/ dx dy dz dpx dpy dpz: (8.1)

The phase space current created by the motion of these particles is

j D .� Px; � Py; � Pz; � Ppx; � Ppy; � Ppz/; (8.2)

where the time derivatives are to be taken with respect to a time � measured along
the trajectory of the phase space element. This time is to be distinguished from the
reference time t along the reference orbit in the same way as we distinguish between
the coordinates s and z. We set therefore Px D dx=d� , etc. The phase space current
must satisfy the continuity equation

r jC @�

@�
D 0: (8.3)
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From this, we get with (8.2) and the assumption that the particle location does not
depend on its momentum and vice versa

�@�
@�
Dr r.� Pr/Cr p.� Pp/ (8.4)

DPr r r� C � .r r Pr/CPp rp� C � .r p Pp/;

where r r D
�
@
@x ;

@
@y ;

@
@z

�
and rp D

�
@
@px
; @
@py
; @
@pz

�
. The time derivative of the space

vector r

Pr
c
D cpp

c2p2 C m2c4
; (8.5)

does not depend on the location r; and we have therefore

r r Pr D 0: (8.6)

From the Lorentz force equation we get

r p Pp D e rpŒPr � B� D e B .rp � Pr/� e Pr .rp � B/: (8.7)

The magnetic field B does not depend on the particle momentum p and therefore
the second term on the right hand side of (8.7) vanishes. For the first term, we find
rp�Pr D 0 because .r p�Pr/x D @Pz

@py
� @Py

@pz
and @Pz

@py
D c @

@py

pzp
p2Cm2c2

D c py pz

.p2Cm2c2/3=2
D

@Py
@pz
; where we have used p2 D p2x C p2y C p2z . We get a similar result for the other

components and have finally for (8.7)

rp Pp D 0: (8.8)

With these results, we find from (8.4) the total time derivative of the phase space
density � to vanish

@�

@�
C r r� PrC r p� Pp D d�

d�
D 0; (8.9)

proving the invariance of the phase space density � .
Independent from general principles of classical mechanics we have shown

the validity of Liouville’s theorem for the motion of charged particles under the
influence of Lorentz forces. This is obviously also true for that part of the Lorentz
force that derives from an electrical field since

r p Pp D e rpE D 0 (8.10)

because the electric field E does not depend on the particle momentum.
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The same result can be derived in a different way from the property of the
Wronskian in particle beam dynamics. For that, we assume that the unit vectors
u1;u2 : : : ;u6 form a six-dimensional, orthogonal coordinate system. The determi-
nant formed by the components of the six vectors x1; x2; : : : ; x6 in this system is
equal to the volume of the six-dimensional polygon defined by the vectors xi. The
components of the vectors xi with respect to the base vectors uj are xij and the
determinant is

D D

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

x11 x12 x13 x14 x15 x16
x21 x22 x23 � � � � � � � � �
x31 x32 � � � � � � � � � � � �
x41 � � � � � � � � � � � � � � �
x51 � � � � � � � � � � � � � � �
x61 � � � � � � � � � � � � x66

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ
D jx1; x2; x3; x4; x5; x6j: (8.11)

We will derive the transformation characteristics of this determinant considering a
transformation

yi DM xj; (8.12)

where M D .aij/ and the determinant (8.11) then transforms like

j y1; y2 : : : ; y6 jD
ˇ̌̌̌
ˇ̌ 6X
j1D1

a1j1 xj1 ;

6X
j1D1

a2j2 xj2 ; : : :

6X
j1D1

a6j6 xj6

ˇ̌̌̌
ˇ̌

D
6X

a1j1 a2j2 : : : a6j6 j xj1 ; xj2 ; : : : xj6 j: (8.13)

The determinant j xj1 ; xj2 ; : : : xj6 j is equal to zero if two or more of the indices ji
are equal and further the determinant changes sign if two indices are interchanged.
These rules lead to

j y1; y2 : : : ; y6 j D
6X

jiD1
�j1j2:::j6 a1j1 a2j2 : : : a6j6 j x1; x2; : : : ; x6 j; (8.14)

where

�j1; j2 ::: j6 D
8<:
C1 for even permutations of the indices ji
�1 for odd permutations of the indices ji
0 if any two indices are equal.

(8.15)
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The sum
P6

jiD1 �j1j2:::j6 a1j1 a2j2 : : : a6j6 is just the determinant of the transformation
matrix M and finally we get

j y1; y2 : : : ; y6 j D jMj jx1; x2; : : : ; x6j: (8.16)

For a particle beam transport line, however, we know that jMj is the Wronskian
with

W D jMj D 1: (8.17)

If we now identify this six-dimensional space with the six-dimensional phase space,
we see from (8.16) and (8.17) that the phase space under the class of transformation
matrices considered in beam dynamics is constant. Conversely, if W 6D 1, we would
get a change in phase space.

8.1.2 Transformation in Phase Space

Liouville’s theorem provides a powerful tool to describe a beam in phase space.
Knowledge of the area occupied by particles in phase space at the beginning of a
beam transport line will allow us to determine the location and distribution of the
beam at any other place along the transport line without having to calculate the
trajectory of every individual particle.

In the previous paragraph, we found that the phase space density is a constant
under the assumed forces. There are three space and three momentum coordinates.
In beam dynamics, we often use trajectory slopes instead of transverse momenta.
Similar relations exist for other coordinates. Using slopes instead of momenta
preserves the phase space density only as long as p0 is a constant, which is true
in most beam dynamics calculations. We distinguish therefore two definitions of
the beam emittance, the normalized emittance �n based on space-momentum phase
space and the geometric emittance � based on space-slope phase space. Both are
related by

�n D ˇ��;

where � is the relativistic factor and ˇ D v=c the relative particle velocity.
In beam dynamics it has become customary to surround all particles of a beam

in phase space by an ellipse called the phase ellipse (Fig. 8.2) described by

�x2 C 2˛xx0 C ˇx02 D �; (8.18)

where ˛; ˇ; � and � are ellipse parameters. This seemingly arbitrary boundary will
soon gain physical significance. The area enclosed by the ellipse is called the
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Fig. 8.2 Phase space ellipse
tan

area:A =

-

-

geometric beam emittance �1 defined byZ
ellipse

dx dx0 D ��; (8.19)

while the parameters ˛; ˇ and � determine the shape and orientation of the ellipse.
This characterization of the beam emittance by the area of an ellipse seems at
first arbitrary although practical. Later in Sect. 8.2, we will see that all particles
travel along their individual ellipses in phase space. If we now choose that or those
particles on the largest phase ellipse within a particular beam, we know that all
other particles within that ellipse will stay within that ellipse. We are thereby able
to describe the collective behavior of a beam formed by many particles by the
dynamics of a single particle.

Since all particles enclosed by a phase ellipse stay within that ellipse, we only
need to know how the ellipse parameters transform along the beam line to be able
to describe the whole particle beam. Let the equation

�0x
2
0 C 2˛0x0x0

0 C ˇ0x02
0 D � (8.20)

be the equation of the phase ellipse at the starting point z D 0 of the beam line.
Any particle trajectory transforms from the starting point z D 0 to any other point

z 6D 0 by the transformation

�
x .z/
x0 .z/

�
D
�

C.z/ S.z/
C0.z/ S0.z/

��
x0
x0
0

�
. Solving for x0 and

x0
0 and inserting into (8.20), we get after sorting of coefficients and stopping to show

1The literature is not always uniform in the representation of numerical values for the beam
emittance. Often the beam emittance is quoted in units of �-mm-mrad and it is not always clear if
the factor � is included in the numerical value or not. We define in this book the beam emittance
as the beam phase space area divided by � in accordance with Hamiltonian dynamics.
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explicitly the .z/-dependence

� D .C02ˇ0 � 2 S0C0˛0 C S02�0/ x2 (8.21)

C 2 .�CC0ˇ0 C S0C ˛0 C SC0˛0 � S S0�0/ x x0

C .C2ˇ0 � 2 S C ˛0 C S2�0/ x02:

This equation can be brought into the form (8.18) by replacing the coefficients in
(8.21) with

� D C02ˇ0 � 2S0C0˛0 C S02�0;

˛ D �CC0ˇ0 C .S0CC SC0/˛0 � S S0�0; (8.22)

ˇ D C2ˇ0 � 2S C˛0 C S2�0:

The resulting ellipse equation still has the same area � � as we would expect, but
due to different parameters �; ˛; ˇ, the new ellipse has a different orientation and
shape. During a transformation along a beam transport line the phase ellipse will
continuously change its form and orientation but not its area. In matrix formulation
the ellipse parameters, which are also called Twiss parameters [11], transform from
(8.22) like 0@ˇ .z/˛ .z/

� .z/

1A D
0@ C2 �2CS S2

�CC0 CS0 C C0S �SS0
C0 2 �2C0S0 S0 2

1A0@ˇ0˛0
�0

1A : (8.23)

The orientation, eccentricity and area of an ellipse is defined by three parameters,
while (8.20) includes four parameters ˛; ˇ; � and �. Since the area is defined by �
we expect the other three parameters to be correlated. From geometric properties of
an ellipse we find that correlation to be

ˇ � � ˛2 D 1: (8.24)

So far, we have used only the (x; x0)-phase space, but the results are valid also for the
(y; y0)-phase space. Equation (8.23) provides the tool to calculate beam parameters
anywhere along the beam line from the initial values ˇ0; ˛0; �0.

The phase ellipse in a drift space, for example, becomes distorted in a clock
wise direction without changing the slope of any particle as shown in Fig. 8.3. If the
drift space is long enough a convergent beam transforms eventually into a divergent
beam, while the angular envelope A D x0

max D p�� stays constant. The point zw at
which the beam reaches its minimum size is determined by ˛.zw/ D 0 and we get
from (8.23) for the location of a beam waist in a drift section.

` D zw � z0 D ˛0

�0
: (8.25)
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Fig. 8.3 Transformation of a phase space ellipse at different locations along a drift section
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Fig. 8.4 Transformation of a phase ellipse due to a focusing quadrupole. The phase ellipse is
shown at different locations along a drift space downstream from the quadrupole

This point of minimum beam size is up or downstream of z D z0 depending on the
sign of ˛0 being negative or positive, respectively.

More formally, the transformation through a simple drift space of length ` is0@ˇ .`/˛ .`/

� .`/

1A D
0@1 �2` `2

0 1 �`
0 0 1

1A0@ˇ0˛0
�0

1A ; (8.26)

which describes, for example, the transition of a convergent phase ellipse to a
divergent phase ellipse as shown in Fig. 8.4. Particles in the upper half of the
phase ellipse move from left to right and particles in the lower half from right to
left. During the transition from the convergent to divergent phase ellipse we find
an upright ellipse which describes the beam at the location of a waist. The form
and orientation of the phase ellipse tells us immediately the characteristics beam
behavior. Convergent beams are characterized by a rotated phase ellipse extending
from the left upper quadrant to the lower right quadrant while a divergent beam
spreads from the left lower to the right upper quadrant. A symmetric phase ellipse
signals the location of a waist or symmetry point.
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A divergent beam fills, after some distance, the whole vacuum chamber aperture
and in order not to lose beam a focusing quadrupole must be inserted. During the
process of focusing a diverging beam entering a focusing quadrupole reaches a
maximum size and then starts to converge again. This transformation, generated by
a focusing quadrupole is shown in Fig. 8.4, where we recognize slopes of particle
trajectories to reverse signs thus forming a convergent beam.

After this step, the beam may develop as shown for a drift space until the next
focusing quadrupole is required. In reality this focusing scenario is complicated
by the fact that we need also vertical focusing which requires the insertion of
defocusing quadrupoles as well.

8.1.3 Beam Matrix

Particle beams are conveniently described in phase space by enclosing their
distribution with ellipses. Transformation rules for such ellipses through a beam
transport system have been derived for a two-dimensional phase space and we
expand here the discussion of phase space transformations to more dimensions. The
equation for an n-dimensional ellipse can be written in the form

uT� �1u D 1; (8.27)

where the symmetric matrix � is still to be determined, uT is the transpose of the
coordinate vector u defined by

u D

0BBBBBBBBBB@

x
x0
y
y0
�

ı
:::

1CCCCCCCCCCA
: (8.28)

The volume of this n-dimensional ellipse is

Vn D �n=2

� .1C n=2/

p
det � ; (8.29)

where � is the gamma function. Applying (8.27) to the two dimensional phase
space, we get for the ellipse equation

�11 x2 C 2 �12 x x0 C �22 x02 D 1 (8.30)
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and comparison with (8.18) defines the beam matrix with well known beam
parameters as

� D
�
�11 �12

�21 �22

�
D �2

�
ˇ �˛
�˛ �

�
: (8.31)

Since only three of the four parameters in the beam matrix � are independent, we
find that �21 D �12. This identification of the beam matrix can be expanded to six
or arbitrary many dimensions including, for example, spin or coupling terms which
we have so far neglected. The two-dimensional “volume” or phase space area is

V2 D �
p

det � D �
q
�11 �22 � �212 D �� (8.32)

consistent with the earlier definition of beam emittance, since ˇ� � ˛2 D 1.
The definition of the beam matrix elements are measures of the particle distri-

bution in phase space. As such, we would expect different definitions for different
distributions. Since most particle beams have a Gaussian or bell shaped distribution,
however, we adopt a uniform definition of beam matrix elements. The betatron
oscillation amplitude for a particular particle and its derivative is described by

xi D ai

p
ˇ cos . C  i/ ; (8.33)

x0
i D ai

ˇ0

2
p
ˇ

cos . C  i/� ai
1p
ˇ

sin . C  i/ : (8.34)

We form now average values of all particles within a well defined fraction of a beam
and get

˝
x2i
˛ D ˝a2i cos2 . C  i/

˛
ˇ D 1

2

˝
a2i
˛
ˇ D �ˇ; (8.35)

˝
x02

i

˛ D ˝a2i ˛ ˛2ˇ 1
2
C ˝a2i ˛ 1ˇ 1

2
D 1

2

˝
a2i
˛ 1C ˛2

ˇ
D ��; (8.36)˝

xi x0
i

˛ D � ˝a2i ˛˛ 12 D ��˛; (8.37)

where we have assumed a Gaussian particle distribution and a beam emittance
defined by � D ˝

a2i sin2 . �  i/
˛
. This definition describes that part of the beam

which is within one standard deviation of the distribution in multidimensional phase
space. The beam matrix elements are finally defined by

�11 D
˝
x2i
˛ D �ˇ;

�22 D
˝
x02

i

˛ D ��; (8.38)

�12 D
˝
xi x0

i

˛ D ��˛:
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With this definition the beam emittance can be expressed by

�2 D �11�22 � �212 D
˝
x2i
˛ ˝

x02
i

˛ � ˝xix
0
i

˛2
: (8.39)

This definition is generally accepted also for any arbitrary particle distribution.
Specifically, beams from linear accelerators or proton and ion beams can have
arbitrary distributions.

Similar to the two-dimensional case, we look for the evolution of the n
dimensional phase ellipse along a beam transport line. With M.P1jP2/ the n � n
transformation matrix from point P0 to P1 we get u1 D M.P1jP0/ u0 and the
equation of the phase ellipse at point P1 is

.M�1u1/T� �1
0 .M�1u1/ D uT

1� �1
1 u1 D 1: (8.40)

With
�MT

��1
� �1
0 M�1 D ŒM� 0MT ��1 the beam matrix transforms therefore like

� 1 DM� 0MT : (8.41)

This formalism will be useful for the experimental determination of beam emit-
tances.

Measurement of the Beam Emittance

The ability to manipulate in a controlled and measurable way the orientation and
form of the phase ellipse with quadrupoles gives us the tool to experimentally
determine the emittance of a particle beam. Since the beam emittance is a measure
of both the beam size and beam divergence, we cannot directly measure its value.
While we are able to measure the beam size with the use of a fluorescent screen, for
example, the beam divergence cannot be measured directly. If, however, the beam
size is measured at different locations or under different focusing conditions such
that different parts of the ellipse will be probed by the beam size monitor, the beam
emittance can be determined.

Utilizing the definition of the beam matrix in (8.31) we have

�11 �22 � �212 D �2 (8.42)

and the beam emittance can be measured, if we find a way to determine the beam
matrix. To determine the beam matrix �0 at point P0, we consider downstream
from P0 a beam transport line with some quadrupoles and beam size monitors like
fluorescent screens at three places P1 to P3. From (8.23) and (8.31) we get for the
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beam sizes �i;11 at locations Pi three relations of the form2

�i;11 D C2
i �0;11 C 2SiCi�0;12 C S2i �0;22 (8.43)

which we may express in matrix formulation by0@ �1;11�2;11
�3;11

1A D
0@C2

1 2C1S1 S21
C2
2 2C2S2 S22

C2
3 2C3S3 S23

1A0@ �0;11�0;12
�0;22

1A DM�

0@�0;11�0;12
�0;22

1A ; (8.44)

where Ci and Si are elements of the transformation matrix from point P0 to Pi and
�i;jk are elements of the beam matrix at Pi. Equation (8.44) can be solved for the
beam matrix elements �i;jk at P00@�0;11�0;12

�0;22

1A D .MT
�M�/

�1MT
�

0@ �1;11�2;11
�3;11

1A ; (8.45)

where the matrix M� is known from the parameters of the beam transport line
between P0 and Pi and MT

� is the transpose of it. The solution vector can be used in
(8.42) to calculate finally the beam emittance.

This procedure to measure the beam emittance is straight forward but requires
three beam size monitors at appropriate locations such that the measurements can
be conducted with the desired resolution. A much simpler procedure makes use of
only one beam size monitor at P1 and one quadrupole between P0 and P1. We vary
the strength of the quadrupole and measure the beam size at P1 as a function of the
quadrupole strength. These beam size measurements as a function of quadrupole
strength are equivalent to the measurements at different locations discussed above
and we can express the results of n beam size measurements by the matrix equation0BBB@

�1;11

�2;11
:::

�n;11

1CCCA D
0BBB@

C2
1 2C1S1 S21

C2
2 2C2S2 S22
:::

:::
:::

C2
n 2CnSn S2n

1CCCA
0@�0;11�0;12
�0;22

1A DM�;n

0@ �0;11�0;12
�0;22

1A : (8.46)

2Note: the sign of the cross term is different from (8.23) because �12 D �˛.
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This method of emittance measurement is also known as quad scan. Like in (8.45)
the solution is from simple matrix multiplications

0@�0;11�0;12
�0;22

1A D .MT
�;nM�;n/

�1MT
�;n

0BBB@
�1;11

�2;11
:::

�n;11

1CCCA : (8.47)

An experimental procedure has been derived which allows us to determine the
beam emittance through measurements of beam sizes as a function of focusing.
Practically, the evaluation of (8.47) is performed by measuring the beam size
�1;11.k/ at P1 as a function of the quadrupole strength k and comparing the results
with the theoretical expectation

�1;11.k/ D C2.k/�0;11 C 2C.k/S.k/�0;12 C S2.k/�0;22: (8.48)

By fitting the parameters �0;11; �0;12 and �0;22 to match the beam size measure-
ments, one can determine the beam emittance from (8.42). However, this procedure
does not guarantee automatically a measurement with the desired precision. To
accurately fit three parameters we must be able to vary the beam size considerably
such that the nonlinear variation of the beam size with quadrupole strength becomes
quantitatively significant. An analysis of measurement errors indicates that the beam
size at P0 should be large and preferable divergent. In this case variation of the
quadrupole strength will dramatically change the beam size at P1 from a large value
when the quadrupole is off, to a narrow focal point and again to a large value by
over focusing.

A most simple arrangement consists of a single quadrupole and a screen at a
distance d. Assuming that the length `q of the quadrupole is `q � d, we can use
thin lens approximation and the total transformation matrix is then�

1 � d=f d
�1=f 1

�
D
�
1 d
0 1

��
1 0

�1=f 1

�
: (8.49)

Equation (8.48) becomes

�1;11.k/ D
�
1 � d `qk

�2
�0;11 C 2

�
1 � d `qk

�
d �0;12 C d2�0;22

or after reordering

�1;11.k/ D
�

d2`2q�0;11

�
k2 C ��2d `q�0;11 � 2d2`q�0;12

�
k (8.50)

C ��0;11 C 2d �0;12 C d2�0;22
�
:
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Fitting �1;11.k/ with a parabola
�
ak2 C bkC c

�
will determine the whole beam

matrix �0 by

�0;11 D a

d2`2q
;

�0;12 D �b � 2d`q�0;11

2d2`q
; (8.51)

�0;22 D c � �0;11 � 2d�0;12

d2
:

The beam matrix not only defines the beam emittance but also the betatron
functions at the beginning of the quadrupole in this measurement. We gain with
this measurement a full set of initial beam parameters

�
˛0; ˇ0; �

0
0; �
�

and may now
calculate beam parameters at any point along the transport line.

8.2 Betatron Functions

The trajectory of a particle through an arbitrary beam transport system can be
determined by repeated multiplication of transformation matrices through each of
the individual elements of the beam line. This method is convenient especially for
computations on a computer but it does not reveal many properties of particle
trajectories. For deeper insight, we attempt to solve the equation of motion
analytically. The differential equation of motion is

u00 C k.z/ u D 0; (8.52)

where u stands for x or y and k.z/ is an arbitrary function of z resembling the
particular distribution of focusing along a beam line. For a general solution of (8.52)
we apply the method of variation of integration constants and use an ansatz with a
z-dependent amplitude and phase

u.z/ D p�pˇ.z/ cosŒ .z/ �  0�; (8.53)

which is similar to the solution of a harmonic oscillator with a constant coefficient k.
The quantities � and  0 are integration constants. From (8.53) we form first and
second derivatives with the understanding that ˇ D ˇ.z/;  D  .z/, etc.

u0D p� ˇ0

2
p
ˇ

cos. �  0/�
p
�
p
ˇ sin. �  0/  

0;

u00D p�ˇ ˇ
00 � 1

2
ˇ02

2 ˇ3=2
cos. �  0/ �

p
�
ˇ0p
ˇ

sin. �  0/  
0 (8.54)

��
p
ˇ sin. �  0/  

00 �p�
p
ˇ cos. �  0/  

02;
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and insert into (8.52). The sum of all coefficients of the sine and cosine terms
respectively must vanish separately to make the ansatz (8.53) valid for all phases  .
From this, we get the two conditions:

1
2
.ˇˇ00 � 1

2
ˇ02/� ˇ2 02 C ˇ2k D 0 (8.55)

and

ˇ0 0 C ˇ  00 D 0: (8.56)

Equation (8.56) can be integrated immediately since ˇ0 C ˇ  00 D .ˇ  0/0 for

ˇ  0 D const D 1; (8.57)

where a specific normalization of the phase function has been chosen by selecting
the integration constant to be equal to unity. From (8.57) we get for the phase
function

 .z/ D
Z z

0

dNz
ˇ.Nz/ C  0: (8.58)

Knowledge of the function ˇ.z/ along the beam line obviously allows us to
compute the phase function. Inserting (8.57) into (8.55) we get the differential
equation for the function ˇ.z/

1
2
ˇˇ00 � 1

4
ˇ02 C ˇ2k D 1; (8.59)

which becomes with ˛ D � 1
2
ˇ0 and � D .1C ˛2/=ˇ

ˇ00 C 2 kˇ � 2� D 0: (8.60)

The justification for the definition of � becomes clear below, when we make the
connection to ellipse geometry and (8.24).With ˛0 D � 1

2
ˇ00 this is equivalent to

˛0 D k ˇ � �: (8.61)

Before we solve (8.60) we try to determine the physical nature of the functions
ˇ.z/; ˛.z/, and �.z/. To do that, we note first that any solution that satisfies (8.60)
together with the phase function  .z/ can be used to make (8.53) a real solution
of the equation of motion (8.52). From that solution and the derivative (8.54) we
eliminate the phase . �  0/ and obtain a constant of motion which is also called
the Courant-Snyder invariant [4]

�u2 C 2˛ uu0 C ˇ u02 D �: (8.62)
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This invariant expression is equal to the equation of an ellipse with the area ��
which we have encountered in the previous section and the particular choice of
the letters ˇ; ˛; �; � for the betatron functions and beam emittance becomes now
obvious. The physical interpretation of this invariant is that of a single particle
traveling in phase space along the contour of an ellipse with the parameters ˇ; ˛,
and � . Since these parameters are functions of z however, the form of the ellipse
is changing constantly but, due to Liouville’s theorem, any particle starting on that
ellipse will stay on it. The choice of an ellipse to describe the evolution of a beam in
phase space is thereby more than a mathematical convenience. We may now select
a single particle to define a phase ellipse and know that all particles with lesser
betatron oscillation amplitudes will stay within that ellipse. The description of an
ensemble of particles forming a beam have thereby been reduced to that of a single
particle.

The ellipse parameter functions or Twiss parameters ˇ; ˛; � and the phase
function  are called the betatron functions or lattice functions or Twiss functions
and the oscillatory motion of a particle along the beam line (8.53) is called the
betatron oscillation. This oscillation is quasi periodic with varying amplitude and
frequency.

To demonstrate the close relation to the solution of a harmonic oscillator, we use
the betatron and phase function to perform a coordinate transformation

.u; z/ �! .w;  / (8.63)

by setting

w. / D u.z/p
ˇ.z/

and  D
Z z

0

dNz
ˇ.Nz/ ; (8.64)

where u.z/ stands for x.z/ and y.z/ respectively. The new coordinates .w;  / are
called normalized coordinates and equation of motion (8.52) transforms to

d2w

d 2
C w2 D 0; (8.65)

which indeed is the equation of a harmonic oscillator with angular frequency one.
This identity will be very important for the treatment of perturbing driving terms
that appear on the right hand side of (8.65) which will be discussed in more detail
in Sect. 8.3.1.

So far, we have tacitly assumed that the betatron function ˇ.z/ never vanishes or
changes sign. This can be shown to be true by setting q.z/ D p

ˇ.z/ and inserting
into (8.59). With ˇ0 D 2 q q0 and ˇ00 D 2 .q02Cq q00/ we get the differential equation

q00 C k q � 1

q3
D 0: (8.66)
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The term 1=q3 prevents a change of sign of q.z/. Letting q > 0 vary toward
zero q00 � 1=q3 !1. This curvature, being positive, will become arbitrarily large
and eventually turns the function q.z/ around before it reaches zero. Similarly, the
function q.z/ stays negative along the whole beam line if it is negative at one point.
Since the sign of the betatron function is not determined and does not change, it has
became customary to use only the positive solution.

The beam emittance parameter � appears as an amplitude factor in the equation
for the trajectory of an individual particle. This amplitude factor is equal to the beam
emittance only for particles traveling on an ellipse that just encloses all particles in
the beam. In other words, a particle traveling along a phase ellipse with amplitudep
� defines the emittance of that part of the total beam which is enclosed by this

ellipse or for all those particles whose trajectories satisfy

ˇ u02 C 2˛ uu0C � u2 
 �u: (8.67)

Since it only leads to confusion to use the letter � as an amplitude factor we will
from now on use it only when we want to define the whole beam and set

p
� D a

for all cases of individual particle trajectories.

8.2.1 Beam Envelope

To describe the beam and beam sizes as a whole, a beam envelope equation can
be defined. All particles on the beam emittance defining ellipse follow trajectories
described by

xi.z/ D
p
�
p
ˇ.z/ cosŒ .z/ C ıi�; (8.68)

where ıi is an arbitrary phase constant for the particle i. By selecting at every point
along the beam line that particle i for which cosŒ .z/C ıi� D ˙1, we can construct
an envelope of the beam containing all particles

E.z/ D ˙p�
p
ˇ.z/: (8.69)

Here the two signs indicate only that there is an envelope an either side of the
beam center. We note that the beam envelope is determined by the beam emittance
� and the betatron function ˇ.z/. The beam emittance is a constant of motion and
resembles the transverse “temperature” of the beam. The betatron function reflects
exterior forces from focusing magnets and is highly dependent on the particular
arrangement of quadrupole magnets. It is this dependence of the beam envelope
on the focusing structure that lets us design beam transport systems with specific
properties like small or large beam sizes at particular points.
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8.3 Beam Dynamics in Terms of Betatron Functions

Properties of betatron functions can now be used to calculate the parameters of
individual particle trajectories anywhere along a beam line. Any particle trajectory
can be described by

u.z/ D a
p
ˇ cos C b

p
ˇ sin (8.70)

and the amplitude factors a and b can be determined by setting at z D 0

 D 0; ˇ D ˇ0; u.0/ D u0;

˛ D ˛0; u0.0/ D u0
0:

(8.71)

With these boundary conditions we get

a D 1p
ˇ0

u0;

b D ˛0p
ˇ0

u0 C
p
ˇ0 u0

0;
(8.72)

and after insertion into (8.70) the particle trajectory and its derivative is

u.z/ D
s
ˇ

ˇ0
.cos C ˛0 sin / u0 C

p
ˇ ˇ0 sin u0

0;

u0.z/ D 1p
ˇ0ˇ

Œ.˛0 � ˛/ cos � .1C ˛ ˛0/ sin � u0 (8.73)

C
s
ˇ0

ˇ
.cos � ˛ sin / u0

0;

or in matrix formulation

�
C.z/ S.z/
C0.z/ S0.z/

�
D
0@ q

ˇ

ˇ0
.cos C ˛0 sin /

p
ˇˇ0 sin 

˛0�˛p
ˇˇ0

cos � 1C˛˛0p
ˇˇ0

sin 
q

ˇ0
ˇ
.cos � ˛ sin /

1A :
(8.74)

Knowledge of the betatron functions along a beam line allows us to calculate
individual particle trajectories. The betatron functions can be obtained by either
solving numerically the differential equation (8.59) or by using the matrix formalism
(8.23) to transform phase ellipse parameters. Since the ellipse parameters in (8.23)
and the betatron functions are equivalent, we have found a straightforward way
to calculate their values anywhere once we have initial values at the start of the
beam line. This method is particularly convenient when using computers to perform
matrix multiplication.
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Transformation of the betatron functions becomes very simple in a drift space
where the transformation matrix is�

C.z/ S.z/
C0.z/ S0.z/

�
D
�
1 z
0 1

�
: (8.75)

The betatron functions at the point z are from (8.26)

ˇ.z/ D ˇ0 � 2˛0 zC �0 z2;

˛.z/ D ˛0 � �0 z; (8.76)

�.z/ D �0;

with initial values ˇ0; ˛0; �0 taken at the beginning of the drift space.
We note that �.z/ D const. in a drift space. This result can be derived also

from the differential equation (8.60) which for k D 0 becomes ˇ00 D 2� and the
derivative with respect to z is ˇ000 D 2� 0. On the other hand, we calculate from the
first equation (8.76) the third derivative of the betatron function with respect to z to
be ˇ000 D 0. Obviously both results are correct only if the � -function is a constant in
a drift space where k D 0.

The location of a beam waist is defined by ˛ D 0 and occurs from (8.76) at
zw D ˛0=�0. The betatron function increases quadratically with the distance from
the beam waist (see Fig. 8.5) and can be expressed by

ˇ.z� zw/ D ˇw C .z � zw/
2

ˇw
; (8.77)

where ˇw is the value of the betatron function at the waist and z� zw is the distance
from the waist. From (8.77) we note that the magnitude of the betatron function
away from the waist reaches large values for both large and small betatron functions
at the waist. We may therefore look for conditions to obtain the minimum value for
the betatron function anywhere in a drift space of length 2L. For this we take the
derivative of ˇ with respect to ˇw and get from .dˇ=dˇw D 0/

ˇw;opt D L: (8.78)

Fig. 8.5 Betatron function in
a drift space
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At either end of the drift space we have then

ˇ.L/ D 2 ˇw;opt: (8.79)

This is the optimum solution for the betatron function on either side of a drift
space with length 2L resulting in a minimum aperture requirement along a drift
space of length L. The phase advance in a drift space is from (8.77)

 .L/ D
Z L

0

dNz=ˇw

1C .Nz=ˇw/ 2
D arctan

L

ˇw
! �

2
for

L

ˇw
!1: (8.80)

The phase advance through a drift space of length 2L is therefore never larger
than � and actually never quite reaches that value

 drift < �: (8.81)

8.3.1 Beam Dynamics in Normalized Coordinates

The form and nomenclature of the differential equation (8.52) resembles very much
that of a harmonic oscillator and indeed this is not accidental since in both cases the
restoring force increases linearly with the oscillation amplitude. In particle beam
dynamics we find an oscillatory solution with varying amplitude and frequency
and by a proper coordinate transformation we are able to make the motion of a
particle look mathematically exactly like that of a harmonic oscillator. This kind of
formulation of beam dynamics will be very useful in the evaluation of perturbations
on particle trajectories since all mathematical tools that have been developed for
harmonic oscillators will be available for particle beam dynamics.

We introduce Floquet’s coordinates, or normalized coordinates through the
transformation

w D up
ˇ

(8.82)

and

' .z/ D
Z z

0

dNz

 ˇ.Nz/ : (8.83)

Note, that we used in here a different normalization than that selected in (8.57) to
adapt more appropriately to the issues to be discussed here. With this transformation
we get for the first derivative

u0 D Pw
p
ˇ


ˇ
C w

ˇ0

2
p
ˇ
D 1



p
ˇ
Pw � ˛p

ˇ
w (8.84)
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and for the second derivative

u00 D Rw

2ˇ3=2

� w
˛0p
ˇ
� w

˛2

ˇ3=2
; (8.85)

where dots indicate derivatives with respect to the phase Pw D dw=d', etc. We insert
these expressions into (8.52) and get the general equation of motion expressed in
normalized coordinates

u00 C k u D 1


2ˇ3=2

264 RwC� 12ˇˇ00 � ˛2 C kˇ2
�„ ƒ‚ …

D1

2w

375 D p.x; y; z/; (8.86)

where the right-hand side represents a general perturbation term p.x; y; z/ which
was neglected so far. The square bracket is equal to unity according to (8.59) and
the equation of motion takes the simple form of a harmonic oscillator with some
perturbation

RwC 
2w� 
2ˇ3=2p.x; y; z/ D 0: (8.87)

This nonlinear equation of motion can be derived from the Hamiltonian

H D 1
2
Pw2 C 1

2

2w2 � 
2ˇ3=2

nX
kD1

ˇ
k�1
2

pk

k
wk; (8.88)

where coupling has been ignored and

p.x; z/ D
nX

kD1
pkxk�1 D

nX
kD1

pkˇ
k�1
2 wk�1; (8.89)

where pk is a perturbation of order k. Later, we will perform another canonical
transformation to action-angle variables, which brings the Hamiltonian into a
convenient form to exhibit effects of perturbations.

Since the parameter 
 is constant, we have in the case of vanishing perturbations
pn � 0 the exact equation of a harmonic oscillator and particles perform in this
representation periodic sine-like oscillations with the frequency 


w D w0 cos. C ı/: (8.90)

The transformation matrix in these variables is given by

M .z j 0/ D
�

C. / S. /
C0. / S0. /

�
D
�

cos . / sin . /
� sin . / cos . /

�
(8.91)

as can easily be derived from (8.90).
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Fig. 8.6 Ideal phase ellipse
in normalized coordinates

w

dw/dψ

a

The use of normalized coordinates not only allows us to treat particle beam
dynamics equivalent to a harmonic oscillator but is also convenient in the discus-
sions of perturbations or aberrations. In phase space each particle performs closed
trajectories in the form of an ellipse which we called the phase ellipse. In Cartesian
coordinates this ellipse, however, continuously changes its shape and orientation and
correlations between two locations are not always obvious. If we use normalized
coordinates, the unperturbed phase ellipse becomes an invariant circle as shown in
Fig. 8.6.

From (8.82) we get with u.z/ D a
p
ˇ.z/ cos .z/ where  .z/ D 
'.z/

w.'/ D up
ˇ
D a cos ; (8.92)

dw

d 
D
p
ˇ u0 C ˛p

ˇ
u D �a sin ; (8.93)

and after elimination of the phase the Courant-Snyder invariant becomes

w2 C
�

dw

d 

�2
D a2; (8.94)

where a is the betatron oscillation amplitude.
The equation of motion (8.87) is now ready to be transformed into action-angle

variables. The constancy of the action J is now synonymous with the Courant-
Snyder invariant (5.59) or the constancy of the beam emittance.

J D 1
2


�
�u2 C 2˛u u0 C ˇ u0 2

�
D 1

2

�: (8.95)

In . ; J / phase-space, the particle moves along a circle with radius J at a
revolution frequency 
. The motion is uniform, periodic and stable. Including the
independent variable ' to form a three-dimensional phase-space, we find a particle
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Fig. 8.7 Unperturbed particle trajectories in ( ; J; '/ phase-space

to spiral along the surface of a torus as shown in Fig. 8.7. The ensemble of all
particles oscillating with the same amplitude J follow spirals occupying the full
surface of the torus.

This result is not particularly interesting in itself since it only corroborates what
we have found earlier for harmonic oscillators with simpler mathematical tools. The
circle in . ; J/-phase space, however, provides us with a reference against which to
compare perturbed motions and derive stability criteria. Indeed, we will later use
canonical transformations to eliminate well-known linear motions, like the circular
motion of an unperturbed harmonic oscillator in . ; J /-space to exhibit more
clearly the effects of perturbation only. Including perturbations into the Hamiltonian
(5.57) allows the determination of perturbed tunes and study resonance phenomena.
Having defined canonical variables for the system, we also will be able to study
the evolution of particle beams by applying Vlasov’s equation in Sect. 12.1. The
Fokker-Planck equation finally will allow us to determine beam parameters even in
the presence of statistical events.

We have chosen the betatron phase  as the independent variable and the
particles cover one full turn along the phase “ellipse” for each betatron oscillation.
This is a convenient way of representation in beam transport systems, yet, for
circular accelerators we find it more useful to define ' D  =
 as the independent
variable in which case the particle rotation frequency in phase space is the same as
that in the ring. This is particularly convenient when we discuss field and alignment
perturbations which occur periodically in a ring and allow the application of Fourier
techniques.

8.4 Dispersive Systems

Beam guidance and focusing is performed by applying Lorentz forces and the
effects of these fields on particle trajectories depend on the momentum of the
particles. So far, we have derived beam dynamics for particles with ideal momenta
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for which the beam transport system is designed. To properly describe the dynamics
of a real particle beam we must include chromatic effects caused by an error in the
beam energy or by a spread of energies within the particle beam. In Sect. 5.5.4; the
perturbation due to a momentum error has been derived and expressed in terms of a
dispersion. Continuing the formulation of beam dynamics in terms of transformation
matrices we derive in this section transformation matrices for particles with a
momentum error.

8.4.1 Analytical Solution

The dispersion function has been derived as a special solution to a chromatic
perturbation term in (5.81) where

D.z/ D
Z z

0

�.Nz/ ŒS.z/C.Nz/� C.z/ S.Nz/� dNz (8.96)

describes the dispersion function in a beam transport line. There is no contribution
to the dispersion function unless there is at least one bending magnet in the beam
line. Knowledge of the location and strength of bending magnets, together with
the principal solutions of the equations of motion, we may calculate the dispersion
anywhere along the beam transport line by integration of (8.96).

Similar to the matrix formalism for betatron oscillations we would also like to
apply the same formalism for the dispersion function. For this we note that the
particle deviation u from the reference path is composed of the betatron motion and
a displacement due to an energy error u D uˇ C uı. The transformation matrix is
therefore a composite of both contributions and can be expressed by0@ u.z/

u0.z/
ı

1A DM

0B@uˇ.z0/
u0̌ .z0/
ı

1CACM
0@uı.z0/

u0
ı.z0/
ı

1A ; (8.97)

where M is the 3 � 3 transformation matrix, ı the relative momentum error and
uı.z/ D D.z/ ı and u0

ı.z/ D D0.z/ ı the displacement and slope, respectively,
of the reference path for particles with a momentum error ı. Equation (8.97) can
also be applied to the dispersion function alone by setting the betatron oscillation
amplitudes to zero and the momentum error ı D 1 for0@ D.z/

D0.z/
1

1A DM
0@ D.z0/

D0.z0/
1

1A : (8.98)
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By determining the transformation matrices for individual bending magnets, we
are in a position to calculate in matrix formulation the dispersion function anywhere
along a beam transport line.

In the deflecting plane of a pure sector magnet the principal solutions are with
K D �2 D 1=	2 �

C.z/ S.z/
C0.z/ S0.z/

�
D
�

cos .�z/ 	 sin .�z/
�� sin .�z/ cos .�z/

�
: (8.99)

With 	 D const we get from (8.96) and (8.99) for the dispersion function within the
magnet

D.z/ D sin .�z/
Z z

0
cos .�Nz/ dNz� cos .�z/

Z z

0
sin .�Nz/ dNz

D 	0 Œ1 � cos .�z/� (8.100)

D0.z/ D sin .�z/ :

Particles with momentum error ı follow an equilibrium path given by D.z/ ı
which can be determined experimentally by observing the beam path for two
different values of the beam momentum ı1 and ı2. The difference of the two paths
divided by the momentum difference is the dispersion function D.z/ D u=.ı2�ı1/.
In practical applications this is done either by changing the beam energy or by
changing the strength of the bending magnets. In circular electron accelerators,
however, only the first method will work since the electrons always adjust the
energy through damping to the energy determined by the magnetic fields. In circular
electron accelerators, we determine the dispersion function by changing the rf-
frequency which enforces a change in the particle energy as we will discuss later
in Chap. 9.

8.4.2 3 � 3-Transformation Matrices

From (8.99) and (8.100) we may form now 3 � 3-transformation matrices. In the
deflecting plane of a pure sector magnet of arc length ` such a transformation
matrix is

Ms;	 .` j0/ D

0B@ cos � 	 sin � 	 .1 � cos �/
� 1
	

sin � cos � sin �

0 0 1

1CA (8.101)
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where � D `=	 is the deflection angle of the magnet. In the non deflecting plane,
the magnet behaves like a drift space with 1

	
D 0, k D 0 and arc length `

Ms;0 .` j0/ D
0@ C.z/ S.z/ 0

C0.z/ S0.z/ 0
0 0 1

1A (8.102)

For a synchrotron magnet of the sector type we get from (7.38) in analogy to
(8.100), replacing � by

p
K and with � D pkC �2` and � D 1=	 for the case of a

focusing synchrotron magnet

Msy;f .` j0/ D

0B@ cos� sin�p
K

1�cos�
	K

�pK sin� cos� sin�
	
p

K

0 0 1

1CA (8.103)

and for a defocusing synchrotron magnet

Msy;d .` j0/ D

0B@ cosh� sinh�pjKj
cosh��1
	0jKjpjKj sinh� cosh� sinh�
	0

pjKj
0 0 1

1CA (8.104)

where� D
qˇ̌

kC �20
ˇ̌
`.

In case of a rectangular magnet without field gradient, we multiply the matrix for
a sector magnet by the transformation matrices for endfield-focusing. Since these
end effects act like quadrupoles we have no new contribution to the dispersion and
the transformation matrices for each endfield are

Me D
0@ 1 0 0

� tan .�=2/ 1 0
0 0 1

1A : (8.105)

With these endfield matrices the chromatic transformation matrix for a rectangular
bending magnet in the deflecting plane is obtained from (8.103) with Mr;	 D
Me Msy;	Me for k D 0

Mr;	.`j0/ D
0@1 	 sin � 	 .1 � cos �/
0 1 2 tan .�=2/
0 0 1

1A : (8.106)

Similarly, we can derive the transformation matrices for rectangular synchrotron
magnets.
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Only bending magnets create a dispersion. Therefore the transformation matrices
of other magnets or drift spaces are extended to 3 � 3 matrices by adding a third
column and row with all elements equal to zero and M33 D 1.

8.4.3 Linear Achromat

Frequently it is necessary in beam transport systems to deflect a particle beam. If this
is done in an arbitrary way an undesirable finite dispersion function will remain at
the end of the deflecting section. Special magnet arrangements exist which allow
to bend a beam without generating a residual dispersion. Such magnet systems
composed of only bending magnets and quadrupoles are called linear achromats.

Consider, for example, an off momentum particle travelling along the ideal
path of a straight beam line. At some location, we insert a bending magnet and
the off-momentum particle will be deflected by a different angle with respect to
particles with correct momenta. The difference in the deflection angle appears as
a displacement in phase space from the center to a finite value  Pw D ıD.z/=

p
ˇ.

From here on, the off momentum reference path follows the dispersion function
D.z/ ı and the particle performs betatron oscillations in the form of circles until
another bending magnet further modifies or compensates this motion (Fig. 8.8).

In case a second bending magnet is placed half a betatron oscillation downstream
from the first causing the same deflection angle the effect of the first magnet can be
compensated completely and the particle continues to move along the ideal path
again. A section of a beam transport line with this property is called an achromat.

Figure 8.9 displays an achromatic section proposed by Panofsky [10] which may
be used as a building block for curved transport lines or circular accelerators. This
section is composed of a symmetric arrangement of two bending magnets with a

z

motion in phase space

motion in real space

bending magnet

dispersion function: D(z)δ

Θδ

δ=0

δ>0

w

dw/dt

D(z)δ/β1/2

Fig. 8.8 Trajectory of an off momentum particle through a chromatic beam transport section
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Fig. 8.9 Double bend achromat [3, 10]

quadrupole in the center and is also know as a double bend achromat or a Chasman-
Green lattice [3].

General conditions for linear achromats have been discussed in Sect. 7.4 and we
found that the integrals

Is D
Z z

0
�.Nz/S.Nz/dNz D 0; (8.107)

and

Ic D
Z z

0
�.Nz/C.Nz/ dNz D 0; (8.108)

must vanish for a lattice section to become achromatic. For a double bend achromat
this can be accomplished by a single parameter or quadrupole if adjusted such that
the betatron phase advance between the vertex points of the bending magnet is 180ı.
A variation of this lattice, the triple bend achromat [5, 8], is shown in Fig. 8.10,
where a third bending magnet is inserted for practical reasons to provide more
locations to install sextupoles for chromatic corrections. Magnet arrangements as
shown in Figs. 8.9 and 8.10 are dispersion free deflection units or linear achromats.
This achromat is focusing only in the deflecting plane but defocusing in the
nondeflecting plane which must be compensated by external quadrupole focusing
or, since there are no special focusing requirements for the nondeflecting plane, by
either including a field gradient in the pole profile of the bending magnets [6] or
additional quadrupoles between the bending magnets. In a beam transport line this



242 8 Particle Beams and Phase Space

1614121086420

20

15

10

5

0

-5

-10

-15

(m)

βx

βx

10ηx

z(m)

Fig. 8.10 Triple bend achromat [5]

Fig. 8.11 Achromatic beam translation

achromat can be used for diagnostic purposes to measure the energy and energy
spread of a particle beam as will be discussed in more detail in Sect. 8.4.5

A further variation of the lattice in Fig. 8.9 has been proposed by Steffen [10]
to generate an achromatic beam translation as shown in Fig. 8.11. In this case,
the total phase advance must be 360ı because the integral Ic would not vanish
anymore for reasons of symmetry. We use therefore stronger focusing to make Ic

vanish because both the bending angle and the cosine like function change sign.
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Achromatic properties are obtained again for parameters meeting the condition [10]

	 tan.�=2/C � D 1p
k

d
p

k cos' C 2 sin'

d
p

k sin' � 2 cos'
; (8.109)

where ' D pk` and k; ` the quadrupole strength and length, respectively. The need
for beam translation occurs frequently during the design of beam transport lines.
Solutions exist to perform such an achromatic translation but the required focusing
is much more elaborate and may cause significantly stronger aberrations compared
to a simple one directional beam deflection of the double bend achromat type.

Utilizing symmetric arrangements of magnets, deflecting achromats can be
composed from bending magnets only [10]. One version has become particularly
important for synchrotron radiation sources, where wiggler magnets are used to
produce high intensity radiation. Such triple bend achromat are composed of a row
of alternately deflecting bending magnets which do not introduce a net deflection
on the beam. Each unit or period of such a wiggler magnet (Fig. 8.12) is a linear
achromat.

The transformation of the dispersion through half a wiggler unit is the super-
position of the dispersion function from the first magnet at the end of the second
magnet plus the contribution of the dispersion from the second magnet. In matrix
formulation and for hard edge rectangular magnets the dispersion at the end of half
a wiggler period is�

Dw

D0
w

�
D
��	0 .1 � cos �/
�2 tan .�=2/

�
C
�
1 `w

0 1

��
	0 .1 � cos �/
2 tan .�=2/

�
; (8.110)

where 	 > 0, � D `w	 and `w the length of one half wiggler pole (see Fig. 8.12).
Evaluation of (8.110) gives the simple result

Dw D 2`w tan.�=2/;
D0

w D 0:
(8.111)

The dispersion reaches a maximum in the middle of the wiggler period and
vanishes again for reasons of symmetry at the end of the period. For sector magnets

Fig. 8.12 Wiggler achromat D(z)

2lw

lwlw
wiggler pole

wiggler period
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we would have obtained the same results. Each full wiggler period is therefore from
a beam optics point of view a linear achromat. Such an arrangement can also be
used as a spectrometer by placing a monitor in the center, where the dispersion is
large. For good momentum resolution, however, beam focusing must be provided
in the deflecting plane upstream of the bending magnets to produce a small focus at
the beam monitors as will be discussed in the next section.

The examples of basic lattice designs discussed in this section are particularly
suited for analytical treatment. In practice, modifications of these basic lattices are
required to meet specific boundary conditions making, however, analytical treatment
much more complicated. With the availability of computers and numerical lattice
design codes, it is prudent to start with basic lattice building blocks and then use a
fitting program for modifications to meet particular design goals.

8.4.4 Spectrometer

Although the dispersion has been treated as a perturbation it is a highly desired
feature of a beam line to determine the energy or energy distribution of a particle
beam. Such a beam line is called a spectrometer for which many different designs
exist. A specially simple and effective spectrometer can be made with a single 180ı
sector magnet [2, 9]. For such a spectrometer, the transformation matrix is from
(8.101)

M
�
180

ı� D
0@�1 0 2	0
0 �1 0

0 0 �1

1A : (8.112)

In this spectrometer all particles emerging from a small target (Fig. 8.13) are
focused to a point again at the exit of the magnet. The focal points for different
energies, however, are separated spatially due to dispersion. Mathematically, this is

Fig. 8.13 Hundred and
eighty degree spectrometer

δ > 0 δ < 0δ = 0 target



8.4 Dispersive Systems 245

evident since the particle trajectories at the end of the magnet are given by

x D �x0 C 2	ı; (8.113)

where x0 is the starting point of a particle within the target, and showing different
positions x for different energies ı. The energy dispersion of the secondary particles
is x D 2	ı.

The image point is independent of x0
0 and only proportional to ı with a

large proportionality factor which allows a large energy resolution. While this
spectrometer seems to have almost ideal features it is also an example of the
limitations of perturbation methods. For larger values of ı of the order of several
percent higher order terms cannot be neglected anymore. Inclusion of such terms,
for example, will first tilt and then bend the focal plane at the end of the magnet.

More sophisticated spectrometers including focusing to accept large emittance
beams have been devised with special efforts to reduce the effects of aberrations. It
is not the intend of this text to discuss in detail such designs. More comprehensive
overviews for spectrometers with further references can be found for example in
[1, 10]. In the treatment of this spectrometer we have ignored the nondeflecting
plane. Since there is no focusing, particles are widely spread out in this plane at
the end of the magnet. Practical versions of this spectrometer, therefore, include a
focusing term in the nondeflecting plane in such a way that the resulting focusing is
the same in both planes [7].

8.4.5 Measurement of Beam Energy Spectrum

Frequently it is desirable to determine experimentally the particle energy and energy
spread. Basically only one bending magnet is needed to perform this experiment.
The finite beam size of the monochromatic part of the beam will greatly influence
the resolution of the energy measurement. Optimum resolution is achieved if some
focusing is included and the measurement is performed at a location, where the
beam size is small while the dispersion is large. In Fig. 8.14 particle beams at two
different energies are shown in phase space, where both beam centers are separated
by the dispersion and its slope.

In reality no such separation exists since we have a spread of energies rather
than two distinct energies. This energy spread is mixed with the spread in phase
space of the beam emittance and beams of different energies can only be separated
completely if the relative energy difference is at least

ımin D ıp

p0
 2Eb

D
D 2

p
�ˇ

D
; (8.114)
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Fig. 8.15 Measurement of the momentum spectrum

where Eb D
p
�ˇ is the beam envelope. To maximize the energy resolution the

beam size Eb should be small and the dispersion D.z/ large. From Fig. 8.14 we note
therefore, that for a given beam emittance and dispersion the energy resolution can
be improved significantly if the measurement is performed at or close to a beam
waist, where ˇ reaches a minimum.

To derive mathematical expressions for the energy resolution and conditions for
the maximum energy resolution 1=ımin we assume a beam line as shown in Fig. 8.15
with the origin of the coordinate system z D 0 in the center of the bending magnet.
The salient features of this beam line is the quadrupole followed by a bending
magnet. With this sequence of magnets we are able to focus the particle beam in
the deflection plane while leaving the dispersion unaffected. In case of a reversed
magnet sequence the dispersion function would be focused as well compromising
the energy resolution.
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Transforming the dispersion (8.100) back from the end of the sector bending
magnet to the middle of the magnet we get the simple result

�
D0

D0
0

�
D
 

cos �
2
�	0 sin �

2
1
	0

sin �
2

cos �
2

!�
	0 .1 � cos �/
sin �

�
D
�

0

2 sin �
2

�
; (8.115)

The dispersion appears to originate in the middle of the magnet with a slope
D0
0 D 2 sin �=2. At a distance z from the middle of the bending magnet the

betatron function is given by ˇ.z/ D ˇ0 � 2˛0 z C �0 z2 where .ˇ0; ˛0; �0/ are
the Twiss functions in the middle of the bending magnet, and the dispersion is
D.z/ D 2 sin.�=2/z. Inserting these expressions into (8.114) we can find the
location zM for maximum momentum resolution by differentiating ımin with respect
to z. Solving dımin=dz D 0 for z we get

zM D
ˇ0

˛0
(8.116)

and the maximum momentum resolution is

ı�1
min D

p
ˇ0sin.�=2/p

�
: (8.117)

The best momentum resolution for a beam with emittance � is achieved if both the
bending angle � and the betatron function ˇ0 in the middle of the bending magnet
are large. From condition (8.116), we also find ˛0 > 0 which means that the beam
must be converging to make a small spot size at the observation point downstream of
the bending magnet. With (8.76) we find that zM D ˇ0=˛0 D �ˇM=˛M and from the
beam envelope E2b D �ˇM at z D zM we get the derivative 2EbE0

b D �ˇ0
M
D �2�˛M .

With this and D=D0 D z, the optimum place to measure the energy spread of a
particle beam is at

zM D
D.zM/

D0.zM/
D Eb.zM/

E0
b.zM/

: (8.118)

It is interesting to note that the optimum location zM is not at the beam waist, where
ˇ.z/ reaches a minimum, but rather somewhat beyond the beam waist, where D=

p
ˇ

is maximum.
At this point we may ask if it is possible through some clever beam focusing

scheme to improve this resolution. Analogous to the previous derivation we look
for the maximum resolution ı�1

min D D.z/=Œ2
p
�ˇ.z/�. The dispersion is expressed

in terms of the principal solution D.z/ D S.z/D0.0/ and D0.z/ D S0.z/D0.0/ since
D.0/ D 0. The betatron function is given by ˇ.z/ D C2.z/ ˇ0 � 2C.z/S.z/ ˛0 C
S2.z/ �0 and the condition for maximum resolution turns out to be ˛=ˇ D �D0=D.
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With this, we get the resolution

ı�1
min D

D.z/

2
p
�ˇ
D S.z/D0

0

2
p
�ˇ
D sin.�=2/p

�ˇ
S.z/ (8.119)

and finally with S.z/ D pˇ0ˇ.z/ sin .z/

ı�1
min D

p
ˇ0sin.�=2/p

�
sin .z/ 


p
ˇ0sin.�=2/p

�
; (8.120)

which is at best equal to result (8.117) for .z/ D 90ı. The momentum resolution is
never larger than in the simple setup of Fig. 8.15 no matter how elaborate a focusing
lattice is employed.

If more than one bending magnet is used the resolution may be increased if the
betatron phases between the magnets .zi/ and the place of the measurement .zM /

are chosen correctly. The resolution then is

ı�1
min D

1p
�

X
i

p
ˇ0i sin.�i=2/ sinŒ .zM /�  .zi/�; (8.121)

where the sum is taken over all magnets i. Such an energy resolving system is
often used in beam transport lines to filter out a small energy band of a particle
beam with a larger energy spread. In this case a small slit is placed at the place for
optimum momentum resolution .z D zM/. Of course, for highly relativistic electrons
the momentum spectrum is virtually equal to the energy spectrum.

This discussion is restricted to linear beam optics which does not address prob-
lems caused by nonlinear effects and geometric as well as chromatic aberrations.

8.4.6 Path Length and Momentum Compaction

The existence of different reference paths implies that the path length between
two points of a beam transport line may be different as well for different particle
momenta. We will investigate this since the path length is of great importance as
will be discussed in detail in Chap. 9. In preparation for this discussion, we derive
here the functional dependencies of the path length on momentum and focusing
lattice.

The path length along a straight section of the beam line depends on the angle
of the particle trajectory with the reference path. In this chapter we are interested
only in linear beam dynamics and may neglect such second order corrections to the
path length. The only linear contribution to the path length comes from the curved
sections of the beam transport line. The total path length is therefore given by

L D
Z
.1C �x/ dz: (8.122)
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We evaluate (8.122) along the reference path, where x D D.z/ ı. First we find the
expected result L0 D

R
dz for ı D 0, which is the ideal design length of the beam

line or the design circumference of a circular accelerator. The deviation from this
ideal length is then

L D ı
Z
� .z/D.z/ dz: (8.123)

The variation of the path length with momentum is determined by the momentum
compaction factor, defined by

˛c D L=L0
ı

with ı D p

p
: (8.124)

Its numerical value can be calculated with (8.123) and is

˛c D 1

L0

Z L0

0

� .z/D.z/ dz D
�

D.z/

	

�
: (8.125)

In this approximation the path length variation is determined only by the dispersion
function in bending magnets and the path length depends only on the energy of the
particles. To prepare for the needs of longitudinal phase focusing in Chap. 9, we will
not only consider the path length but also the time it takes a particle to travel along
that path. If L is the path length, the travel time is given by

� D L

cˇ
: (8.126)

Here ˇ D v=c is the velocity of the particle and is not to be confused with the
betatron function. The variation of � gives by logarithmic differentiation

�

�
D L

L
� ˇ

ˇ
: (8.127)

With L=L D ˛cı and cp D ˇE we get dp=p D dˇ=ˇ C dE=E and with dE=E D
ˇ2dp=p we can solve for dˇ=ˇ D .1=�2/ dp=p, where � D E=mc2 is the relativistic
factor. From (8.127) we have then

�

�
D �

�
1

�2
� ˛c

�
dp

p
D ��c

dp

p
(8.128)

and call the combination

�c D
�
1

�2
� ˛c

�
(8.129)
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the momentum compaction. The energy

�t D 1p
˛c

(8.130)

for which the momentum compaction vanishes is called the transition energy which
will play an important role in phase focusing. Below transition energy the arrival
time is determined by the actual velocity of the particles while above transition
energy the particle speed is so close to the speed of light that the arrival time of
a particle with respect to other particles depends more on the path length than on
its speed. For a circular accelerator we may relate the time �r a particle requires to
follow a complete orbit to the revolution frequency !r and get from (8.128)

d!r

!r
D �d�r

�r
D �c

dp

p
: (8.131)

For particles above transition energy this quantity is negative which means a particle
with a higher energy needs a longer time for one revolution than a particle with a
lower energy. This is because the dispersion function causes particles with a higher
energy to follow an equilibrium orbit with a larger average radius compared to the
radius of the ideal orbit.

By special design of the lattice one could generate an oscillating dispersion
function in such a way as to make the momentum compaction �c to vanish. Such
a transport line or circular accelerator would be isochronous to the approximation
used here. Due to higher order aberrations, however, there are nonlinear terms in
the dispersion function which together with an energy spread in the beam cause a
spread of the revolution frequency compromising the degree of isochronicity. These
higher order corrections are discussed later in Chap. 9.4.1.

Problems

8.1 (S). Particle trajectories in phase space follow the shape of an ellipse. Derive a
transformation of the phase space coordinates .u; u0/ to coordinates .w; Pw/ such that
the particle trajectories are circles with the radius ˇ�.

8.2 (S). Use (8.18) for the phase ellipse and prove that the area enclosed by the
ellipse is indeed equal to ��.

8.3 (S). Show that the transformation of the beam matrix (8.41) is consistent with
the transformation of the lattice functions.

8.4 (S). Sometimes two FODO channels of different parameters must be matched.
Show that a lattice section can be designed with a phase advance of x D  y D
�=2, which will provide the desired matching of the betatron functions from the
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symmetry point of one FODO channel to the symmetry point of the other channel.
Such a matching section is also called a quarter wavelength transformer. Does this
transformer also work for curved FODO channels, where the dispersion is finite?

8.5. Construct a beam bump like in problem 7.6 but now use betatron and phase
functions for the solution. What are the criteria for either AM being the maximum
displacement or not? For which phase  M would the dipole fields be minimum? Is
there a more economic solution for a symmetric beam bump with an amplitude AM

in the center of QD2?

8.6. Consider a ring made from an even number of FODO cells. To provide
component free space we cut the ring along a symmetry line through the middle
of two quadrupoles on opposite sides of the ring and insert a drift space of length
`d. Derive the transformation matrix for this ring and compare with that of the
unperturbed ring. What is the tune change of the accelerator. The betatron functions
will be modified. Derive the new value of the horizontal betatron function at the
symmetry point in units of the unperturbed betatron function. Is there a difference
to whether the free section is inserted in the middle of a focusing or defocusing
quadrupole? How does the �-function change?

8.7. Consider a regular FODO lattice, where some bending magnets are eliminated
to provide magnet free spaces and to reduce the �-function in the straight section.
How does the minimum value of the �-function scale with the phase per FODO cell.
Show if conditions exist to match the �-function perfectly in the straight section of
this lattice?
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Chapter 9
Longitudinal Beam Dynamics

In previous chapters we have concentrated the discussion on the interaction of
transverse electrical and magnetic fields with charged particles and have derived
appropriate formalisms to apply this interaction to the design of beam transport
systems. The characteristics of these transverse fields is that they allow to guide
charged particles along a prescribed path but do not contribute directly to the
energy of the particles through acceleration. For particle acceleration we must
generate fields with nonvanishing force components in the direction of the desired
acceleration. Such fields are called longitudinal fields or accelerating fields. In a
very general way we describe in this section the interaction of longitudinal electric
fields with charged particles to derive the process of particle acceleration, its scaling
laws, and its stability limits.

The usefulness and application of electric fields to accelerate charged particles
depends greatly on the temporal variations of these fields. Accelerating fields
can be static or pulsed or they may be electromagnetic fields oscillating at high
frequencies. Conceptually, the most simple way to accelerate charged particles is
through a static field applied to two electrodes as shown in Fig. 9.1. In this case,
the total kinetic energy a particle can gain while traveling from one electrode to
the other is equal to the product of the particle charge and the voltage between the
electrodes.

Electric breakdown phenomena, however, limit the maximum applicable voltage
and thereby the maximum energy gain. Nonetheless, this method is intriguingly
simple and efficient compared to other accelerating methods and therefore still
plays a significant role among modern particle accelerators, for example, in particle
sources. Electrostatic acceleration schemes are specifically useful for low energy
particles for which other methods of acceleration would be inefficient. Higher
voltages and particle energies can be reached if the electric fields are applied in the
form of very short pulses. Application of electro-static high voltages to accelerate
particles is limited to some 10 million volts due to high voltage breakdown.
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Fig. 9.1 Principle of
electrostatic accelerators cathode anode

electron beam

high voltage

For higher particle energies different acceleration methods must be used. The
most common and efficient way to accelerate charged particles to high energies
is to use high frequency electromagnetic fields in specially designed accelerating
structures. Acceleration to high energies occurs while charged particles either pass
once through many or many times through one or few accelerating structures each
excited to electric field levels below the break down threshold. In this section, we
concentrate the discussion on charged particle acceleration by electromagnetic radio
frequency fields.

9.1 Longitudinal Particle Motion

Application of radio frequency in short rf-fields has become exceptionally effective
for the acceleration of charged particles. Both, fields and particle motion can be
synchronized in an effective way to allow the acceleration of charged particles in
principle to arbitrary large energies were it not for other limitations.

The first idea and experiment for particle acceleration with radio frequency
fields has been published by Ising [1] although he did not actually succeed to
accelerate particles due to an inefficient approach to rf-technology. Later Wideroe
[2] introduced the concept of generating the accelerating fields in resonating rf-
cavities and was able to accelerate heavy ions. Original papers describing these
and other early developments of particle acceleration by rf-fields are collected in a
monogram edited by Livingston [3].

To study the interaction of electromagnetic rf-fields with charged particles, we
assume a plane electromagnetic wave of frequency! propagating in the z-direction.
A free electromagnetic wave does not have a longitudinal electric field component
and therefore a special physical environment, called the accelerating structure,
must be provided to generate accelerating field components in the direction of
propagation. As will be discussed later in Sect. 18.1 this is achieved by proper
choice of boundary conditions. To study particle dynamics in longitudinal fields,
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we assume that we were able to generate rf-fields with an electric field component
along the path of the particles expressed by v � c

E.z; t/ D E0 ei.!t�kz/ D E0 ei ; (9.1)

where the phase  D !t � kz. The particle momentum changes at a rate equal to
the electric force exerted on the particle by the rf-field

dp
dt
D e E. / D d

dt
.�mcˇ/ : (9.2)

Multiplying this with the particle velocity we get the rate of change of the
kinetic energy, dEkin D cˇ dp. Integration of (9.2) with respect to the time becomes
unnecessarily complicated for general fields because of the simultaneous variation
of the electric field and particle velocity with time. We therefore integrate (9.2) with
respect to the longitudinal coordinate and obtain instead of the momentum gain the
increase in the kinetic or total energy for the complete accelerating structure

E D .� � �0/mc2 D e
Z

E. / dz ; (9.3)

where �0 mc2 is the energy of the particle before acceleration. Of course, the trick
to integrate the electric field through the accelerating section rather than over time
following the particle is only a conceptual simplification and the time integration
will have to be executed at some point. Generally this is done when the particular
accelerating section, the fields, and the synchronization is known.

Travelling electromagnetic waves are used in linear accelerators and the acceler-
ating structure is designed such that the phase velocity of the wave is equal to the
velocity of the particles to be accelerated. In this case, the particle travels along the
structure in synchronism with the wave and is therefore accelerated or decelerated
at a constant rate. Maximum acceleration is obtained if the particles ride on the crest
of the wave.

In a standing wave accelerating section the electric field has the form

E.z; t/ D E0.z/ ei!tCı ; (9.4)

where ı is the phase at the moment the particle enters the accelerating section at
t D 0. When we refer to an accelerating voltage V in a standing wave cavity we
mean to say a particle traveling close to the speed of light through the cavity will
gain a maximum kinetic energy of eV while passing the cavity center at the moment
the field reaches its crest. Such a particle would enter the cavity some time before
the field reaches a maximum and will exit when the field is decaying again. For
slower particles the energy gain would be lower because of the longer transit time.
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9.1.1 Longitudinal Phase Space Dynamics

Successful particle acceleration depends on stable and predictable interaction of
charged particles and electromagnetic fields. Because oscillating rf-fields are used,
special criteria must be met to assure systematic particle acceleration rather than ran-
dom interaction with rf-fields producing little or no acceleration. The constructive
interaction of particles and waves have been investigated in 1945 independently by
Veksler [4] and McMillan [5] leading to the discovery of the fundamental principle
of phase focusing. In this subsection, we will derive the physics of phase focusing
and apply it to the design of particle accelerators.

The degree of acceleration depends on the momentary phase  of the field
as seen by the particle while travelling through or with an electromagnetic field.
Straight superposition of an electromagnetic wave and charged particle motion will
not necessarily lead to a net acceleration. In general, the particles are either too
slow or too fast with respect to the phase velocity of the wave and the particle
will, during the course of interaction with the electromagnetic wave, integrate over
a range of phases and may gain little or no net energy from the electric fields.
Therefore, special boundary conditions for the accelerating rf-wave must be met
such that maximum or at least net acceleration can be achieved. This can be done by
exciting and guiding the electromagnetic waves in specially designed accelerating
structures designed such that the phase velocity of the electromagnetic wave is equal
to the particle velocity. Only then can we choose a specific phase and integration of
(9.3) becomes straightforward for particles travelling in the direction of propagation
of the electromagnetic waves.

For practical reasons, specifically in circular accelerators, particle acceleration
occurs in short, straight accelerating sections placed along the particle path. In
this case no direct traveling wave exists between adjacent accelerating sections and
specific synchronicity conditions must be met for the fields in different accelerating
sections to contribute to particle acceleration as desired. For the purpose of
developing a theory of stable particle acceleration we may imagine an rf-wave
traveling along the path of the particle with a phase velocity equal to the particle
velocity and an amplitude which is zero everywhere except in discrete accelerating
cavities.

To ensure proper synchronization one could assume that every rf-cavity is
powered by its own microwave source. This is done often in high power rf-cavities,
but is, for example, impractical in linear accelerators. For the case of individual
power sources the phase of the rf-field can be chosen in each cavity such that its
voltage reaches the desired value at the moment the particles pass through. The
synchronisation for many cavities fed by one power source is more complicated and
we will discuss in the following paragraphs how to accomplish this.

We consider a number of rf-cavities powered by a single microwave source.
To derive the synchronicity conditions, we consider first two accelerating sections
separated by the distance L as shown in Fig. 9.2. Once the proper operating
conditions are known for two sections a third section may be added by applying
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Fig. 9.2 Discrete
accelerating sections

accelerating
cavity

L

z

the same synchronicity condition between each pair of cavities. The successive
accelerating sections need not necessarily be a physically different sections but
could be the same section or the same sections passed through by the particles at
periodic time intervals. For example, the distance L between successive accelerating
sections may be equal to the circumference of a circular accelerator.

For systematic acceleration the phase of the rf-fields in each of the accelerating
sections must reach specific values at the moment the particles arrive. If the phase
of the fields in each of N accelerating sections is adjusted to be the same at the time
of arrival of the particles, the total acceleration is N times the acceleration in each
individual section. This phase is called the synchronous phase  s defined by

 s D !t � kz D const ; (9.5)

where! is the oscillating frequency of the electromagnetic field. The time derivative
of (9.5) vanishes and the synchronicity condition is

P s D ! � k ˇc D 0 ; (9.6)

since dz=dt D ˇc. This condition can be met if we set

k D 2�

L
(9.7)

and the frequency of the electromagnetic field is then from (9.6)

!1 D k1 ˇc D 2�

L
ˇc D 2�

T
; (9.8)

where !1 is the lowest frequency satisfying the synchronicity condition and T
is the time needed for particles with velocity ˇc to travel the distance L. This
equation relates the time of travel between successive accelerating sections with
the frequency of the accelerating rf-fields in a conditional way to assure systematic
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particle acceleration and the relation (9.8) is therefore called the synchronicity
condition.

However, any integer multiple of the frequency !1 satisfies the synchronicity
condition as well and we may instead of (9.8) define permissible frequencies of the
accelerating rf-fields by

!h D h!1 D kh ˇc D 2�

L
hˇc D 2�

T
h ; (9.9)

where h is an integer called the harmonic number with kh D h k1.
The synchronicity condition must be fulfilled for any spatial arrangement of the

accelerating structures which are powered by a single microwave source to get the
maximum acceleration. To illuminate the principle, we assume here, for example,
a series of short, equidistant accelerating gaps or accelerating sections along the
path of a particle. Let each of these gaps be excited by its own power source to
produce an accelerating rf-field at some random phase. The synchronicity condition
(9.8) is fulfilled if the rf-frequency is the same in each of these gaps, which are
separated by an integer multiple of rf-wavelength. However, it does not require each
accelerating gap to have the same rf-phase at the arrival time of the particles. Each
cavity in a set of accelerating cavities oscillating at the same frequency may be tuned
to an arbitrary rf-phase and the synchronicity condition still would be met. From a
practical point of view, however, it is inefficient to choose arbitrary phases and it is
more reasonable to adjust the phase in each cavity to the optimum phase desired for
maximum acceleration.

The assumption that the rf-frequency of all cavities be the same is unneces-
sarily restrictive considering that any harmonic of the fundamental frequency is
acceptable. Therefore, a set of accelerating cavities in a circular accelerator, for
example, may include cavities resonating at any harmonic of !1. This is sometimes
done to achieve specific effects (e.g. bunch lengthening), but in the absence of such
requirements makes only complicates the Rf-system.

A straightforward application of the synchronicity condition can be found in
the design of the Wideroe linear accelerator structure [2] as shown in Fig. 9.3.
Here the fields are generated by an external rf-source and applied to a series of
metallic drift tubes. Accelerating fields build up at gaps between the tubes while
the tubes themselves serve as a field screens for particles during the time the
electric fields is changing sign and would be decelerating. The length of the field
free drift tubes is determined by the velocity of the particles and is L D cˇ Trf

where Trf is the period of the rf-field. As the particle energy increases so does the
velocity cˇ and the length L of the tube must increase too. Only when the particles
become highly relativistic will the distance between field free drift sections become
a constant together with the velocity of the particles. Structures with varying drift
lengths are generally found in low energy proton or ion accelerators based on the
Alvarez structure [6], which is a technically more efficient version of the Wideroe
structure.
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Fig. 9.3 Wideroe linac structure

For electrons it is much easier to reach relativistic energies where the velocity is
sufficiently constant such that in general no longitudinal variation of the accelerating
structure is needed. In circular accelerators, we cannot adjust the distance between
cavities or the circumference as the particle velocity ˇ increases. The synchronicity
condition therefore must be applied differently. From (9.9) we find the rf-frequency
to be related to the particle velocity and distances between cavities. Consequently
we have the relation

ˇ�rfh D L; (9.10)

which requires that the distance between any pair of accelerating cavities be an
integer multiple of ˇ�rf. Since L and h are constants, this condition requires
that the rf-frequency be changed during acceleration proportional to the particle
velocity ˇ. Only for particles reaching relativistic energies, when ˇ � 1, will the
distance between cavities approach an integer multiple of the rf-wave length and the
circumference C must then meet the condition

C D ˇh�rf: (9.11)

9.2 Equation of Motion in Phase Space

So far, we have assumed that both the particle velocity ˇ and the wave number
k are constant. This is not a valid general assumption. For example, we cannot
assume that the time of flight from one gap to the next is the same for all
particles. For low energy particles we have a variation of the time of flight due
to the variation of the particle velocities for different particle momenta. The wave
number k or the distance between accelerating sections need not be the same
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for all particles either. A momentum dependent path length between accelerating
sections exists if the lattice between such sections includes bending magnets. As
a consequence, the synchronicity condition must be modified to account for such
chromatic effects.

Removing the restriction of a constant wave number k, we obtain by a variation
of (9.6)

 P D P � P sD �.kˇc/ D �ckˇ � ˇc
@k

@p

@p

@t
t ; (9.12)

where

k D kh D h
2�

L0
D 2�

�rf
D h

!

ˇc
; (9.13)

and L0 is the distance between accelerating gaps along the ideal path. The
synchronous phase is kept constant  s D const or P s D 0 and serves as the
reference phase against which all deviations are measured.

The momentum dependence of the wave number comes from the fact that the
path length L between accelerating gaps may be different from L0 for off momentum
particles. The variation of the wave number with particle momentum is therefore

@k

@p

ˇ̌̌̌
0

D @k

@L

@L

@p

ˇ̌̌̌
0

D � kh

L0

@L

@p

ˇ̌̌̌
0

D � kh

p0
˛c ; (9.14)

where ˛c is the momentum compaction factor. We evaluate the momentum com-
paction factor starting from the path length L D R L0

0
.1 C x

	
/ dz. For transverse

particle motion x D xˇC� .p=p0/ and employing average values of the integrands
the integral becomes

L D L0 C
�

xˇ
	

�
L0 C

�
�

	

�
p

p0
L0: (9.15)

Because of the oscillatory character of the betatron motion h�x xˇi D 0. The

relative path length variation is L
L0
D

D
�

	

E
p
p0
D ˛c

p
p0

and the momentum

compaction factor becomes

˛c D
�
�

	

�
: (9.16)

The momentum compaction factor increases only in curved sections where 	 ¤ 0
and the path length is longer or shorter for higher energy particles depending on the
dispersion function being positive or negative, respectively. For a linear accelerator
the momentum compaction factor vanishes since the length of a straight line does
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not depend on the momentum. With .@p=@t/t D p and mc�3ˇ D p we get
finally for (9.12) with (9.14) and after some manipulation

P D �ˇckh.�
�2 � ˛c/

cp

cp0
: (9.17)

The term ��2 in (9.17) appears together with the momentum compaction factor
˛c and therefore has the same physical relevance. This term represents the variation
of the particle velocity with energy. Therefore, even in a linear accelerator where
˛c D 0, the time of flight between accelerating gaps is energy dependent as long as
particles are still nonrelativistic.

After differentiation of (9.17) with respect to the time, we get the equation
of motion in the longitudinal direction describing the variation of the phase
with respect to the synchronous phase  s for particles with a total momentum
deviationp

R C @

@t

�
ˇckh�c

cp

cp0

�
D 0: (9.18)

In most practical applications, parameters like the particle velocity ˇ or the
energy vary only slowly during acceleration compared to the rate of change of the
phase and we consider them for the time being as constants. The slow variation of
these parameters constitutes an adiabatic variation of external parameters for which
Ehrenfest’s theorem holds. The equation of motion in the potential of the rf-field
becomes in this approximation

R C ˇckh�c

cp0

@

@t
cp D 0: (9.19)

Integration of the electrical fields along the accelerating sections returns the kinetic
energy gain per turn

e
Z

L
E. /dz D eV. /; (9.20)

where V. / is the total particle accelerating voltage seen by particles along the
distance L. For particles with the ideal energy and following the ideal orbit the
acceleration is eV. s/ where  s is the synchronous phase.

Acceleration, however, is not the only source for energy change of particles.
There are also gains or losses from, for example, interaction with the vacuum
chamber environment, external fields like free electron lasers, synchrotron radiation
or anything else exerting longitudinal forces on the particle other than accelerating
fields. We may separate all longitudinal forces into two classes, one for which the
energy change depends only on the phase of the accelerating fields V. / and the
other where the energy change depends only on the energy of the particle U.E/
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itself. The total energy gain E per unit time or per turn is the composition of both
types of external effects

E D eV. / �U.E/; (9.21)

where U.E/ is the energy dependent loss per turn due, for example, to synchrotron
radiation.

9.2.1 Small Oscillation Amplitudes

For arbitrary variations of the accelerating voltage with time we cannot further
evaluate the equation of motion unless the discussion is restricted to small variations
in the vicinity of the synchronous phase. While the ideal particle arrives at the
accelerating cavities exactly at the synchronous phase  s, most other particles in
a real beam arrive at slightly different phases. For small deviations ' from the
synchronous phase,

' D  �  s ; (9.22)

we can expand the accelerating voltage into a Taylor series at  D  s and get for
the average rate of change of the particle energy with respect to the energy of the
synchronous particle from (9.20)

d

dt
E D 1

T0

"
eV. s/C e

dV

d 

ˇ̌̌̌
 s

' �U.E0/ � dU

dE

ˇ̌̌̌
E0

E

#
; (9.23)

where the particle energy E D E0CE and T0 is the time of flight between adjacent
cavities for the reference particle

T0 D L0
ˇc
: (9.24)

At equilibrium eV. s/ D U.E0/, and since ˇcp D E, we get with (9.23) and
R' D R from (9.19) the equation of motion or phase equation

R' C c kh �c

cp0 T0
e

dV

d 

ˇ̌̌̌
 s

' C 1

T0

dU

dE

ˇ̌̌̌
E0

cp

cp0
D 0 : (9.25)

With (9.17) and  D  s C ' Eq. (9.25) becomes the differential equation of
motion for small phase oscillations

R' C 2˛z P' C˝2' D 0 ; (9.26)
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where the damping decrement ˛z is defined by

˛z D � 1

2T0

dU

dE

ˇ̌̌̌
E0

(9.27)

and the synchrotron frequency by

˝2 D c kh �c

cp0 T0
e

dV

d 

ˇ̌̌̌
 s

: (9.28)

Particles orbiting in a circular accelerator perform longitudinal oscillations with
the frequency˝ . These phase oscillations are damped or antidamped depending on
the sign of the damping decrement. Damping occurs only if there is an energy loss
which depends on the particle energy itself as in the case of synchrotron radiation. In
most cases of accelerator physics we find the damping time to be much longer than
the phase oscillation period and we may therefore discuss the phase equation while
ignoring damping terms. Whenever damping becomes of interest, we will include
this term again.

This phase equation is valid only for small oscillation amplitudes because only
the linear term has been used in the expansion for the rf-voltage. For larger
amplitudes this approximation cannot be made anymore and direct integration of the
differential equation is necessary. The small amplitude approximation, however, is
accurate to describe most of the fundamental features of phase oscillations. At large
amplitudes, the nonlinear terms will introduce a change in the phase oscillation
frequency and finally a limit to stable oscillations to be discussed later in this
chapter.

The phase equation has the form of the equation of motion for a damped
harmonic oscillator and we will look for conditions leading to a positive frequency
and stable phase oscillations. Because the phase equation was derived first for
synchrotron accelerators the oscillations are also called synchrotron oscillations and
are of fundamental importance for beam stability in all circular accelerators based
on rf-acceleration. For real values of the oscillation frequency we find that particles
which deviate from the synchronous phase are subjected to a restoring force leading
to harmonic oscillations about the equilibrium or synchronous phase. From the
equation of motion (9.25) it becomes clear that phase focusing is proportional to the
derivative of the accelerating voltage rather than to the accelerating voltage itself
and is also proportional to the momentum compaction �c.

To gain further insight into the phase equation and determine stability criteria,
we must make an assumption for the waveform of the accelerating voltage. In most
cases, the rf-accelerating fields are created in resonant cavities and therefore the
accelerating voltage can be expressed by a sinusoidal waveform

V. / D OV0 sin (9.29)
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and expanded about the synchronous phase to get with  D  s C '

V. s C '/ D OV0 .sin s cos' C sin ' cos s/: (9.30)

Keeping only linear terms in ' the phase equation is

R' C˝2' D 0; (9.31)

where the synchrotron oscillation frequency becomes now

˝2 D ckh�c

cp0T0
e OV0 cos s: (9.32)

A particle passing periodically through localized and synchronized accelerating
fields along its path performs synchrotron oscillations with the frequency ˝ about
the synchronous phase.

In circular accelerators we have frequently the situation that several rf-cavities
are employed to provide the desired acceleration. The reference time T0 is most
conveniently taken as the revolution time and the rf-voltage OV0 is the total
accelerating voltage seen by the particle while orbiting around the ring once. The
rf-frequency is an integer multiple of the revolution frequency,

frf D h frev; (9.33)

where the integer h is the harmonic number and the revolution frequency is with the
circumference C

frev D 1

T0
D C

cˇ
: (9.34)

From (9.32) the synchrotron frequency is in more practical units

˝2 D !2rev
h�ce OV0 cos s

2� ˇcp0
: (9.35)

Similar to the betatron oscillation tunes, we define the synchrotron oscillation
tune or short the synchrotron tune as the ratio


s D ˝

!rev
: (9.36)

For real values of the synchrotron oscillation frequency the phase equation assumes
the simple form

' D O' cos .˝ tC �i/; (9.37)
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Fig. 9.4 Synchrotron oscillations in phase space for stable motion
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where �i is an arbitrary phase function for the particle i at time t D 0. With P D P'
we find from (9.17), (9.32) the relation between the momentum and phase deviation
for real values of the synchrotron oscillation frequency
s � 0:001� 0:01

ı D cp

cp0
D � P'

h!rev�c
D ˝ O'

h!rev�c
sin .˝tC �i/: (9.38)

The particle momentum deviation, being the conjugate variable to the phase,
also oscillates with the synchrotron frequency about the ideal momentum. Both,
the phase and momentum oscillations describe the particle motion in longitudinal
phase spaceas shown in Fig. 9.4 for stable and unstable synchrotron oscillations,
respectively. At the time t0 when in (9.38) the phase ˝t0 C �i D 0 and we expect
the momentum deviation to be zero while the phase reaches the maximum value O'.
Thus both oscillations are 90ı out of phase. Particles with a negative momentum
compaction �c < 0 move clockwise in phase space about the reference point while
a positive momentum compaction causes the particles to rotate counter clockwise.

The same process that has led to phase focusing will also provide the focusing
of the particle momentum. Any particle with a momentum different from the
ideal momentum will undergo oscillations at the synchrotron frequency which are
described by ı D �Oı sin .˝tC �i/, where the maximum momentum deviation is
related to the maximum phase excursion O' by

Oı D
ˇ̌̌̌

˝

h!rev�c

ˇ̌̌̌
O': (9.39)

By inverse deduction we may express the momentum equation similar to the
phase equation (9.31) and get with p=p0 D ı the differential equation for the
momentum deviation

d2ı

dt2
C˝2ı D 0: (9.40)
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Similar to the transverse particle motion, we eliminate from (9.37), (9.38) the
argument of the trigonometric functions to obtain an invariant of the form

ı2

Oı2 ˙
'2

O'2 D 1 with Oı D ˝

h!rev
O'; (9.41)

where the sign is chosen to indicate stable or unstable motion depending on whether
the synchrotron oscillation frequency ˝ is real or imaginary respectively. The
trajectories for both cases are shown in Fig. 9.4. Clearly, the case of imaginary
values of the synchrotron oscillation frequency leads to exponential growth in the
oscillation amplitude.

9.2.2 Phase Stability

The synchrotron oscillation frequency must be real and the right-hand side of (9.32)
must therefore be positive to obtain stable solutions for phase oscillations. All
parameters in (9.32) are positive quantities except for the momentum compaction
�c and the phase factor cos s. For low particle energies the momentum compaction
is in general positive because ��2 > ˛c but becomes negative for higher particle
energies. The energy at which the momentum compaction changes sign is called the
transition energydefined by

�tr D 1p
˛c

: (9.42)

Since the momentum compaction factor for circular accelerators is approxi-
mately equal to the inverse horizontal tune ˛c � 
�2

x , we conclude that the transition
energy �tr is of the order of the tune and therefore in general a small number
reaching up to the order of a hundred for very large accelerators. For electrons, the
transition energy is of the order of a few MeV and for protons in the GeV regime. In
circular electron accelerators the injection energy always is selected to be well above
the transition energy and no stability problems occur during acceleration since the
transition energy is not crossed. Not so for protons. Proton linear accelerators with
an energy of the order of 10 GeV or higher are very costly and therefore protons and
ions in general must be injected into a circular accelerator below transition energy.

The synchronous rf-phase must be selected depending on the particle energy
being below or above the transition energy. Stable phase focusing can be obtained
in either case if the rf-synchronous phase is chosen as follows

0 <  s <
�
2

for � < �tr;
�
2
<  s < � for � > �tr:

(9.43)
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In a proton accelerator with an injection energy below transition energy the rf-
phase must be changed very quickly when the transition energy is being crossed.
Often the technical difficulty of this sudden change in the rf-phase is ameliorated by
the use of pulsed quadrupoles [7, 8], which is an efficient way of varying momen-
tarily the momentum compaction factor by perturbing the dispersion function. A
sudden change of a quadrupole strength can lower the transition energy below the
actual energy of the particle. This helpful “perturbation” lasts for a small fraction of
a second while the particles are still being accelerated and the rf-phase is changed.
By the time the quadrupole pulse terminates, the rf-phase has been readjusted and
the particle energy is now above the unperturbed transition energy.

In general, we find that a stable phase oscillation for particles under the influence
of accelerating fields can be obtained by properly selecting the synchronous phase
 s in conjunction with the sign of the momentum compaction such that

˝2 > 0: (9.44)

This is the principle of phase focusing [5] and is a fundamental process to obtain
stable particle beams in circular high-energy accelerators. An oscillating acceler-
ating voltage together with a finite momentum compaction produces a stabilizing
focusing force in the longitudinal degree of freedom just as transverse magnetic or
electric fields can produce focusing forces for the two transverse degrees of freedom.
With the focusing of transverse amplitudes we found a simultaneous focusing of its
conjugate variable, the transverse momentum. The same occurs in the longitudinal
phase where the particle energy or the energy deviation from the ideal energy is
the conjugate variable to the time or phase of a particle. Both variables are related
by (9.17) and a focusing force not only exists for the phase or longitudinal particle
motion but also for the energy keeping the particle energy close to the ideal energy.

Focusing conditions have been derived for all six degrees of freedom where the
source of focusing originates either from the magnet lattice for transverse motion
or from a combination of accelerating fields and a magnetic lattice property for
the energy and phase coordinate. The phase stability can be seen more clearly by
observing the particle trajectories in phase space. Equation (9.31) describes the
motion of a pendulum with the frequency˝ which, for small amplitudes sin ' � '
becomes equal to the equation of motion for a linear harmonic oscillator and can be
derived from the Hamiltonian

H D 1
2
P'2 C 1

2
˝2'2: (9.45)

Small amplitude oscillations in phase space are shown in Fig. 9.4 and we note
the confinement of the trajectories to the vicinity of the reference point. In case of
unstable motion the trajectories quickly lead to unbound amplitudes in energy and
phase (Fig. 9.4 right).
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Large Oscillation Amplitudes

For larger oscillation amplitudes we cannot anymore approximate the trigonometric
function sin ' � ' by its argument. Following the previous derivation for the
equation of motion (9.31) we get now

R' D �˝2 sin '; (9.46)

which can be derived from the Hamiltonian

H D 1
2
P'2 �˝2 cos' (9.47)

being identical to that of a mechanical pendulum. As a consequence of our ability to
describe synchrotron motion by a Hamiltonian and canonical variables, we expect
the validity of the Poincaré integral

J1 D
Z

z
d P'd' D const (9.48)

under canonical transformations. Since the motion of particles during synchrotron
oscillations can be described as a series of canonical transformations [9], we find
the particle density in the . '; P' / phase space to be a constant of motion. The same
result has been used in transverse phase space and the area occupied by this beam in
phase space has been called the beam emittance. Similarly, we define an emittance
for the longitudinal phase space. Different choices of canonical variables can be
defined as required to emphasize the physics under discussion. Specifically we find
it often convenient to use the particle momentum instead of P' utilizing the relation
(9.17).

Particle trajectories in phase space can be derived directly from the Hamiltonian
by plotting solutions of (9.47) for different values of the “energy” H of the system.
These trajectories, well known from the theory of harmonic oscillators, are shown
in Fig. 9.5 for the case of a synchronous phase  s D � .

The trajectories in Fig. 9.5 are of two distinct types. In one type the trajectories
are completely local and describe oscillations about equilibrium points separated
by 2� along the abscissa. For the other type the trajectories are not limited to
a particular area in phase and the particle motion assumes the characteristics of
libration. This phenomenon is similar to the two cases of possible motion of a
mechanical pendulum or a swing. At small amplitudes we have periodic motion
about the resting point of the swing. For increasing amplitudes, however, that
oscillatory motion could become a libration when the swing continues to go over
the top. The lines separating the regime of libration from the regime of oscillation
are called separatrices.

Particle motion is stable inside the separatrices due to the focusing properties of
the potential well which in this representation is just the cos'-term in (9.47). The
area within separatrices is commonly called an rf-bucket describing a place where
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Fig. 9.5 Phase space diagrams for a synchronous phase  s D �
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Fig. 9.6 Potential well for stationary rf buckets,  s D �

particles are in stable motion. In Fig. 9.6 the Hamiltonian (9.47) is shown in a three-
dimensional representation with contour lines representing the equipotential lines.
The stable potential wells, within the separatrices, keeping the particles focused
toward the equilibrium position, are clearly visible.

Inside the separatrices the average energy gain vanishes due to oscillatory phase
motion of the particles. This is obvious from (9.30) which becomes for  s D �

V. / D OV0 sin D OV0 sin. s C '/ D OV0 sin ' (9.49)

averaging to zero since the average phase h'i D 0.
The area within such separatrices is called a stationary rf-bucket. Such buckets,

while not useful for particle acceleration, provide the necessary potential well to
produce stable bunched particle beams in facilities where the particle energy need
not be changed as for example in a proton or ion storage ring where bunched
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beams are desired. Whenever particles must receive energy from accelerating fields,
may it be for straight acceleration or merely to compensate for energy losses
like synchrotron radiation, the synchronous phase must be different from zero.
As a matter of fact, due to the principle of phase focusing, particles within the
regime of stability automatically oscillate about the appropriate synchronous phase
independent of their initial parameters.

In the discussion of large amplitude oscillations we have tacitly assumed that
the synchrotron oscillation frequency remains constant and equal to (9.32) yet, we
also note that the frequency is proportional to the variation of the rf-voltage with
phase and we have included in the definition of the synchrotron frequency only
linear terms so far. Specifically, we note in Fig. 9.5 that the trajectories in phase
space are elliptical only for small amplitudes but are periodically distorted for
larger amplitudes. This distortion leads to a spread of the synchrotron oscillation
frequency.

9.2.3 Acceleration of Charged Particles

In the preceding paragraph we have arbitrarily assumed that the synchronous phase
be zero s D 0 and as a result of this choice we obtained stationary, non-accelerating
rf-buckets. No particle acceleration occurs since the particles pass through the
cavities when the fields are zero. Whenever particle acceleration is required a finite
synchronous phase must be chosen. The average energy gain per revolution is then

E D V. s/ D OV0 sin s: (9.50)

Beam dynamics and stability becomes much different for  s 6D 0. From (9.19),
we get with (9.21), (9.30), (9.32) a phase equation more general than (9.46)

R' C ˝2

cos s
Œsin. s C '/ � sin s� D 0; (9.51)

or after expanding the trigonometric term into its components

R' C ˝2

cos s
.sin s cos' C sin' cos s � sin s/ D 0: (9.52)

This equation can also be derived directly from the Hamiltonian for the dynamics
of phase motion

1
2
P'2 � ˝2

cos s
Œcos. s C '/ � cos s C ' sin s� D H: (9.53)



9.2 Equation of Motion in Phase Space 271

-3.1416 -1.5708 0 1.5708 3.1416

-3.1416 -1.5708 0 1.5708 3.1416-3.1416 -1.5708 0 1.5708 3.1416

ϕ

δ

ψs ψs

ψs

δ

ϕ

ϕ

δ

Fig. 9.7 Phase space diagrams for particles above transition energy .� > �tr/, synchronous phases
of  s D �=3 (top left); 5�=6 (top right); 2�=3 (bottom)

The phase space trajectories or diagrams differ now considerably from those in
Fig. 9.5 depending on the value of the synchronous phase s. In Fig. 9.7 phase space
diagrams are shown for different values of the synchronous phase and a negative
value for the momentum compaction �c.

We note clearly the reduction in stable phase space area as the synchronous phase
is increased or as the particle acceleration is increased. Outside the phase stable
areas the particles follow unstable trajectories leading to continuous energy loss or
gain depending on the sign of the momentum compaction. Equation (9.53) describes
the particle motion in phase space for arbitrary values of the synchronous phase and
we note that this equation reduces to (9.45) if we set  s D � . The energy gain for
the synchronous particle at  D  s becomes from (9.18)

E D e
Z

E. s/dz : (9.54)

We obtain a finite energy gain or loss whenever the synchronous phase in
accelerating sections is different from an integer multiple of 180ı assuming that all
accelerating sections obey the synchronicity condition. The form of (9.54) actually
is more general insofar as it integrates over all fields encountered along the path of
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Fig. 9.8 3D rendition of a potential well for moving rf buckets  s ¤ 0

the particle. In case some accelerating sections are not synchronized, the integral
collects all contributions as determined by the phase of the rf-wave at the time the
particle arrives at a particular section whether it be accelerating or decelerating.
The synchronicity condition merely assures that the acceleration in all accelerating
sections is the same for each turn.

Particle trajectories in phase space are determined by the Hamiltonian (9.53),
which is similar to (9.47) except for the linear term in '. Due to this term, the
potential well is now tilted (Fig. 9.8) compared to the stationary case (Fig. 9.6).
We still have quadratic minima in the potential well function to provide stable
phase oscillations, but particles escaping over the maxima of the potential well
will be lost because they continuously loose or gain energy as can be seen by
following such trajectories in Fig. 9.9. This is different from the case of stationary
buckets where such a particle would just wander from bucket to bucket while
staying close to the ideal energy at the center of the buckets. Phase stable
regions in case of finite values of the synchronous phase are called moving
rf-buckets.

The situation is best demonstrated by the three diagrams in Fig. 9.9 showing the
accelerating field, the potential, and the phase space diagram as a function of the
phase for different synchronous phases.
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Fig. 9.9 Phase space focusing for moving rf buckets displaying the phase relationship of
accelerating field, potential, and rf bucket

In this particular case we have assumed that the particle energy is above transition
energy and that the synchronous phase is such that cos s < 0 to obtain stable
synchrotron oscillations. The center of the bucket is located at the synchronous
phase  s and the longitudinal stability range is limited by the phases  1 and  2. In
the next section we will derive analytical expressions for the longitudinal stability
limit and use the results to determine the momentum acceptance of the bucket as
well.

While both phases,  s as well as � �  s, would supply the desired energy gain
only one phase provides stability for the particles. The stable phase is easily chosen
by noting that the synchrotron oscillation frequency ˝ must be real and therefore
�c cos s > 0. Depending on such operating conditions the rf-bucket has different
orientations as shown in Fig. 9.10.

We still can choose whether the electric field should accelerate or decelerate
the beam by choosing the sign of the field. For the decelerating case which, for
example, is of interest for free electron lasers, the “fish” like buckets in the phase
space diagram are mirror imaged.
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Fig. 9.10 Relationship between rf phase and orientation of moving rf buckets for accelerating as
well as decelerating fields

9.3 Longitudinal Phase Space Parameters

We will here investigate in more detail specific properties and parameters of
longitudinal phase space motion. From these parameters it will be possible to define
stability criteria.

9.3.1 Separatrix Parameters

During the discussions of particle dynamics in longitudinal phase space we found
specific trajectories in phase space, called separatrices which separate the phase
stable region from the region where particles follow unstable trajectories leading
away from the synchronous phase and from the ideal momentum. Within the phase
stable region particles perform oscillations about the synchronous phase and the
ideal momentum. This “focal point” in the phase diagram is called a stable fixed
point (sfp). The unstable fixed point (ufp) is located where the two branches of
the separatrix cross. The location of fixed points can be derived from the two
conditions:

@H
@ P D 0 and

@H
@ 
D 0: (9.55)

From the first condition, we find with (9.53) that P f D 0 independent of any
other parameter. All fixed points are therefore located along the  -axis of the phase
diagram as shown in Fig. 9.11.

The second condition leads to the actual location of the fixed points  f on the
 -axis and is with  D  s C '

sin f � sin s D 0: (9.56)
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Fig. 9.11 Characteristic
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This equation can be solved for  f D  s or  f D � �  s and the coordinates of
the fixed points are

. sf; P sf/ D . s; 0/ for the stable fixed point, sfp, and

. uf; P uf/ D .� �  s; 0/ for the unstable fixed point, ufp.
(9.57)

The distinction between a stable and unstable fixed point is made through the
existence of a minimum or maximum in the potential at these points respectively. In
Fig. 9.9, this distinction becomes obvious where we note the stable fixed points in
the center of the potential minima and the unstable fixed points at the saddle points.
The maximum stable phase elongation or bunch length is limited by the separatrix
and the two extreme points  1 and  2 which we will determine in Sect. 9.3.3.

9.3.2 Momentum Acceptance

Particles on trajectories just inside the separatrix reach maximum deviations in
phase and momentum from the ideal values in the course of performing synchrotron
oscillations. A characteristic property of the separatrix therefore is the definition of
the maximum phase or momentum deviation a particle may have and still undergo
stable synchrotron oscillations. The value of the maximum momentum deviation
is called the momentum acceptance of the accelerator. To determine the numerical
value of the momentum acceptance, we use the coordinates of the unstable fixed
point (9.57) and calculate the value of the Hamiltonian for the separatrix which is
from (9.53) with  uf D  s C 'uf D � �  s and P uf D 0

Hf D ˝2

cos s
Œ2 cos s � .� � 2 s/sin s� : (9.58)

Following the separatrix from this unstable fixed point, we eventually reach the
location of maximum distance from the ideal momentum. Since P' is proportional
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to p=p0, the location of the maximum momentum acceptance can be obtained
through a differentiation of (9.53) with respect to '

P' @ P'
@'
�˝2 sin s � sin. s C '/

cos s
D 0: (9.59)

At the extreme points where the momentum reaches a maximum or minimum,
@ P'=@' D 0 which occurs at the phase

sin. s C '/ D sin s or ' D 0: (9.60)

This is exactly the condition we found in (9.56) for the location of the stable fixed
points and is independent of the value of the Hamiltonian. The maximum momen-
tum deviation or momentum acceptance P'acc occurs therefore for all trajectories at
the phase of the stable fixed points  D  s. We equate at this phase (9.58) with
(9.53) to derive an expression for the maximum momentum acceptance

1
2
P'2acc D ˝2Œ2 � .� � 2 s/ tan s�: (9.61)

In accelerator physics it is customary to define an over voltage factor. This factor
is equal to the ratio of the maximum rf-voltage in the cavities to the desired energy
gain in the cavity U0

q D eV0
U0

D 1

sin s
(9.62)

and can be used to replace trigonometric functions of the synchronous phase. To
solve (9.61), we use the expression

1
2
� �  s D arccos

1

q
(9.63)

derived from the identity cos
�
1
2
� �  s

� D sin s, replace the synchrotron oscilla-
tion frequency ˝ by its representation (9.35) and get with (9.17) the momentum
acceptance for a moving bucket�

p

p0

�2
acc
D eV0 sin s

�hj�cjcp0
2

�p
q2 � 1 � arccos

1

q

�
: (9.64)

The function

F.q/ D 2
�p

q2 � 1 � arccos
1

q

�
(9.65)

is shown in Fig. 9.12 as a function of the over voltage factor q.
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Fig. 9.12 Over voltage
function F .q/
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The synchronous phase is always different from zero or � when charged particles
are to be accelerated. In circular electron and very high-energy proton accelerators
the synchronous phase must be nonzero even without acceleration to compensate for
synchrotron radiation losses. In low and medium energy circular proton or heavy ion
storage rings no noticeable synchrotron radiation occurs and the synchronous phase
is either  s D 0 or � depending on the energy being below or above the transition
energy. In either case sin s D 0 which, however, does not necessarily lead to a
vanishing momentum acceptance since the function F.q/ approaches the value 2q
and the factor sin s F.q/ ! 2 in (9.64) while q ! 1. Therefore stable buckets
for protons and heavy ions can be produced with a finite energy acceptance. The
maximum momentum acceptance for such stationary buckets is from (9.64)�

p

p0

�2
max;stat:

D 2 eV0
�hj�cjcp0

: (9.66)

Note that this expression for the maximum momentum acceptance appears to be
numerically inconsistent with (9.39) for O' D � , because (9.39) has been derived for
small oscillations only . O' � �/. From Fig. 9.11, we note that the aspect ratios of
phase space ellipses change while going from bucket center towards the separatrices.
The linear proportionality between maximum momentum deviation and maximum
phase of (9.39) becomes distorted for large values of O' such that the acceptance of
the rf-bucket is reduced by the factor 2=� from the value of (9.39).

The momentum acceptance is further reduced for moving buckets as the syn-
chronous phase increases. In circular accelerators, where the required energy gain
for acceleration or compensation of synchrotron radiation losses per turn is U0, the
momentum acceptance is�

p

p0

�2
max;moving

D U0

�hj�cjcp0
F.q/ D F.q/

2 q

�
p

p0

�2
max;static

: (9.67)

The reduction F.q/=2q in momentum acceptance is solely a function of the
synchronous phase and is shown in Fig. 9.13 for the case � > �tr.
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Fig. 9.13 Reduction factor
of the momentum acceptance
F.q/=2q as a function of the
synchronous phase
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Overall, the momentum acceptance depends on lattice and rf-parameters and
scales proportional to the square root of the rf-voltage in the accelerating cavities.
Strong transverse focusing decreases the momentum compaction thereby increasing
the momentum acceptance while high rf-frequencies diminish the momentum
acceptance. Very high frequency accelerating systems based, for example, on high
intensity lasers to produce high accelerating fields are expected to have a rather
small momentum acceptance and work therefore best with quasi-monoenergetic
beams.

It is often customary to use other parameters than the momentum as the
coordinates in longitudinal phase space. The most common parameter is the particle
energy deviation E=!rf together with the phase. In these units, we get for the
stationary bucket instead of (9.66)

E

!rf

ˇ̌̌̌
max;stat:

D
s
2 eV0E0ˇ

�hj�cj!2rf
; (9.68)

which is measured in eV-sec. Independent of the conjugate coordinates used,
the momentum acceptance for moving rf-buckets can be measured in units of
a stationary rf-bucket, where the proportionality factor depends only on the
synchronous phase.

9.3.3 Bunch Length

During the course of synchrotron oscillations, particles oscillate between extreme
values in momentum and phase with respect to the reference point and both
modes of oscillation are out of phase by 90ı. All particles of a beam perform
incoherent phase oscillations about a common reference point and generate thereby
the appearance of a steady longitudinal distribution of particles, which we call a
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particle bunch. The total bunch length is twice the maximum longitudinal excursion
of particles from the bunch center defined by

`

2
D ˙ c

h!rev
O' D ˙ �rf

2�
O'; (9.69)

where O' is the maximum phase deviation.
In circular electron accelerators the rf-parameters are generally chosen to gen-

erate a bucket which is much larger than the core of the beam. Statistical emission
of synchrotron radiation photons generates a Gaussian particle distribution in phase
space and therefore the rf-acceptance is adjusted to provide stability far into the tails
of this distribution. To characterize the beam, however, only the core (one standard
deviation) is used. In the case of bunch length or energy deviation we consider
therefore only the situation for small oscillation amplitudes. In this approximation
the bunch length becomes with (9.39)

`

2
D ˙ cj�cj

˝

p

p0

ˇ̌̌̌
max

(9.70)

or with (9.35)

`

2
D ˙ c

p
2�

!rev

s
�ccp0

h e OV cos s

p

p0

ˇ̌̌̌
max

: (9.71)

The bunch length in a circular electron accelerator depends on a variety of rf-and
lattice parameters. It is inversely proportional to the square root of the rf-voltage
and frequency. A high frequency and rf-voltage can be used to reduce the bunch
length of which only the rf-voltage remains a variable once the system is installed.
Practical considerations, however, limit the range of bunch length adjustment this
way. The momentum compaction is a lattice function and theoretically allows the
bunch length to adjust to any small value. For high-energy electron rings �c � �˛c

and by arranging the focusing such that the dispersion functions changes sign,
the momentum compaction factor of a ring can become zero or even negative.
Rings for which �c D 0 are called isochronous rings [10]. By adjusting the
momentum compaction to zero, phase focusing is lost similar to the situation going
through transition in proton accelerators and total beam loss may occur. In this case,
however, nonlinear, higher order effects become dominant which must be taken into
consideration. If on the other hand the momentum compaction is adjusted to very
small values, beam instability may be avoidable. [11] The benefit of an isochronous
or quasi-isochronous ring would be that the bunch length in an electron storage ring
could be made very small. This is important, for example, to either create short
synchrotron radiation pulses or maximize the efficiency of a free electron laser by
preserving the micro bunching at the laser wavelength as the electron beam orbits
in the storage ring.
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Fig. 9.14 Maximum phases limiting the extend of moving buckets

In a circular proton or ion accelerator we need not be concerned with the
preservation of Gaussian tails and therefore the whole rf-bucket could be filled with
the beam proper at high density. In this case, the bunch length is limited by the
extreme phases  1 and  2 of the separatrix. Because the longitudinal extend of the
separatrix depends on the synchronous phase, we expect the bunch length to depend
also on the synchronous phase. One limit is given by the unstable fixed point at
 1 D � �  s. The other limit must be derived from (9.53), where we replace H
by the potential of the separatrix from (9.58). Setting P' D 0, we get for the second
limit of stable phases the transcendental equation

cos 1;2 C  1;2 sin s D .� �  s/ sin s � cos s: (9.72)

This equation has two solutions mod.2�/ of which  1 is one solution and the
other is  2. Both solutions and their difference are shown in Fig. 9.14 as functions
of the synchronous phase.

The bunch length of proton beams is therefore determined only by

`p D �rf

2�
. 2 �  1/: (9.73)

Different from the electron case, we find the proton bunch length to be directly
proportional to the rf-wavelength. On the other hand, there is no direct way of
compressing a proton bunch by raising or lowering the rf-voltage. This difference
stems from the fact that electrons radiate and adjust by damping to a changed rf-
bucket while non-radiating particles do not have this property. However, applying
adiabatic rf-voltage variation we may modify the bunch length as will be discussed
in Sect. 9.3.5.

9.3.4 Longitudinal Beam Emittance

Separatrices distinguish between unstable and stable regions in the longitudinal
phase space. The area of stable phase space in analogy to transverse phase space
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is called the longitudinal beam emittance; however, it should be noted that the
definition of longitudinal emittance as used in the accelerator physics community
often includes the factor � in the numerical value of the emittance and is therefore
equal to the real phase space area. To calculate the longitudinal emittance, we
evaluate the integral

H
p dq where p and q are the conjugate variables describing

the synchrotron oscillation.
Similar to transverse beam dynamics we distinguish again between beam

acceptance and beam emittance. The acceptance is the maximum value for the beam
emittance to be able to pass through a transport line or accelerator components. In
the longitudinal phase space the acceptance is the area enclosed by the separatrices.
Of course, we ignore here other possible acceptance limitations which are not
related to the parameters of the accelerating system. The equation for the separatrix
can be derived by equating (9.53) with (9.58) which gives with (9.17) and (9.35)�

cp

cp0

�2
D eV0
�hj�cjcp0

Œcos' C 1C .2 s C ' � �/ sin s� : (9.74)

We define a longitudinal beam emittance by

�' D
Z

S

E

!rf
d' ; (9.75)

where the integral is to be taken along a path S tightly enclosing the beam in phase
space. Only for  s D n� can this integral be solved analytically. The maximum
value of the beam emittance so defined is the acceptance of the system. Numerically,
the acceptance of a stationary bucket can be calculated by inserting (9.74) into (9.75)
and integration along the enclosing separatrices resulting in

�';acc D 8
s
2 eV0 E0 ˇ

� h j�cj!2rf
: (9.76)

Comparison with the momentum acceptance (9.75) shows the simple relation
that the longitudinal acceptance is eight times the energy acceptance

�';acc D 8 E

!rf

ˇ̌̌̌
max;stat

: (9.77)

For moving rf-buckets, the integration (9.75) must be performed numerically
between the limiting phases  1 and  2. The resulting acceptance in percentage of
the acceptance for the stationary rf-bucket is shown in Fig. 9.15 as a function of the
synchronous phase angle.

The acceptance for  s < 180ı is significantly reduced imposing some practical
limits on the maximum rate of acceleration for a given maximum rf-voltage. During
the acceleration cycle, the magnetic fields in the lattice magnets are increased
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Fig. 9.15 Acceptance of moving rf buckets in units of the acceptance of a stationary rf bucket

consistent with the available maximum rf-voltage and by virtue of the principle of
phase focusing the particles will keep close to the synchronous phase whenever the
rate of energy increase is slow compared to the synchrotron oscillation frequency
which is always the case. In high-energy electron synchrotrons or storage rings the
required “acceleration” is no more a free parameter but is mainly determined by the
energy loss due to synchrotron radiation and a stable beam can be obtained only if
sufficient rf-voltage is supplied to provide the necessary acceptance.

9.3.5 Phase Space Matching

In transverse phase space a need for matching exists while transferring a beam
from one accelerator to another accelerator. Such matching conditions exist also
in longitudinal phase space. In the absence of matching part of the beam may be
lost due to lack of overlap with the rf-bucket or severe phase space dilution may
occur if a beam is injected unmatched into a too large rf-bucket. In the case of
electrons a mismatch generally has no detrimental effect on the beam unless part
or all of the beam exceeds rf-bucket limitations. Because of synchrotron radiation
and concomitant damping, electrons always assume a Gaussian distribution about
the reference phase and ideal momentum. The only matching then requires that the
rf-bucket is large enough to enclose the Gaussian distribution far into the tails of
7–10 standard deviations.

In proton and heavy ion accelerators such damping is absent and careful phase
space matching during the transfer of particle beams from one accelerator to
another is required to preserve beam stability and phase space density. A continuous
monochromatic beam, for example, being injected into an accelerator with too large
an rf-bucket as shown in Fig. 9.16 will lead to a greatly diluted emittance.

This is due to the fact that the synchrotron oscillation is to some extend nonlinear
and the frequency changes with oscillation amplitude with the effect that for all
practical purposes the beam eventually occupies all available phase space. This does
not conflict with Liouville’s theorem, since the microscopic phase space is preserved
albeit fragmented and spread through filamentation over the whole bucket.
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Fig. 9.16 Phase space filamentation after a few synchrotron oscillations

The situation is greatly altered if the rf-voltage is reduced and adjusted to just
cover the energy spread in the beam. Not all particles will be accepted, specifically
those in the vicinity of the unstable fixed points, but all particles that are injected
inside the rf-bucket remain there and the phase space density is not diluted. The
acceptance efficiency is equal to the bucket overlap on the beam in phase space. A
more sophisticated capturing method allows the capture of almost all particles in
a uniform longitudinal distribution by turning on the rf-voltage very slowly [12], a
procedure which is also called adiabatic capture.

Other matching problems occur when the injected beam is not continuous. A
beam from a booster synchrotron or linear accelerator may be already bunched but
may have a bunch length which is shorter than the rf-wavelength or we may want to
convert a bunched beam with a significant momentum spread into an unbunched
beam with small momentum spread. Whatever the desired modification of the
distribution of the beam in phase space may be, there are procedures to allow the
change of particular distributions while keeping the overall emittance constant.

For example, to accept a bunched beam with a bunch length shorter than
the rf-wavelength in the same way as a continuous beam by matching only
the momentum acceptance would cause phase space filamentation as shown in
Fig. 9.17. In a proper matching procedure the rf-voltage would be adjusted such
that a phase space trajectory surrounds closely the injected beam (Fig. 9.17 left).
In mathematical terms, we would determine the bunch length O' of the injected
beam and following (9.70) would adjust the rf-voltage such that the corresponding
momentum acceptance Oı D .p=p0/max matches the momentum spread in the
incoming beam. If no correct matching is done and the beam is injected like shown
in (Fig. 9.17 right), then the variation of synchrotron oscillation frequency with
amplitude would cause filamentation and dilution of beam phase space. Effectively,
this simulates in real space a larger effective emittance.

Equation (9.70) represents a relation between the maximum momentum devia-
tion and phase deviation for small amplitude phase space trajectories which allows
us to calculate the bunch length as a function of external parameters. Methods
have been discussed in transverse particle dynamics which allow the manipulation
of conjugate beam parameters in phase space while keeping the beam emittance
constant. Specifically, within the limits of constant phase space we were able to
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Fig. 9.17 Mismatch for a bunched beam (right). Proper match for a bunched beam (left)

exchange beam size and transverse momentum or beam divergence by appropriate
focusing arrangements to produce,for example, a wide parallel beam or a small
beam focus.

Similarly, we are able to manipulate within the limits of a constant longitudinal
beam emittance the bunch length and momentum spread. The focusing device in this
case is the voltage in accelerating cavities. Assume, for example, a particle bunch
with a very small momentum spread but a long bunch length as shown in Fig. 9.18
left. To transform such a bunch into a short bunch we would suddenly increase the
rf-voltage in a time short compared to the synchrotron oscillation period. The whole
bunch then starts to rotate within the new bucket (Fig. 9.18 middle) exchanging
bunch length for momentum spread. After a quarter synchrotron oscillation period,
the bunch length has reached its shortest value and starts to increase again through
further rotation of the bunch unless the rf-voltage is suddenly increased a second
time to stop the phase space rotation of the bunch (Fig. 9.18 right). The rf-voltage
therefore must be increased to such a value that all particles on the bunch boundary
follow the same phase space trajectory.

This phase space manipulation can be conveniently expressed by repeated appli-
cation of (9.39). The maximum momentum deviation .cp=p0/0 and the maximum
phase deviation O'0 for the starting situation in Fig. 9.18 (left) are related by

cp

p0

ˇ̌̌̌
ˇ
0

D ˝0

h!revj�cj O'0; (9.78)

where ˝0 is the starting synchrotron oscillation frequency for the rf-voltage V0. To
start bunch rotation the rf-voltage is increased to V1 (Fig. 9.18 middle) and after
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Fig. 9.18 Phase space rotation

a quarter synchrotron oscillation period at the frequency ˝1 / pV1 the phase
deviation O'0 has transformed into the momentum deviation

cp

p0

ˇ̌̌̌
ˇ
1

D ˝1

h!revj�cj O'0: (9.79)

At the same time the original momentum error cp=p0j0 has become a phase error
O'1 given by

cp

p0

ˇ̌̌̌
ˇ
0

D ˝1

h!revj�cj O'1: (9.80)

Now we need to stop further phase space rotation of the whole bunch. This can
be accomplished by increasing a second time the rf-voltage during a time short
compared to the synchrotron oscillation period in such a way that the new bunch
length or O' is on the same phase space trajectory as the new momentum spreadcp=p0j1 (Fig. 9.18 right). The required rf-voltage is then determined by

cp

p0

ˇ̌̌̌
ˇ
1

D ˝2

h!rev j�cj O'1
(9.81)

while solving˝2 for the voltage V2. We take the ratio of (9.77) and (9.80) to get

O'1 ˝2

O'0 ˝0

D
cp=p0j1cp=p0j0

(9.82)
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and replace the ratio of the momentum spreads by the ratio of (9.78) and (9.79).
With ˝i / pVi and ` / O' we get finally the scaling law for the reduction of the
bunch length

`1

`0
D
�

V0
V2

� 1
4

: (9.83)

In other words the bunch length can be reduced by increasing the rf-voltage in a two
step process and the bunch length reduction scales like the fourth power of the rf-
voltage. This phase space manipulation is symmetric in the sense that a beam with
a large momentum spread and a short bunch length can be converted into a bunch
with a smaller momentum spread at the expense of the bunch length by reducing the
rf-voltage in two steps.

The bunch length manipulation described here is correct and applicable only for
non-radiating particles. For radiating particles like electrons, the bunch manipula-
tion is easier due to damping effects. Equation (9.39) still holds, but the momentum
spread is independently determined by synchrotron radiation and the bunch length
therefore scales simply proportional to the square root of the rf-voltage.

9.4 Higher-Order Phase Focusing

The principle of phase focusing is fundamental for beam stability in circular
accelerators and we find the momentum compaction factor to be a controlling
quantity. Since the specific value of the momentum compaction determines critically
the beam stability, it is interesting to investigate the consequences to beam stability
as the momentum compaction factor varies. Specifically, we will discuss the
situation where the linear momentum compaction factor is reduced to very small
values and higher-order terms become significant. This is, for example, of interest
in proton or ion accelerators going through transition energy during acceleration, or
as we try to increase the quadrupole focusing in electron storage rings to obtain a
small beam emittance, or when we intentionally reduce the momentum compaction
to reduce the bunch length. In extreme cases, the momentum compaction factor
becomes zero at transition energy or in an isochronous storage ring where the
revolution time is made the same for all particles independent of the momentum.
The linear theory of phase focusing would predict beam loss in such cases due to
lack of phase stability. To accurately describe beam stability when the momentum
compaction factor is small or vanishes, we cannot completely ignore higher-order
terms. Some of the higher-order effects on phase focusing will be discussed here.
There are two main contributions to the higher-order momentum compaction factor,
one from the dispersion function and the other from the momentum dependent path
length. First, we derive the higher-order contributions to the dispersion function, and
then apply the results to the principle of phase focusing to determine the perturbation
on the beam stability.
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9.4.1 Dispersion Function in Higher Order

The first-order change in the reference path for off energy particles is proportional to
the relative momentum error. The proportionality factor is a function of the position
s and is called the dispersion function. This result is true only in linear beam
dynamics. We will now derive chromatic effects on the reference path in higher
order to allow a more detailed determination of the chromatic stability criteria. The
linear differential equation for the normalized dispersion function is

d2w0
d'2

C 
2w0 D 
2ˇ 3
2 � D 
2F.'/; (9.84)

where ' is the betatron phase, w0 D �0=
p
ˇ, ˇ.z/ the betatron function and �.z/

the undisturbed dispersion function. The periodic solution of (9.84) is called the
normalized dispersion function w0.'/ DPC1

nD�1

2Fn ein'


2�n2
, and

F.'/ D ˇ 3
2 � D

X
Fn ein': (9.85)

This linear solution includes only the lowest-order chromatic error term from
the bending magnets and we must therefore include higher-order chromatic terms
into the differential equation of motion. To do that we use the general differential
equation of motion while ignoring all coupling terms

x00 C .�2 C k/ x D C�ı � �ı2 C �ı3 � 1
2
m .1� ı/x2 C �0xx0 (9.86)

� .�3 C 2�k/.1� ı/x2 C 1
2
�.1 � ı/ x02

C .2�2 C k/x ı � .kC 2�2/xı2 CO.4/;

where � D 1=	. We are only interested in the chromatic solution with vanishing
betatron oscillation amplitudes and insert for the particle position therefore

x� D �0ı C �1ı2 C �2ı3 CO.4/: (9.87)

Due to the principle of linear superposition separate differential equations exist
for each component �i by collecting on the right-hand side terms of equal power
in ı. For the terms linear in ı, we find the well-known differential equation for the
dispersion function

�00
0 C K.z/�0 D � D

X
n

F0nein'; (9.88)
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where we also express the perturbations by its Fourier expansion. The terms
quadratic in ı form the differential equation
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and terms cubic in ı are determined by
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We note that the higher-order dispersion functions are composed of the negative
lower-order solutions plus an additional perturbation. After transformation of these
differential equations into normalized variables, w D �=

p
ˇ, etc., we get with j D

0; 1; 2 differential equations of the form

Rwj.'/C 
20wj.'/ D 
20ˇ3=2F.z/ D 
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mDjX
mD0

nD1X
nD�1

.�1/mCjˇ3=2Fmn ein'; (9.91)

where we have expressed the periodic perturbation on the r.h.s. by an expanded
Fourier series. Noting that the dispersion functions wj.'/ are periodic, we try the
ansatz

wj.'/ D
X

n

wjn ein'; (9.92)

and insertion into (9.91) allows to solve for the individual Fourier coefficients wjn

by virtue of the orthogonality of the exponential functions ein' . We get for the
dispersion functions up to second order and reverting to the ordinary �-function
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2 � n2
; (9.93a)
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(9.93c)

The solutions of the higher-order differential equations have the same integer-
resonance behavior as the linear solution for the dispersion function. The higher-
order corrections will become important for lattices where strong sextupoles are
required in which cases the sextupole terms may be the major perturbations to
be considered. Other perturbation terms depend mostly on the curvature � in the
bending magnets and, therefore, maybe small for large rings or beam-transport lines
with weak bending magnets.

9.4.2 Path Length in Higher Order

The path length together with the velocity of particles governs the time of arrival
at the accelerating cavities from turn to turn and therefore defines the stability of a
particle beam. Generally, only the linear dependence of the path length on particle
momentum is considered. We find, however, higher-order chromatic contributions
of the dispersion function to the path length as well as momentum independent
contributions due to the finite angle of the trajectory with respect to the ideal orbit
during betatron oscillations.

The path length for a particular trajectory from point z0 to point z in our
curvilinear coordinate system can be derived from the integral L D H z

0
ds, where

s is the coordinate along the particular trajectory. This integral can be expressed by

L D
I q

.1C �x/2 C x02 C y02dz ; (9.94)

where the first term of the integrand represents the contribution to the path length
due to curvature generated by bending magnets while the second and third term
are contributions due to finite horizontal and vertical betatron oscillations. For
simplicity, we ignore vertical bending magnets. Where this simplification cannot
be made, it is straight forward to extend the derivation of the path length in higher
order to include bending and betatron oscillations in the vertical plane as well. We
expand (9.94) up to second order and get for the path length variationL D L� L0

L D
I �

�xC 1
2
�2x2 C 1

2
x02 C 1

2
y02� dz CO.3/: (9.95)
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The particle amplitudes are composed of betatron oscillation, orbit distortions
and off energy orbits

x D xˇ C x0 C �0ı C �1ı2 C : : : ;
y D yˇ C y0;

(9.96)

where
�
xˇ; yˇ

�
describe the betatron oscillations and .�0; �1; : : :/ are the linear

and higher-order dispersion functions derived in Sect. 9.4.1. The quantities .x0; y0/

describe the deviation of the actual orbit from the ideal orbit or orbit distortion due
to magnetic field and alignment errors.

Evaluating the integral (9.95), we note that the oscillatory character of .xˇ; yˇ/
causes all terms linear in .xˇ; yˇ/ to vanish while averaging over many turns.
The orbit distortions .x0; y0/ are statistical in nature since the correction in a real
accelerator is done such that hx0i D 0 and hx0

0i D 0. Betatron oscillations and
orbit distortions are completely independent and therefore cross terms like hxˇx0i
vanish. The dispersion function �0 and the higher-order term �1 are unique periodic
solutions of the inhomogeneous equation of motion. For the betatron oscillations we
assume a nonresonant tune which causes terms like hxˇ�0i to vanish as well. With
these results the path length variation is

L � 1
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I �
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dz (9.97)
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There are three main contributions of which two are of chromatic nature.
The finite transverse betatron oscillations as well as orbit distortions contribute
to a second order increase in the path length of the beam transport system
which is of non-chromatic nature. Equation (9.97) can be simplified by using
the explicit expressions for the particle motion xˇ.z/ D

p
�xˇx.z/ sin x.z/

and x0̌ .z/ D p
�x=ˇx.z/ Œcos x.z/ � ˛x.z/ sin x.z/�. Forming the square
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where we used the simplifying expression
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. Similarly, we getH
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over the entire beam transport line of length L0 and using average values for the
integrands, the path-length variation is
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(9.99)
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In this expression for the path-length variation we find separate contributions
due to betatron oscillations, orbit distortion and higher-order chromatic effects. We
have used the emittance � as the amplitude factor for betatron oscillation and get
therefore a path length spread within the beam due to the finite beam emittance �.
Note specifically that for an electron beam this emittance scales by the factor n2� to
include Gaussian tails, where n� is the oscillation amplitude in units of the standard
amplitude � . For whole beam stability a total emittance of �tot D 72�� 102� should
be considered. For stable machine conditions, the contribution of the orbit distortion
is the same for all particles and can therefore be corrected by an adjustment of
the rf-frequency. We include these terms here, however, to allow the estimation of
allowable tolerances for dynamic orbit changes.

9.4.3 Higher Order Momentum Compaction Factor

The longitudinal phase stability in a circular accelerator depends on the value of the
momentum compaction �c, which actually regulates the phase focusing to obtain
stable particle motion. This parameter is not a quantity that can be chosen freely
in the design of a circular accelerator without jeopardizing other desirable design
goals. If, for example, a small beam emittance is desired in an electron storage
ring, or if for some reason it is desirable to have an isochronous ring where the
revolution time for all particles is the same, the momentum compaction should
be made to become very small. This in itself does not cause instability unless the
momentum compaction approaches zero and higher-order chromatic terms modify
phase focusing to the extent that the particle motion becomes unstable. To derive
conditions for the loss of phase stability, we evaluate the path length variation (9.99)
with momentum in higher order

L

L0
D ˛cı C ˛1 ı2 C � CO.3/; (9.100)

where � represents the momentum independent term
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and
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is the non-linear momentum compaction factor.
From the higher order dispersion and path length we may now derive the value

of the higher order momentum compaction factor. First we note that we are not
interested in oscillatory terms. Therefore (9.93b) reduces to
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where the average is to be taken over one superperiod of the accelerator. The other
terms in (9.102) and (9.101) are straight forward. With the knowledge of the higher
order momentum compaction factor we are now able to consider higher order phase
motion.

9.4.4 Higher-Order Phase Space Motion

Following the derivation of the linear phase equation, we note that it is the variation
of the revolution time with momentum rather than the path-length variation that
affects the synchronicity condition. With the expanded momentum compaction �c D
1
�2
� ˛cwe get the differential equation for the phase oscillation to second order

@ 

@t
D �!rf

�
�cı � ˛1ı2 � �

�
(9.105)

and for the momentum oscillation

@ı

@t
D eVrf

T0cp0
.sin � sin s/ : (9.106)
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Fig. 9.19 Second-order longitudinal phase space for  s D 0, � D 0 and weak perturbation
˛1=�c D �3:0

In linear approximation, where ˛1 D 0 and � D 0, a single pair of fixed points
and separatrices exist in phase space. These fixed points can be found from the
condition that P D 0 and Pı D 0 and they lie on the abscissa for ı D 0. The
stable fixed point is located at . sf; ısf/ D . s; 0/ defining the center of the rf-
bucket where stable phase oscillations occur. The unstable fixed point at . uf; ıuf/ D
.� �  s; 0/ defines the crossing point of the separatrices separating the trajectories
of oscillations from those of librations.

Considering also higher-order terms in the theory of phase focusing leads to a
more complicated pattern of phase space trajectories. Setting (9.106) equal to zero
we note that the abscissae of the fixed points are at the same location as for the linear
case

 1f D  s and  2f D � �  s: (9.107)

The energy coordinates of the fixed points, however, are determined by solving
(9.105) for P D 0 or

�cı � ˛1ı2 � � D 0 (9.108)

with the solutions

ıf D C �c

2˛1

�
1˙p1 � �

�
; (9.109)
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Fig. 9.20 Higher-order longitudinal phase space diagrams for  s D 0, � D 0 and strong
perturbation ˛1=�c D �6:0 (top) and ˛1=�c D �13:5 (bottom)

where

� D 4�˛1

�2c
: (9.110)

Due to the quadratic character of (9.108), we get now two layers of fixed points
with associated areas of oscillation and libration. In Figs. 9.19, 9.20, the phase
diagrams are shown for increasing values of ˛1 while for now we set the momentum
independent perturbation � D 0. Numerically, the contour lines have been calculated
from the Hamiltonian (9.114) with =2�c D 0:005, where is defined in .26199/.
The appearance of the second layer of stable islands and the increasing perturbation
of the original rf-buckets is obvious. There is actually a point [Fig. 9.20 (top)]
where the separatrices of both island layers merge. We will use this merging of the
separatrices later to define a tolerance limit for the perturbation on the momentum
acceptance.

The coordinates of the fixed points in the phase diagram are determined from
(9.116), (9.117) and are for the linear fixed points in the first layer

point A:  A D  s; ıA D �c
2˛1

�
1 �p1 � �

�
;

point B:  B D � �  s; ıB D �c
2˛1

�
1 �p1 � �

�
:

(9.111)
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Fig. 9.21 Second-order longitudinal phase space for the same parameters as Fig. 9.20 (top), but
now with 2�=�c D �0:125

The momenta of these fixed points are at ı D 0 for � D 0 consistent with
earlier discussions. As orbit distortions and betatron oscillations increase, however,
we note a displacement of the equilibrium momentum as � increases.

The fixed points of the second layer of islands or rf-buckets are displaced both in
phase and in momentum with respect to the linear fixed points such that the stable
and unstable fixed points are interchanged. The locations of the second layer of fixed
points are

point C:  C D  s; ıC D �c
2˛1

�
1Cp1 � �

�
;

point D:  D D � �  s; ıD D �c
2˛1

�
1Cp1 � �

�
:

(9.112)

The dependence of the coordinates for the fixed points on orbit distortions and the
amplitude of betatron oscillations becomes evident from (9.121), (9.124). Specifi-
cally, we note a shift in the reference momentum of the beam by �=�c as the orbit dis-
tortion increases as demonstrated in the examples shown in Figs. 9.21, 9.22, 9.23c,
d. Betatron oscillations, on the other hand, cause a spread of the beam momentum
in the vicinity of the fixed points. This readjustment of the beam momentum is a
direct consequence of the principle of phase focusing whereby the particle follows
a path such that the synchronicity condition is met. The phase space diagram
of Fig. 9.19 is repeated in Fig. 9.21 with a parameter 2�=�c D �0:125 and in
Fig. 9.22 with the further addition of a finite synchronous phase of  s D 0:7

rad. In addition to the shift of the reference momentum a significant reduction in
the momentum acceptance compared to the regular rf-buckets is evident in both
diagrams.

As long as the perturbation is small and j˛1j � j�cj, the new fixed points are
located far away from the reference momentum and their effect on the particle
dynamics can be ignored. The situation becomes very different whenever the
linear momentum compaction becomes very small or even zero due to strong
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Fig. 9.22 Higher-order longitudinal phase space diagrams for  s D 0:7, 2�=�c D �0:125 and a
weak perturbation ˛1=�c D �3:0

quadrupole focusing during momentum ramping through transition or in the case
of the deliberate design of a low ˛-lattice for a quasi isochronous storage ring. In
these cases higher order perturbations become significant and cannot be ignored.
We cannot assume anymore that the perturbation term ˛1 is negligibly small and the
phase dynamics may very well become dominated by perturbations.

The perturbation ˛1 of the momentum compaction factor depends on the
perturbation of the dispersion function and is therefore also dependent on the
sextupole distribution in the storage ring. Given sufficient sextupole families it is
at least in principle possible to adjust the parameter ˛1 to zero or a small value by a
proper distribution of sextupoles.

9.4.5 Stability Criteria

Stability criteria for phase oscillations under the influence of higher order momen-
tum compaction terms can be derived from the Hamiltonian. The nonlinear equa-
tions of motion (9.105), (9.106) can be derived from the Hamiltonian

H D eVrf

T0cp0
Œcos � cos s C . �  s/ sin s�C !rf

�
�ı � 1

2
�cı

2 C 1
3
˛1ı

3
�
:

(9.113)

To eliminate inconsequential factors for the calculation of phase space trajecto-
ries, we simplify (9.113) to

QH D  Œcos � cos s C . �  s/ sin s�C 2 �
�c
ı � ı2 C 2

3

˛1

�c
ı3; (9.114)
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where

 D 2eVrf

T0cp0!rf�c
: (9.115)

We may use (9.114) to calculate phase space trajectories and derive stability
conditions for various combinations of the parameters , the perturbation of the
momentum compaction ˛1, and the synchronous phase  s (Figs. 9.19, 9.20, 9.21,
and 9.22). In Fig. 9.23, the phase diagrams of Figs. 9.19, 9.20, 9.21, and 9.22
are displayed now as three-dimensional surfaces plots with the same parameters.
Starting from the linear approximation where only regular rf-buckets appear along
the  -axis, we let the ratio ˛1=�c increase and find the second set of rf-buckets
to move in from large relative momentum errors ıf toward the main rf-buckets.
A significant modification of the phase diagrams occurs when the perturbation
reaches such values that the separatrices of both sets of buckets merge as shown in
Fig. 9.20 (top). A further increase of the perturbation quickly reduces the momentum

d)
second order unstable
fixed  points

δ

stable
rf-buckets

ψ

a)

δ

ψ

stable
rf-buckets

second order unstable
fixed  points

ψ

second order unstable
fixed  points
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δ

stable
rf-buckets

ψ

second order unstable
fixed  points

c)

δ

stable
rf-buckets

Fig. 9.23 Three dimensional rendition of Figs. 9.19(a), 9.20(b), 9.21(c) and 9.22(d)
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acceptance of the rf-system as can be noticed by comparing Figs. 9.20 (top) and
(bottom) or Figs. 9.23 (top) and 9.23 (bottom). The effect of the momentum shift
when � ¤ 0 becomes obvious in Figs. 9.21, 9.22, 9.23c, d as well as the effect of a
finite synchronous phase in Fig. 9.23d.

From these qualitative observations we derive a threshold of allowable perturba-
tion ˛1 above which the momentum acceptance of the system becomes significantly
reduced. From Figs. 9.20 (top) we take the condition for momentum stability when
the separatrices of both sets of buckets merge which occurs when the Hamiltonian
for both separatrices or for the fixed points (B) and (C) are equal and

QH .� �  s; ıB/ D QH. s; ıC/: (9.116)

Equation (9.116) becomes in the form of (9.114)

.�2 cos s C .� � 2 s/ sin s/� ı2B C 2
3

˛1

�c
ı3B C 2

�

�c
ıB (9.117)

D �ı2C C 2
3

˛1

�c
ı3C C 2

�

�c
ıC:

Comparing (9.115) with the results of linear theory, we note that the maximum
unperturbed momentum acceptance is related to the parameter by

 D 1

F.q/ sin s

�
p

p0

�2
max

j�cj
�c
; (9.118)

where 1
q D sin s and F.q/ is defined in (9.65). Equation (9.117) can be solved for

the maximum momentum acceptance�
p

p0

�2
max
D �c

j�cj
�
ı2C � ı2B

�C 2
3

˛1

j�cj
�
ı3C � ı3B

�C 2 �

j�cj .ıC � ıB/ : (9.119)

Using the expression (9.109) for the coordinates of the fixed points (9.119)
eventually becomes with (9.110)�

p

p0

�2
max
D �2c

3˛21
.1 � � /3=2 ; (9.120)

and the stability criterion that the nonlinear perturbation not reduce the momentum
acceptance is finally expressed by

˛1 
 j�cjp
3

.1 � � /3=4�
p
p0

�
desired

: (9.121)
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From this criterion we note that the momentum independent perturbation � can
further limit the momentum acceptance until there is for �  1 no finite momentum
acceptance left at all.

The momentum shift and the momentum acceptance as well as stability limits
can be calculated analytically as a function of ˛1 and the momentum independent
term � . As long as the perturbation is small and (9.121) is fulfilled we calculate the
momentum acceptance for the linear rf-buckets from the value of the Hamiltonian
(9.114). For stronger perturbations, where the separatrices of both layers of rf-
buckets have merged and are actually exchanged (Fig. 9.20), a different value of
the Hamiltonian must be chosen. The maximum stable synchrotron oscillation in
this case is not anymore defined by the separatrix through fixed point B but rather
by the separatrix through fixed point C. In the course of synchrotron oscillations a
particle reaches maximum momentum deviations from the reference momentum at
the phase  D  s. We have two extreme momentum deviations, one at the fixed
point (C), and the other half a synchrotron oscillation away. Both points have the
same value of the Hamiltonian (9.114) and are related by

2
�

�c

Oı � Oı2 C 2
3

˛1

�c

Oı3 D 2 �
�c
ıC � ı2C C 2

3

˛1

�c
ı3C: (9.122)

We replace ıC from (9.112) and obtain a third-order equation for the maximum
momentum acceptance Oı

2
�

�c

Oı � Oı2 C 2
3

˛1

�c

Oı3 D � �c

6˛21

h
1C .1 � � /3=2 � 3

2
�
i
: (9.123)

This third-order equation can be solved analytically and has the solutions

Oı1 D �c
2˛1

�
1 � 2p1 � �

�
;

Oı2;3 D �c
2˛1

�
1Cp1 � �

�
:

(9.124)

Two of the three solutions are the same and define the momentum at the crossing
of the separatrix at the fixed point (C) while the other solution determines the
momentum deviation half a synchrotron oscillation away from the fixed point
(C). We plot these solutions in Fig. 9.24 together with the momentum shift of the
reference momentum at the fixed point (A). As long as there is no momentum
independent perturbation .� D 0/ the momentum acceptance is given by

� 2 < �2˛1
�c
ıi < 1: (9.125)

The asymmetry of the momentum acceptance obviously reflects the asymmetry
of the separatrix. For ˛1 ! 0 the momentum acceptance in (9.120) diverges, which
is a reminder that we consider here only the case where the perturbation ˛1 exceeds
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Fig. 9.24 Higher-order
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the limit (9.121). In reality the momentum acceptance does not increase indefinitely
but is limited by other criteria, for example, by the maximum rf-voltage available.
The momentum acceptance limits of (9.124) are further reduced by a finite beam
emittance when � ¤ 0 causing a spread in the revolution time. All beam stability is
lost as � approaches unity and the stability criterion for stable synchrotron motion
in the presence of betatron oscillations is defined by

4�˛1

�2c
< 1; (9.126)

where the parameter � is defined by (9.101).
In evaluating the numerical value of � we must consider the emittances �x;y as

amplitude factors. In case of a Gaussian electron beam in a storage ring, for example,
a long quantum lifetime can be obtained only if particles with betatron oscillation
amplitudes up to at least seven standard values are stable. For such particles the
emittance is � D 72�� , where �� is the beam emittance for one standard deviation.
Similarly, the momentum acceptance must be large enough to include a momentum
deviation of ımax  7�E=E0.

In general, the stability criteria can be met especially if sextupole magnets are
adjusted that the linear perturbation ˛1 of the momentum compaction is made
small. In this case, however, we must consider dynamic stability of the beam and
storage ring to prevent ˛1 to vary more than the stability criteria allow. Any dynamic
variation˛1 must meet the condition

˛1 <
�2c
4�
: (9.127)

Even if the quadratic term ˛1 is made to approach zero we still must consider the
momentum shift due to non-chromatic terms when � ¤ 0. From (9.111) we have
for the momentum shift ı0 of the stable fixed point A

ı0 D
�c

2˛1

�
1 �p1 � �

�
; (9.128)
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where � is small when ˛1 ! 0 and the square root can be expanded. In this limit
the momentum shift becomes

ı0 !
�

�c
for ˛1 ! 0: (9.129)

To achieve low values of the momentum compaction, it is therefore also
necessary to reduce the particle beam emittance. Case studies of isochronous lattices
show, however, that this might be very difficult because the need to generate both
positive and negative values for the dispersion function generates large values for
the slopes of the dispersion leading to rather large beam emittances.

Adjusting the quadratic term ˛1 to zero finally brings us back to the situation
created when the linear momentum compaction was reduced to small values. One
cannot ignore higher-order terms anymore. In this case we would expect that the
quadratic and cubic perturbations of the momentum compaction will start to play
a significant role since �c � 0 and ˛1 � 0. The quadratic term ˛3 will introduce
a spread of the momentum compaction due to the momentum spread in the beam
while the cubic term ˛4 introduces a similar spread to the linear term ˛1.

Problems

9.1 (S). A 500 MHz rf-system is supposed to be used in a Wideroe type linac to
accelerate protons from a 1 MeV Van de Graaf accelerator. Determine the length of
the first three drift tubes for an accelerating voltage at the gaps of 0.5 MeV while
assuming that the length of the tubes shall not be less than 15 cm. Describe the
operating conditions from an rf-frequency point of view.

9.2 (S). A proton beam with a finite energy spread is injected at an energy of
200 MeV into a storage ring in nb equidistant short bunches while the rf-system
in the storage ring is turned off. Derive an expression for the debunching time or the
time it takes for the bunched proton beam to spread out completely.

9.3 (S). The momentum acceptance in a synchrotron is reduced as the synchronous
phase is increased. Derive a relationship between the maximum acceleration rate
and momentum acceptance. How does this relationship differ for protons and
radiating electrons?

9.4 (S). Derive an expression for and plot the synchrotron frequency as a function
of oscillation amplitude within the separatrices. What is the synchrotron frequency
at the separatrices?

9.5 (S). Sometimes it is desirable to produce short bunches, even only temporary
in a storage ring either to produce short X-ray pulses or for quick ejection from a
damping ring into a linear collider. By a sudden change of the rf-voltage the bunch
can be made to rotate in phase space. Determine analytically the shortest possible
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bunch length as a function of the rf-voltage increase considering a finite energy
spread. For how many turns would the short bunch remain within 50 % of its shortest
value?

9.6. Calculate the synchrotron oscillation frequency for a 9GeV proton booster.
The maximum momentum is cpmax D 8:9GeV the harmonic number h D 84, the
rf-voltage Vrf D 200 kV, transition energy �tr D5.4 and rf-frequency at maximum
momentum frf D 52:8MHz. Calculate and plot the rf and synchrotron oscillation
frequency as a function of momentum from an injection momentum of 400 MeV to
a maximum momentum of 8.9 GeV while the synchronous phase is s D 45ı. What
is the momentum acceptance at injection and at maximum energy? How long does
the acceleration last?

9.7. Specify a synchrotron of your choice made up of FODO cells for the
acceleration of relativistic particles. Assume an rf-system to provide an accelerating
voltage equal to 10�4 of the maximum particle energy in the synchrotron. During
acceleration the synchrotron oscillation tune shall remain less than 
s < 0:02.
What are the numerical values for the rf-frequency, harmonic number, rf-voltage,
synchronous phase angle and acceleration time in your synchrotron? In case of a
proton synchrotron determine the change in the bunch length during acceleration.
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Chapter 10
Periodic Focusing Systems

The fundamental principles of charged particle beam dynamics as discussed in
previous chapters can be applied to almost every beam transport need. Focusing and
bending devices for charged particles are based on magnetic or electric fields which
are specified and designed in such a way as to allow the application of fundamental
principles of beam optics leading to predictable results.

Beam transport systems can be categorized into two classes: The first group
includes beam transport lines which are designed to guide charged particle beams
from point A to point B. In the second class, we find beam transport systems or
magnet lattices forming circular accelerators. The physics of beam optics is the
same in both cases but in the design of actual solutions different boundary conditions
apply. Basic linear building blocks in a beam transport line are the beam deflecting
bending magnets, quadrupoles to focus the particle beam, and field free drift spaces
between magnets. Transformation matrices have been derived in Chap. 7 and we
will apply these results to compose more complicated beam transport systems. The
arrangement of magnets along the desired beam path is called the magnet lattice or
short the lattice.

Beam transport lines can consist of an irregular array of magnets or a repetitive
sequence of a group of magnets. Such a repetitive magnet sequence is called a
periodic magnet lattice, or short periodic lattice and if the magnet arrangement
within one period is symmetric this lattice is called a symmetric magnet lattice,
or short a symmetric lattice. By definition a circular accelerator lattice is a periodic
lattice with the circumference being the period length. To simplify the design and
theoretical understanding of beam dynamics it is customary, however, to segment
the full circumference of a circular accelerator into identical sectors which are
repeated a number of times to form the complete ring. Such sectors are called
superperiods and define usually most salient features of the accelerator in contrast
to much smaller periodic segments called cells, which include only a few magnets.

In this chapter, we concentrate on the study of periodic focusing structures. For
long beam transport lines and specifically for circular accelerators it is prudent to
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consider focusing structures that repeat periodically. In this case, one can apply
beam dynamics properties of one periodic lattice structure as many times as
necessary with known characteristics. In circular particle accelerators such periodic
focusing structures not only simplify the determination of beam optics properties
in a single turn but we will also be able to predict the stability criteria for particles
orbiting an indefinite number of revolutions around the ring.

To achieve focusing in both planes, we will have to use both focusing and
defocusing quadrupoles in a periodic sequence such that we can repeat a lattice
period any number of times to form an arbitrary long beam line which provides the
desired focusing in both planes.

10.1 FODO Lattice

The most simple periodic lattice would be a sequence of equidistant focusing
quadrupoles of equal strength. This arrangement is unrealistic with magnetic
quadrupole fields which do not focus in both the horizontal and vertical plane in
the same magnet. The most simple and realistic compromise is therefore a periodic
lattice like the symmetric quadrupole triplet which was discussed in Sect. 7.2.3. and
is shown schematically in Fig. 10.1.

Each half of such a lattice period is composed of a focusing (F) and a defocusing
(D) quadrupole with a drift space (O) in between forming a FODO sequence.
Combining such a sequence with its mirror image as shown in Fig. 10.1 results in
a periodic lattice which is called a FODO lattice or a FODO channel. By starting
the period in the middle of a quadrupole and continuing to the middle of the next
quadrupole of the same sign not only a periodic lattice but also a symmetric lattice
is defined. Such an elementary unit of focusing is called a lattice unit or in this
case a FODO cell. The FODO lattice is the most widely used lattice especially in
high energy accelerator systems because of its simplicity, flexibility, and its beam
dynamical stability.

z

FODO Period

½ QF QD ½ QF

Fig. 10.1 FODO-lattice (QF focusing quadrupole, QD defocusing quadrupole)



10.1 FODO Lattice 305

10.1.1 Scaling of FODO Parameters

To determine the properties and stability criteria for a FODO period we restrict
ourselves to thin lens approximation, where we neglect the finite length of the
quadrupoles. The FODO period can be expressed symbolically by the sequence
1
2
QF-L-QD-L- 1

2
QF, where the symbol L represents a drift space of length L and

the symbols QF and QD are focusing or defocusing quadrupoles, respectively. In
either case we have a triplet structure for which the transformation matrix has been
derived in Sect. 7.2.3

MFODO D
0@1 � 2 L2

f 2
2L
�
1C L

f

�
� 1

f � 1 � 2 L2

f 2

1A : (10.1)

Here ff D �fd D f , 1=f � D 2 .1 � L=f / L=f 2 and is called a symmetric FODO
lattice.

From the transformation matrix (10.1) we can deduce an important property for
the betatron function. The diagonal elements are equal as they always are in any
symmetric lattice. Comparison of this property with elements of the transformation
matrix expressed in terms of betatron functions (8.74) shows that the solution of the
betatron function is periodic and symmetric since ˛ D 0 both at the beginning and
the end of the lattice period. We therefore have symmetry planes in the middle of
the quadrupoles for the betatron functions in the horizontal as well as in the vertical
plane. The betatron functions then have the general periodic and symmetric form as
shown in Fig. 10.2.

From (8.22) and (10.1), we can derive the analytical expression for the periodic
and symmetric betatron function by setting ˇ0 D ˇ, ˛0 D 0 and �0 D 1=ˇ and get

ˇ D
�
1 � 2L2

f 2

�2
ˇ C 4L2

�
1C L

f

�2
1

ˇ
; (10.2)

L L

½ QF

β
x β

y

½ QF

functions
betatron

FODO Cell

QD

Fig. 10.2 Periodic betatron functions in a FODO channel
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where f > 0 and ˇ is the value of the betatron function in the middle of the focusing
quadrupole QF. Solving for ˇ, we get

ˇC D L
f
L

f
LC1q

f 2

L2�1
D L

�.� C 1/p
�2 � 1 ; (10.3)

where we define the FODO parameter � by

� D f

L
> 1 (10.4)

and set ˇ D ˇC to indicate the solution in the center of the focusing quadrupole. The
FODO parameter � is used only here and should not be identified with our general
use of this letter being the curvature. Had we started at the defocusing quadrupole
we would have to replace f by �f and get analogous to (10.3) for the value of the
betatron function in the middle of the defocusing quadrupole

ˇ� D L
�.� � 1/p
�2 � 1 : (10.5)

These are the solutions for both the horizontal and the vertical plane. In the
middle of the horizontally focusing quadrupole QF .f > 0/ we have ˇx D ˇC and
ˇy D ˇ� and in the middle of the horizontally defocusing quadrupole QD .f < 0/,
we have ˇx D ˇ� and ˇy D ˇC. From the knowledge of the betatron functions
at one point in the lattice, it is straightforward to calculate the value at any other
point by proper matrix multiplications as discussed earlier. In open arbitrary beam
transport lines the initial values of the betatron functions are not always known and
there is no process other than measurements of the actual particle beam in phase
space to determine the values of the betatron functions as discussed in Sect. 8.1.3.
The betatron functions in a periodic lattice in contrast are completely determined
by the requirement that the solution be periodic with the periodicity of the lattice. It
is not necessary that the focusing lattice be symmetric to obtain a unique, periodic
solution. Equation (8.22) can be used for any periodic lattice requiring only the
equality of the betatron functions at the beginning and at the end of the periodic
structure. Of course, not any arbitrary although periodic arrangement of quadrupoles
will lead to a viable solution and we must therefore derive conditions for periodic
lattices to produce stable solutions.

The betatron phase for a FODO cell can be derived by applying (8.74) to a
symmetric lattice. With ˛0 D ˛ D 0 and ˇ0 D ˇ this matrix is 

cos� ˇ sin �
� 1
ˇ

sin � cos�

!
; (10.6)
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where � is the betatron phase advance through a full symmetric period. Since the
matrix (10.6) must be equal to the matrix (10.1) the phase must be

cos� D 1 � 2 L2

f 2
D �2 � 2

�2
(10.7)

or

sin �

2
D 1

�
: (10.8)

For the solution (10.8) to be real the parameter � must be larger than unity, a
result which also becomes obvious from (10.3), (10.5) . This condition is equivalent
to stating that the focal length of half a quadrupole in a FODO lattice must be longer
than the distance to the next quadrupole.

The solutions for periodic betatron functions depend strongly on the quadrupole
strengths. Specifically, we observe that (10.3) has minimum characteristics for ˇC.
Taking the derivative dˇC=d� D 0, (10.3) becomes

�20 � �0 � 1 D 0 ; (10.9)

which can be solved for

�0 D 1
2
˙
q

1
4
C 1 D 1:6180 : (10.10)

The optimum phase advance per FODO cell is therefore

�0 � 76:345ı : (10.11)

The maximum value of the betatron function reaches a minimum for a FODO
lattice with a phase advance of about 76.3ı per cell. Since beam sizes scale with
the square root of the betatron functions, a lattice with this phase advance per cell
requires the minimum beam aperture.

This criteria, however, is true only for a flat beam when �x � �y or �y � �x. For
a round beam with uniform particle distribution in phase space �x � �y and we get
for the maximum beam acceptance by minimizing the beam diameter or E2x C E2y 	
ˇxCˇy, where Ex and Ey are the beam envelopes in the horizontal and vertical plane,
respectively (Fig. 10.3). This minimum is determined by d.ˇxC ˇy/=d� D 0, or for

�opt D
p
2 (10.12)

and the optimum betatron phase per cell is then from (10.8)

�opt D 90ı: (10.13)
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Fig. 10.3 Maximum beam
acceptance of a FODO lattice
with a circular aperture of
radius R and where
Ex;y D p

�x;yˇx;y

R

Ex

Ey

y

x

This solution requires the minimum radial aperture R in quadrupoles for a beam
with equal beam emittances in both planes �x D �y D �. The betatron functions in
the middle of the quadrupoles are then simply

ˇC
opt D L.2Cp2/ ;
ˇ�

opt D L.2 �p2/ : (10.14)

The beam envelopes are Ex D
q
�ˇC

opt and Ey D
p
�ˇ�

opt and the maximum beam
emittance to fit an aperture of radius R or the acceptance of the aperture can be
determined from

E2x C E2y D R2 D �.ˇC C ˇ�/opt : (10.15)

From (10.14) we find
�
ˇC C ˇ��

opt D 4 L and the acceptance of a FODO channel
with an aperture radius R becomes

�max D R2

4L
: (10.16)

Of course, this definition of the acceptance is true only for a monochromatic beam.
In a real beam we must include the dispersion and energy spread in the beam to find
the optimum acceptance. Also there are other particle distributions for which this
optimisation may not be quite accurate.

With this optimum solution we may develop general scaling laws for the betatron
functions in a FODO lattice. The values of the betatron functions need not be known
at all points of a periodic lattice to characterize the beam optical properties. It is
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Fig. 10.4 Scaling of
horizontal and vertical
betatron functions in a FODO
lattice

κ = f / L
0.1

0.2

0.5

1

2

β+/β+
opt

β-/β-
opt

10 2 3 4

sufficient to know these values at characteristic points like the symmetry points in a
FODO channel, where the betatron functions reach maximum or minimum values.
From (10.3), (10.14) the betatron functions at these symmetry points are given by

ˇC
ˇopt
D � .�C1/

.2Cp
2/

p
�2�1

ˇ�
ˇopt
D � .��1/

.2�p
2/

p
�2�1

(10.17)

The scaling of the betatron function is independent of L and depends only on the
ratio of the focal length to the distance between quadrupoles � D f =L. In Fig. 10.4
the betatron functionsˇC and ˇ� are plotted as a function of the FODO parameter �.

The distance L between quadrupoles is still a free parameter and can be adjusted
to the needs of the particular application. We observe, however, that the maximum
value of the betatron function varies linear with L and the maximum beam size in a
FODO lattice scales like

p
L.

10.1.2 Betatron Motion in Periodic Structures

For the design of circular accelerators it is of fundamental importance to understand
the long term stability of the beam over many revolutions. Specifically we need to
know if the knowledge of beam dynamics in one periodic unit can be extrapolated
to many periodic units.
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Stability Criterion

The periodic solution for one FODO cell has been derived in the last section and we
expect that such periodic focusing cells can be repeated indefinitely. Following the
classic paper by Courant and Snyder [1], we will derive the stability conditions for
an indefinite number of periodic but not necessarily symmetric focusing cells. The
structure of the cells can be arbitrary but must be periodic. If M.z C 2Ljz/ is the
transformation matrix for one cell, we have for N cells

M.zC N 2Lj z/ D ŒM.zC 2Lj z/�N : (10.18)

Stable solutions are obtained if all elements of the total transformation matrix
stay finite as N increases indefinitely. To find the conditions for this we calculate
the eigenvalues � of the characteristic matrix equation. The eigenvalues � are a
measure for the magnitude of the matrix elements and therefore finite values for the
eigenvalues will be the indication that the transformation matrix stays finite as well.
The characteristic matrix equation

.M � �I/ x D 0 ; (10.19)

where I is the unity matrix. For nontrivial values of the eigenvectors .x 6D 0/ the
determinant

jM � �Ij D
ˇ̌̌̌
C � � S

C0 S0 � �
ˇ̌̌̌
D 0 (10.20)

must vanish and with CS0 � SC0 D 1 the eigenvalue equation is

�2 � .CC S0/ �C 1 D 0 : (10.21)

The solutions are

�1;2 D 1
2
.CC S0/˙

q
1
4
.CC S0/2 � 1 (10.22)

or with the substitution 1
2
.CC S0/ D cos�

�1;2 D cos� ˙ i sin� D ei�: (10.23)

The betatron phase � must be real or the trace of the matrix M must be

TrfMg D CC S0 
 2 : (10.24)
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On the other hand, the transformation matrix for a full lattice period is

M D
�

cos� C ˛ sin � ˇ sin �
�� sin � cos� � ˛ sin�

�
; (10.25)

which can be expressed with J D
�
˛ ˇ

�� �˛
�

by

M D I cos� C J sin� : (10.26)

This matrix has the form of Euler’s formula for a complex exponential. Since the
determinant of M is unity we get �ˇ � ˛2 D 1 or J 2 D �I. Similar to Moivre’s
formula, for N equal periods

MN D .I cos� C J sin �/N D I cos .N�/C J sin .N�/ (10.27)

and the trace for N periods is bounded if cos� < 1 or if (10.24) holds or if

Tr
�MN

� D 2 cos.N�/ 
 2 : (10.28)

This result is called the stability criterion for periodic beam transport lattices. We
note that the trace of the transformation matrix M does not depend on the reference
point z. To show this we consider two different reference points z1 and z2, where
z1 < z2, for which the following identities hold

M.z2 C 2Lj z1/ DM.z2j z1/M.z1 C 2Lj z1/ DM.z2 C 2Lj z2/M.z2j z1/
(10.29)

and solving for M.z2 C 2Ljz2/ we get

M.z2 C 2Lj z2/ DM.z2j z1/M.z1 C 2Lj z1/M�1.z2j z1/ : (10.30)

This is a similarity transformation and therefore, both transformation matrices
M.z2C2Lj z2/ and M.z1C2Lj z1/ have the same trace and eigenvalues independent
of the choice of the location z.

10.1.3 General FODO Lattice

So far we have considered FODO lattices, where both quadrupoles have equal
strength, f1 D �f2 D f . Since we made no use of this in the derivation of the
stability criterion for betatron functions we expect that stability can also be obtained
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for unequal quadrupoles strengths. In this case the transformation matrix of half a
FODO cell is

M 1
2
D
 
1 0

� 1
f2
1

!�
1 L
0 1

� 
1 0

� 1
f1
1

!
D
 
1 � L

f1
L

� 1
f � 1 � L

f2

!
; (10.31)

where 1=f � D C1=f1C1=f2�L=.f1 f2/. Multiplication with the reverse matrix gives
for the full transformation matrix of the FODO cell

M D
 
1 � 2 L

f � 2L
�
1 � L

f2

�
� 2

f � 1 � L
f1

1 � 2 L
f �

!
: (10.32)

The stability criterion

TrfMg D
ˇ̌̌̌
2 � 4L

f �

ˇ̌̌̌
< 2 (10.33)

is equivalent to

0 <
L

f � < 1 : (10.34)

To determine the region of stability in the .u; v/-plane, where u D L=f1 and
v D L=f2 we get from (10.34) the condition

0 < uC v � uv < 1 ; (10.35)

where u and v can be positive or negative. Solving the second inequality for either u
or v we find the conditions juj < 1 and jvj < 1. With this, the first inequality can be
satisfied only if u and v have different signs. The boundaries of the stability region
are therefore given by the four equations

juj D 1 ; jvj D juj
1Cjuj ;

jvj D 1 ; juj D jvj
1Cjvj ;

(10.36)

defining the stability region shown in Fig. 10.5 which is also called the necktie
diagram because of its shape. Due to the full symmetry in juj and jvj the shaded
area in Fig. 10.5 is the stability region for both the horizontal and vertical plane.

For convenience, we used the thin lens approximation to calculate the necktie
diagram. Nothing fundamentally will, however, change when we use the transfor-
mation matrices for real quadrupoles of finite length except for a small variation of
the stability boundaries depending on the degree of deviation from the thin lens
approximation. With the general transformation matrix for a full FODO period
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Fig. 10.5 Necktie diagram
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the periodic solution for the betatron function is ˇ2 D S2

1�C2
and

the stability condition

TrM D jCC S0j < 2 : (10.37)

The stability diagram has still the shape of a necktie although the boundaries are
slightly curved (Fig. 10.5).

A general transformation matrix for half a FODO cell can be obtained in matrix
formalism with  D pk` by multiplying the matrices

M 1
2
D
 

cosh 2
`2
 2

sinh 2
 2
`2

sinh 2 cosh 2

!�
1 L
0 1

�

�
 

cos 1
`1
 1

sin 1
� 1
`1

sin 1 cos 1

!
; (10.38)

where now L is not the half cell length but just the drift space between two adjacent
quadrupoles of finite length and the indices refer to the first and the second half
quadrupole, respectively. From this we get the full period transformation matrix by
multiplication with the reverse matrix

M D
�

C S
C0 S0

�
DM 1

2 ;r
M 1

2
:

Obviously the mathematics becomes elaborate although straight forward and it
is prudent to use computers to find the desired results.
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Table 10.1 FODO cell parameters

Example #1 #2 #3 #4

Energy, E (GeV) 10 50 4 20,000

Half cell length, L (m) 6.0 2.6 3.6 114.25

Quadrupole length, `q (m) 0.705 1.243 0.15 3.64

Bending magnet length, `b (m) 3.55 2.486 2.5 99.24

Phase advance per cell,  101.4 108.0 135.0 90.0

Quadrupole strengtha, k (m�2) � � � � � � � � � � � �
Lattice typeb (FODO) sf cf sf sf

aThese parameters will be determined in Problem 6.1
bsf separated function, cf combined function lattice

Fig. 10.6 FODO lattice for one octant of a synchrotron [2, 3]

As reference examples to study and discuss a variety of accelerator physics issues
in this text, we consider different FODO lattices (Table 10.1) which are of some
but definitely not exhaustive practical interest. Other periodic lattices are of great
interest as well specifically for synchrotron radiation sources but are less accessible
to analytical discussions than a FODO lattice. All examples except #2 are separated
function lattices.

Example #1 is that for a 10 GeV electron synchrotron at DESY [2, 3] representing
a moderately strong focusing lattice with a large stability range as is commonly used
if no extreme beam parameters are required as is the case for synchrotrons used to
inject into storage rings. Figure 10.6 shows the betatron functions for this lattice. We
note small deviations from a regular FODO lattice which is often required to make
space for other components. Such deviations from a regular lattice cause only small
perturbations in the otherwise periodic betatron functions. As example #2 we use the
lattice for the long curved beam transport lines leading the 50 GeV beam from the
linac to the collision area at the Stanford Linear Collider [4]. This lattice exhibits the
greatest deviation from a thin lens FODO channel as shown in Fig. 10.7. Example
#3 resembles a theoretical lattice for an extremely small beam emittance used to
study fundamental limits of beam stability and control of aberrations [7]. Lattices
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Fig. 10.7 FODO cell for a linear collider transport line [5, 6] (example #2 in Table 10.1)

for future very high energy hadron colliders in the TeV range use rather long FODO
cells leading to large values of the betatron and dispersion functions and related high
demands on magnet field and alignment tolerances. Arc lattice parameters for the
20 TeV Superconducting Super Collider, SSC are compiled as example #4.

10.2 Beam Dynamics in Periodic Closed Lattices

In the previous section, we discussed the beam dynamics in a FODO lattice and
we will use such periodic lattices to construct a closed path for circular accelerators
like synchrotrons and storage rings. The term “circular” is used in this context rather
loosely since such accelerators are generally composed of both circular and straight
sections giving the ring the appearance of a circle, a polygon or racetrack. Common
to all these rings is the fact that the reference path must be a closed path so that
the total circumference of the ring constitutes a periodic lattice that repeats turn for
turn.

10.2.1 Hill’s Equation

The motion of particles or more massive bodies in periodic external fields has been
studied extensively by astronomers in the last century specially in connection with
the three body problem. In particle beam dynamics we find the equation of motion
in periodic lattices to be similar to those studied by the astronomer Hill. We will
discuss in this chapter the equation of motion, called Hill’s equation its solutions
and properties.
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Particle beam dynamics in periodic systems is determined by the equation of
motion

u00 C K.z/ u D 0 ; (10.39)

where K.z/ is periodic with the period Lp

K.z/ D K.zC Lp/ : (10.40)

The length of a period Lp may be the circumference of the circular accelerator
lattice or the length of a superperiod repeating itself several times around the
circumference. The differential equation (10.39) with the periodic coefficient
(10.40) has all the characteristics of a Hill’s differential equation [8]. The solutions
of Hill’s equation and their properties have been formulated in Floquet’s theorem

• two independent solutions exist of the form

u1.z/ D w.z/ ei� z=Lp ;

u2.z/ D w�.z/ e�i� z=Lp
(10.41)

• w�.z/ is the complex conjugate solution to w.z/. For all practical cases of beam
dynamics we have only real solutions and w�.z/ D w.z/ I

• the function w.z/ is unique and periodic in z with period Lp

w.zC Lp/ D w.z/ I (10.42)

• � is a characteristic coefficient defined by

cos� D 1
2
Tr
�M �

zC Lp jz
�	 I (10.43)

• the trace of the transformation matrix M is independent of z

Tr
�M.zC Lpjz

	
/ 6D f .z/ I (10.44)

• the determinant of the transformation matrix is equal to unity

detM D 1 I (10.45)

• the solutions remain finite for

1
2

Tr
�M.zC Lpjz/

	
< 1 : (10.46)

The amplitude function w.z/ and the characteristic coefficient� can be correlated
to quantities we have derived earlier using different methods. The transformation
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of a trajectory u through one lattice period of length Lp must be equivalent to the
multiplication by the transformation matrix (10.25) for that period which gives

u.zC Lp/ D .cos C ˛ sin / u.z/C ˇ sin u0.z/ ; (10.47)

where u stands for any of the two solutions (10.41) and  is the betatron phase
advance for the period. From (10.41), (10.42) we get on the other hand

u.zC Lp/ D u.z/ e˙i� D u.z/ .cos�˙ i sin�/ : (10.48)

Comparing the coefficients for the sine and cosine terms we get

cos D cos� or  D � (10.49)

and

˛ u.z/C ˇu0.z/ D ˙ i u.z/ : (10.50)

The first equality can be derived also from (10.25) and (10.43). Equation (10.50)
can be further simplified by a logarithmic differentiation

u00

u0 �
u0

u
D �ˇ

0

ˇ
� ˛0

˙ i� ˛ : (10.51)

On the other hand, we can construct from (10.39), (10.50) the expression

u00

u0 �
u0

u
D �K ˇ

˙ i� ˛ �
˙ i� ˛
ˇ

: (10.52)

and equating the r.h.s. of both expressions (10.51) and (10.52), we find

.1� ˛2 � K ˇ2 C ˛0ˇ � ˛ ˇ0/ ˙ i .2˛ C ˇ0/ D 0 ; (10.53)

where all functions in brackets are real as long as we have stability. Both brackets
must be equal to zero separately with the solutions

ˇ0 D �2 ˛ ; (10.54)

and

˛0 D K ˇ � � : (10.55)

Equation (10.54) can be used in (10.50) for

u0

u
D ˙i � ˛

ˇ
D ˙ i

ˇ
C 1

2

ˇ0

ˇ
; (10.56)
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and after integration

log
u

u0
D ˙ i

Z z

0

d�

ˇ
C 1

2
log

ˇ

ˇ0
; (10.57)

where u0 D u.z0/ and ˇ0 D ˇ.z0/ for z D z0. Solving for u.z/ we get the well
known solution

u.z/ D a
p
ˇ.z/ e˙i ; (10.58)

where a D u0=
p
ˇ0 and

 .z � z0/ D
Z z

z0

d�

ˇ.�/
: (10.59)

With  .Lp/ D � and

p
ˇ.z/ D w.z/

a
(10.60)

we find the previous definitions of the betatron functions to be consistent with the
coefficients of Floquet’s solutions in a periodic lattice. In the next section we will
apply the matrix formalism to determine the solutions of the betatron functions in
periodic lattices.

10.2.2 Periodic Betatron Functions

Having determined the existence of stable solutions for particle trajectories in
periodic lattices we will now derive periodic and unique betatron functions. For
this we take the transformation matrix of a full lattice period

M.zC Lp j z / D
�

C S
C0 S0

�
(10.61)

and construct the transformation matrix for betatron functions.0@ˇ˛
�

1A D
0@ C2 �2CS S2

�CC0 CS0 C C0S �SS0
C0 2 �2C0S0 S0 2

1A0@ˇ0˛0
�0

1ADMˇ

0@ˇ0˛0
�0

1A : (10.62)

Because of the quadratic nature of the matrix elements, we find the same result
in case of a 180ı phase advance for the lattice segment. Any such lattice segment
with a phase advance of an integer multiple of 180ı is neutral to the transformation
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of lattice functions. This feature can be used to create irregular insertions in a lattice
that do not disturb the lattice functions outside the insertions.

To obtain from (10.62) a general periodic solution for the betatron functions we
simply solve the eigenvector equation

.Mˇ � I/ˇ D 0 : (10.63)

The solution can be obtained from the component equations of (10.63)

.C2 � 1/ ˇ � 2 SC ˛ C S2 � D 0 ;
CC0 ˇ � .S0CC CS0 � 1/ ˛C SS0 � D 0 ; (10.64)

C02 ˇ � 2S0C0 ˛ C .S02 � 1/ � D 0 :

A particular simple solution is obtained if the periodic lattice includes a
symmetry point. In this case, we define this symmetry point as the start of the
periodic lattice with ˛ D 0, and get the simple solutions

ˇ2 D S2

1 � C2
; ˛ D 0 ; � D 1

ˇ
: (10.65)

The transformation matrix for a superperiod or full circumference of a ring becomes
then simply from (8.74)

M D
 

cos� ˇ sin�
� 1
ˇ

sin� cos�

!
; (10.66)

where � is the phase advance for the full lattice period. The solutions are stable as
long as the trace of the transformation matrix meets the stability criterion (10.37) or
as long as � ¤ n� , where n is an integer.

Different from an open transport line, well determined and unique starting values
for the periodic betatron functions exist in a closed lattice due to the periodicity
requirement allowing us to determine the betatron function anywhere else in the
lattice. Although (10.65) allows both a positive and a negative solution for the
betatron function, we choose only the positive solution for the definition of the
betatron function.

Stable periodic solutions for asymmetric but periodic lattices, where ˛ 6D 0,
can be obtained in a straightforward way from (10.64) as long as the determinant
jMp � Ij 6D 0.

The betatron phase for a full turn around a circular accelerator of circumference
C is from (10.59)

�.LC/ D
Z zCLC

z

d�

ˇ.�/
: (10.67)
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If we divide this equation by 2� we get a quantity 
 which is equal to the number
of betatron oscillations executed by particles traveling once around the ring. This
number is called the tune or operating point of the circular accelerator. Since there
are different betatron functions in the horizontal plane and in the vertical plane, we
also get separate tunes in a circular accelerator for both planes


x;y D 1

2�

I
d�

ˇx;y.�/
: (10.68)

This definition is equivalent to having chosen the integration constant in (8.57)
equal to 1=2� instead of unity. Yet another normalization can be obtained by
choosing 1=
 for the integration constant in ( 8.57), in which case the phase
defined as

'.z/ D  .z/



D
Z z

0

d�


 ˇ.�/
(10.69)

varies between 0 and 2� along the circumference of a ring lattice. This normaliza-
tion will become convenient when we try to decompose periodic field errors in the
lattice into Fourier components to study their effects on beam stability.

Equation (10.68) can be used to get an approximate expression for the relation-
ship between the betatron function and the tune. If ˇ is the average value of the
betatron function around the ring then �.LC/ D 2�
 � LC=ˇ � 2�R=ˇ or

ˇ D R



: (10.70)

This equation is amazingly accurate for most rings and is therefore a useful tool for
a quick estimate of the average betatron function or for the tunes often referred to
as the smooth approximation.

In a circular accelerator three tunes are defined for the three degrees of freedom,
the horizontal, vertical and longitudinal motion. In Fig. 10.8 the measured frequency

Fig. 10.8 Frequency spectrum from a circulating particle beam, 
s synchrotron tune, 
x; 
y

betatron tunes, 
x ˙ 
y satellites
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spectrum is shown for a particle beam in a circular accelerator. The electric signal
from an isolated electrode in the vacuum chamber is recorded and connected to a
frequency analyzer. The signal amplitude depends on the distance of the passing
beam to the electrode and therefore includes the information of beam oscillations as
a modulation of the revolution frequency.

Synchrotron oscillations can also be detected with electrodes and the signal from
synchrotron oscillations appears on a spectrum analyzer as sidebands to harmonics
of the revolution frequency. Analogous to the transverse motion, a longitudinal tune

s is defined as the number of oscillations per revolution or as the synchrotron tune.

We note a number of frequencies in the observed spectrum of the storage ring
SPEAR as shown in Fig. 10.8. At the low frequency end two frequencies indicate
the longitudinal tune 
s and its first harmonic at 2
s. The two large signals are the
horizontal and vertical tunes of the accelerator. Since the energy oscillation affects
the focusing of the particles, we also observe two weak satellite frequencies on one
of the transverse tunes at a distance of˙
s. The actual frequencies observed are not
directly equal to 
 !0, where !0 is the revolution frequency, but are only equal to the
non-integral part of the tune 
 !0, where 
 is the distance to the integer nearest
to 
.

10.2.3 Periodic Dispersion Function

The dispersion function can be periodic if the lattice is periodic. In this section we
will determine the periodic solution of the dispersion function first for the simple
lattice building block of a FODO channel and then for general but periodic lattice
segments.

Scaling of the Dispersion in a FODO Lattice

Properties of a FODO lattice have been discussed in detail for a monochromatic
particle beam only and no chromatic effects have been taken into account. To
complete this discussion we now include chromatic effects which cause, in linear
approximation, a dispersion proportional to the energy spread in the beam and
are caused by bending magnets. We have used the transformation matrix for a
symmetric quadrupole triplet as the basic FODO cell. The bending magnet edge
focusing was ignored and so were chromatic effects. In the following we still ignore
the quadratic edge focusing effects of the bending magnets, but we cannot ignore
any longer linear effects of energy errors. For simplicity we assume again thin lenses
for the quadrupoles and get for the chromatic transformation matrix through half a
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FODO cell, 1
2
QF - B - 1

2
QD with (8.101) and assuming small deflection angles

M 1
2 FODO D

0@ 1 0 0

1=f 1 0
0 0 1

1A
0B@1 L 1

2	0
L2

0 1 L
	0

0 0 1

1CA
0@ 1 0 0

�1=f 1 0
0 0 1

1A
or after multiplication

M 1
2 FODO D

0B@ 1 �
L
f L 1

2	0
L2

� L
f 2
1C L

f
L
	0

�
1C L

2f

�
0 0 1

1CA : (10.71)

The absolute value of the focal length f is the same for both quadrupoles but
since we start at the symmetry point in the middle of a quadrupole this focal length
is based only on half a quadrupole. We have also assumed that the deflection angle
of the bending magnet is small, � � 1, in analogy to thin lens approximation for
quadrupoles. Lastly, we assumed that the bending magnets occupy the whole drift
space between adjacent quadrupoles. This is not quite realistic but allows us an
analytical and reasonable accurate approach.

In Sect. 8.4 dispersive elements of transformation matrices have been derived. In
periodic lattices, however, we look for a particular solution which is periodic with
the periodicity of the focusing lattice and label the solution by �.z/ or the �-function
in distinction from the ordinary, generally non-periodic dispersion function D.z/.
The typical form of the periodic dispersion function in a FODO lattice is shown in
Fig. 10.9.

In addition to being periodic, this �-function must be symmetric with respect to
the symmetry points in the middle of the FODO quadrupoles, where the derivative
of the �-function vanishes. The transformation through one half FODO cell is0@��

0

1

1A DM 1
2 FODO

0@�C
0

1

1A ; (10.72)

Fig. 10.9 Dispersion
function in FODO cells
(example ]1 in Table 10.1)
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where we have set ı D 1 in accordance with the definition of dispersion functions
and deflection in the horizontal plane.

In the particular arrangement of quadrupoles chosen in (10.71) the focusing
quadrupole is the first element and the dispersion function reaches a maximum
value �C there. In the center of the defocusing quadrupole the dispersion function is
reduced to a minimum value ��. The opposite sequence of quadrupoles would lead
to similar results. From (10.72) we get with �0C D �0� D 0 the two equations

�� D
�
1 � L

f

�
�C C L2

2	0
;

0 D � L
f 2
�C C L

	0

�
1C L

2 f

�
:

(10.73)

Solving (10.73) for the periodic dispersion function in the middle of the FODO
quadrupoles, where �0 D 0, we get in the focusing or defocusing quadrupole
respectively

�C D f 2
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�
1C L

2 f

�
D L2

2	0
� .2� C 1/

�� D f 2

	0

�
1 � L

2 f

�
D L2

2	0
� .2� � 1/ ; (10.74)

where � D f =L.
As mentioned before, in this approximation the bending magnet is as long as the

length of half the FODO cell since the quadrupoles are assumed to be thin lenses
and no drift spaces have been included between the quadrupoles and the bending
magnet. The bending radius 	0, therefore, is equal to the average bending radius in
the FODO lattice. From the known values of the dispersion function at the beginning
of the FODO lattice we can calculate this function anywhere else in the periodic cell.
Similar to the discussion in Sect. 10.1, we chose an optimum reference lattice, where

�0 D
p
2 ; (10.75)

and

�C
0 D L2

2	
.4Cp2/ ;

��
0 D L2

2	
.4 �p2/ : (10.76)

In Fig. 10.10 the values of the dispersion functions, normalized to those for the
optimum FODO lattice in the middle of the FODO quadrupoles, are plotted versus
the FODO cell parameter �.

From Fig. 10.10 we note a diminishing dispersion function in a FODO cell as
the betatron phase per cell or the focusing is increased . f ! 0/. This result will
be important later for the design of storage rings for specific applications requiring
either large or small beam emittances. The procedure to determine the dispersion
functions in a FODO cell is straightforward and can easily be generalized to real
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Fig. 10.10 Scaling of the
dispersion function in a
FODO lattice
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FODO lattices with finite quadrupole length and shorter bending magnets although
it may be desirable to perform the matrix multiplications on a computer. For
exploratory designs of accelerators structures, however, the thin lens approximation
is a powerful and fairly accurate design tool.

General Solution for the Periodic Dispersion

In the previous section the dispersion function for a periodic and symmetric FODO
lattice was derived. Many periodic lattice structures, however, are neither symmetric
nor are they pure FODO structures and therefore we need to derive the periodic
dispersion function in a more general form. To do this, we include in the equation
of motion also the linear energy error term from, for example, (5.46)

u00 C K.z/u D �0.z/ı : (10.77)

For particles having the ideal energy .ı D 0/ the right hand side vanishes and the
solutions are composed of betatron oscillations and the trivial solution

u0.z/ � 0 : (10.78)

This trivial solution of (10.77) is clearly periodic and represents what is called
in beam transport systems the ideal path and in circular accelerators the equilibrium
orbit or closed orbit about which particles perform betatron oscillations. The
expression for the ideal equilibrium orbit is this simple since we decided to use a
curvilinear coordinate system which follows the design orbit (10.78) as determined
by the placement of bending magnets and quadrupoles.
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For off momentum particles .ı 6D 0/ the ideal path or closed orbit is displaced.
Ignoring for a moment the z-dependence of K and �0, this systematic displacement
of the orbit is of the order of

u D �0

K
ı (10.79)

as suggested by (10.77) . In a real circular accelerator we expect a similar although
z-dependent displacement of the equilibrium orbit for off momentum particles. Only
one equilibrium orbit exists for each particle energy in a given closed lattice. If there
were two solutions u1 and u2 of (10.77) we could write for the difference

.u1 � u2 /
00 C K.z/ .u1 � u2/ D 0 ; (10.80)

which is the differential equation for betatron oscillations. Different solutions for
the same energy, therefore, differ only by energy independent betatron oscillations
which are already included in the general solution as the homogeneous part of
the differential equation (10.77). Therefore, in a particular circular lattice only one
unique equilibrium orbit or closed orbit exists for each energy.

Chromatic transformation matrices have been derived in Sect. 8.4. If we apply
these 3�3-matrices to a circular lattice and calculate the total transformation matrix
around the whole ring, we will be able to determine a self-consistent solution for
equilibrium orbits. Before we calculate the periodic equilibrium orbits, we note that
the solutions of (10.77) are proportional to the momentum deviation ı. We therefore
define the generalized periodic dispersion function as the equilibrium orbit for ı D 1
which we call the �-function. The transformation matrix for a periodic lattice of
length Lp is

M.zC Lp j z / D
0@ C

�
zC Lp

�
S
�
zC Lp

�
D
�
zC Lp

�
C0 �zC Lp

�
S0 �zC Lp

�
D0 �zC Lp

�
0 0 1

1A (10.81)

and we get for the �-function with �.zC Lp/ D �.z/, �0.zC Lp/ D �0.z/

�.z/ D C.zC Lp/ �.z/C S.zC Lp/ �
0.z/C D.zC Lp/ ;

�0.z/ D C0.zC Lp/ �.z/C S0.zC Lp/ �
0.z/C D0.zC Lp/ :

(10.82)

These two equations can be solved for �.z/ and �0.z/, the periodic dispersion
function at the point z. The equilibrium orbit for any off momentum particle can
be derived from this solution by multiplying with ı

uı.z/ D �.z/ ı : (10.83)
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In a more formal way the periodic solution for the dispersion function can be
derived from (10.82) while we drop the arguments for increased clarity

.C � 1/�C S�0 C D D 0;
C0�C .S0 � 1/�0 CD0 D 0 ; (10.84)

which, in vector notation is

.M� � I/� D 0 ; (10.85)

where M� is defined by (10.81) and � D .�; �0; 1/. The periodic dispersion function
is therefore the eigenvector of the eigenvalue equation (10.85) .

A particularly simple result is obtained again if the point z is chosen at a
symmetry point, where �0

sym D 0. In this case the dispersion function at the
symmetry point is

�sym D D

1 � C
and �0

sym D 0 : (10.86)

Once the values of the �-functions are known at one point it is straightforward to
obtain the values at any other point in the periodic lattice by matrix multiplication.

We may also try to derive an analytical solution for the periodic dispersion from
the differential equation

�00 C K � D � : (10.87)

The solution is again the composition of the solutions for the homogeneous
and the inhomogeneous differential equation. First, we transform (10.87) into
normalized coordinates w� D �=

p
ˇ and d' D dz=.
ˇ/. In these coordinates

(10.87) becomes

d2w�
d'2

C 
2w� D 
2ˇ3=2� D 
2F.'/ : (10.88)

An analytical solution to (10.88) has been derived in Sect. 5.5.4 and we have
accordingly

w�.'/ D w0� cos 
' C Pw0�



sin 
'
C
 R '0 F.�/ sin 
.' � �/ d� ;

Pw�


.'/ D �w0� sin 
' C Pw0�



cos 
'

C
 R '0 F.�/ cos 
.' � �/ d� ;

(10.89)

where we have set Pw D d
d' w.'/. To select a periodic solution, we set

w�.2�/ D w�.0/ D w0� and Pw�.2�/ D Pw0� :
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Inserting these boundary conditions into (10.89) to determine
�

w0�; Pw0�
�

and use

the results in the first equation of (10.89) to get the general periodic solution for the
normalized dispersion function after some manipulations

w�.'/ D 


2 sin�


Z 'C2�

'

F.�/ cosŒ
.' � � C �/� d� : (10.90)

Now we return to the original variables .�; z/, and get from (10.90) the equation
for the periodic dispersion or �-function

�.z/ D
p
ˇ.z/

2 sin�


Z zCLp

z

p
ˇ.�/

	.�/
cos 
Œ'.z/� '.�/C �� d� : (10.91)

This solution shows clearly that the periodic dispersion function at any point
z depends on all bending magnets in the ring. We also observe a fundamental
resonance phenomenon which occurs should the tune of the ring approach an integer
in which case finite equilibrium orbits for off momentum particles do not exist
anymore. To get stable equilibrium orbits, the tune of the ring must not be chosen to
be an integer or in accelerator terminology an integer resonance must be avoided


 6D n ; (10.92)

where n is an integer.
This is consistent with the solution (10.86) demanding that

ˇ̌
C.zC Lp/

ˇ̌
be less

than unity. Since C is the matrix element for the total ring we have C D cos 2�

which obviously is equal to C1 only for integer values of the tune 
. While (10.89)
is not particularly convenient to calculate the dispersion function, it clearly exhibits
the resonance character and will be very useful later in some other context, for
example, if we want to determine the effect of a single bending magnet.

Another way to solve the differential equation (10.88) will be considered to
introduce a powerful mathematical method useful in periodic systems. We note that
the perturbation term F.z/ D ˇ3=2.z/ � .z/ is a periodic function with the period
Lp or 2� using normalized coordinates. The perturbation term can therefore be
expanded into a Fourier series

ˇ3=2 � D
X

Fnein' ; (10.93)

where

Fn D 1

2�

I
ˇ3=2� e�in' d' (10.94)
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or if we go back to regular variables

Fn D 1
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	.�/
e�in'.�/ d� : (10.95)

Similarly, we may expand the periodic �-function into a Fourier series

w�.'/ D
X

W�n ein' : (10.96)

Using both (10.93), (10.96) in (10.88) we get
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2
X

Fne�in' ; (10.97)

which can be solved for the Fourier coefficients W�n of the periodic dispersion
function

W�n D 
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: (10.98)

The periodic solution of the differential equation (10.88) is finally
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2Fnein'
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: (10.99)

It is obvious again, that the tune must not be an integer to avoid a resonance. This
solution is intrinsically periodic since ' is periodic and the relation to (10.90) can be
established by replacing Fn by its definition (10.94). Using the property F�n D Fn

we get for a symmetric lattice and with formula GR[1.445.6]1
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which is the same as (10.90) since d� D 
ˇ d�. For an asymmetric lattice the proof is
similar albeit somewhat more elaborate. Solution (10.100) expresses the dispersion

1We will abbreviate in this way formulas from the Table of Integrals, Series and Products, I.S.
Gradshteyn/I.M. Ryzhik, 4th edition.
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function as the combination of a constant and a sum of oscillatory terms. Evaluating
the non-oscillatory part of the integral, we find the average value of the dispersion
or �-function,

h � i � hˇi

0

: (10.101)

This result by itself is of limited usefulness but can be used to obtain an estimate
for the momentum compaction factor ˛c defined analogous to (8.125) by

˛c D 1

Lp

I
� .z/

	 .z/
dz �

�
�

	

�
: (10.102)

A good approximation for the momentum compaction factor is therefore ˛c �
hˇi=.	 
/ and with (10.70) integrated only over the arcs of the ring

˛c � 1


2
: (10.103)

Thus we find the interesting result that the transition energy �t is approximately
equal to the horizontal tune of a circular accelerator

�t � 
x : (10.104)

As a cautionary note for circular accelerators with long straight sections, only the
tune of the arc sections should be used here since straight sections do not contribute
to the momentum compaction factor but can add significantly to the tune.

10.2.4 Periodic Lattices in Circular Accelerators

Circular accelerators and long beam transport lines can be constructed from
fundamental building blocks like FODO cells or other magnet sequences which
are then repeated many times. Any cell or lattice unit for which a periodic solution
of the lattice functions can be found may be used as a basic building block for a
periodic lattice. Such units need not be symmetric but the solution for a symmetric
lattice segment is always periodic.

FODO cells as elementary building blocks for larger beam transport lattices
may lack some design features necessary to meet the objectives of the whole
facility. In a circular accelerator we need for example some component free spaces
along the orbit to allow the installation of experimental detectors or other machine
components like accelerating sections, injection magnets or synchrotron radiation
producing insertion devices. A lattice made up of standard FODO cells with bending
magnets would not provide such spaces.
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The lattice of a circular accelerator therefore exhibits generally more complexity
than that of a simple FODO cell. Often, a circular accelerator is made up of a
number of superperiods which may be further subdivided into segments with
special features like dispersion suppression section, achromatic sections, insertions,
matching sections or simple focusing and bending units like FODO cells. To
illustrate basic lattice design concepts, we will discuss specific lattice solutions to
achieve a variety of objectives.

Synchrotron Lattice

For a synchrotron whose sole function is to accelerate particles the problem of
free space can be solved quite easily. Most existing synchrotrons are based on a
FODO lattice recognizing its simplicity, beam dynamical stability and efficient use
of space. To provide magnet free spaces, we merely eliminate some of the bending
magnets. As a consequence the whole ring lattice is composed of curved as well
as straight FODO cells. The elimination of bending magnets must, however, be
done thoughtfully since the dispersion function depends critically on the distribution
of the bending magnets. Random elimination of bending magnets may lead to an
uncontrollable perturbation of the dispersion function.

Often it is desirable to have the dispersion function vanish or at least be small in
magnet free straight sections to simplify injection and avoid possible instabilities if
rf-cavities are placed where the dispersion function is finite. The general approach
to this design goal is, for example, to use regular FODO cells for the arcs followed
by a dispersion matching section, where the dispersion function is brought to zero or
at least to a small value leading finally to a number of bending magnet free straight
FODO cells. As an example such a lattice is shown in Fig. 10.11 for a 3.5 GeV
synchrotron [9].

Figure 10.11 shows one quadrant of the whole ring and we clearly recognize
three different lattice segments including seven arc FODO half cells, two half

0 10 20 30
0

4

8

12
yx

m)
z(m)

m)

Fig. 10.11 Typical FODO lattice for a separated function synchrotron
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cells to match the dispersion function and one half cell for installation of other
machine components. Such a quadrant is mirror reflected at one or the other end
to form one of two ring lattice superperiods. In this example the ring consists of
two superperiods although another ring could be composed by a different number
of superperiods. A specific property of the lattice shown in Fig. 10.11 is, as far as
focusing is concerned, that the whole ring is made up of equal FODO cells with
only two quadrupole families QF and QD. The betatron functions are periodic and
are not significantly affected by the presence or omission of bending magnets which
are assumed to have negligible edge focusing. By eliminating bending magnets in
an otherwise unperturbed FODO lattice, we obtain magnet free spaces equal to the
length of the bending magnets which are used for the installation of accelerating
components, injection magnets, and beam monitoring equipment.

Phase Space Matching

Periodic lattices like FODO channels exhibit unique solutions for the betatron and
dispersion functions. In realistic accelerator designs, however, we will not be able
to restrict the lattice to periodic cells only. We will find the need for a variety of
lattice modifications which necessarily require locally other than periodic solutions.
Within a lattice of a circular accelerator, for example, we encountered the need
to provide some magnet free spaces, where the dispersion function vanishes. In
colliding beam facilities it is desirable to provide for a very low value of the betatron
function at the beam collision point to maximize the luminosity. These and other
lattice requirements necessitate a deviation from the periodic cell structure.

Beam transport lines are in most cases not based on periodic focusing. If
such transport lines carry beam to be injected into a circular accelerator or must
carry beam from such an accelerator to some other point, we must consider
proper matching conditions at locations, where lattices of different machines or
beam transport systems meet [10, 11]. Joining arbitrary lattices may result in an
inadequate over lap of the phase ellipse for the incoming beam with the acceptance
of the downstream lattice as shown in Fig. 10.12a.

incoming beam acceptance
a) b) c)

Fig. 10.12 Matching conditions in phase space: mismatch (a), perfect match (b), efficient
match (c)
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For a perfect match of two lattices, all lattice functions must be the same at the
joining point as shown in Fig. 10.12b

.ˇx; ˛x; ˇy; ˛y; �; �
0/1 D .ˇx; ˛x; ˇy; ˛y; �; �

0/2 : (10.105)

In this case, the phase ellipse at the end of lattice 1 is similar to the acceptance
ellipse at the entrance of lattice 2 (see Fig. 10.12). To avoid dilution of particles in
phase space perfect matching is desired in proton and ion beam transport systems
and accelerators. For electrons this is less critical because electron beams regain
the appropriate phase ellipse through synchrotron radiation and damping. The main
goal of matching an electron beam is to assure that the emittance of the incoming
beam is fully accepted by the downstream lattice as shown in Fig. 10.12b, c. Perfect
matching of all lattice functions and acceptances with beam emittance, however,
provides the most economic solution since no unused acceptance exist. Matching
of the dispersion function (�; �0) in addition also assures that phase ellipses for off
momentum particles match as well.

Matching in circular accelerators is much more restrictive than that between
independent lattices. In circular accelerators a variety of lattice segments for
different functions must be tied together to form a periodic magnet structure.
To preserve the periodic lattice functions, we must match them exactly between
different lattice segments. Failure of perfect matching between lattice segments can
lead to lattice functions which are vastly different from design goals or do not exist
at all.

In general there are six lattice functions to be matched requiring six variables or
quadrupoles in the focusing structure of the upstream lattice to produce a perfect
match. Matching quadrupoles must not be too close together in order to provide
some independent matching power for individual quadrupoles. As an example, the
betatron functions can be modified most effectively if a quadrupole is used at a
location, where the betatron function is large and not separated from the matching
point by multiples of � in betatron phase. Most independent matching conditions
for both the horizontal and vertical betatron functions are created if matching
quadrupoles are located where one betatron function is much larger than the other
allowing almost independent control of matching condition.

It is impossible to perform such general matching tasks by analytic methods
and a number of numerical codes are available to solve such problems. Frequently
used matching codes are TRANSPORT [12], or MAD [13]. Such programs are
an indispensable tool for lattice design and allow the fitting of any number of
lattice functions to desired values including boundary conditions to be met along
the matching section.

Dispersion Matching

A very simple, although not perfect, method to reduce the dispersion function in
magnet free straight sections is to eliminate one or more bending magnets close



10.2 Beam Dynamics in Periodic Closed Lattices 333

to but not at the end of the arc and preferably following a focusing quadrupole,
QF. In this arrangement of magnets the dispersion function reaches a smaller
value compared to those in regular FODO cells with a slope that becomes mostly
compensated by the dispersion generated in the last bending magnet. The match
is not perfect but the dispersion function is significantly reduced, where this is
desirable, and magnet free sections can be created in the lattice. This method
requires no change in the quadrupole or bending magnet strength and is therefore
also operationally very simple as demonstrated in the example of a synchrotron
lattice shown in Fig. 10.11. We note the less than perfect matching of the dispersion
function which causes a beating of an originally periodic dispersion function. In
the magnet free straight sections, however, the dispersion function is considerably
reduced compared to the values in the regular FODO cells.

More sophisticated matching methods must be employed, where a perfect match
of the dispersion function is required. Matching of the dispersion to zero requires
the adjustment of two parameters, � D 0 and �0 D 0, at the beginning of
the straight section. This can be achieved by controlling some of the upstream
quadrupoles. Compared to a simple two parameter FODO lattice (Fig. 10.11) this
variation requires a more complicated control system and additional power supplies
to specially control the matching quadrupoles. This dispersion matching process
disturbs the betatron functions which must be separately controlled and matched by
other quadrupoles in dispersion free sections. Such a matching method is utilized in
a number of storage rings with a special example shown in Fig. 10.13 [14].

Here, we note the perfect matching of the dispersion function as well as the
associated perturbation of the betatron function requiring additional matching.
Quadrupoles QFM and QDM are adjusted such that � D 0 and �0 D 0 in the
straight section. In principle this could be done even without eliminating a bending
magnet, but the strength of the dispersion matching quadrupoles would significantly
deviate from that of the regular FODO quadrupoles and cause a large distortion of
the betatron function in the straight section. To preserve a symmetric lattice, the
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Fig. 10.13 Lattice for a 1.2 GeV low emittance damping ring
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betatron function must be matched with the quadrupoles Q1 and Q2 to get ˛x D 0

and ˛y D 0 at the symmetry points of the lattice.

Dispersion Suppressor

A rather elegant method of dispersion matching has been developed by Keil [15].
Noting that dispersion matching requires two parameters he chooses to vary the last
bending magnets at the end of the arcs rather than quadrupoles. The great advantage
of this method is to leave the betatron functions and the tunes undisturbed at least
as long as we may ignore the end field focusing of the bending magnets which
is justified in large high energy accelerators. This dispersion suppressor consists
of four FODO half cells following directly the regular FODO cells at a focusing
quadrupole QF as shown in Fig. 10.14. The strength of the bending magnets are
altered into two types with a total bending angle of all four magnets to be equal to
two regular bending magnets.

The matching conditions can be derived analytically from the transformation
matrix for the full dispersion suppressor as a function of the individual magnet
parameters. An algebraic manipulation program has been used to derive a result
that is surprisingly simple. If � is the bending angle for regular FODO cell bending
magnets and  the betatron phase for a regular FODO half cell, the bending angles
�1 and �2 are determined by [15]

�1 D �
�
1 � 1

4 sin2  

�
(10.106)

x

y

(z)

B1 B1 B2 B2 B B

Fig. 10.14 Dispersion suppressor lattice
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and

�2 D �
�

1

4 sin2  

�
; (10.107)

where

� D �1 C �2 : (10.108)

This elegant method requires several FODO cells to match the dispersion function
and is therefore most appropriately used in large systems. Where a compact lattice
is important, matching by quadrupoles as discussed earlier might be more space
efficient.

Magnet Free Insertions

An important part of practical lattice design is to provide magnet free spaces
which are needed for the installation of other essential accelerator components
or experimental facilities. Methods to provide limited magnet free spaces by
eliminating bending magnets in FODO lattices have been discussed earlier. Often,
however, much larger magnet free spaces are required and procedures to provide
such sections need to be formulated.

The most simple and straight forward approach is to use a set of quadrupoles
and focus the lattice functions ˇx; ˇy and � into a magnet free section such that
the derivatives ˛x; ˛y and �0 vanish in the center of this section. This method
is commonly applied to interaction areas in colliding beam facilities to provide
optimum beam conditions for maximum luminosity at the collision point. A typical
example is shown in Fig. 10.15.
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Fig. 10.15 Lattice of the SPEAR storage ring
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Fig. 10.16 Lattice of the
ADONE storage ring
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Another scheme to provide magnet free spaces is exercised in the SPEAR lattice
(Fig. 10.15) where the FODO structure remains unaltered except that the FODO
cells have been separated in the middle of the QF quadrupoles. A separation in
the middle of the QD quadrupoles would have worked as well. Since the middle
of FODO quadrupoles are symmetry points a modest separation can be made with
minimal perturbation to the betatron functions and no perturbation to the dispersion
function since �0 D 0 in the middle of FODO quadrupoles.

A more general design approach to provide magnet free spaces in a periodic
lattice is exercised in the storage ring shown in Fig. 10.16 [16] or the storage ring as
shown in Fig. 10.15 [17]. In the ADONE lattice the quadrupoles of a FODO lattice
are moved together to form doublets and alternate free spaces are filled with bending
magnets or left free for the installations of other components.

Collins Insertion

A simple magnet free insertion for dispersion free segments of the lattice has
been proposed by Collins [18]. The proposed insertion consists of a focusing and
a defocusing quadrupole of equal strength with a long drift space in between as
shown in Fig. 10.17. In thin lens approximation, the transformation matrix for the
insertion is

Mins D
�
1 d
0 1

��
1 0

1=f 1

��
1 D
0 1

��
1 0

�1=f 1

��
1 d
0 1

�
: (10.109)

This insertion matrix must be equated with the transformation matrix for this
same insertion expressed in terms of lattice functions at the insertion point with the
regular lattice

Mins D
 

cos C ˛ sin ˇ sin 
� 1C˛2

ˇ
sin cos � ˛ sin 

!
: (10.110)
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dd

f
2

f
1

Collins insertion
D

β−function

Fig. 10.17 Collins insertion

Both matrices provide three independent equations to be solved for the drift lengths
d and D and for the focal length f of the quadrupoles. After multiplications of all
matrices we equate matrix elements and get

D D ˛2

�
; d D 1

�
; and f D � ˛

�
: (10.111)

These relations are valid for both planes only if ˛x D �˛y. Generally, this is not
the case for arbitrary lattices but for a weak focusing FODO lattice this condition
is met well. We note that this design provides an insertion of length D which is
proportional to the value of the betatron functions at the insertion point and requires
that ˛ ¤ 0.

Of course any arbitrary insertion with a unity transformation matrix I in both
planes is a valid solution as well. Such solutions can in principle always be enforced
by matching with a sufficient number of quadrupoles. If the dispersion function and
its derivative is zero such an insertion may also have a transformation matrix of
�I. This property of insertions is widely used in computer designs of insertions
when fitting routines are available to numerically adjust quadrupole strength such
that desired lattice features are met including the matching of the lattice functions
to the insertion point. A special version of such a solution is the low beta insertion
for colliding beam facilities.

Low Beta Insertions

In colliding beam facilities long magnet free straight sections are required to allow
the installation of high energy particle detectors. In the center of these sections,
where two counter rotating particle beams collide, the betatron functions must
reach very small values forming a narrow beam waist. This requirement allows to
minimize the destructive beam-beam effect when two beams collide and thereby
maximize the luminosity of the colliding beam facility [19].
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Fig. 10.18 Lattice functions of a colliding beam storage ring [21]. Shown is half the circumference
with the collision point, low beta and vanishing dispersion in the center

An example for the incorporation of such a low beta insertion is shown in
Fig. 10.18 representing one of many variations of a low beta insertion in colliding
beam facilities [20]. The special challenge in this matching problem is to provide
a very small value for the betatron functions at the collision point. To balance the
asymmetry of the focusing in the closest quadrupoles the betatron functions in both
planes are generally not made equally small but the vertical betatron function is
chosen smaller than the horizontal to maximize the luminosity. The length of the
magnet free straight section is determined by the maximum value for the betatron
function that can be accepted in the first vertically focusing quadrupole. The limit
may be determined by just the physical aperture available or technically possible in
these insertion quadrupoles or by the chromaticity and ability to correct and control
chromatic and geometric aberrations.

The maximum value of the betatron function at the entrance to the first
quadrupole, the minimum value at the collision point, and the magnet free section
are correlated by the equation for the betatron function in a drift space. Assuming
symmetry about the collision point, the betatron functions develop from there like

ˇ.z/ D ˇ� C z2

ˇ� ; (10.112)

where ˇ� is the value of the betatron function at the symmetry point, z the distance
from the collision point and 2Lins the full length of the insertion between the
innermost quadrupoles.
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The distance L tended to be quite large to allow the installation of large particle
detectors for high energy physics experiment. As a consequence, the betatron
function became very large in the first quadrupoles causing severe perturbations
and limitations in particle dynamics. This, of course, created a limit in the
achievable luminosity. In new colliding beam facilities, like B-factories, the low-
beta creating quadrupoles are incorporated deeply into the detectors, thus reducing
L and the maximum value for the betatron functions. This compromise resulted in
significantly higher luminosity of colliding beams.

10.3 FODO Lattice and Acceleration*

So far we have ignored the effect of acceleration in beam dynamics. In specific
cases, however, acceleration effects must be considered specifically if the particle
energy changes significantly along the beam line. In linear accelerators such a need
occurs at low energies when we try to accelerate a large emittance beam through
the small apertures of the accelerating sections. For example, when a positron beam
is to be created the positrons emerging from a target within a wide solid angle are
focused into the small aperture of a linear accelerator. After some initial acceleration
in the presence of a solenoid field along the accelerating structure it is desirable to
switch over to more economic quadrupole focusing. Even at higher energies when
the beam diameter is much smaller than the aperture strong focusing is still desired
to minimize beam break up instabilities.

10.3.1 Lattice Structure

A common mode of focusing uses a FODO lattice in conjunction with the linac
structure. We may, however, not apply the formalism developed for FODO lattices
without modifications because the particle energy changes significantly along the
lattice. A thin lens theory has been derived by Helm [22] based on a regular FODO
channel in the particle reference system. Due to Lorentz contraction the constant
quadrupole separations L� in the particle system become increasing distances in
the laboratory system as the beam energy increases. To show this quantitatively,
we consider a FODO channel installed along a linear accelerator and starting at the
energy �0 with a constant cell half length QL D �0L�. The tick-marks along the scale
in Fig. 10.19 indicate the locations of the quadrupoles and the distances between
magnets in the laboratory system are designated by L1;L2 : : : .

L1 L2 L3 L4 L5 L6

Fig. 10.19 FODO channel and acceleration
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With the acceleration ˛ in units of the rest energy per unit length and �0 the
particle energy at the center of the first quadrupole, the condition to have a FODO
channel in the particle system is

L� D
Z L1

0

dz

1C ˛ z
�0

D �0

˛
ln

�
1C ˛L1

�0

�
: (10.113)

The quantity 2L� is the length of a FODO cell in the particle system and L1 is the
distance between the first and second quadrupole in the laboratory system. Solving
for L1 we get

L1 D L� e� � 1
�

; (10.114)

where

� D ˛

�0
L�: (10.115)

At the same time the beam energy has increased from �0 to

�1 D �0 C ˛L1 : (10.116)

Equation (10.113) can be applied to any of the downstream distances between
quadrupoles. The nth distance Ln, for example, is determined by an integration from
zn�1 to zn or equivalently from 0 to Ln

L� D
Z Ln

0

dz

1C ˛ z
�n�1
D �n�1

˛
ln

�
1C ˛Ln

�n�1

�
: (10.117)

While solving for Ln, we express the energy �n�1 by addition of the energy
gains �n�1 DPn�1

i �i D ˛
Pn�1

i Li and taking the distances Li from expressions
(10.114) and (10.117) we get for � � 1

Ln D L� e� � 1
�

e.n�1/� : (10.118)

In thin lens approximation, the distances between successive quadrupoles
increase exponentially in the laboratory system like (10.118) to resemble the
focusing properties of a regular FODO channel with a cell length 2L� in the particle
system under the influence of an accelerating field.

Such FODO channels are used to focus large emittance particle beams in linear
accelerators as is the case for positron beams in positron linacs. For strong focusing
as is needed for low energies where the beam emittance is large, the thin lens
approximation, however, is not accurate enough and a more exact formulation of
the transformation matrices must be applied [23], which we will derive here in some
detail.
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10.3.2 Transverse Beam Dynamics and Acceleration

Transverse focusing can be significantly different along a linear accelerator due
to the rapid changing particle energy compared to a fixed energy transport line
and the proper beam dynamics must be formulated in the presence of longitudinal
acceleration. To derive the correct equations of motion we consider the particle
dynamics in the presence of the complete Lorentz force including electrical fields

Pp D eEC e ŒPr � B� : (10.119)

To solve this differential equation we consider a straight beam transport line with
quadrupoles aligned along the z-coordinate as we would have in a linear accelerator.
The accelerating fields are assumed to be uniform with a finite component only
along the z-coordinate. At the location r D .x; y; z/, the fields can be expressed by
E D .0; 0; ˛=e/ and B D .gx; gy; 0/, where the acceleration ˛ is defined by

˛ D e jEj : (10.120)

To evaluate (10.119), we express the time derivative of the momentum, Pp D
�mPr by

Pp D P�mPrC �mRr ; (10.121)

From cPp D PE=ˇ we find that P� D ˛ˇ=mc2 and (10.121) becomes for the x-
component

cPpx D ˛ˇmPxC 1

c
E Rx : (10.122)

In this subsection, we make ample use of quantities ˛; ˇ; � being acceleration
and relativistic parameters which should not be confused with the lattice functions,
which we will not need here. Bowing to convention, we refrain from introducing
new labels.

The variation of the momentum with time can be expressed also with the Lorentz
equation (10.119) and with the specified fields, we get

Ppx D �c eˇ g x : (10.123)

We replace the time derivatives in (10.122) by derivatives with respect to the
independent variable z

Px D ˇ c x0 ; (10.124)

Rx D ˇ2 c2 x00 C ˛

�3 m
x0 ;
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and after insertion into (10.122) and equating with (10.123) the equation of motion
becomes

d2x

dz2
C ˛

ˇ2E

dx

dz
C c e g

ˇE
x D 0 ; (10.125)

where we used the relation ˇ2 C 1=�2 D 1. With ˛
ˇ
D dcp=dz

cp0
and defining the

quantity

�0 D dp=dz

p0
D ˛

ˇcp0
; (10.126)

we get for the equation of motion in the horizontal plane, u D x

d2u

dz2
C �0

1C �0 z

du

dz
C k0
1C �0 z

u D 0 ; (10.127)

introducing the quadrupole strength k0 D eg
p0

. Equation (10.127) is valid also for
the vertical plane u D y if we only change the sign of the quadrupole strength k0.
Equation (10.127) is a Bessel’s differential equation, which becomes obvious by
defining a new independent variable

� D 2ˇ

�0

p
k0.1C �0z/ (10.128)

transforming (10.127) into

d2 u

d�2
C 1

�

du

d�
C u D 0 ; (10.129)

which is the equation of motion in the presence of both transverse and longitudinal
fields.

Analytical Solutions

The solutions of the differential equation (10.129) are Bessel’s functions of the first
and second kind in zero order

u.z/ D C1 I0.�/ C C2 Y0.�/ : (10.130)

In terms of initial conditions .u0; u0
0/ for z D 0 we can express the solutions in

matrix formulation�
u.z/
u0.z/

�
D �
p

k

�0

 �I0 Y0p
kI1p

1C�0z

p
kY1p
1C�0z

! 
Y10

Y00p
k

I10
I00p

k

!�
u0

u0
0

�
: (10.131)
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Here we defined Zi D Zi

�
2ˇ

�0

p
k.1C �0z/

�
and Zi0 D Zi0

�
2ˇ

�0

p
k
�

where Zi stands

for either of the Bessel’s functions Ii or Yi and i D 0; 1.

Transformation Matrices

The transformation matrix for a drift space can be obtained from (10.131) by letting
k ! 0, but it is much easier to just integrate (10.127) directly with k D 0. We get
from (10.127) u00

u0 D � �0
1C�0z , and after logarithmic integration u0 D 1

1C�0zC const.
After still another integration

u D u0 C u0
0

�0
log .1C �0z/ (10.132)

or for a drift space of length L

�
u.L/
u0.L/

�
D
 
1 1
�0

log .1C �0L/
0 1

1C�0L

!�
u0

u0
0

�
: (10.133)

For most practical purposes we may assume that 2
p

k
�0
� 1 and may, therefore,

use asymptotic expressions for the Bessel’s functions. In this approximation the
transformation matrix of a focusing quadrupole of length ` is

Mf D
 

� cos� �p
k

sin�

��3pk sin� �3 cos�

!
(10.134)

C
0@ �

8

�
3
�0
C 1

2

�
sin� �

8
p

k

�

�0�`
cos�

3�3

8

�

�0�`

p
k cos� � �3

8

�
1
�0
C 3

2

�
sin�

1A ;

where

�4 D 1

1C �0` (10.135)

and with � D �` � �0 ;

�0 D 2

�0

p
k0 and (10.136)

�` D 2

�0

p
k.1C �0`/ : (10.137)
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Similarly we get for a defocusing quadrupole

Md D
 

� cosh� �p
k

sinh�

��3pk sinh� �3 cosh�

!
(10.138)

C
0@ �

8

�
3
�0
C 1

2

�
sinh� �

8
p

k

�

�0�`
cosh�

3�3

8

�

�0�`

p
k cosh� � �3

8

�
1
�0
C 3

2

�
sinh�

1A ;

These transformation matrices can be further simplified for low accelerating fields
noting that �0`

4
� 1. In this case �` � �0 �

p
k` D  and with

 D 1

8

�
3

�0
C 1

�`

�
� 1

8

�
3

�`
C 1

�0

�
(10.139)

we get for a focusing quadrupole the approximate transformation matrix

Mf D
�
� 0

0 �3

�" 
cos 1p

k
sin 

�pk sin cos 

!
(10.140)

C
�
 sin 0

0 � sin 

��
:

and similar for a defocusing quadrupole

Md D
�
� 0

0 �3

�" 
cosh 1p

k0
sinh 

�pk0 sinh cosh 

!
(10.141)

C
�
 sinh 0

0 � sinh 

��
:

Finally, the transformation matrix for a drift space of length L in an accelerating
system can be derived from either (10.140) or (10.141) by letting k! 0 for

M0 D
 
1 � 1

�0
log �4

0 �4

!
; (10.142)

where �4 D 1=.1 C �0L/ in agreement with (10.122). In the limit of vanishing
accelerating fields �0 ! 0 and we obtain back the well-known transformation
matrices for a drift space. Similarly, we may test (10.140) and (10.141) for
consistency with regular transformation matrices.

In Eqs. (10.140)–(10.142) we have the transformation matrices for all elements
to form a FODO channel in the presence of acceleration. We may now apply all
formalisms used to derive periodic betatron, dispersion functions or beam envelopes
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as derived in Sect. 10.1 for regular FODO cells. Considering one half cell we note
that the quadrupole strength k of the first half quadrupole is determined by the last
half quadrupole of the previous FODO half cell. We have therefore two variables
left, the half cell drift length L and the strength k1 of the second half quadrupole of
the FODO half cell, to fit the lattice functions to a symmetric solution by requiring
that ˛x D 0 and ˛y D 0.

Adiabatic Damping

Transformation matrices derived in this section are not phase space conserving
because their determinant is no more equal to unity. The determinant for a drift
space with acceleration is, for example,

detM0 D �4 D 1

1C �0z (10.143)

which is different from unity if there is a finite acceleration. The two-dimensional
.x; x0/-phase space, for example, is not invariant anymore. For example, the area of
a rhombus in phase space, defined by the two vectors x0 D .x; 0/ and x0

0 D
�
0; x0

0

�
,

is reduced according to (10.143) to

ˇ̌
x; x0ˇ̌ D 1

1C �0z
ˇ̌
x0; x0

0

ˇ̌
(10.144)

and the beam emittance, defined by x and x0, is therefore not preserved in the
presence of accelerating fields. This phenomenon is known as adiabatic damping
under which the beam emittance varies like

� D 1

1C �0z�0 D
p0
p
�0 : (10.145)

where �0z D E=E0 is the relative energy gain along the length z of the
accelerator. From this we see immediately that the normalized phase space area
cp � is conserved in full agreement with Liouville’s theorem. In beam transport
systems where the particle energy is changing it is therefore more convenient and
dynamically correct to use the truly invariant normalized beam emittance defined by

�n D ˇ�� : (10.146)

This normalized emittance remains constant even when the particle energy is
changing due to external electric fields. In the presence of dissipating processes like
synchrotron radiation, scattering or damping, however, even the normalized beam
emittance changes because Liouville’s theorem of the conservation of phase space
is not valid anymore.
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From (10.144) we obtain formally the constancy of the normalized beam
emittance by multiplying with the momenta p0 and p D p0.1C �0z/ for

jx; .1C �0 z/p0 x0j D jx0; p0 x0
0j (10.147)

or with the transverse momenta p0 x0 D p0x and .1C �0z/ p0x0 D px

j x; px j D jx0; p0xj D const: (10.148)

This can be generalized to a six-dimensional phase space, remembering that in this

case det.M0/ D
�

1
1C�0z

�3
since the matrix has the form

 
1 � 1

�0
log �4

0 �4

!

M0 D

0BBBBBBB@

1 � 4
�0

log �4 0 0 0 0

0 �4 0 0 0 0

0 0 1 � 4
�0

log�4 0 0

0 0 0 �4 0 0

0 0 0 0 1 A
0 0 0 0 0 �4

1CCCCCCCA
; (10.149)

where A is an rf related quantity irrelevant for our present arguments. For the
six-dimensional phase space with coordinates x; px; y; py; �; �E, where px; py

are the transverse momenta, � the longitudinal position of the particle with
respect to a reference particle and E the energy deviation we get finally with

jx0; p0x; y0; p0y; �0; E0j D

0BBBBBBB@

x0 0 0 0 0 0

0 p0x 0 0 0 0

0 0 y0 0 0 0

0 0 0 p0y 0 0

0 0 0 0 �0 0

0 0 0 0 0 �4

1CCCCCCCA
jx; px; y; py; �; �Ej D jx0; p0x; y0; p0y; �0; �E0j D const : (10.150)

These results do not change if we had included focusing in the transformation
matrix. From (10.140), (10.141), we see immediately that the determinants for both
matrices are

det.Mf/ � det.Md/ � �4 (10.151)

ignoring small terms proportional to .
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Problems

Use thin lens approximation unless otherwise noted.

10.1 (S). Produce a conceptual design for a separated function proton synchrotron
to be used to accelerate protons from a kinetic energy of 10–150GeV/c. The
circular vacuum chamber aperture has a radius of R D 20mm and is supposed
to accommodate a beam with a uniform beam emittance of � D 5mm mrad in both
planes and a uniform momentum spread of �E=E D ˙0:1%. The peak magnetic
bending field is B D 1:8T at 150 GeV/c.

10.2 (S). Specify a FODO cell to be used as the basic lattice unit for a 50 GeV
synchrotron or storage ring. The quadrupole aperture for the beam shall have a
radius of R D 3 cm. Adjust parameters such that a Gaussian beam with an emittance
of � D 5mm mrad in the horizontal plane, of � D 0:5mm mrad in the vertical plane
and an energy spread of E=E0 D 0:01 would fit within the quadrupole aperture.
Ignore wall thickness of the vacuum chamber.

(a) Considering the magnetic field limitations of conventional magnets, adjust
bending radius, focal length and if necessary cell length to stay within realistic
limits for conventional magnets.

(b) What is the dipole field and the pole tip field of the quadrupoles? Adjust the
total number of cells such that there is an even number of FODO cells and the
tunes are far away from an integer or half integer resonance?

10.3 (S). Consider a ring composed of an even number 2nc of FODO cells. To
provide two component free spaces, we cut the ring at a symmetry line through the
middle of two quadrupoles on opposite sides of the ring and insert a drift space
of length 2` which is assumed to be much shorter than the value of the betatron
function at this symmetry point ` � ˇ0. Derive the transformation matrix for this
ring and compare with that of the unperturbed ring. What is the tune change of
the accelerator. The betatron functions will be modified. Derive the new value of
the horizontal betatron function at the symmetry point in units of the unperturbed
betatron function. Is there a difference to whether the free section is inserted in the
middle of a focusing or defocusing quadrupole? How does the �-function change?

10.4 (S). Sometimes two FODO channels of different parameters must be matched.
Show that a lattice section can be designed with a phase advance of x D  y D
�=2, which will provide the desired matching of the betatron functions from the
symmetry point of one FODO cell to the symmetry point of the other cells. Such a
matching section is also called a quarter wavelength transformer and is applicable
to any matching of symmetry points. Does this transformer also work for curved
FODO channels, where the dispersion is finite?

10.5 (S). The quadrupole lattice of the synchrotron in Fig. 10.11 forms a pure
FODO lattice. Yet the horizontal betatron function shows some beating perturbation
while the vertical betatron function is periodic. What is the source of perturbation
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for the horizontal betatron function? An even stronger perturbation is apparent for
the dispersion function. Explain why the dispersion function is perturbed.

10.6. For one example determine the real quadrupole length required to produce
the quoted betatron phase advances per FODO cell in Table 10.1. Compare with
thin lens quadrupole strengths.

10.7. Calculate the values of the betatron functions in the center of the quadrupoles
for ]1 and ]2 FODO cells in Table 10.1 and compare with the actual thick lens
betatron functions in Figs. 10.6 and 10.7. Discuss the difference.

10.8. The original lattice of Problem 10.4 is to be expanded to include dispersion
free cells. Incorporate into the lattice two symmetric dispersion suppressors based
on the FODO lattice of the ring following the scheme shown in Fig. 10.14. Adjust
the bending magnet strength to retain a total bending angle of 2� in the ring.
Incorporate the two dispersion suppressors symmetrically into the ring and make
a schematic sketch of the lattice.

10.9. In the dispersion free region of Problem 10.8 introduce a symmetric Collins
insertion to provide a long magnet free section of the ring. Determine the parameters
of the insertion magnets and drift spaces. Use thin lens approximation to calculate a
few values of the betatron functions in the Collins insertions and plot betatron and
dispersion functions through the Collins insertion.

10.10. For the complete ring lattice of Problem 10.9 make a parameter list including
such parameters as circumference, revolution time, number of cells, tunes (use
simple numerical integration to calculate the phase advance in the Collins insertion),
max. beam sizes, magnet types, length, strengths, etc.

10.11. The fact that a Collins straight section can be inserted into any transport line
without creating perturbations outside the insertion makes these insertions also a
periodic lattice. A series of Collins straight sections can be considered as a periodic
lattice composed of quadrupole doublets and long drift spaces in between. Construct
a circular accelerator by inserting bending magnets into the drift spaces d and
adjusting the drift spaces to D D 5m. What is the phase advance per period?
Calculate the periodic �-function and make a sketch with lattice and lattice functions
for one period.

10.12. Consider a regular FODO lattice as shown in Fig. 10.11, where some
bending magnets are eliminated to provide magnet free spaces and to reduce the
�-function in the straight section. How does the minimum value of the �-function
scale with the phase per FODO cell. Show if conditions exist to match the �-function
perfectly in the straight section of this lattice?

10.13. How many protons would produce a circulating beam of 1 A in the ring
of Problem 10.1? Calculate the total power stored in that beam at 150 GeV/c. By
how many degrees could one liter of water be heated up by this energy? The proton
beam emittance be �x;y D 5mm mrad at the injection energy of 10 GeV/c. Calculate
the average beam width at 150 GeV/c along the lattice and assume this beam to hit



References 349

because of a sudden miss-steering a straight piece of vacuum chamber at an angle
of 10 mrad. If all available beam energy is absorbed in a 1 mm thick steel vacuum
chamber by how much will the strip of steel heat up? Will it melt? (specific heat
cFe D 0:11 cal/g/ıC, melting temperature TFe D 1528 ıC.
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Chapter 11
Particle Beam Parameters

Particle beams are characterized by a set of quantifying parameters being either
constants of motion or functions varying from point to point along a beam transport
line. The parameters may be a single particle property like the betatron function
which is the same for all particles within a beam or quantities that are defined only
for a collection of particles like beam sizes or beam intensity. We will define and
derive expressions for such beam parameters and use them to characterize particle
beams and develop methods for manipulation of such parameters.

11.1 Definition of Beam Parameters

Particle beams and individual particles are characterized by a number of parameters
which we use in beam dynamics. We will define such parameters first before we
discuss the determination of their numerical value.

11.1.1 Beam Energy

Often we refer to the energy of a particle beam although we actually describe
only the nominal energy of a single particle within this beam. Similarly, we speak
of the beam momentum, beam kinetic energy or the velocity of the beam, when
we mean to say that the beam is composed of particles with nominal values of
these quantities. We found in earlier chapters that the most convenient quantity
to characterize the “energy” of a particle is the momentum for transverse beam
dynamics and the kinetic energy for acceleration. To unify the nomenclature it has
become common to use the term energy for both quantities noting that the quantity
of pure momentum should be multiplied with the velocity of light .cp/ to become
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dimensionally correct. Thus, the particle momentum is expressed in the dimension
of an energy without being numerically identical either to the total energy or the
kinetic energy but approaching both for highly relativistic energies.

11.1.2 Time Structure

A true collective beam parameter is the time structure of the particle stream.
We make the distinction between a continuous beam being a continuous flow of
particles and a bunched beam. Whenever particles are accelerated by means of
rf-fields a bunched beam is generated, while continuous beams can in general
be sustained only by dc accelerating fields or when no acceleration is required as
may be true for a proton beam in a storage ring. A pulsed beam consists of a finite
number of bunches or a continuous stream of particles for a finite length of time.
For example, a beam pulse from a linear accelerator is made up of a finite string of
micro bunches generated by rf-accelerating fields.

11.1.3 Beam Current

The beam intensity or beam current is expressed in terms of an electrical current
using the common definition of the ratio of the electrical charge passing by a current
monitor per unit time. For bunched beams the time span during which the charge is
measured can be either shorter than the duration of the bunch or the beam pulse or
may be long compared to both. Depending on which time scale we use, we define the
bunch current or peak current, the pulse current or the average current respectively.

In Fig. 11.1 the general time structure of bunched beams is shown. The smallest
unit is the microbunch, which is separated from the next microbunch by the
wavelength of the accelerating rf-field or a multiple thereof. The microbunch current
or peak current OI is defined as the total microbunch charge q divided by the
microbunch duration ��,

OI D q

��
: (11.1)

The micro pulse duration must be specially defined to take a nonuniform charge
distribution of the particular accelerator into account. A series of microbunches
form a beam pulse which is generally determined by the duration of the rf-pulse.
In a conventional S-band electron linear accelerator the rf-pulse duration is of
the order of a few micro seconds while a superconducting linac can produce a
continuous stream of microbunches thus eliminating the pulse structure of the beam.
An electrostatic accelerator may produce pulsed beams if the accelerating voltage is
applied only for short time intervals. The pulse current Ip is defined as the average
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Fig. 11.1 Definitions for time structure and pulse currents. (a) Peak current, OI D q=��, where �� is
the microbunch duration and q the charge per microbunch. (b) Pulse current Ip D OI ��=T� D q=T�,
where T� is the micro-bunch period. (c) Average current hIi D IpTp
rep;with Tp the pulse duration
and 
rep the pulse repetition rate. (d) Continuous beam current

current during the duration of the pulse. If the duration of the micro bunch is �� and
the time between successive microbunches T� the pulse current is

Ip D OI ��
T�
D q

T�
: (11.2)

The average beam current, finally, is the beam current averaged over a complete
cycle of the particular accelerator.

hIi D Ip
Tp

Tr
D q

Tr

Tp

T�
D n� q

Trep
; (11.3)

where n� is the number of microbunches per pulse and q the charge in a microbunch.
In a beam transport line, this is the total charge passing by per unit time, where the
unit time is as long as the distance between beam pulses. In a circular accelerator it
is, for example, the total circulating charge divided by the revolution time. For the
experimenter using particles from a cycling synchrotron accelerator the average
current is the total charge delivered to the experiment during a time long compared
to the cycling time divided by that time.
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The “beam on–beam off” time is measured by the duty factor defined as the
fraction of actual beam time to total time at the experimental station. Depending on
the application, it is desirable to have a high duty factor where the particles come
more uniformly distributed in time compared to a low duty factor where the same
number of particles come in short bursts.

11.1.4 Beam Dimensions

Of great importance for the design of particle accelerators is the knowledge of beam
size parameters like transverse dimensions, bunch length and energy spread as well
as the particle intensity distribution in six-dimensional phase space. In this respect,
electron beams may behave different from beams of heavier particles like protons
which is a consequence of synchrotron radiation and effects of quantized emission
of photons on the dynamic parameters of the electrons. Where such radiation effects
are negligible beams of any kind of particles evolve the same way along a beam line.
Specifically, we have seen that in such cases the beam emittances are a constant
of motion and the beam sizes are therefore modulated only by the variation of
the betatron and dispersion functions as determined by the focusing structure. The
particle distribution stays constant while rotating in phase space. This is true for the
transverse as well as for the longitudinal and energy parameters.

A linear variation of beam emittance with energy is introduced when particles
are accelerated or decelerated. We call this variation adiabatic damping, where the
beam emittance scales inversely proportional with the particle momentum and the
transverse beam size, divergence, bunch length and energy spread scale inversely to
the square root of the particle momentum. This adiabatic damping actually is not a
true damping process where the area in phase space is reduced. It rather reflects the
particular definition of beam emittance with respect to the canonical dimensions
of phase space. In transverse beam dynamics we are concerned with geometric
parameters and a phase space element would be expressed by the product uu0:
Liouville’s theorem, however, requires the use of canonical variables, momentum
and position, and the same phase space element is upu, where pu D p0u0
and u is any of the three degrees of freedom. Acceleration increases the particle
momentum p0 and as a consequence the geometric emittance uu0 must be
reduced to keep the product upu constant. This reduction of the geometric
emittance by acceleration is called adiabatic damping and occurs in all three degrees
of freedom.

More consistent with Liouville’s theorem of constant phase space density is the
normalized emittance defined by

�n D ˇ�� ; (11.4)
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where � is the particle energy in units of the rest energy and ˇ D v=c. This
normalized emittance obviously has the appropriate definition to stay constant under
the theorem of Liouville.

It is often difficult and not practical to define a beam emittance for the whole
beam. Whenever the beam is fuzzy at the edges it may not make sense to include all
particles into the definition of the beam emittance and provide expensive aperture
for the fuzzy part of the beam. Relativistic electron beams in circular accelerators
are particularly fuzzy due to the quantized emission of synchrotron radiation and
as a consequence the particle distribution transforms into a Gaussian distribution.
Later, we will discuss the evolution of the beam emittance due to statistical effects
in great detail and derive the particle distribution from the Fokker-Planck equation.
The electron beam emittance is defined for that part of the beam which is contained
within one standard unit of the Gaussian distribution. this is true also for any other
parameter which assumes a Gaussian distribution like beam size, divergence, energy
spread, phase etc.

The beam emittance for particle beams is primarily defined by the characteristic
source parameters and source energy. Given perfect matching between different
accelerators and beam lines during subsequent acceleration, this source emittance
is reduced inversely proportional to the particle momentum by adiabatic damping
and stays constant in terms of normalized emittance. This describes accurately the
ideal situation for proton and ion beams, for nonrelativistic electrons and electrons
in linear accelerators as long as statistical effects are absent. A variation of the
emittance occurs in the presence of statistical effects in the form of collisions with
other particles or emission of synchrotron radiation and we will concentrate here
in more detail on the evolution of beam emittances in highly relativistic electron
beams.

Statistical processes cause a spreading of particles in phase space or a continuous
increase of beam emittance. In cases where this diffusion is due to the particle
density, the emittance increase may decrease significantly because the scattering
occurrence drops to lower and lower values as the particle density decreases. Such
a case appears in intra-beam scattering [1–3], where particles within the same
bunch collide and exchange energy. Specifically when particles exchange longi-
tudinal momentum into transverse momentum and gain back the lost longitudinal
momentum from the accelerating cavities. The beam “heats” up transversely which
becomes evident in the increased beam emittance and beam sizes.

Statistical perturbations due to synchrotron radiation, however, lead to truly
equilibrium states where the continuous excitation due to quantized emission
of photons is compensated by damping. Discussing first the effect of damping
will prepare us to combine the results with statistical perturbations leading to an
equilibrium state of the beam dimensions.
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11.2 Damping

Emission of synchrotron radiation causes the appearance of a reaction force on the
emitting particle which must be taken into account to accurately describe particle
dynamics. In doing so, we note from the theory of synchrotron radiation that the
energy lost into synchrotron radiation is lost through the emission of many photons
and we may assume that the energy loss is continuous. Specifically, we assume that
single photon emissions occur fast compared to the oscillation period of the particle
such that we may treat the effect of the recoil force as an impulse.

In general, we must consider the motion of a particle in all three degrees of
freedom or in six-dimensional phase space. The appearance of damping stems from
the emission of synchrotron radiation in general, but the physics leading to damping
in the longitudinal degree of freedom is different from that in the transverse degrees
of freedom. The rate of energy loss into synchrotron radiation depends on the
particle energy itself being high at high energies and low at low energies. As a
consequence, a particle with a higher than ideal energy will loose more energy to
synchrotron radiation than the ideal particle and a particle with lower energy will
loose less energy. The combined result is that the energy difference between such
three particles has been reduced, an effect that shows up as damping of the beam
energy spread. With the damping of the energy spread, we observe also a damping
of its conjugate variable, the longitudinal phase or bunch length.

In the transverse plane we note that the emission of a photon leads to a loss of
longitudinal as well as transverse momentum since the particle performs betatron
oscillations. The total lost momentum is, however, replaced in the cavity only in the
longitudinal direction. Consequently, the combined effect of emission of a photon
and the replacement of the lost energy in accelerating cavities leads to a net loss of
transverse momentum or transverse damping.

Although damping mechanisms are different for transverse and longitudinal
degrees of freedom, the total amount of damping is limited and determined by
the amount of synchrotron radiation. This correlation of damping decrements in all
degrees of freedom was derived first by Robinson [4] for general accelerating fields
as long as they are not so strong that they would appreciably affect the particle orbit.

11.2.1 Robinson Criterion

Following Robinson’s idea we will derive what is now known as Robinson’s
damping criterion by observing the change of a six dimensional vector in phase
space due to synchrotron radiation and acceleration. The components of this vector
are the four transverse coordinates .x; x0; y; y0/, the energy deviation E, and the
longitudinal phase deviation from the synchronous phase ' D  �  s. Consistent
with smooth approximation a continuous distribution of synchrotron radiation along
the orbit is assumed as well as continuous acceleration to compensate energy losses.
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During the short time dt the six-dimensional vector

u D � x; x0; y; y0; '; ıE
�

(11.5)

will change by an amount proportional to dt. We may expand the transformations
into a Taylor series keeping only linear terms and express the change of the phase
space vector in form of a matrix transformation

u D u1 � u0 D dtMu0 : (11.6)

From the eigenvalue equation for this transformation matrix,

Muj D �juj ;

where uj are the eigenvectors, �i the eigenvalues being the roots of the characteristic
equation det.M � �I/ D 0 and I the unity matrix. From (11.6) we get

u1 D .1CM dt/u0 D .1C �j dt/u0 � u0e�j dt : (11.7)

Since the eigenvectors must be real the eigenvalues come in conjugate complex pairs

�j D ˛i ˙ iˇi ;

where i D 1; 2; 3 and

jD6X
jD1

�j D 2
iD3X
iD1

˛i : (11.8)

The quantities ˛i cause exponential damping or excitation of the eigenvectors
depending on whether they are negative or positive, while the ˇi contribute only a
frequency shift of the oscillations.

Utilizing the transformation matrix M;we derive expressions for the eigenvalues
by evaluating the expression d

d� det.�M��I/j�D0 in two different ways. WithM D
�jI we get

d

d�
det Œ.��i � �/ I��D0 D

d

d�

jD6Y
jD1
.��j � �/j�D0 D ��5

jD6X
jD1

�j : (11.9)
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On the other hand, we may execute the differentiation on the determinant directly
and get

d

d�
det .�M �≥I/j�D0 D (11.10)ˇ̌̌̌

ˇ̌̌̌ m11 m12 m13 � � �
�m21 �m22 � � �m23 � � �
�m31 �m32 �m33 � � � � �
� � � � � � � � � � � �

ˇ̌̌̌
ˇ̌̌̌
�D0

C

ˇ̌̌̌
ˇ̌̌̌ �m11 � � �m12 �m13 � � �

m21 m22 m23 � � �
�m31 �m32 �m33 � � � � �
� � � � � � � � � � � �

ˇ̌̌̌
ˇ̌̌̌
�D0

C � � �

D ��5m11 � � � � �5m66 D ��5
j D 6X
j D1

mjj :

Comparing (11.9) and (11.10) we note with (11.8) the relation

jD6X
j�1

�j D
jD6X
j�1

mjj D 2
iD3X
iD1

˛i (11.11)

between eigenvalues, matrix elements, and damping decrements. To further identify
the damping we must determine the transformation. The elements m11;m33, and m55

are all zero because the particle positions .x; y; '/ are not changed by the emission
of a photon or by acceleration during the time dt.

m11 D 0 m33 D 0 m55 D 0 : (11.12)

The slopes, however, will change. Since synchrotron radiation is emitted in the
forward direction we have no direct change of the particle trajectory due to the
emission process. We ignore at this point the effects of a finite radiation opening
angle � D ˙1=� and show in connection with the derivation of the vertical beam
emittance that this effect is negligible while determining damping. Acceleration will
change the particle direction because the longitudinal momentum is increased while
the transverse momentum stays constant (see Fig. 11.2).

As shown in Fig. 11.2, a particle with a total momentum p0 and a transverse
momentum p0t due to betatron oscillation emits a photon of energy "� . This process
leads to a loss of momentum of �p D "�=ˇ; where ˇ D v=c and a loss of
transverse momentum. Acceleration will again compensate for this energy loss.
During acceleration the momentum is increased by prf D C.Prf=cˇ/ dt, where
Prf is the rf-power to the beam. The transverse momentum during this acceleration
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Fig. 11.2 Reduction of the
transverse momentum of
trajectories by acceleration.
For simplicity we assume
here that the energy loss �p
due to the emission of a
photon is immediately
compensated by accelerating
fields in a rf-cavity (prf/

Dprf

Dp

p0

p1

p0t

p1t

is not changed and we have therefore .p0 � p/ u0
0 D Œp0 � p C .Prf=cˇ/ dt� u0

1,
where u0

0 and u0
1 are the slopes of the particle trajectory before and after acceleration,

respectively. With u0 D Pu=ˇc and cp0 D ˇE0 we have to first order in p and Prf dt

Pu1 D E0

E0 C Prf dt
Pu0 �

�
1 � Prf dt

E0

�
Pu0 : (11.13)

From (11.7) we get with (11.13) using average values for the synchrotron
radiation power around the ring and with u D x or y

m22 D �hP� i
E0

and m44 D �hP�i
E0

; (11.14)

where we note that in the absence of acceleration the rf-power is equal to the
nominal synchrotron radiation power hP�i D U0=T0. The energy variation of the
particle is the combination of energy loss �P� dt and gain Prf dt. With

P� .E/ D P� .E0/C @P�
@E

ˇ̌̌̌
0
E0 and Prf. / D Prf. s/C @Prf

@ 

ˇ̌̌̌
 s

' ;

where ' D  �  s we get

E1 D E0 �
˝
P� .E/

˛
dtC Prf. / dt

D E0 � @
˝
P�
˛

@E

ˇ̌̌̌
ˇ
0

E dtC @Prf

@ 

ˇ̌̌̌
 s

' dt (11.15)
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because P� .E0/ D Prf. s/. Equation (11.15) exhibits two more elements of the
transformation matrix

m65 D @Prf

@ 

ˇ̌̌̌
 s

and m66 D �
@
˝
P�
˛

@E

ˇ̌̌̌
ˇ
0

: (11.16)

We have now all elements necessary to determine the damping decrements.
From (11.12), (11.14), (11.16) we get the sum of the damping decrements

iD3X
iD1

˛i D 1
2

jD6X
jD1

mjj D �hP�i
E0
� 1

2

@
˝
P�
˛

@E

ˇ̌̌̌
ˇ
0

; (11.17)

which depends only on the synchrotron radiation power and the particle energy.
This result was first derived by Robinson [4] and is known as Robinson’s damping
criterion.

We may separate the damping decrements. For a plane circular accelerator
without vertical bending magnets and coupling, the vertical damping decrement
˛y D ˛2 can be extracted. Since the vertical motion is not coupled to either the
horizontal or the synchrotron oscillations, we get from (11.14) and (11.17)

˛y D � 12
hP�i
E0

: (11.18)

The damping decrement for synchrotron oscillations has been derived in (9.27)
and is

˛z D � 12
dhP�i

dE

ˇ̌̌̌
0

: (11.19)

The horizontal damping decrement finally can be derived from Robinson’s
damping criterion (11.17) and the two known decrements (11.18), (11.19) to be

˛x D � 12
hP� i
E0
� 1

2

@
˝
P�
˛

@E

ˇ̌̌̌
ˇ
0

C 1
2

dhP�i
dE

ˇ̌̌̌
0

: (11.20)

We may further evaluate the total and partial differential of the synchrotron
radiation power P� with energy E. The synchrotron radiation power is proportional
to the square of the particle energy E and magnetic field B at the source of radiation
and the partial differential is therefore

@P�
@E

ˇ̌̌̌
0
D 2 hP�i

E0
: (11.21)
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The total differential of the synchrotron radiation power depends not only on the
particle energy directly but also on the variation of the magnetic field with energy as
seen by the particle. A change in the particle energy causes a shift in the particle orbit
where the �-function is nonzero and this shift may move the particle to a location
with different field strength. To include all energy dependent contributions, we
inspect the definition of the average synchrotron radiation power hP�i D 1

T0

H
P�d�

and noting that for highly relativistic particles cd� D dz D
�
1C �

	
E
E0

�
dz the

average radiation power becomes

hP� i D 1

cT0

I
P�

�
1C �

	

E

E0

�
dz: (11.22)

Differentiating (11.22) with respect to the energy

dhP�i
dE

ˇ̌̌̌
0

D 1

cT0

I �
dP�
dE

ˇ̌̌̌
0

C P�
�

	E0

�
dz ; (11.23)

where

dP�
dE

ˇ̌̌̌
0

D 2 P�
E0
C 2 P�

B0

dB

dx

dx

dE
D 2 P�

E0
C 2 P�

E0
	 k � :

Collecting all components, the synchrotron oscillation damping decrement (11.19)
is finally

˛z D � 12
d
˝
P�
˛

dE

ˇ̌̌̌
ˇ
0

D � 1
2

hP� i
E0

.2C #/ ; (11.24)

where we used hP�i /
H
�2dz and P�0 / �2 with � D 1=	

# D
H
�3�

�
1C 2	2k� dzH
�
2dz

: (11.25)

Similarly, we get from (11.20) for the horizontal damping decrement

˛x D �1
2

hP� i
E0

.1 � #/ : (11.26)
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In summary the damping decrements for betatron and synchrotron oscillations can
be expressed by

˛z D �1
2

˝
P�
˛

E
.2C #/ D �1

2

˝
P�
˛

E
Jz ;

˛x D �1
2

˝
P�
˛

E
.1 � #/ D �1

2

˝
P�
˛

E
Jx ; (11.27)

˛y D �1
2

˝
P�
˛

E
D �1

2

˝
P�
˛

E
Jy ;

where the factors Ji are the damping partition numbers,

Jz D 2C #;
Jx D 1 � #; (11.28)

Jy D 1:

Robinson’s damping criterion can be expressed byX
i

Ji D 4 : (11.29)

In more practical quantities, the damping decrements can be obtained with (24.35)
from

˛u D � 13 rec �3
�
1

	2

�
Ju: (11.30)

Damping occurs in circular electron accelerators in all degrees of freedom.
In transverse planes particles oscillate in the potential created by quadrupole
focusing and any finite amplitude is damped by synchrotron radiation damping.
Similarly, longitudinal synchrotron oscillations are contained by a potential well
created by the rf-fields and the momentum compaction and finite deviations of
particles in energy and phase are damped by synchrotron radiation damping.
We note that the synchrotron oscillation damping is twice as strong as transverse
damping.

All oscillation amplitudes au in six dimensional phase space are damped .˛ < 0/
or anti-damped .˛ > 0/ like

au D a0ue˛ut (11.31)

and the damping or rise times are

�u D 1

au
: (11.32)
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In a particular choice of lattice, damping rates can be shifted between different
degrees of freedom and special care must be exercised when combined function
magnets or strong sector magnets are introduced into a ring lattice.

Both the synchrotron and betatron oscillation damping can be modified by a
particular choice of lattice. From (11.25) we note the contribution �3� which is
caused by sector magnets. Particles with higher energies follow a longer path in
a sector magnet and therefore radiate more. Consequently synchrotron damping is
increased with # . This term vanishes for rectangular magnets and must be modified
appropriately for wedge magnets. For a rectangular magnet

#rect D
H
2��k dzH
�
2dz

(11.33)

and for wedge magnets

#wedge D
P

i

�
�2�0�0 C

R
2.�� k/ dzC �2�e�e

	
iH

�2dz
; (11.34)

where we add all contributions from all magnets i in the ring. The edge angles at the
entrance �0 and exit �e are defined to be positive going from a rectangular magnet
toward a sector magnet.

The second term in the nominator of (11.25) becomes significant for combined
function magnets and vanishes for separated function magnets. Specifically. a
strong focusing gradient .k > 0/ combined with beam deflection can contribute
significantly to # . For # D 1 all damping in the horizontal plane is lost and
anti-damping or excitation of betatron oscillations appears for # > 1. This
occurs, for example, in older combined function synchrotrons. At low energies,
however, the beam in such lattices is still stable due to strong adiabatic damping
and only at higher energies when synchrotron radiation reduces acceleration will
horizontal anti-damping take over and dictate an upper limit to the feasibility of
such accelerators. Conversely, vertical focusing .k < 0/ can be implemented into
bending magnets such that the horizontal damping is actually increased since # < 0.
However, there is a limit for the stability of synchrotron oscillations for # D 2.

11.3 Particle Distribution in Longitudinal Phase Space

The particle distribution in phase space is rarely uniform. To determine the required
aperture in a particle transport system avoiding excessive losses we must, however,
know the particle distribution. Proton and ion beams involve particle distributions
which due to Liouville’s theorem do not change along a beam transport system,
except for the variation of the betatron and dispersion function. The particle
distribution can therefore be determined by measurements of beam transmission
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through a slit for varying openings. If this is done at two points about 90ı apart in
betatron phase space, angular as well as spatial distribution can be determined.

This procedure can be applied also to electrons in a transport system. The
distribution changes, however, significantly when electrons are injected into a
circular accelerator. We will discuss the physics behind this violation of Liouville’s
theorem and determine the resulting electron distribution in phase space.

Relativistic electron and positron beams passing through bending magnets emit
synchrotron radiation, a process that leads to quantum excitation and damping.
As a result the original beam emittance at the source is completely replaced by
an equilibrium emittance that is unrelated to the original source characteristics.
Postponing a rigorous treatment of statistical effects to Chap. 12 we concentrate
here on a more visual discussion of the reaction of synchrotron radiation on particle
and beam parameters.

11.3.1 Energy Spread

Statistical emission of photons causes primarily a change of particle energy leading
to an energy spread within the beam. To evaluate the effect of quantized emission of
photons on the beam energy spread, we observe particles undergoing synchrotron
oscillations so that a particle with an energy deviation A0 at time t0 will have an
energy error at time t of

A .t/ D A0 ei˝.t�t0/ (11.35)

Emission of a photon with energy " at time t1 causes a perturbation and the
particle continues to undergo synchrotron oscillations but with a new amplitude

A1 D A0e
i˝.t�t0/ � " ei˝.t�t1/ (11.36)

The change in oscillation amplitude due to the emission of one photon of energy
" can be derived from (11.36) by multiplying with its imaginary conjugate for

A21 D A20 C "2 � 2"A0 cos Œ˝ .t1 � t0/� : (11.37)

Because the times at which photon emission occurs is random we have for the
average increase in oscillation amplitude due to the emission of a photon of energy "˝

A2
˛ D ˝A21 � A20

˛ D "2 (11.38)

The rate of change in amplitude per unit time due to this statistical or quantum
excitation while averaging around the ring is*

dA2

dt

ˇ̌̌̌
q

+
z

D
Z 1

0

"2 Pn ."/ d� D ˝ PNph
˝
"2
˛˛

z
(11.39)
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where Pn ."/ is the number of photons of energy " emitted per unit time and energy
bin d". This can be equated to the total photon flux PNph multiplied by the average
square of the photon energy and again taking the average along the orbit.

Damping causes a reduction in the synchrotron oscillation amplitude and with
A D A0e˛st and the synchrotron oscillation damping time �z D 1= j˛zj (11.27)�

dA2

dt

ˇ̌̌̌
d

�
z

D � 2
�z

˝
A2
˛
: (11.40)

Both quantum excitation and damping lead to an equilibrium state

˝ PNph
˝
"2
˛˛

z
� 2

�z

˝
A2
˛ D 0; (11.41)

or solving for
˝
A2
˛

˝
A2
˛ D 1

2
�z
˝ PNph

˝
"2
˛˛

z
: (11.42)

Due to the central limit theorem of statistics the energy distribution caused by
the statistical emission of photons assumes a Gaussian distribution with the standard
root mean square energy spread �2" D 1

2

˝
A2
˛
. The photon spectrum will be derived

in Part 22.6 and the integral in (11.39) can be evaluated to give [5]

PNph
˝
"2
˛ D 55

24
p
3

P�"c (11.43)

Replacing the synchrotron radiation power P� by its expression in (24.34) and
the critical photon energy "c D „!c by (24.49) we get

PNph
˝
"2
˛ D 55

32�
p
3

h
cC�„c

�
mc2

�4
�7�3

i
(11.44)

with C� D 4�
3

re

.mc2/
3 D 8:8460 � 10�5 m/GeV3and the equilibrium energy

spreadbecomes finally with (11.27) and (24.34)

�2"
E2
D �z

4E2
˝ PNph

˝
"2
˛˛

z D Cq
�2

Jz

˝
�3
˛
z

h�2iz
(11.45)

where

Cq D 55

32
p
3

„c
mc2
D 3:84 � 10�13 m (11.46)

for electrons and positrons. The equilibrium energy spread in an electron storage
ring depends only on the beam energy and the bending radius.
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11.3.2 Bunch Length

The conjugate coordinate to the energy deviation is the phase and a spread of particle
energy appears also as a spread in phase or as a longitudinal particle distribution and
an equilibrium bunch length. The bunch length is

�` D cj�cj
˝

�"

E0
(11.47)

and replacing the synchrotron oscillation frequency by its expression (9.35) we get
finally for the equilibrium bunch length in a circular electron accelerator

�` D
p
2�c

!rev

s
�cE0

he OV cos s

�"

E0
: (11.48)

The equilibrium electron bunch length can be varied by varying the rf-voltage

and scales like �` / 1=
p OV which is a much stronger dependence than the scaling

obtained for non-radiating particles in Sect. 9.3.5. A very small bunch length can be
obtained by adjusting the momentum compaction to a small value including zero.
As the momentum compaction approaches zero, but second order terms must be
considered which has been discussed in detail in Sect. 9.4.4. An electron storage
ring where the momentum compaction is adjusted to be zero or close to zero is
called an isochronous ring [6] or a quasi isochronous ring [7]. Such rings do not yet
exist at this time but are intensely studied and problems are being solved in view of
great benefits for research in high energy physics, synchrotron radiation sources and
free electron lasers to produce short particle or light pulses.

11.4 Transverse Beam Emittance

The sudden change of particles energy due to the quantized emission of photons also
causes a change in the characteristics of transverse particle motion. Neither position
nor the direction of the particle trajectory is changed during the forward emission
of photons. From beam dynamics, however, we know that different reference
trajectories exist for particles with different energies. Two particles with energies
cp1 and cp2 follow two different reference trajectories separated at the position z
along the beam transport line by a distance

x .z/ D �.z/ cp1 � cp2
cp0

; (11.49)

where �.z/ is the dispersion function and cp0 the reference energy. Although
particles in general do not exactly follow these reference trajectories, they do
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perform betatron oscillations about these trajectories. The sudden change of the
particle energy causes a sudden change in the reference path and thereby a sudden
change in the betatron oscillation amplitude.

11.4.1 Equilibrium Beam Emittance

Postponing again a rigorous discussion of the evolution of phase space due to
statistical perturbations to the next chapter, we follow here a more intuitive path
to determine the equilibrium transverse beam emittance. Similar to the discussion
leading to the equilibrium energy spread we will observe perturbations to the
transverse motion caused by photon emission. In the case of longitudinal quantum
excitation it was sufficient to consider the effect of photon emission on the particle
energy alone since the particle phase is not changed by this process.

As a particle emits a photon it will not change its actual position and direction.
However, the position of a particle with respect to the ideal reference orbit is the
combination of its betatron oscillation amplitude and a chromatic contribution due
to a finite energy deviation and dispersion. Variation of the particle position u D
uˇ C � .E=E0/, and direction u0 D u0̌ C �0 .E=E0/ due " is described by

ıu D 0 D ıuˇ C � �E or ıuˇ D �� �E ;

ıu0 D 0 D ıu0̌ C �0 �
E or ıu0̌ D ��0 �

E :

(11.50)

We note the sudden changes in the betatron amplitudes and slopes because the
sudden energy loss leads to a simultaneous change in the reference orbit. This
perturbation will modify the phase ellipse the particles move on. The variation of
the phase ellipse �u2 C 2˛uu0 C ˇu02 D a2 is expressed by

�ı.u2ˇ/C 2˛ı.uˇu0̌ /C ˇı.u0̌ 2/ D ı.a2/

and inserting the relations (11.50) we get terms of the form ı.u2ˇ/ D .uˇ0C ıuˇ/2�
u2ˇ0 etc. Emission of photons can occur at any betatron phase and we therefore
average over all phases. As a consequence, all terms depending linearly on the
betatron amplitude and its derivatives or variations thereof vanish. The average
variation of the phase ellipse or oscillation amplitude a due to the emission of
photons with energy " becomes then

hıa2i D "2

E20
H.z/ ; (11.51)
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where

H.z/ D ˇ�02 C 2˛� �0 C ��2 : (11.52)

We average again over all photon energies, multiply by the total number of
photons emitted per unit time and integrate over the whole ring to get the variation
of the oscillation amplitude per turn

ha2i D 1

c E20

I
PNphh"2iH.z/ dz : (11.53)

The rate of change of the oscillation amplitude is then with z D ct

dha2i
dt

ˇ̌̌̌
q

D 1

E20

˝ PNphh"2iH.z/
˛
z
; (11.54)

where the index z indicates averaging around the ring. This quantum excitation of
the oscillation amplitude is compensated by damping for which we have similar
to (11.40) �

da2

dt

�ˇ̌̌̌
d
D 2˛xha2i : (11.55)

Equilibrium is reached when quantum excitation and damping are of equal
strength which occurs for

�2u
ˇu
D �u

4E2
˝ PNphh"2iHu

˛
z
: (11.56)

Here we have used the definition of the standard width of a Gaussian particle
distribution

�2u D hu2.z/i D
˝
1
2
a2ˇu

˛
(11.57)

with the betatron function ˇu and u D x or y. With (11.27), (11.44) and (24.34) we
get finally

�u D �2u
ˇu
D Cq

�2

Ju

h�3Hui
h�2i ; (11.58)

which we define as the equilibrium beam emittance of a relativistic electron in a
circular accelerator.



11.4 Transverse Beam Emittance 371

11.4.2 Emittance Increase in a Beam Transport Line

In (11.53) we decided to integrate the quantum excitation over a complete turn
of a circular accelerator. This should not be taken as a restriction but rather as
an example. If we integrate along an open beam transport line we would get the
increase of the beam emittance along this beam line. This becomes important for
very high energy linear colliders where beams are transported along the linear
accelerator and some beam transport system in the final focus section just ahead of
the collision point. Any dipole field along the beam path contributes to an increase
of the beam emittance, whether it be real dipole magnets, dipole field errors, path
displacements in a quadrupole, or small correction magnets for beam steering. Since
there is no damping, the emittance growth is therefore in both planes from (11.53)
and (11.57)

�u D 1

2cE20

Z
PNphh"2iHu.z/ dz : (11.59)

The function H is now evaluated with the dispersion functions Du.z/ instead of
the periodic �-function with contributions from any dipole field. Since such fields
can occur in both planes there is an emittance increase in both planes as well.
With (11.44) the increase in beam emittance is finally

�u D 55C�„c.mc2/2

64�
p
3

�5
Z
�3Hu dz ; (11.60)

where the integration is taken along the beam line. The perturbation of the beam
emittance in a beam transport line increases with the fifth power of the particle
energy. At very high energies we expect therefore a significant effect of dipole errors
on the beam emittance even if the basic beam transport line is straight.

So far, we have not yet distinguished between the horizontal and vertical
plane since the evolution of the phase space does not depend on the particular
degree of freedom. The equilibrium beam emittance, however, depends on machine
parameters and circular accelerators are not constructed symmetrically. Specifically,
accelerators are mostly constructed in a plane and therefore there is no deflection in
the plane normal to the ring plane. Assuming bending only occurs in the horizontal
plane, we may use (11.58) directly as the result for the horizontal beam emittance
u D x only.

11.4.3 Vertical Beam Emittance

In the vertical plane, the bending radius 	v ! 1 and the vertical beam emittance
reduces to zero by virtue of damping. Whenever we have ideal conditions like this it
is prudent to consider effects that we may have neglected leading to less than ideal
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results. In this case, we have neglected the fact that synchrotron radiation photons
are emitted not strictly in the forward direction but rather into a small angle˙1=� .
Photons emitted at a slight angle exert a recoil on the particle normal to the direction
of the trajectory. A photon emitted at an angle � with respect to the direction of the
trajectory and an azimuth � causes a variation of the vertical slope by

ıy0 D �� cos�
"

E0
;

while the position is not changed ıy D 0. This leads to a finite beam emittance
which can be derived analogous to the general derivation above

�2y

ˇy
D �y

4E2
˝ PNphh"2�2 cos2 �iˇy

˛
z
: (11.61)

We set

h"2�2 cos2 �i � h"2i ˝�2˛ ˝cos2 �
˛ � h"2i 1

2�2

and get finally for the fundamental lower limit of the vertical beam emittance

�2y

ˇy
D �y D Cq

ˇy

2Jy

h�3i
h�2i : (11.62)

Very roughly �y=�x D 1=�2 � 1 and it is therefore justified to neglect this
term in the calculation of the horizontal beam emittance. This fundamental lower
limit of the equilibrium beam emittance is of the order of 10�13 m, assuming the
betatron function and the bending radius to be of similar magnitude, and therefore
indeed very small compared to actual achieved beam emittances in real accelerators.
In reality, we observe a larger beam emittance in the vertical plane due to coupling
or due to vertical steering errors which create a small vertical dispersion and,
consequently, a small yet finite vertical beam emittance. As a practical rule the
vertical beam emittance is of the order of one percent or less of the horizontal beam
emittance due to field and alignment tolerances of the accelerator magnets. For very
small horizontal beam emittances, however, this percentage may increase because
the vertical beam emittance due to vertical dipole errors becomes more significant.

Sometimes it is necessary to include vertical bending magnets in an otherwise
horizontal ring. In this case the vertical dispersion function is finite and so is Hy.z/.
The vertical emittance is determined by evaluating (11.58) while using the vertical
dispersion function. Note, however, that all bending magnets must be included in
the calculation of equilibrium beam emittances because for quantum excitation it
is immaterial whether the energy loss was caused in a horizontally or vertically
bending magnet. The same is true for the damping term in the denominator.
Differences in the horizontal and vertical beam emittance come from the different
betatron and �-functions at the location of the radiation source.
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11.4.4 Beam Sizes

Beam parameters like width, height, length, divergence, and energy spread are
not all fixed independent quantities, but rather depend on emittances and lattice
and rf-parameters. These multiple dependencies allow the adjustment of beam
parameters, within limits, to be optimum for the intended application. In this section
we will discuss such dependencies.

A particle beam at any point of a beam transport line may be represented by a
few phase ellipses for different particle momenta as shown in Fig. 11.3. The phase
ellipses for different momenta are shifted proportional to the dispersion function at
that point and its derivative. Generally, the form and orientation of the ellipses are
slightly different too due to chromatic aberrations in the focusing properties of the
beam line. For the definition of beam parameters we need therefore the knowledge
of the lattice functions including chromatic aberrations and the beam emittance and
momentum spread.

The particle beam width or beam height is determined by the emittance, betatron
function, dispersion function and energy spread. The betatron and dispersion
functions vary along a beam transport line and depend on the distribution of the
beam focusing elements. The beam sizes are therefore also functions of the location
along the beam line. From the focusing lattice these functions can be derived and
the beam sizes be calculated.

The beam size of a particle beam is generally not well defined since the
boundaries of a beam tends to be fuzzy. We may be interested in the beam size
that defines all of a particle beam. In this case we look for that phase ellipse that

Fig. 11.3 Distribution of
beam ellipses for a beam with
finite emittance and
momentum spread
(schematic). The variation in
the shape of the phase ellipses
for different energies reflect
the effect of chromatic
aberrations x

Δp/p = 0

Δp/p < 0

Δp/p > 0

x`
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encloses all particles and obtain the beam size in the form of the beam envelope.
The beam half-width or half-height of this beam envelope is defined by

uˇ.z/ D
p
�uˇu.z/ (11.63)

with u D .x; y/. If there is also a finite momentum spread within the beam particles
the overall beam size or beam envelope is increased by the dispersion

u�.z/ D �u.z/
cp

cp0
(11.64)

and the total beam size is

utot.z/ D uˇ.z/C u�.z/ D
p
�uˇu.z/C �u.z/

cp

cp0
: (11.65)

This definition of the beam size assumes a uniform particle distribution within the
beam and is used mostly to determine the acceptance of a beam transport system.
The acceptance of a beam transport system is defined as the maximum emittance
a beam may have and still pass through the vacuum chambers of a beam line.
In Fig. 11.3 this would be the area of that ellipse that encloses the whole beam
including off momentum particles. In practice, however, we would choose a larger
acceptance to allow for errors in the beam path.

Since the lattice functions vary along a beam line the required aperture to let a
beam with the maximum allowable emittance pass is not the same everywhere along
the system. To characterize the aperture variation consistent with the acceptance, a
beam stay clear area, BSC, is defined as the required material free aperture of the
beam line.

The beam parameters for a Gaussian particle distributions are defined as the
standard values of the Gaussian distribution �x; �x0 ; �y; �y0 ; �ı; �` ;where most des-
ignations have been defined and used in previous chapters and where �ı D ��=cp0
and �` the bunch length. Quoting beam sizes for any particle type in units of �
can be misleading specifically in connection with beam intensities. For example, a
beam with a horizontal and vertical size of one sigma has a cross section of 2�x2�y

and includes only 46.59 % of the beam. This is accepted for electron beams with
Gaussian distribution but for proton beams intensities are often given for

p
6�’s to

cover most of the beam. In Table 11.1 the fraction of the total beam intensity is
compiled for a few generally used units of beam size measurement and for beam
size, cross section, and volume. The beam size for Gaussian beams is thereby

�u;tot D
q
�uˇu.z/C �2.z/�2ı : (11.66)

Four parameters are required to determine the beam size in each plane although
in most cases the vertical dispersion vanishes.
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Table 11.1 Fraction of total beam intensity

One-dimension (%) Two-dimension (%) Three-dimension (%)

1� 68.26 46.59 31.81

2� 95.44 91.09 86.93p
6� 98.56 97.14 95.74

11.4.5 Beam Divergence

The angular distribution of particles within a beam depends on the rotation of the
phase ellipse and we define analogous to the beam size an angular beam envelope by

�u0;tot D
q
�u�u.z/C �02.z/ �2ı : (11.67)

Again, there is a contribution from the betatron motion, from a finite momentum
spread and from associated chromatic aberration. The horizontal and vertical beam
divergencies are also determined by four parameters in each plane.

11.5 Variation of the Damping Distribution

Robinson’s criterion provides an expression for the overall damping in
six-dimensional phase space without specifying the distribution of damping in
the three degrees of freedom. In accelerators we make an effort to decouple the
particle motion in the three degrees of freedom as much as possible and as a result
we try to optimize the beam parameters in each plane separately from the other
planes for our application. Part of this optimization is the adjustment of damping
and as a consequence of beam emittances to desired values. Robinson’s criterion
allows us to modify the damping in one plane at the expense of damping in another
plane. This shifting of damping is done by varying damping partition numbers.

From the definition of the # parameter is clear that damping partition numbers
can be modified depending on whether the accelerator lattice is a combined function
or a separated function lattice. Furthermore, we may adjust virtually any distribution
between partition numbers by choosing a combination of gradient and separated
function magnets.

11.5.1 Damping Partition and Rf-Frequency

Actually such “gradients” can be introduced even in a separated function lattice.
If the rf-frequency is varied the beam will follow a path that meets the synchronicity
condition. Increasing the rf-frequency, for example, leads to a shorter wavelength
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and therefore the total path length in the ring need to be shorter. As a consequence
of the principle of phase stability the beam energy is reduced and the beam follows
a lower energy equilibrium orbit with the same harmonic number as the reference
orbit for the reference energy. Decreasing the rf-frequency leads just to the opposite
effect. The off momentum orbits pass systematically off center through quadrupoles
which therefore function like combined function gradient magnets.

To quantify this effect we use only the second term in the expression (11.25)
for # . The first term, coming from sector magnets, will stay unaffected. Displace-
ment of the orbit in the quadrupoles will cause a bending with a bending radius

1

	q
D k ıx : (11.68)

An rf-frequency shift causes a momentum change of

p

p0
D � 1

˛c

frf
frf

; (11.69)

which in turn causes a shift in the equilibrium orbit of

ıx D �p

p0
D � �

˛c

frf
frf

(11.70)

and the bending radius of the shifted orbit in quadrupoles is

1

	q
D kıx D k�

p

p0
D �k

�

˛c

frf
frf

: (11.71)

Inserted into the second term of (11.25), we get

# D � 1
˛c

H
2k2�2 dzH
1

	20
dz

frf
frf

; (11.72)

where 	0 is the bending radius of the ring bending magnets All quantities in (11.72)
are fixed properties of the lattice and changing the rf-frequency leads just to
the expected effect. Specifically, we note that all quadrupoles contribute additive
irrespective of their polarity. We may apply this to a simple isomagnetic FODO
lattice where all bending magnets and quadrupoles have the same absolute strength
respectively with

H
dz=	20 D 2�=	0. Integration of the nominator in (11.72) leads toI

2 k2�2dz D 2 k2.�2max C �2min/lq2 nc ;

where lq is half the quadrupole length in a FODO lattice, �max and �min the values
of the �-function in the focusing QF and defocusing QD quadrupoles, respectively,
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and nc the number of FODO cells in the ring. With all this the variation of the #
parameter

# D �nc
2 	0

�˛clq

�2max C �2min

f 2
frf
frf

: (11.73)

Here we have used the focal length f �1 D k lq. Replacing in (11.73) the �
functions by the expressions (10.74) derived for a FODO lattice, we recall the
relation f D � L and get finally [8]

# D �	0

	

1

˛c

L

lq
.4�2 C 1/frf

frf
; (11.74)

where 	 is the average bending radius in the FODO cell. The variation of the #
parameter in a FODO lattice is the more sensitive to rf-frequency variations the
longer the cell compared to the quadrupole length and the weaker the focusing. For
other lattices the expressions may not be as simple as for the FODO lattice but can
always be computed numerically by integrations and evaluation of (11.72).

By varying the rf-frequency and thereby the horizontal and longitudinal damping
partition number we have found a way to either increase or decrease the horizontal
beam emittance. The adjustments, however, are limited. To decrease the horizontal
beam emittance we would increase the horizontal partition number and at the same
time the longitudinal partition number would be reduced. The limit is reached when
the longitudinal motion becomes unstable or in practical cases when the partition
number drops below about half a unit. Other more practical limits may occur before
stability limits are reached if, for example, the momentum change becomes too large
to fit the beam into the vacuum chamber aperture.

11.6 Variation of the Equilibrium Beam Emittance

In circular electron accelerators the beam emittance is determined by the emission of
synchrotron radiation and the resulting emittance is not always equal to the desired
value. In such situations methods to alter the equilibrium emittance are desired and
we will discuss in the next sections such methods which may be used to either
increase or decrease the beam emittance.

11.6.1 Beam Emittance and Wiggler Magnets

The beam emittance in an electron storage ring can be greatly modified by the use of
wiggler magnets both to increase [9] or to decrease the beam emittance. A decrease
in beam emittance has been noted by Tazzari [10] while studying the effect of a
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number of wiggler magnets in a low emittance storage ring design. Manipulation of
the beam emittance in electron storage rings has become of great interest to obtain
extremely small beam emittances and we will therefore derive systematic scaling
laws for the effect of wiggler magnets on the beam emittance as well as on the beam
energy spread [10, 11].

The particle beam emittance in a storage ring is the result of two competing
effects, the quantum excitation caused by the quantized emission of photons and
the damping effect. Both effects lead to an equilibrium beam emittance observed in
electron storage rings.

Independent of the value of the equilibrium beam emittance in a particular
storage ring, it can be further reduced by increasing the damping without also
increasing the quantum excitation. More damping can be established by causing
additional synchrotron radiation through the installation of deflecting dipole mag-
nets like strong wigglers magnets. In order to avoid quantum excitation of the
beam emittance, however, the placement of wiggler magnets has to be chosen
carefully. As discussed earlier, an increase of the beam emittance through quantum
excitation is caused only when synchrotron radiation is emitted at a place in the
storage ring where the dispersion function is finite. Emittance reducing wiggler
magnets therefore must be placed in areas around the storage ring where the
dispersion vanishes to minimize quantum excitation. To calculate the modified
equilibrium beam emittance, we start from (11.54) and get with (11.44) and (11.57)
an expression for the quantum excitation of the emittance which can be expanded to
include wiggler magnets

d�

dt

ˇ̌̌̌
q,0
D 2

3
reCq�

5
˝
�3H˛

0
; (11.75)

The quantity H is evaluated for the plane for which the emittance is to be
determined, E is the particle energy, and 	 the bending radius of the regular ring
magnets. The average hi is to be taken for the whole ring and the index 0 indicates
that the average

˝
�3H˛

0
be taken only for the ring proper without wiggler magnets.

Since the contributions of different magnets, specifically, of regular storage ring
magnets and wiggler magnets are independent of each other, we may use the results
of the basic ring lattice and add to the regular quantum excitation and damping the
appropriate additions due to the wiggler magnets,

d�

dt

ˇ̌̌̌
q,w

D 2

3
reCq�

5
�˝
�3H˛

0
C ˝�3H˛w	 : (11.76)

Both, ring magnets and wiggler magnets produce synchrotron radiation and
contribute to damping of the transverse particle oscillations. Again, we may consider
both contributions separately and adding the averages we get the combined rate of
emittance damping from (11.55) and (11.27)

d�

dt

ˇ̌̌̌
d,w
D �2

3
rec�w Ju �

3
�˝
�2
˛
0
C ˝�2˛w	 ; (11.77)
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where �w is the beam emittance with wiggler magnets and Ju the damping partition
number with u D x; y. The equilibrium beam emittance is reached when the
quantum excitation rate and the damping rates are of equal magnitude. We add
therefore (11.76) and (11.77) and solve for the emittance

�w D Cq
�2

Jx

˝
�3H˛

0
C ˝�3H˛w

h�2i0 C h�2iw
: (11.78)

With �0 being the unperturbed beam emittance the relative emittance change due
to the presence of wiggler magnets is

�w

�0
D 1C ˝�3H˛w = ˝�3H˛0

1C h�2iw = h�2i0
: (11.79)

Making use of the definition of average parameter values we get with the circum-
ference of the storage ring C D 2�R˝

�3H˛
0
D 1

C

H ˇ̌
�30
ˇ̌Hdz ;

˝
�3H˛w D 1

C

H ˇ̌
�3w
ˇ̌Hdz ;˝

�2
˛
0
D 1

C

H
�20dz ; and

˝
�2
˛
w D 1

C

H
�2wdz :

(11.80)

Evaluation of these integrals for the particular storage ring and wiggler magnet
employed gives from (11.79) the relative change in the equilibrium beam emittance.
We note that the quantum excitation term scales like the cube while the damping
scales only quadratically with the wiggler curvature. This feature leads to the effect
that the beam emittance is always reduced for small wiggler fields and increases
only when the third power terms become significant.

Concurrent with a change in the beam emittance a change in the momentum
spread due to the wiggler radiation can be derived similarly,

�2�w

�2�0
D 1C h�3iw=h�3i0
1C h�2iw=h�2i0 : (11.81)

Closer inspection of (11.79) and (11.81) reveals basic rules and conditions for
the manipulations of beam emittance and energy spread. If the ring dispersion
function is finite in the wiggler section strong quantum excitation may occur
depending on the magnitude of the wiggler magnet bending radius 	w. This situation
is desired if the beam emittance must be increased [9]. If wiggler magnets are
placed into a storage ring lattice were the ring dispersion function vanishes, only
the small dispersion function due to the wiggler magnets must be considered for
the calculation of hHwi and therefore only little quantum excitation occurs. In this
case the beam emittance can be reduced since the wiggler radiation contributes more
strongly to damping and we call such magnets damping wigglers [10, 11]. Whenever
wiggler magnets are used which are stronger than the ordinary ring magnets 	w < 	0
the momentum spread in the beam is increased. This is true for virtually all cases of
interest.
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Conceptual methods to reduce the beam emittance in a storage ring have been
derived which are based on increased synchrotron radiation damping while avoiding
quantum excitation effects. Optimum lattice parameters necessary to achieve this
will be derived in the next section.

11.6.2 Damping Wigglers

The general effects of wiggler magnet radiation on the beam emittance has been
described and we found that the beam emittance can be reduced if the wiggler is
placed where � D 0 to eliminate quantum excitation. This assumption, however,
is not quite correct. Even though we have chosen a place, where the storage ring
dispersion function vanishes, the quantum excitation factor Hw is not exactly zero
once the wiggler magnets are turned on because they create their own dispersion
function. To calculate this dispersion function, we assume a sinusoidal wiggler
field [11]

B.z/ D Bw cos kpz ; (11.82)

where kp D 2�=�p and �p the wiggler period length (Fig. 11.4). The differential
equation for the dispersion function is then

�00 D � D �w cos kpz ; (11.83)

which can be solved by

�.z/ D �w
k2p

�
1 � cos kpz

�
;

�0.z/ D �w
kp

sin kpz ;
(11.84)

where we have assumed that the wiggler magnet is placed in a dispersion free
location �0 D �0

0 D 0. With this solution, the first two Eqs. (11.80) can be
evaluated. To simplify the formalism we ignore the z-dependence of the lattice
functions within the wiggler magnet setting ˛x D 0 and ˇx D const. Evaluating the
integrals (11.80), we note that the absolute value of the bending radius must be used
along the integration path because the synchrotron radiation does not depend on the

sign of the deflection. With this in mind, we evaluate the integrals
R �p=2

0

ˇ̌
�3
ˇ̌
�2 dz

Fig. 11.4 Dispersion
function in one period of a
wiggler magnet

η-function

ρ > 0 ρ < 0 ρ > 0

s
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and
R �p=2

0

ˇ̌
�3
ˇ̌
�02 dz. For each half period of the wiggler magnet the contribution to

the integral is



Z �p=2
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ˇ̌
�3
ˇ̌H dz D 12
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1

ˇx

�5w
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C 4

15

�5wˇx

k3p
� 4

15

�5wˇx

k3p
; (11.85)

where the approximation�p � ˇx was used. For the whole wiggler magnet with Nw

periods the total quantum excitation integral is with the deflection angle per wiggler
half pole�w D �w=kp Z

w

ˇ̌
�3w
ˇ̌H dz � Nw

8

15

ˇx

	2w
�3

w : (11.86)

Similarly, the damping integral for the total wiggler magnet isZ
w
�2 dz D � Nw �w�w : (11.87)

Inserting expressions (11.80), (11.86), (11.87) into (11.79), we get for the emittance
ratio

�xw

�x0
D
1C 4

15�
Nw

ˇx
hH0i

	20
	2w
�3

w

1C 1
2
Nw

	0
	w
�w

; (11.88)

where hH0i is the average value of H in the ring bending magnets excluding the
wiggler magnets. We note from (11.88) that the beam emittance indeed can be
reduced by wiggler magnets if �w is kept small. For easier numerical calculation
we replace hH0i by the unperturbed beam emittance which is in the limit 	w !1

hH0i D Jx	0�x0

Cq�2
(11.89)

and get instead of (11.88)

�xw

�x0
D
1C 4Cq

15�Jx
Nw
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�x0 	w

�2
	0
	w
�3

w

1C 1
2

Nw
	0
	w
�w

: (11.90)

The beam emittance is reduced by wiggler magnets whenever the condition

8

15�

Cq

Jx

ˇx

�0 	w
�2�2

w 
 1 (11.91)
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is fulfilled. For large numbers of wiggler poles Nw !1 the beam emittance reaches
asymptotically a lower limit given by

�xw ! 8

15�

Cq

Jx

ˇx

	w
�2�2

w : (11.92)

In this limit the ultimate beam emittance is independent of the unperturbed beam
emittance. This derivation did not include any perturbation of the original lattice
functions due to focusing effects by the wiggler poles. Such perturbations are either
small or must be compensated such that our assumptions still are valid.

For many wiggler poles the increase in momentum spread also reaches an
asymptotic limit which is given from (11.81)

�2�w
�2�o
! 	0

	w
D Bw

B0
; (11.93)

where B0 is the magnetic field strength in the ring magnets. Beam stability and
acceptance problems may occur if the beam momentum spread is allowed to
increase too much and therefore inclusion of damping wigglers must be planned
with some caution.

11.7 Robinson Wiggler*

The horizontal betatron motion in a combined function synchrotron FODO lattice
is not damped because # > 1. Beam stability in a synchrotron therefore exists
only during acceleration when the anti-damping is over compensated by adiabatic
damping, and the maximum energy achievable in a combined function synchrotron
is determined when the quantum excitation becomes too large to be compensated
by adiabatic damping. In an attempt, at the Cambridge Electron Accelerator CEA,
to convert the synchrotron into a storage ring the problem of horizontal beam
instability was solved by the proposal [12] to insert a damping wiggler consisting
of a series of poles with alternating fields and gradients designed such that the
horizontal partition number becomes positive and �2 < # < 1.

Such magnets can be used generally to vary the damping partition numbers
without having to vary the rf-frequency and thereby moving the beam away from
the center of the beam line.

11.7.1 Damping Partition and Synchrotron Oscillation

The damping partition number and damping depend on the relative momentum
spread of the whole beam. During synchrotron oscillations, significant momentum
deviations can occur, specifically, in the tails of a Gaussian distribution. Such
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momentum deviations, although only temporary, can lead to reduced damping or
outright anti-damping [8]. To quantify this effect, we write (11.72) in the form

# D
H
2 k2�2 dzH
�
2

adz

p

p0
D C0

p

p0
: (11.94)

The momentum deviation is not a constant but rather oscillates with the
synchrotron oscillation frequency,

p

p0
D p

p0

ˇ̌̌̌
max

sin˝t D ımax sin˝t ; (11.95)

where ˝ is the synchrotron oscillation frequency. The damping partition number
oscillates as well (11.94) and the damping decrement is therefore

1

�
D 1

�x0
.1 � C0ımax sin˝t/ : (11.96)

If the perturbation is too large we have anti-damping during part of the
synchrotron oscillation period. As a consequence the beam is “breathing” in its
horizontal and longitudinal dimensions while undergoing synchrotron oscillations.
To quantify this, we calculate similar to (11.56) the total rate of change of the
betatron oscillation amplitude a2, as defined by the phase space ellipse �u2 C
2˛uu0 C ˇu02 D a2, composed of quantum excitation and modified damping

dha2i
dt
D h
PNphh�2� iHi

E20
� 2ha

2i
�

: (11.97)

The amplitude a2 has the dimension of an emittance but we are interested
here in the maximum amplitude which can be expressed in terms of a betatron
amplitude by a2 D u2max=ˇu. Replacing the varying damping time by ��1 D
��1
0 .1� ımaxC0 sin˝t/ (11.97) becomes

dhu2maxi
hu2maxi

D 2

�0
ımaxC0 sin˝t dt ;

which can be readily integrated to give

hu2maxi D hu2max,0i exp

�
2 ımaxC0
˝ �0

.1� cos˝t/

�
: (11.98)

A particle with a betatron amplitude umax,0 will, during the course of a syn-
chrotron oscillation period, reach amplitudes as large as umax: The effect is the
largest for particles with large energy oscillations. On the other hand, the effect
on the core of the beam is generally very small since ımax is small.
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11.7.2 Can We Eliminate the Beam Energy Spread?

To conclude the discussions on beam manipulation we try to conceive a way to
eliminate the energy spread in a particle beam. From beam dynamics we know
that the beam particles can be sorted according to their energy by introducing a
dispersion function. The distance of a particle from the reference axis is proportional
to its energy and given by

xı D Dı ; (11.99)

where D is the value of the dispersion at the location under consideration and
ı D E=E0 the energy error. For simplicity we make no difference between energy
and momentum during this discussion. We consider now a cavity excited at a higher
mode such that the accelerating field is zero along the axis, but varies linearly with
the distance from the axis. If now the accelerating field, or after integration through
the cavity, the accelerating voltage off axis is

eVrf.xı/ D �xı
D

E0 ; (11.100)

we have just compensated the energy spread in the beam. The particle beam
has become monochromatic, at least to the accuracy assumed here. In reality the
dispersion of the beam is not perfect due to the finite beam emittance.

We will discuss cavity modes and find that the desired mode exists indeed and
the lowest order of such modes is the TM110-mode. So far we seem to have made
no mistake and yet, Liouville’s theorem seems to be violated because this scheme
does not change the bunch length and the longitudinal emittance has been indeed
reduced by application of macroscopic fields.

The problem is that we are by now used to consider transverse and longitudinal
phase space separate. While this separation is desirable to manage the mathematics
of beam dynamics, we must not forget, that ultimately beam dynamics occurs in
six-dimensional phase space. Since Liouville’s theorem must be true, its apparent
violation warns us to observe changes in other phase space dimensions. In the case
of beam monochromatization we notice that the transverse beam emittance has been
increased. The transverse variation of the longitudinal electric field causes by virtue
of Maxwell’s equations the appearance of transverse magnetic fields which deflect
the particles transversely thus increasing the transverse phase space at the expense
of the longitudinal phase space.

This is a general feature of electromagnetic fields which is known as the
Panofsky-Wenzel theorem [13] stating that transverse acceleration occurs whenever
there is a transverse variation of the longitudinal accelerating field. We will discuss
this in more detail in Sect. 22.1.4. So, indeed we may monochromatize a particle
beam with the use of a TM110-mode, but only at the expense of an increase in the
transverse beam emittance.
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11.8 Beam Life Time

Particles travelling along a beam transport line or orbiting in a circular accelerator
can be lost due to a variety of causes. We ignore the trivial cases of beam loss due
to technical malfunctioning of beam line components or losses caused by either
complete physical obstruction of the beam line or a mismatch of vacuum chamber
aperture and beam dimensions. For a well designed beam transport line or circular
accelerator we distinguish two main classes for particle loss which are losses due to
scattering and losses due to instabilities. While particle losses due to scattering with
other particles is a single particle effect leading to a gradual loss of beam intensity,
instabilities can lead to catastrophic loss of part or all of the beam. In this chapter we
will concentrate on single particle losses due to interactions with residual gas atoms.

The effect of particle scattering on the beam parameters is different in a beam
transport line compared to a circular accelerator especially compared to storage
rings. Since a beam passes through transport lines only once, we are not concerned
about beam life time but rather with the effect of particle scattering on the transverse
beam size. For storage rings, in contrast, we consider both the effect of scattering
on the beam emittance as well as the overall effect on the beam lifetime. Since
long lifetimes of the order of many hours are desired in storage rings even small
effects can accumulate to reduce beam performance significantly. In proton rings
continuous scattering with residual gas atoms or with other protons of the same
beam can change the beam parameters considerably for lack of damping. Even for
electron beams, where we expect the effects of scattering to vanish within a few
damping times, we may observe an increase in beam emittance. This is specifically
true due to intra beam scattering for dense low emittance beams at low energies
when damping is weak.

Collisions of particles with components of residual gas atoms, losses due to
a finite acceptance limited by the physical or dynamic aperture, collisions with
other particles of the same beam, or with synchrotron radiation photons can lead
to absorption of the scattered particles or cause large deflections leading to instable
trajectories and eventual particle loss. The continuous loss of single particles leads
to a finite beam lifetime and may in severe cases require significant hardware
modifications or a different mode of operation to restore a reasonable beam lifetime.

Each of these loss mechanisms has a particular parameter characterizing and
determining the severity of the losses. Scattering effects with residual gas atoms
are clearly dominated by the vacuum pressure while scattering effects with other
particles in the same beam depend on the particle density. Some absorption of
particles at the vacuum chamber walls will always occur due to the Gaussian
distribution of particles in space. Even for non-radiating proton beams which are
initially confined to a small cross section, we observe the development of a halo of
particles outside the beam proper due to intra beam scattering. The expansion of this
halo is obviously limited by the vacuum chamber aperture. In circular accelerators
this aperture limitation may not only be effected by solid vacuum chambers but also
by “soft walls” due to stability limits imposed by the dynamic aperture.
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Longitudinal phase or energy oscillations are limited either by the available
rf-parameters determining the momentum acceptance or by the transverse accep-
tance at locations, where the dispersion function is nonzero whichever is more
restrictive. A momentum deviation or spread translates at such locations into a
widening of the beam and particle loss occurs if the momentum error is too large
to fit within the stable aperture. Transverse oscillation amplitudes are limited by the
transverse acceptance as limited by the vacuum chamber wall or by aberrations due
to nonlinear fields.

11.8.1 Beam Lifetime and Vacuum

Particle beams are generally confined within evacuated chambers to avoid excessive
scattering on residual gas atoms. Considering multiple Coulomb scattering alone
the rms radial scattering angle of particles with momentum p and velocity ˇ passing
through a scattering material of thickness L can be described by [14, 15]

#rms D Z
20MeV

ˇcp

s
L

Lr
; (11.101)

where Z is the charge multiplicity of the particle and Lr the radiation length of the
scattering material. We may integrate (11.101) and get the beam radius r of a pencil
beam after passing through a scatterer of thickness L

r � Z
40MeVL

3ˇcp

s
L

Lr
: (11.102)

The beam emittance generated by scattering effects is then in both the horizontal
and vertical plane just the product of the projections of the distance r of the particles
from the reference path and the radial scattering angles # onto the respective plane.
From (11.101), (11.102) the beam emittance growth due to Coulomb scattering in a
scatterer of length L is then

�x;y.rad m/ D Z2
2

3

�
14.MeV/

ˇcp

�2 L2.m/

Lr.m/
: (11.103)

For atmospheric air the radiation length is Lr D 300:5 m and a pencil electron
beam with a momentum of say cp D 1;000MeV passing through 20 m of
atmospheric air would grow through scattering to a beam diameter of 6.9 cm or
to a beam emittance of about 177 mrad mm in each plane. This is much too big
an increase in beam size to be practical in a 20 m beam transport line let alone in
a circular accelerator or storage ring, where particles are expected to circulate at
nearly the speed of light for many turns like in a synchrotron or for many hours in a
storage ring.
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To avoid beam blow up due to scattering we obviously need to provide an
evacuated environment to the beam with a residual gas pressure which must be
the lower the longer the beam is supposed to survive scattering effects. This does
not mean that beam transport in atmospheric pressure must be avoided at all cost.
Sometimes it is very useful to let a beam pass though air to provide free access
for special beam monitoring devices specifically at the end of a beam transport line
before the beam is injected into a circular accelerator. Obviously, this can be done
only if the scattering effects through very thin metallic windows and the short length
of atmospheric air will not spoil the beam emittance too much.

Elastic Scattering

As particles travel along an evacuated pipe they occasionally collide with atoms
of the residual gas. These collisions can be either on nuclei or electrons of the
residual gas atoms. The physical nature of the collision depends on the mass of
the colliding partners. Particles heavier than electrons suffer mostly an energy loss
in collisions with the atomic shell electrons while they lose little or no energy during
collisions with massive nuclei but are merely deflected from their path by elastic
scattering. The lighter electrons in contrast suffer both deflection as well as energy
losses during collisions.

In this section we concentrate on the elastic scattering process, where the energy
of the fast particle is not changed. For the purpose of calculating particle beam
lifetimes due to elastic or Coulomb scattering we ignore screening effects by shell
electrons and mathematical divergence problems at very small scattering angles.
The scattering process therefore is described by the classical Rutherford scattering
with the differential cross section per atom

d�

d˝
D 1

4��0

�
zZe2

2ˇcp

�2
1

sin4 .�=2/
; (11.104)

where z is the charge multiplicity of the incident particle eZ the charge of the heavy
scattering nucleus, � the scattering angle with respect to the incident path, ˝ the
solid angle with d˝ D sin � d� d', and ' the polar angle.

To determine the particle beam lifetime or the particle loss rate we will calculate
the rate of events for scattering angles larger than a maximum value of O� which is
limited by the acceptance of the beam transport line. Any particle being deflected
by an angle larger than this maximum scattering angle will be lost. We integrate the
scattering cross section over all angles greater than O� up to the maximum scattering
angle � . With n scattering centers or atoms per unit volume and N beam particles
the loss rate is

� dN

dt
D 2�cˇnN

Z �

O�
d�

d˝
sin � d� : (11.105)
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Under normal conditions at 0 ıC and a gas pressure of 760mm mercury the
number of scattering centers in a homogeneous gas is equal to twice Avogadro’s
number A and becomes for an arbitrary gas pressure P

n D 2AP.Torr/

760
D 2 � 2:68675� 1019P.Torr/

760
: (11.106)

The factor 2 comes from the fact that homogeneous gases are composed of
two atomic molecules, where each atom acts as a separate scattering center. This
assumption would not be true for single atomic noble gases which we do not
consider here, but will be included in a later generalization. The integral on the
r.h.s. of (11.105) becomes with (11.104)Z �

O�
sin � d�

sin4.�=2/
D 2

tan2. O�=2/ : (11.107)

Dividing (11.105) by N we find an exponential decay of beam intensity with time

N D N0e�t=� ; (11.108)

where the decay time constant or beam lifetime is

��1 D cˇ2AP.Torr/

760

�
zZe2

2ˇcp

�2
4�

tan2. O�=2/ : (11.109)

The maximum acceptable scattering angle O� is limited by the acceptance �A of
the beam transport line. A particle being scattered by an angle � at a location where
the betatron function has the value ˇ� reaches a maximum betatron oscillation
amplitude of a D p

ˇa ˇ� � elsewhere along the beam transport line where the
betatron function is ˇa. The minimum value of A2=ˇA along the ring lattice, where
A is the vacuum chamber aperture or the limit of the dynamic aperture whichever is
smaller, is equal to the ring acceptance

�A D A2

ˇA

ˇ̌̌̌
min
: (11.110)

For simplicity we ignore here the variation of the betatron function and take
an average value hˇi at the location of the scattering event and get finally for the
maximum allowable scattering angle

O�2 D �A

hˇi : (11.111)

This angle is generally rather small and we may set tan. O�=2/ � . O�=2/. Utilizing
these definitions and approximations we obtain for the lifetime of a beam made up
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of singly charged particles z D 1 due to elastic Coulomb scattering expressed in
more practical units

�cs .hours/ D 10:25 .cp/2
�
GeV2

�
�A .mm mrad/

hˇ .m/iP .nTorr/
; (11.112)

where we have assumed that the residual gas composition is equivalent to nitrogen
gas N2 with Z2 � 49. The Coulomb scattering lifetime is proportional to the ring
acceptance or proportional to the square of the aperture A where A2=ˇ is a minimum.

The particle loss due to Coulomb scattering is most severe at low energies and
increases with the acceptance of the beam transport line. Furthermore, the beam
lifetime depends on the focusing in the transport line through the average value of
the betatron function. If instead of averaging the betatron function we integrate the
contributions to the beam lifetime along the transport line we find that the effect of
the scattering event depends on the betatron function at the location of the collision
and the probability that such a collision occurs at this location depends on the gas
pressure there. Therefore, it is prudent to not only minimize the magnitude of the
betatron functions alone but rather minimize the product ˇP along the transport
line. Specifically, where large values of the betatron function cannot be avoided,
extra pumping capacity should be provided to reach locally a low vacuum pressure
for long Coulomb scattering lifetime.

We have made several simplifications and approximations by assuming a homo-
geneous gas and assuming that the maximum scattering angle be the same in all
directions. In practical situations, however, the acceptance need not be the same in
the vertical and horizontal plane. First we will derive the beam lifetime for non-
isotropic aperture limits. We assume that the apertures in the horizontal and vertical
plane allow maximum scattering angles of O�x and O�y. Particles are then lost if the
scattering angle � into a polar angle ' exceeds the limits

� >
O�x

cos'
and � >

O�y

sin '
: (11.113)

The horizontal aperture will be relevant for all particles scattered into a polar
angle between zero and arctan. O�y= O�x/ while particles scattered into a polar angle
of arctan. O�y= O�x/ and �=2 will be absorbed by the vertical aperture whenever the
scattering angle exceeds this limit. We calculate the losses in only one quadrant of
the polar variable and multiply the result by 4 since the scattering and absorption
process is symmetric about the polar axis. The integral (11.107) becomes in this case

Z �

O�
sin � d� d'

sin4 .�=2/
D 4

Z arctan. O�y= O�x/

0

d'
Z �

O�x= cos'

sin � d�

sin4 .�=2/
(11.114)

C 4
Z �=2

arctan. O�y= O�x/
d'
Z �

O�y= sin '

sin � d�

sin4 .�=2/
:
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The solutions of the integrals are similar to that in (11.107) and we getZ �

O�
sin � d� d'

sin4 .�=2/
D 8

O�2y
�
� C �R2 C 1� sin .2 arctan R/ (11.115)

C2 .R � 1/ arctan R� ;

where R D O�y= O�x.
Using (11.115) instead of (11.107) in (11.109) gives a more accurate expression

for the beam lifetime due to Coulomb scattering. We note that for R D 1 we do
not get exactly the lifetime (11.109) but find a lifetime that is larger by a factor
of 1 C �=2. This is because we used a rectangular aperture in (11.115) compared
to a circular aperture in (11.107). The beam lifetime (11.112) becomes now for a
rectangular acceptance

�cs.hours/ D 10:25 2�

F.R/

.cp/2.GeV2/ �A.mm mrad/

hˇ.m/iP.nTorr/
: (11.116)

The function F.R/

F.R/ D Œ� C .R2 C 1/ sin.2 arctan R/C 2.R2 � 1/ arctan R (11.117)

is shown in Fig. 11.5. For some special cases the factor 2 �=F.R/ assumes the values
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Tacitly we have assumed that the vertical acceptance is smaller than the
horizontal acceptance which in most cases is true. In cases, where O�y > O�x, we
may use the same equations with x and y exchanged.

Particles performing large amplitude betatron oscillations form a Coulomb
scattering halo around the beam proper. In case of an electron storage ring the
particle intensity in this halo reaches an equilibrium between the constant supply
of scattered electrons and synchrotron radiation damping.

The deviation of the particle density distribution from a Gaussian distribution
due to scattering can be observed and measured. In Fig. 11.6 beam lifetime
measurements are shown for an electron beam in a storage ring as a function of
a variable ring acceptance as established by a movable scraper. The abscissa is
the actual position of the scraper during the beam lifetime measurement, while
the variable for the ordinate is the aperture for which a pure Gaussian particle
distribution would give the same beam lifetime.
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Fig. 11.6 Measurement of beam lifetime in an electron storage ring with a movable scraper. The
curve on the left shows the Coulomp scattering halo for amplitudes larger than 6� indicating a
strong deviation from Gaussian particle distribution. the curve on the right shows the beam life
time as a function of scraper position
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If the particle distribution had been purely Gaussian the measured points would
lie along a straight line. In reality, however, we observe an overpopulation of
particles in the tails of the distribution for amplitudes larger than about 6� forcing
the scraper to be located farther away from the beam center to get a beam lifetime
equal to that of a pure Gaussian distribution. This overpopulation or halo at large
amplitudes is due to elastic Coulomb scattering on the residual gas atoms.

Since the acceptance of the storage ring is proportional to the square of the
aperture at the scraper, we expect the beam lifetime due to Coulomb scattering to
vary proportional to the square of the scraper position. This is shown in Fig. 11.7
for good vacuum and poor vacuum conditions. In the case of poor vacuum we find
a saturation of the beam lifetime at large scraper openings which indicates that the
scraper is no longer the limiting aperture in the ring. This measurement therefore
allows an accurate determination of the physical ring acceptance or the dynamic
aperture whichever is smaller.

So far we have assumed the residual gas to consist of homogeneous two atom
molecules. This is not an accurate description of the real composition of the residual
gas although on average the residual gas composition is equivalent to a nitrogen
gas. Where the effects of a more complex gas composition becomes important,
we apply (11.109) to each different molecule and atom of the residual gas and we
replace the relevant factor P Z2 by a summation over all gas components. If Pi is
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Fig. 11.7 Beam lifetime in an electron storage ring as a function of the acceptance. The transition
of the curve on the right from a linear dependence of beam lifetime on the acceptance to a constant
life time occurs when the acceptance due to the scraper position is equal to the ring acceptance
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the partial pressure of the molecules i and Zj the atomic number of the atom j in the
molecule i we replace in (11.109)

PZ2 !
X

i;j

PiZ
2
j (11.118)

and sum over all atoms i in the molecule j.

Inelastic Scattering

Charged particles passing through matter become deflected by strong electrical
fields from the atomic nuclei. This deflection constitutes an acceleration and
the charged particles lose energy through emission of radiation which is called
bremsstrahlung. If this energy loss is too large such that the particle energy error
becomes larger than the storage ring energy acceptance the particle gets lost. We
are therefore interested to calculate the probability for such large energy losses to
estimate the beam lifetime.

The probability to suffer a relative energy loss ı DdE=E0 due to such an inelastic
scattering process has been derived by Bethe and Heitler [16, 17]. For extreme
relativistic particles and full screening this probability per unit thickness of matter
is [17]

dP D 2˚n
dı

ı
.1 � ı/

��
2 � 2ı C ı2
1 � ı � 2

3

�
2 ln

183

Z1=3
C 2

9

�
; (11.119)

where n is the number of atoms per unit volume and the factor � is with the fine
structure constant ˛ D 1=137

˚ D r2e Z2˛ : (11.120)

We integrate this probability over all energy losses larger than the energy acceptance
of the storage ring ı  ıacc and get after some manipulation and setting ıacc � 1

P D 2˚ n

1Z
ıacc

dı

ı
.1 � ı/

��
2 � 2ı C ı2
1 � ı � 2

3

�
2 ln

183

Z1=3
C 2

9

�
(11.121)

� 3

4
.� ln ıacc/

�
4 ln

183

Z1=3
C3
9

�
n˚ :
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The radiation length Lr is defined as the distance over which the particle energy
has dropped to 1=e due to inelastic scattering. For highly relativistic particles this
length is given by [17]

1

Lr
D ˚ n

�
4 ln

183

Z1=3
C 2

9

�
: (11.122)

Combining (11.121) and (11.122), we find the simple solution that the probability
for a particle to suffer a relative energy loss of more than ıacc per radiation length is

Prad D � 4
3

ln ıacc : (11.123)

To calculate the beam lifetime or beam decay rate due to bremsstrahlung we note
that the probability for a particle loss per unit time is equal to the beam decay rate or
equal to the inverse of the beam lifetime. The bremsstrahlung lifetime is therefore

��1
bs D �

1

N0

dN

dt
D P

c

Lr
D �4

3

c

Lr
ln ıacc : (11.124)

The radiation length for gases are usually expressed for a standard temperature
of 20 ıC and a pressure of 760 Torr. Under vacuum conditions the radiation length
of the residual gas is therefore increased by the factor 760=PTorr. We recognize
again the complex composition of the residual gas and define an effective radiation
length by

1

Lr;eff
D
X

i

1

Lr;i
; (11.125)

where Lr;i is the radiation length for gas molecules of type i. The beam lifetime due
to bremsstrahlung for a composite residual gas is from (11.124), (11.125)

��1
bs D �

4

3
c
X

i

1

760

QPi

Lr,i
ln ıacc ; (11.126)

where QPi is the residual partial gas pressure for gas molecules of type i. Although
the residual gas of ultra high vacuum systems rarely includes a significant amount
of nitrogen gas, the average value for hZ2i of the residual gas components is
approximately 50 or equivalent to nitrogen gas. For all practical purposes we may
therefore assume the residual gas to be nitrogen with a radiation length under normal
conditions of Lr;N2 D 290m and scaling to the actual vacuum pressure Pvac we get
for the beam lifetime

��1
bs .hours�1/ D 0:00653Pvac.nTorr/ ln

1

ıacc
: (11.127)
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Basically the bremsstrahlung lifetime depends only on the vacuum pressure and
the energy acceptance and the product of beam lifetime and vacuum pressure is a
function of the energy acceptance ıacc D �=� ,

�bs.hour/P.nTorr/ D 153:14

ln.�=�/
: (11.128)

In tabular form we get:

ıacc D �=� 0:005 0:010 0:015 0:020 0:025

�.hr/P.nTorr/ 28:90 33:25 36:46 39:15 41:51

There are many more forms of interaction possible between energetic particles
and residual gas atoms. Chemical, atomic, and nuclear reactions leading to the
formation of new molecules like ozone, ionization of atoms or radioactive products
contribute further to energy loss of the beam particles and eventual loss from the
beam. These effects, however, are very small compared to Coulomb scattering or
bremsstrahlung losses and may therefore be neglected in the estimation of beam
lifetime.

11.8.2 Ultra High Vacuum System

Accelerated particles interact strongly with residual gas atoms and molecules by
elastic and inelastic collisions. To minimize particle loss due to such collisions
we provide an evacuated beam pipe along the desired beam path. For open beam
transport systems high vacuum of 10�5–10�7 Torr is sufficient. This is even
sufficient for pulsed circular accelerators like synchrotrons, where the particles
remain only for a short time. In storage rings, however, particles are expected to
circulate for hours and therefore ultra high vacuum conditions must be created.

Thermal Gas Desorption

To reach very low gas pressures in the region of 10�10–10�11 Torr in the regime
of ultra high vacuum .UHV/ we must consider the continuous desorption of gas
molecules from the walls due to thermal desorption. Gas molecules adsorbed on the
chamber surface are in thermal equilibrium with the environment and the thermal
energy of the molecules assumes a statistically determined Boltzmann distribution.
This distribution includes a finite probability for molecules to gain a large enough
amount of energy to overcome the adsorption energy and be released from the wall.

The total gas flow from the wall due to this thermal gas desorption depends
mostly on the preparation of the material. While for carefully cleaned surfaces the
thermal desorption coefficient may be of the order of 10�12–10�13 Torr lt/sec/cm2 a
bakeout to 140–300 ıC can reduce this coefficient by another order of magnitude.



396 11 Particle Beam Parameters

Synchrotron Radiation Induced Desorption

In high-energy electron or positron accelerators a significant amount of energy is
emitted in form of synchrotron radiation. This radiation is absorbed by vacuum
chamber walls and causes not only a heating effect of the chamber walls but also the
desorption of gas molecules adsorbed on the surface.

The physical process of photon induced gas desorption evolves in two steps [18].
First a photon hitting the chamber walls causes a secondary electron emission with
the probability �e."/, where " is the photon energy. Secondly, the emission as well
as the subsequent absorption of that photoelectron can desorb neutral atoms from
the chamber surface with the probability �d. To calculate the total desorption in a
storage ring, we start from the differential synchrotron radiation photon flux (24.56)
which we integrate over the ring circumference and write now in the form

dN."/

dt
D 8�˛

9
�

Ib

e

!

!
S.�/ ; (11.129)

where " D „! is the photon energy, Ib the beam current, E the beam energy and
S.�/ a mathematical function defined by (24.57).

The photoelectron current PNe results from the folding of (11.129) with the
photoelectron emission coefficient �e.!/ for the material used to construct the
vacuum chamber and the integration over all photon energies,

PNe D 8�˛

9 e mc2
EIb

Z 1

0

�e.!/

!
S

�
!

!c

�
d! : (11.130)

The photoelectron emission coefficient depends on the choice of the material
for the vacuum chamber. Figure 11.8 displays the photoelectron coefficient for
aluminum as a function of photon energy [19].

Fig. 11.8 Photon electron
coefficient �e for aluminum
[19]
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We note there are virtually no photoelectrons for photon energies of less
than 10 eV. At 1,460 eV the K-edge of aluminum causes a sharp increase of the
coefficient followed by a monotonous decrease for higher photon energies.

The photoelectron coefficient depends not only on the material of the photon
absorber but also on the incident angle. The probability to release an electron from
the surface is increased for shallow incidence of the photon. The enhancement factor
F.�/ represents the increase in the photoelectron-emission coefficient �e.�/ due to
a non normal incidence of a photon on the surface, where� is the angle between the
photon trajectory and the plane to the absorbing surface. For angles close to normal
incidence .� D 90ı/ the enhancement factor scales like the inverse of the sine of
the angle

F.�/ D 1

sin�
: (11.131)

For small angles, however, the enhancement factor falls off from the inverse sine
dependence as has been determined by measurements [20] and reaches a maximum
value of about seven for small angles. The gas production is determined by the
desorption rate Q, defined as the total number of neutral atoms released along the
circumference from the chamber surface,

Q D 2 22:4 � 760
6 � 1023

PNe �d ; (11.132)

where Q is expressed in Torr lt/sec and �d is the desorption coefficient. The factor 2
is due to the fact that a photo electron can desorb an atom while leaving or arriving
at a surface. With (11.132) we get the average vacuum pressure hPi from

hPi D Q

S
; (11.133)

where S is the total installed pumping speed in the storage ring. For a reasonably
accurate estimate of the photon flux we may use the small argument approxima-
tion (24.60) for photon energies " 
 "c. Photons of higher energies generally do
not contribute significantly to the desorption since there are only few. To obtain the
photon flux we therefore need to integrate only from 10 eV to � � �c the differential
photon flux (24.60) folded with the photoelectron-emission coefficient �e."/.

The desorption coefficient �d is largely determined by the treatment of the
vacuum chamber like baking, beam cleaning, argon discharge cleaning, etc. For
example in the aluminum chamber of the storage ring SPEAR [21] the desorption
coefficient at 1:5 GeV was initially about �d � 5 � 10�3 then 5 � 10�4 after 1
month of operation, 10�4 after 2 months of operation and reached about 3 � 10�6
after about 1 year of operation. These numbers are not to be viewed too generally,
since the cleaning process depends strongly on the particular preparation of the
surfaces. However, following well established cleaning procedures and handling of
ultra high vacuum components these numbers can be of general guidance consistent
with observations on other storage rings.
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Laboratory measurements [19] show the following relationship between photo-
electron current Iphe D e PNe, desorption coefficient �d and total integrated beam time
of a vacuum system

�d D 7 � 10�5 Iphe.A/

t.hr/0:63
: (11.134)

New vacuum chambers release much gas when the first synchrotron radiation strikes
the surface, but cleans quickly as the radiation cleaning continues.

Problems

11.1 (S). The Rf-frequency of a storage ring is 500 MHz. Every bucket is filled
with particles. What is the time difference between successive bunches?

11.2 (S). Calculate the synchrotron damping time for a 3 GeV storage ring with a
bending radius of 	 D 10m and pure rectangular dipole magnets. Assume 100 %
bending magnet fill factor. What is the synchrotron damping time in this ring? How
long does it take to radiate away all its energy?

11.3. Consider a circular electron storage ring of your choice and specify beam
energy, current, ring circumference and average vacuum chamber dimensions.
Calculate the total thermal gas desorption and the total required pumping capacity
in the ring. Now add synchrotron radiation and estimate the increase of pumping
speed needed after say 100 Ah of beam operation. Plot the average gas pressure as
a function of integrated beam time.

11.4. An electron beam circulating in a 1.5 GeV storage ring emits synchrotron
radiation. The rms emission angle of photons is 1=� about the forward direction
of the particle trajectory. Determine the photon phase space distribution at the
source point and at a distance of 10 m away while ignoring the finite particle beam
emittance. Now assume a Gaussian particle distribution with a horizontal beam
emittance of �x D 1:5 � 10�7 rad m. Fold both the photon and particle distributions
and determine the photon phase space distribution 10 m away from the source
point if the electron beam size is �x D 1:225mm, the electron beam divergence
�x0 D 0:1225mrad and the source point is a symmetry point of the storage ring.
Assume the dispersion function to vanish at the source point. For what minimum
photon wavelength would the vertical electron beam size appear diffraction limited
if the emittance coupling is 10 %?

11.5. Consider an electron beam in an isomagnetic 6 GeV storage ring with a
bending radius of 	 D 20m . Calculate the rms energy spread �"=E0 and the
synchrotron oscillation damping time �s.
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Chapter 12
Vlasov and Fokker–Planck Equations*

Mathematical tools have been derived in previous chapters to describe the dynamics
of singly charged particles in electromagnetic fields. While the knowledge of
single-particle dynamics is essential for the development of particle beam transport
systems, we are still missing a formal treatment of the behavior of multiparticle
beams. In principle a multiparticle beam can be described simply by calculating the
trajectories of every single particle within this beam, a procedure that is obviously
too inefficient to be useful for the description of any real beam involving a very large
number of particles.

In this paragraph we will derive concepts to describe the collective dynamics of a
beam composed of a large number of particles and its evolution along a transport line
utilizing statistical methods that lead to well defined descriptions of the total beam
parameters. Mathematical problems arise only when we have a particle beam with
neither few particles nor very many particles. Numerical methods must be employed
if the number of particles are of importance and where statistical methods would
lead to incorrect results.

The evolution of a particle beam has been derived based on Liouville’s theorem
assuring the constancy of the particle density in phase space. However, this concept
has not allowed us to determine modifications of particle distributions due to
external forces. Particle distributions are greatly determined by particle source
parameters, quantum effects due to synchrotron radiation, nonlinear magnetic fields,
collisions with other particles in the same beam, with particles in another beam
or with atoms of the residual gases in the beam environment to name only a few
phenomena that could influence that distribution. In this chapter, we will derive
mathematical methods that allow the determination of particle distributions under
the influence of various external electromagnetic forces.
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12.1 The Vlasov Equation

To study the development of a particle beam along a transport line, we will
concentrate on the evolution of a particle density distribution function �.r; p; t/ in
six-dimensional phase space where every particle is represented by a single point.
We consider a volume element of phase space that is small enough that we may
assume the particle density to be constant throughout that element and determine its
evolution in time. In doing so, we will further assume a large, statistically significant
number of particles in each volume element and only a slow variation of the particle
density from one volume element to any adjacent volume element. To simplify
the equations, we restrict the following discussion to two-dimensional phase space
.w; pw/ and use exclusively normalized coordinates. The derivation is exactly the
same for other coordinates.

The dynamics of a collection of particles can be studied by observing the
evolution of their phase space. Specifically, we may choose a particular phase space
element and follow it along its path taking into account the forces acting on it. To
do this, we select a phase space element in form of a rectangular box defined by the
four corner points Pi in Fig. 12.1.

At the time t these corners have the coordinates

P1.w; pw/ ;

P2.wCw; pw/ ; (12.1)

P3.wCw; pw Cpw/ ;

P4.w; pw Cpw/ :

A short time t later, this rectangular box will have moved and may be deformed
into a new form of a quadrilateral (Q1;Q2;Q3;Q4) as shown in Fig. 12.1. In
determining the volume of the new box at time t C t we will assume the
conservation of particles allowing no particles to be generated or getting lost. To
keep the derivation general the rate of change in the conjugate variables is defined by

Pw D fw.w; pw; t/ ;
Ppw D gw.w; pw; t/ ;

(12.2)
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where Pw D dw=dt and Ppw D dpw=dt and the time interval t is small enough
to allow linear expansion of the particle motion. In other words, the time interval
shall be chosen such that no physical parameters of the dynamical system change
significantly and a Taylor’s expansion up to linear terms can be applied. The new
corners of the volume element are then given by

Q1 ŒwC fw.w; pw; t/t; pw C gw.w; pw; t/t� ;

Q2 ŒwCwC fw.wCw; pw; t/t;

pw C gw.wCw; pw; t/t� ;

Q3 ŒwCwC fw.wCw; pw Cpw; t/t; (12.3)

pw Cpw C gw.wCw; pw Cpw; t/t� ;

Q4 ŒwC fw .w; pw Cpw; t/t;

pw Cpw C gw.w; pw Cpw; t/t� :

The goal of our discussion is now to derive an expression for the particle density
�.w; pw; t/ after a time t. Because of the conservation of particles we have

�.wC fwt; pw C gwt; tCt/AQ D �.w; pw; t/AP ; (12.4)

where AP and AQ are the areas in phase space as defined by the corner points
Pi and Qi, respectively. From Fig. 12.1 and (12.1) we derive an expression for the
phase space areas which are at the starting time t

AP D w pw (12.5)

and at the time tCt from (12.3)

AQ D wpw

�
1C

�
@fw
@w
C @gw

@pw

�
t

�
; (12.6)

where Taylor’s expansions have been used for the functions fw and gw retaining
only linear terms. To prove (12.6) we note that the area AP has the form of a
quadrilateral with its sides determined by two vectors and the area, therefore, is
equal to the determinant formed by these two vectors. In our case these vectors are
pw D .w; 0/ pointing from P1 to P2 and pp D .0;pw/ pointing from P1 to P4.
The area therefore is

jpw; ppj D
ˇ̌̌̌
w 0

0 pw

ˇ̌̌̌
D wpw D AP (12.7)

in agreement with (12.5). A time intervalt later these vectors will have changed as
determined by (12.2). Each of the corner points Pi is moving although with different



404 12 Vlasov and Fokker–Planck Equations*

speed thus distorting the rectangle Pi into the shape Qi of Fig. 12.1. To calculate
the new vectors defining the distorted area we expand the functions fw and gw in
a Taylor’s series at the point .w; pw/. While, for example, the w-component of the
movement of point P1 along the w coordinate is given by fwt the same component
for P2 changes by fwtC @fw

@w wt: The w-component of the vector qw D Q1�Q2

therefore becomes w C @fw
@wwt. Similarly, we can calculate the p-component

of this vector as well as both components for the vector qp D Q1 � Q4. The phase
space area of the distorted rectangle (Q1;Q2;Q3;Q4) at time tCt with these vector
components is then given by

jqw; qpj D
ˇ̌̌̌
ˇwC @fw

@wwt @fw
@pw
pwt

@gw
@w wt pw C @gw

@pw
pwt

ˇ̌̌̌
ˇ D AQ: (12.8)

Dropping second-order terms int we get indeed the expression (12.6). Obviously,
the phase space volume does not change if

@fw
@w
C @gw

@pw
D 0 (12.9)

in agreement with the result obtained in Chap. 8, where we have assumed that the
Lorentz force is the only force acting on the particle. In this paragraph, however,
we have made no such restrictions and it is this generality that allows us to
derive, at least in principle, the particle distribution under the influence of any
forces. Equation (12.9) tells us that there is no damping if the velocity Pw D fw
is independent of the position and the forces Pp D gw are independent of the
momentum.

The factor �
1C

�
@fw
@w
C @gw

@pw

�
t

�
(12.10)

in (12.6) is the general Wronskian of the transformation and is not necessarily equal
to unity. We have such an example in the form of adiabatic damping. Indeed we
have damping or anti-damping whenever the Wronskian is different from unity.

To illustrate this, we use the example of a damped harmonic oscillator, which is
described by the second-order differential equation Rw C 2˛w Pw C !20w D 0 ; or in
form of a set of two linear differential equations

Pw D !0pw D fw.w; pw; t/;

Ppw D �!0w � 2˛w pw D gw.w; pw; t/:
(12.11)

From this we find indeed the relation

@fw
@w
C @gw

@pw
D �2˛w; (12.12)
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where ˛w is the damping decrement1 of the oscillator. We have obtained on a general
basis that the phase space density for harmonic oscillators will vary only if damping
forces are present. Here we use the term damping in a very general way including
excitation depending on the sign of the damping decrement ˛w. The designation
˛w for the damping decrement may potentially lead to some confusion with the
same use for the betatron function ˛ D � 1

2
ˇ0. However, we choose here to rather

require some care than introduce against common use new designations for the
damping decrement or the betatron functions. We also note that for all cases where
the damping time is long compared to the oscillation time, and we consider here
only such cases, the damping occurs for both conjugate trajectories.

The derivation in two-dimensional phase space can easily be generalized to six-
dimensional phase space with the generalized volume element

VP D rp (12.13)

at time t and a time intervalt later

VQ D rpŒ1C r rf tC rpgt� : (12.14)

The Nabla operators are defined by

r r D
�
@

@w
;
@

@v
;
@

@u

�
and rp D

�
@

@pw
;
@

@pv
;
@

@pu

�
; (12.15)

where .w; v; u/ are normalized variables and the vector functions f and g are defined
by the components f D .fw; fv; fu/ and g D .gw; gv; gu/.

Equation (12.4) can now be reduced further after applying a Taylor’s expansion
to the density function � . With (12.5), (12.6) and keeping only linear terms

@�

@t
C fw

@�

@w
C gw

@�

@pw
D �

�
@fw
@w
C @gw

@pw

�
� : (12.16)

It is straightforward to generalize this result again to six-dimensional phase space

@�

@t
C f r r�C g rp� D �

�r rfCrpg
�
� ; (12.17)

which is called the Vlasov equation. If there is no damping the r.h.s. of the Vlasov
equation vanishes and we have

@�

@t
C f r r� C grp� D 0 : (12.18)

1The letter ˛u is used here for the damping decrement. Since in beam dynamics ˛u is also used
to identify a lattice function, a mixup of the quantities could occur. We have chosen not to use
a different nomenclature, however, since this choice is too deeply entrenched in the community.
With some care, confusion can be avoided.
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This is simply the total time derivative of the phase space density � telling us
that in the absence of damping it remains a constant of motion. The preservation of
the phase space density is Liouville’s theorem and we have demonstrated in this
paragraph the validity of this theorem for a Hamiltonian system with vanishing
dissipating forces .r rf C r pg/ D 0.

Equation (12.18) describes the evolution of a multiparticle system in phase space
where the physics of the particular particle dynamics is introduced through the
functions f .r; p; t/ and g.r; p; t/. The definition of these functions in (12.2) appears
similar to that for the Hamiltonian equations of motion. In case r and p are canonical
variables we may indeed derive these functions from the Hamiltonian

Pr D rpH D f ;

Pp D �r rH Dg;
(12.19)

where H is the Hamiltonian of the system. We are therefore, at least in principle,
able to solve the evolution of a multiparticle system in phase space if its Hamiltonian
is known. It should be emphasized, however, that the variables .w; p/ need not be
canonical to be used in the Vlasov equation.

It is interesting to apply the Vlasov equation to simple one-dimensional harmonic
oscillators with vanishing perturbation. Introducing the canonical variable p through
Pw D 
p; the Hamiltonian becomes H0 D 1

2

p2C 1

2

w2 and the equations of motion

are

Pw D C @H0

@p D 
p D f ;

Pp D � @H0

@w D �
w D g:
(12.20)

It is customary for harmonic oscillators and similarly for particle beam dynamics
to use the oscillation phase as the independent or “time” variable. Since we have not
made any specific use of the real time in the derivation of the Vlasov equation, we
choose here the phase as the “time” variable. For the simple case of an undamped
harmonic oscillator @f

@w D 0 and @g
@p D 0 and consequently the Vlasov equation

becomes from (12.16) with (12.20)

@�

@'
C 
p

@�

@w
� 
w

@�

@p
D 0 : (12.21)

In cylindrical phase space coordinates .w D r cos �; p D r sin �; '/ this reduces to
the simple equation

@�

@'
� 
 @�

@�
D 0 : (12.22)
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Fig. 12.2 Beam motion in
phase space

Ψ(w,pw,ϕ)

ϕ

Any differentiable function with the argument .r; � C 
'/ can be a solution
of (12.22) describing the evolution of the particle density � with time

�.w; pw; '/ D F.r; � C 
'/ ; (12.23)

Any arbitrary particle distribution in .w; pw/-phase space merely rotates about the
center with the frequency 
 and remains otherwise unchanged as shown in Fig. 12.2.
This is just another way of saying that an ensemble of many particles behaves like
the sum of all individual particles since any interaction between particles as well as
damping forces have been ignored. In .x; x0/-phase space this rotation is deformed
into a “rotation” along elliptical trajectories. The equation of motion in .w; pw/-
phase space is solved by r D const indicating that the amplitude r is a constant of
motion. In .x; x0/-phase space we set w D x=

p
ˇ and p D p

ˇ x0 C p̨
ˇ

x and get

from r2 D w2 C p2w for this constant of motion

ˇ x02 C 2˛ xx0 C � x2 D const (12.24)

which is the Courant-Snyder invariant. The Vlasov equation allows us to generalize
this result collectively to all particles in a beam. Any particular particle distri-
bution a beam may have at the beginning of the beam transport line or circular
accelerator will be preserved as long as damping or other statistical effects are
absent.
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12.1.1 Betatron Oscillations and Perturbations

The Vlasov equation will prove to be a useful tool to derive particle beam
parameters. Specifically, it allows us to study the influence of arbitrary macroscopic
fields on particle density in phase space and on the characteristic frequency of
particle motion. To demonstrate this, we expand the example of the harmonic
oscillator to include also perturbation terms. For such a perturbed system the
equation of motion is

RwC 
20w D 
20ˇ
3
2

X
n>0

pn ˇ
n
2 wn ; (12.25)

where the coefficients pn are the strength parameters for the nth order perturbation
term and the amplitude w is the normalized betatron oscillation amplitude. The
Vlasov equation allows us to calculate the impact of these perturbation terms on
the betatron frequency. We demonstrate this first with a linear perturbation term
.n D 1/ caused by a gradient field error p1 D �ık in a quadrupole. In this case the
equation of motion is from (12.25)

RwC 
20w D �
20ˇ2ık w (12.26)

or

RwC 
20.1C ˇ2ık/w D 0 : (12.27)

This second-order differential equation can be replaced by two first-order
differential equations which is in general the most straight forward way to obtain
the functions (12.2)

Pw D 
0
p
1C ˇ2ık p ;

Pp D �
0
p
1C ˇ2ık w :

(12.28)

Here it is assumed that the betatron function ˇ and the quadrupole field error
ık are uniformly distributed along the beam line and therefore can be treated as
constants. This approach is justified since we are interested only in the average
oscillation frequency of the particles and not in fast oscillating terms. The desired
result can be derived directly from (12.28) without any further mathematical
manipulation by comparison with (12.20). From there the oscillating frequency for
the perturbed system is given by


 D 
0
p
1C ˇ2 ık � 
0 .1C 1

2
ˇ2ık/ ; (12.29)
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for small perturbations. The betatron frequency shift can be expressed by the lowest
order harmonic of the Fourier expansion for the periodic perturbation function

0 ˇ

2 ık to give

2�
0
�
ˇ2ık

�
0
D
I

0ˇ

2ık d' D
I
ˇık dz (12.30)

making use of the definition for the betatron phase d' Ddz=
0ˇ. The tune shift ı

due to quadrupole field errors is therefore from (12.29)

ı 
 D 
 � 
0 D 1

4�

I
ˇıkdz ; (12.31)

in agreement with (15.64). Again, the Vlasov equation confirms this result for
all particles irrespective of the distribution in phase space. This procedure can be
expanded to any order of perturbation. From the differential equation (12.25) one
gets in analogy to the equations of motion (12.28)

Pw D 
0

s
1� ˇ3=2

X
n>0

pnˇn=2wn�1 p ;

Pp D �
0

s
1 � ˇ3=2

X
n>0

pnˇn=2wn�1 w :

(12.32)

For small perturbations the solution for the unperturbed harmonic oscillator
w.'/ D w0 sin.
0' C ı/ may be used where ı is an arbitrary phase constant. The
tune shift 
 D 
 � 
0 is thus while integrating over all perturbations around a
circular accelerator


 D �
X
n>0

1

4�

I
pnˇ

nC1
2 wn�1

0 sinn�1Œ
0'.z/C ı� dz; (12.33)

where we have changed the independent variable from ' to z by dz D 
0ˇd':
Not all perturbation terms contribute to a tune variation. All even terms n D 2m;

where m is an integer, integrate, for example, to zero in this approximation and
a sextupole field therefore does not contribute to a tune shift or tune spread.
This conclusion must be modified, however, due to higher-order approximations
which become necessary when perturbations cannot be considered small anymore.
Furthermore, we find from (12.33) that the tune shift is independent of the particle
oscillation amplitude only for quadrupole field errors n D 1. For higher-order
multipoles the tune shift becomes amplitude dependent resulting in a tune spread
within the particle beam rather than a coherent tune shift for all particles of the
beam.
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In a particular example, the tune spread caused by a single octupole .n D 3/ in a
circular accelerator is given by


3 D � �w

8�

I
p3ˇ

2 dz ; (12.34)

where w20 D �w is the emittance of the beam. Similar results can be found for higher-
order multipoles.

12.1.2 Damping

At the beginning of this section we have decided to ignore damping and have
used the undamped Vlasov equation (12.18). Damping or anti-damping effects do,
however, occur in real systems and it is interesting to investigate if the Vlasov
equation can be used to derive some general insight into damped systems as well.
For a damped oscillator we use (12.11), (12.12) to form the Vlasov equation in the
form of (12.16). Instead of the phase we now use the real time as the independent
variable to allow the intuitive definition of the damping decrement as the relative
decay of the oscillation amplitude with time

@�

@t
C !0pw

@�

@w
� .!0wC 2˛wpw/

@�

@pw
D C2˛w� : (12.35)

This partial differential equation can be solved analytically in a way similar to
the solution of the undamped harmonic oscillator by using cylindrical coordinates.
For very weak damping we expect a solution close to (12.23) where the amplitude
r in phase space was a constant of motion. For a damped oscillator we try to form a
similar invariant from the solution of a damped harmonic oscillator

w D w0e�˛wt cos
q
!20 � ˛2w t D re�˛wt cos � : (12.36)

With the conjugate component !0 pw D Pw, we form the expression

!0 pw C ˛wwq
!20 � ˛2w

D �w0e�˛wt sin
q
!20 � ˛2w t D �re�˛wt sin � (12.37)

and eliminate the phase � from (12.36), (12.37) keeping only terms linear in the
damping decrement ˛w to obtain the “invariant”

r2e� 2˛w t D w2 C p2w C 2
˛w

!0
wpw : (12.38)
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Obviously if we set ˛w D 0 we have the invariant of the harmonic oscillator. The
time dependent factor due to finite damping modifies this “invariant”. However,
for cases where the damping time is long compared to the oscillation period we
may still consider (12.38) a quasi invariant. The phase coordinate � can be derived
from (12.36), (12.37) as a function of w and pw as may be verified by insertion
into the differential equation (12.35). The solution for the phase space density of a
damped oscillator is of the form

�.w; pw; t/ D e2˛wtF.r; ˚/ ; (12.39)

where F.r; ˚/ is any arbitrary but differentiable function of r and ˚ and the phase
˚ is defined by

˚ D � C
q
!20 � ˛2w t D arctan

0B@C!0 pw C ˛wwq
!20 � ˛2ww

1CACq!20 � ˛2w t : (12.40)

For very weak damping ˛w ! 0 and the solution (12.39) approaches (12.23)
where ˛w D 0 and 
' D !0t as expected. Therefore even for finite damping
a particle distribution rotates in phase space although with a somewhat reduced
rotation frequency due to damping. The particle density � , however, changes
exponentially with time due to the factor e2˛wt. For damping ˛w > 0, we get an
increase in the phase space density at the distance R from the beam center. At
the same time the real particle oscillation amplitudes .w; pw/ are being reduced
proportional to e�˛wt and the increase in the phase space density at R reflects
the concentration of particles in the beam center from larger amplitudes due to
damping.

In conclusion we found that in systems where velocity dependent forces exist,
we have damping .˛w > 0/ or anti-damping .˛w < 0/ of oscillation amplitudes.
As has been discussed such forces do exist in accelerators leading to damping.
Mostly, however, the Vlasov equation is applied to situations where particles interact
with self or external fields that can lead to instabilities. It is the task of particle
beam dynamics to determine the nature of such interactions and to derive the
circumstances under which the damping coefficient ˛w, if not zero, is positive for
damping or negative leading to beam instability.

12.2 Damping of Oscillations in Electron Accelerators

In electron accelerators we are concerned mainly with damping effects caused
by the emission of synchrotron radiation. All six degrees of freedom for particle
motion are damped. Damping of energy oscillations occurs simply from the fact
that the synchrotron radiation power is energy dependent. Therefore a particle
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with a higher energy than the reference particle radiates more and a particle
with less energy radiates less. The overall effect is that the energy deviation is
reduced or damped. Damping of the transverse motion is principally a geometric
effect. The photons of synchrotron radiation are emitted into the direction of
the particle motion. Therefore part of the energy loss is correlated to a loss in
transverse momentum. On the other hand, the lost energy is restored through
accelerating fields with longitudinal components only. The overall effect of an
energy loss during the course of betatron oscillations is therefore a loss of transverse
momentum which leads to a reduction in the transverse oscillation amplitude, an
effect we call damping. In the next section, we will discuss the physics leading
to damping and derive the appropriate damping decrement for different modes of
oscillations.

12.2.1 Damping of Synchrotron Oscillations

In a real beam particles are spread over a finite distribution of energies close to the
reference energy. The magnitude of this energy spread is an important parameter
to be considered for both beam transport systems as well as for experimental
applications of particle beams. In general, an energy spread as small as possible
is desired to minimize chromatic aberrations and for improved accuracy of experi-
mental observation. We will therefore derive the parametric dependence of damping
and discuss methods to reduce the energy spread within a particle beam.

To do this, we consider a beam of electrons being injected with an arbitrary
energy distribution into a storage ring ignoring incidental beam losses during the
injection process due to a finite energy acceptance. Particles in a storage ring
undergo synchrotron oscillations which are oscillations about the ideal momentum
and the ideal longitudinal position. Since energy and time or equivalently energy
and longitudinal position are conjugate phase space variables, we will investigate
both the evolution of the energy spread as well as the longitudinal distribution or
bunch length of the particle beam.

The evolution of energy spread or bunch length of the particle beam will depend
very much on the nature of particles and their energy. For heavy particles like
protons or ions there is no synchrotron radiation damping and therefore the phase
space for such beams remains constant. As a consequence, the energy spread or
bunch length also stays a constant. A similar situation occurs for electrons or
positrons at very low energies since synchrotron radiation is negligible. Highly
relativistic electrons, however, produce intense synchrotron radiation leading to a
strong damping effect.

The damping decrement ˛w is defined in the Vlasov equation by

@f

@w
C @g

@p
D �2˛w (12.41)
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Fig. 12.3 Longitudinal
particle position

τ>0
ct = s

particle bunch

reference par-
ticle

and can be calculated with the knowledge of the functions f and g. For the
conjugate variables .w; pw/we use the time deviation of a particle with respect to the
synchronous particle w D � as shown in Fig. 12.3 and the difference of the particle’s
energy E from the synchronous or reference energy E0 and set pw D � D E � E0.

Since f D d�
dt D P� and g D d�

dt D P� we have to determine the rate of change for
the conjugate variables. The rate of change of � is from (9.17) with cp0 � E0

d�

dt
D ��ch

�

E0
; (12.42)

where we have replaced the phase by the time P D cˇhk0 P� and the relative
momentum error by the relative energy error since we consider here only highly
relativistic particles. The latter replacement is a matter of convenience since we will
be using the energy gain in accelerating fields.

The energy rate of change P� is the balance of the energy gained in accelerating
fields and the energy lost due to synchrotron radiation or other losses

P� D 1

T
ŒeVrf .�s C �/ �U.Es C �/� : (12.43)

Here T is the time it takes the particles to travel the distance L. The energy
gain within the distance L for a particle traveling a time � behind the reference
or synchronous particle is eVrf .�s C �/ and U is the energy loss to synchrotron
radiation along the same distance of travel. here we assume the energy gain or loss
to be distributed evenly over the length of L.

Before we go on, we apply these expressions to the simple situation of a linear
accelerator of length L where the momentum compaction factor vanishes ˛c D 0

and where there is no energy loss due to synchrotron radiation U � 0. Furthermore,
we ignore for now other energy losses and have with �c D 1=�2

f D P� D 1
ˇ2�2

�
E ;

g D P� D 1
T eVrf .�s C �/ :

(12.44)

Inserted into (12.41) we find the damping decrement to vanish which is consistent
with the constancy of phase space. From the Vlasov equation we learn that in the
absence of damping the energy spread � stays constant as the particle beam gets
accelerated.
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The Vlasov equation still can be used to also describe adiabatic damping but we
need to use the relative energy spread as one of the variables. Instead of the second
equation (12.44) we have then with ı D �

E

g D d

dt
ı D

�
Et
� �

E0

t
; (12.45)

where E0 and Et are the energies time t0 and t D t0Cdt; respectively. We choose
the time interval dt small enough so that the energy increase dE D adt � E0 and
get

g D � �
Et

a

E0
: (12.46)

The damping decrement becomes from (12.41) with ı D �
E and @f=@� D 0

@g

@ı
D � a

E0
D �2˛w D 1

ı

dı

dt
(12.47)

and after integrationZ
dı

ı
D ln

ı

ı0
D �

Z
a

E0
dt D �

Z
dE

E0
D C ln

E0

Et
(12.48)

or

ı

ı0
D E0

Et
: (12.49)

The relative energy spread in the beam is reduced during acceleration inversely
proportional to the energy. The reduction of the relative energy spread is called
adiabatic damping. This name is unfortunate in the sense that it does not
actually describe a damping effect in phase space as we just found out but
rather describes the variation of the relative energy spread with energy which
is merely a consequence of the constant phase space density or Liouville’s
theorem.

Returning to the general case (12.43) we apply a Taylor’s expansion to the rf-
voltage in (12.44) and get for terms on the r.h.s. keeping only linear terms

e Vrf.�s C �/ D eVrf.�s/C e
@Vrf

@�

ˇ̌̌̌
�s

� ; (12.50)

�U.Es C �/ D �U.Es/� @U

@E

ˇ̌̌̌
Es

� : (12.51)
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Since the energy gain from the rf-field eVrf.�s/ for the synchronous particle just
compensates its energy loss U.Es/, we have instead of (12.43) now

P� D 1

T

"
e PVrf.�s/ � � @U

@E

ˇ̌̌̌
Es

�

#
; (12.52)

where we have set PVrf D @Vrf
@�

. The synchrotron oscillation damping decrement can
now be derived from (12.41) with (12.44), (12.52) to give

˛s D C 1
2

1

T

@U

@E

ˇ̌̌̌
Es

: (12.53)

We will now derive the damping decrement for the case that the energy loss
is only due to synchrotron radiation. The energy loss along the transport line L is
given by

Us D 1

c

Z L

0

P�ds ; (12.54)

where P� is the synchrotron radiation power and the integration is taken along the
actual particle trajectory s. If 	.z/ is the bending radius along z, we have ds

dz D 1C x
	
:

With x D xˇ C � �
Es

and averaging over many betatron oscillations, we get hxˇi D 0
and

ds

dz
D 1C �

	

�

E
: (12.55)

This asymmetric averaging of the betatron oscillation only is permissible if
the synchrotron oscillation frequency is much lower than the betatron oscillation
frequency as is the case in circular accelerators. With ds D Œ1 C .�=	/.�=Es/�dz
in (12.54), the energy loss for a particle of energy Es C � is

Us.Es C �/ D 1

c

Z
L

P�

�
1C �

	

�

Es

�
dz (12.56)

or after differentiation with respect to the energy

@Us

@E

ˇ̌̌̌
Es

D 1

c

Z
L

�
dP�
dE
C P�

�

	

1

Es

�
Es

dz : (12.57)

The synchrotron radiation power is proportional to the square of the energy and
the magnetic field P� 	 E2s B20 which we use in the expansion

dP�
dE
D @P�

@E
C @P�
@B0

@B

@E
D 2P�

Es
C 2P�

B

@B

@x

@x

@E
: (12.58)
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The variation of the synchrotron radiation power with energy depends directly
on the energy but also on the magnetic field if there is a field gradient @B

@x and a finite
dispersion function � D Es

@x
@E . The magnetic field as well as the field gradient is to

be taken at the reference orbit. Collecting all these terms and setting 1
B0

@B
dx D 	 k we

get for (12.57)

@Us

@E

ˇ̌̌̌
Es

D 1

c

Z
L

�
2

P�
Es
C 2P�

Es
	k�C P�

Es

�

	

�ˇ̌̌̌
Es

dz (12.59)

D Us

Es

242C 1

cUs

Z
L

P��

�
1

	
C 2	k

�ˇ̌̌̌
Es

dz

35 ;

where we have made use of Us D 1
c

R
L P� .Es/ dz. Recalling the expressions for

the synchrotron radiation power and energy loss P� D C� E4s=	
2 and Us D

C�E4s
R

dz=	2, we may simplify (12.59) for

@U

@E

ˇ̌̌̌
Es

D Us

Es
.2C #/ ; (12.60)

where the #-parameter has been introduced in (11.25). We finally get from (12.53)
with (12.60) the damping decrement for synchrotron oscillations

˛� D Us

2TEs
.2C #/ D Us

2TEs
J�D hP�i

2Es
J� ; (12.61)

in full agreement with results obtained earlier. Since all parameters except # are
positive we have shown that the synchrotron oscillations for radiating particles are
damped. A potential situation for anti-damping can be created if # < �2.

To calculate the damping decrement, we assume accelerating fields evenly
distributed around the ring to restore the lost energy. In practice this is not true
since only few rf-cavities in a ring are located at one or more places around the ring.
As long as the revolution time around the ring is small compared to the damping
time, however, we need not consider the exact location of the accelerating cavities
and may assume an even and uniform distribution around the ring.

12.2.2 Damping of Vertical Betatron Oscillations

Particles orbiting in a circular accelerator undergo transverse betatron oscillations.
These oscillations are damped in electron rings due to the emission of synchrotron
radiation. First we will derive the damping decrement for the vertical betatron oscil-
lation. In a plane accelerator with negligible coupling this motion is independent
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of other oscillations. This is not the case for the horizontal betatron motion which
is coupled to the synchrotron oscillation due to the presence of a finite dispersion
function. We will therefore derive the vertical damping decrement first and then
discuss a very general theorem applicable for the damping in circular accelerators.
This theorem together with the damping decrement for the synchrotron and vertical
betatron oscillations will enable us to derive the horizontal damping in a much
simpler way than would be possible in a more direct way.

In normalized coordinates the functions f and g are for the vertical plane

dw

d'
D C
p D f .w; p; '/ ; (12.62)

dp

d'
D �
w D g.w; p; '/ ; (12.63)

where 
 D 
y;w D y=
p
ˇy;

1

y

dw
d' D

p
ˇyy0 � 1

2

ˇ0
yp
ˇy

y and 
y' D  y is the vertical

betatron phase.
Due to the emission of a synchrotron radiation photon alone the particle does not

change its position y nor its direction of propagation y0. With this we derive now
the damping within a path element z which includes the emission of photons as
well as the appropriate acceleration to compensate for that energy loss. Just after the
emission of the photon but before the particle interacts with accelerating fields let
the transverse momentum and total energy be p? and Es,respectively. The slope of
the particle trajectory is therefore (Fig. 12.4)

y0
0 D

cp?
ˇEs

: (12.64)

Energy is transferred from the accelerating cavity to the particle at the rate of the
synchrotron radiation power P� and the particle energy increases in the cavity of
length z from Es to Es C P�

z
ˇ c and the slope of the particle trajectory becomes at

the exit of the cavity of lengthz due to this acceleration

y0
1 D

cp?
ˇEs C P�

z
c

� cp?
ˇEs

�
1 � P�

ˇEs

z

c

�
: (12.65)

Fig. 12.4 Acceleration and
damping
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We are now in a position to express the functions f and g in terms of physical
parameters. The function f is expressed by

f D w

'
D y1 � y0p

ˇy'
D y0

0p
ˇy

z

'
D 


q
ˇyy0

0; (12.66)

where we made use of ' D z=.
ˇ/. The damping decrement will depend on
the derivation df

dw which can be seen from (12.66) to vanish since f does not depend
on w

@f

@w
D 0: (12.67)

The variation of the conjugate variable p with phase is from (12.62)

p

'
D

dw1
d' � dw0

d'


 '
: (12.68)

From linear beam dynamics, we find

dw1
d'
� dw0

d'
D
q
ˇy.y

0
1 � y0

0/�
1

2

ˇ0
yp
ˇy

.y1 � y0/ (12.69)

and get with (12.65), (12.66)

g.w; p; '/ D p

'
D
�pˇy

P�
ˇcEs

zy0
0 C F.y/


'
: (12.70)

The function F.y/ is a collection of y-dependent terms that become irrelevant for
our goal. Damping will be determined by the value of the derivative @g

@p which with

y0
0 D 1p

ˇy

dw
d' C 1

2
ˇ0

y
1
ˇy

y0 becomes

@g

@p
D 
 @g

@ dw
d'

D P�
ˇcEs

z

'
: (12.71)

In the derivation of (12.71) we have used the betatron phase as the “time” and
get therefore the damping per unit betatron phase advance. Transforming to the real
time with z

ˇc' D Trev
2�

and (12.41)

@g

@p
D P�

Es

Trev

2�
D �2˛y

Trev

2�
(12.72)
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and solving for the vertical damping decrement

˛y D �hP� i
2Es

: (12.73)

In this last equation, we have used the average synchrotron radiation power which
is the appropriate quantity in case of a non-isomagnetic ring. The damping of the
vertical betatron function is proportional to the synchrotron radiation power. This
fact can be used to increase damping when so desired by increasing the synchrotron
radiation power from special magnets in the lattice structure.

12.2.3 Robinson’s Damping Criterion

The general motion of charged particles extends over all six degrees of freedom
in phase space and therefore the particle motion is described in six-dimensional
phase space as indicated in the general Vlasov equation (12.17). It is, however,
a fortunate circumstance that it is technically possible to construct accelerator
components in such a fashion that there is only little or no coupling between
different pairs of conjugate coordinates. As a consequence, we can generally treat
horizontal betatron oscillations separate from the vertical betatron oscillations and
both of them separate from synchrotron oscillations. Coupling effects that do occur
will be treated as perturbations. There is some direct coupling via the dispersion
function between synchrotron and particularly the horizontal betatron oscillations
but the frequencies are very different with the synchrotron oscillation frequency
being in general much smaller than the betatron oscillation frequency. Therefore in
most cases the synchrotron oscillation can be ignored while discussing transverse
oscillations and we may average over many betatron oscillations when we discuss
synchrotron motion.

A special property of particle motion in six-dimensional phase space must be
introduced allowing us to make general statements about the overall damping effects
in a particle beam. We start from the Vlasov equation (12.17)

@�

@t
C f r r� C gr p� D �

�r r f C r p g
�
� (12.74)

and define a total damping decrement ˛t by setting

r rf C r pg D �2˛t : (12.75)

The total damping decrement is related to the individual damping decrements of
the transverse and longitudinal oscillations but the precise dependencies are not yet
obvious. In the derivation of (12.17), we have expanded the functions f and g in
a Taylor series neglecting all terms of second or higher order in time and got as a
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result the simple expression (12.75) for the overall damping. Upon writing (12.75) in
component form, we find from the components of the l.h.s. that the overall damping
decrement ˛t is just the sum of all three individual damping decrements and we may
therefore set

r r f C rpg D �2˛t D �2.˛x C ˛y C ˛�/ : (12.76)

From this equation and the linearity of the functions f and g describing the
physics of the dynamical system general characteristics of the damping process can
be derived. The damping decrement does not depend on the dynamic variables of
the particles and coupling terms do not contribute to damping. The damping rate
is therefore the same for all particles within a beam. In the following paragraphs,
we will discuss in more detail the general characteristics of synchrotron radiation
damping. Specifically, we will determine the functions f and g and derive an
expression for the total damping.

We consider a small section of a beam transport line or circular accelerator
including all basic processes governing the particle dynamics. These processes are
focusing, emission of photons and acceleration. All three processes are assumed
to occur evenly along the beam line. The six-dimensional phase space to be
considered is

.x; x0; y; y0; �; �/ : (12.77)

During the short time t some of the transverse coordinates change and it is
those changes that determine eventually the damping rate. Neither the emission
of a synchrotron radiation photon nor the absorption of energy in the accelerating
cavities causes any change in the particle positions x; y; and � . Indicating the initial
coordinates by the index 0 and setting ˇct D z we get for the evolution of the
particle positions within the length elementz in the three space dimensions

x D x0 C x0
0z ;

y D y0 C y0
0z ; (12.78)

� D �0 C �c
�0

Es

z

ˇc
:

The conjugate coordinates vary in a somewhat more complicated way. First
we note that the Vlasov equation does not require the conjugate coordinates to
be canonical variables. Indeed this derivation will become simplified if we do
not use canonical variables but use the slopes of the particle trajectories with the
reference path and the energy deviation. The change of the slopes due to focusing
is proportional to the oscillation amplitude and vanishes on average. Emission of a
synchrotron radiation photon occurs typically within an angle of ˙1=� causing a
small transverse kick to the particle trajectory. In general, however, this transverse
kick will be very small and we may assume for all practical purposes the slope



12.2 Damping of Oscillations in Electron Accelerators 421

of the transverse trajectory not to be altered by photon emission. Forces parallel
to the direction of propagation of the particles can be created, however, through
the emission of synchrotron radiation photons. In this case, the energy or energy
deviation of the particle will be changed like

� D �0 � P�
z

ˇc
C Prf

z

ˇc
: (12.79)

Here we use the power P� to describe the synchrotron radiation energy loss rate
a particle may suffer during the time ˇct D z. No particular assumption has
been made about the nature of the energy loss except that during the time t it be
small compared to the particle energy. To compensate this energy loss the particles
become accelerated in rf-cavities. The power Prf is the energy flow from the cavity
to the particle beam, not to be confused with the total power the rf-source delivers
to the cavity.

The transverse slopes x0 and y0 are determined by the ratio of the transverse to
the longitudinal momentum u0 D pu=pz where u stands for x or y, respectively.
During acceleration in the rf-cavity the transverse momentum does not change but
the total kinetic energy increases from Es to Es C Prf

z
ˇc and the transverse slope of

the trajectory is reduced after a distance z to

u0 D cpu

cpz C Prfˇ
z
ˇc

� u0
0 �

Prf

Es

z

ˇc
u0
0 : (12.80)

Explicitly, the transverse slopes vary now like

x0 D x0
0 � Prf

Es

z
ˇc x0

0 ;

y0 D y0
0 � Prf

Es

z
ˇc y0

0 :
(12.81)

All ingredients are available now to formulate expressions for the functions f and g
in component form

f D
�

x0
0; y0

0; �c
�

Es

�
;

g D
�
�Prf

Es
x0
0;�Prf

Es
y0
0;�P� C Prf

�
:

(12.82)

With these expressions we evaluate (12.76) and find that rrf D 0. For the
determination of rpg we note that the power Prf from the cavity is just equal to the
average radiation power

˝
P�
˛

and the derivative of the radiation power with respect
to the particle energy is

� @P�
@�
D �2P�

Es
: (12.83)
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Finally, we note that the rf-power Prf is equal to the average radiation power
˝
P�
˛

and get from (12.76)

˛x C ˛y C ˛� D 2
˝
P�
˛

Es
: (12.84)

The sum of all damping decrements is a constant, a result which has been
derived first by Robinson [1] and is known as the Robinson criterion. The total
damping depends only on the synchrotron radiation power and the particle energy
and variations of magnetic field distribution in the ring keeping the radiation power
constant will not affect the total damping rate but may only shift damping from one
degree of freedom to another.

12.2.4 Damping of Horizontal Betatron Oscillations

With the help of the Robinson criterion, the damping decrement for the horizontal
betatron oscillation can be derived by simple subtraction. Inserting (12.61), (12.75)
into (12.84) and solving for the horizontal damping decrement we get

˛x D
˝
P�
˛

2Es
.1 � #/: (12.85)

The damping decrements derived from the Vlasov equation agree completely
with the results obtained in Sect. 11.2 by very different means.

No matter what type of magnet lattice we use, the total damping depends only on
the synchrotron radiation power and the particle energy. We may, however, vary the
distribution of the damping rates through the #-parameter to different oscillation
modes by proper design of the focusing and bending lattice in such a way that
one damping rate is modified in the desired way limited only by the onset of
anti-damping in another mode. Specifically, this is done by introducing gradient
bending magnets with a field gradient such as to produce the desired sign of the #
parameter.

12.3 The Fokker–Planck Equation

From the discussions of the previous section it became clear that the Vlasov
equation is a useful tool to determine the evolution of a multiparticle system
under the influence of forces depending on the physical parameters of the system
through differentiable functions. If, however, the dynamics of a system in phase
space depends only on its instantaneous physical parameters where the physics of
the particle dynamics cannot be expressed by differentiable functions, the Vlasov
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equation will not be sufficient to describe the full particle dynamics. A process
which depends only on the state of the system at the time t and not on its history is
called a Markoff process.

In particle beam dynamics we have frequently the appearance of such processes
where forces are of purely statistical nature like those caused, for example, by
the quantized emission of synchrotron radiation photons or by collisions with
other particles within the same bunch or residual gas atoms. To describe such a
situation we still have variations of the coordinates per unit time similar to those
in (12.2) but we must add a term describing the statistical process and we set
therefore

Pw D fw.w; pw; t/C
X

�i ı.t � ti/ ; (12.86)

Ppw D gw.w; pw; t/C
X

�i ı.t � ti/ ; (12.87)

where �i and �i are instantaneous statistical changes in the variables w and pw with
a statistical distribution in time ti and where ı.t� ti/ is the Dirac delta function. The
probabilities Pw.�/ and Pp.�/ for statistical occurrences with amplitudes � and �
be normalized and centeredR

Pw.�/ d� D 1 ; R
Pw.�/� d� D 0 ;R

Pp.�/ d� D 1 ; R Pp.�/� d� D 0 : (12.88)

The first equations normalize the probability amplitudes and the second equa-
tions are true for symmetric statistical processes. The sudden change in the
amplitude by wi or in momentum by pwi due to one such process is given by

wi D
Z
�i ı.t � ti/ dt D �i ; (12.89a)

pwi D
Z
�i ı.t � ti/ dt D �i : (12.89b)

Analogous to the discussion of the evolution of phase space in the previous
section, we will now formulate a similar evolution including statistical processes.
At the time tCt, the particle density in phase space is taken to be �.w; pw; tCt/
and we intend to relate this to the particle density at time t. During the time interval
t there are finite probabilities Pw.�/; Pp.�/ that the amplitude .w � �/ or the
momentum .pw � �/ be changed by a statistical process to become w or pw at time
t. This definition of the probability function also covers the cases where particles
during the time t either jump out of the phase space area AP or appear in the
phase space area AQ.

To determine the number of particles ending up within the area AQ, we look
at all area elements AP which at time t are a distance w D � and pw; D �

away from the final area element AQ at time t C t. As a consequence of our
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assumption that the particle density is only slowly varying in phase space, we may
assume that the density � is uniform within the area elements AP eliminating the
need for a local integration. We may now write down the expression for the phase
space element and the particle density at time t Ct by integrating over all values
of � and �

I D AP

Z C1

�1

Z C1

�1
�.w � �; pw � �; t/Pw.�/Pp.�/ d�d� ; (12.90)

where we used the abbreviation I D �.w C fwt; pw C gwt; t C t/ AQ:

The volume elements AP and AQ are given by (12.5), (12.6), respectively.
The statistical fluctuations may in general be of any magnitude. In particle beam
dynamics, however, we find that the fluctuations with reasonable probabilities are
small compared to the values of the variables w and pw. The phase space density
can therefore be expanded into a Taylor series where we retain linear as well as
quadratic terms in � and �

�.w� �; pw � �; t/ D �0 � � @�0
@w
� � @�0

@pw
(12.91)

C 1
2
�2
@2�0

@w2
C 1

2
�2
@2�0

@p2w
C �� @2�0

@w@pw
;

where �0 D �.w; pw; t/ and we finally get for the integrals with (12.88)

I D �0 C 1
2

@2�0

@w2

Z
�2Pw.�/ d� C 1

2

@2�0

@p2w

Z
�2Pp.�/ d� : (12.92)

For simplicity, we leave off the integration limits which are still from �1 to C1.
If we now set N to be the number of statistical occurrences per unit time we may
simplify the quadratic terms on the r.h.s. of (12.92) by setting

1
2

Z
�2Pw.�/ d� D 1

2

˝N� �
2
˛
t ; (12.93)

1
2

Z
�2Pp.�/ d� D 1

2

˝N��
2
˛
t ; (12.94)

and get similarly to the derivation of the Vlasov equation in Sect. 12.1

@�0
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@�0

@w
C gw

@�0
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�0 (12.95)

C 1
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˝N��
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˛ @2�0
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C 1
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˛ @2�0
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:
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This partial differential equation is identical to the Vlasov equation except for the
statistical excitation terms and is called the Fokker–Planck equation [2]. We define
diffusion coefficients describing the flow in � and � space by

D� D 1
2

˝N∼�2
˛
; (12.96)

D� D 1
2

˝N≈�2
˛
; (12.97)

and the Fokker–Planck equation becomes finally

@�
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C fw

@�

@w
C gw

@�

@pw
D 2˛w� CD�

@2�

@w2
C D�

@2�

@p2w
: (12.98)

For the case of damped oscillators the Fokker–Planck equation can be derived
similar to (12.35) and is

@�

@t
C!0pw

@�

@w
� .!0wC 2˛wpw/

@�

@pw
D 2˛w� CD�

@2�

@w2
CD�

@2�

@p2w
: (12.99)

This form of the Fokker–Planck equation will be very useful to describe a particle
beam under the influence of diffusion processes. In the following section, we will
derive general solutions which will be applicable to specific situations in accelerator
physics.

12.3.1 Stationary Solution of the Fokker–Planck Equation

A unique stationary solution exists for the particle density distribution described by
the partial differential equation (12.98). To derive this solution we transform (12.98)
to cylindrical coordinates .w; pw/ ! .r; �/ with w D r cos � and pw D r sin �
and note terms proportional to derivatives of the phase space density with respect
to the angle � . One of these terms !0�� exists even in the absence of diffusion
and damping and describes merely the betatron motion in phase space while the
other terms depend on damping and diffusion. The diffusion terms will introduce
a statistical mixing of the phases � and after some damping times any initial
azimuthal variation of the phase space density will be washed out. We are here only
interested in the stationary solution and therefore set all derivatives of the phase
space density with respect to the phase � to zero. In addition we find it necessary to
average square terms of cos � and sin � . With these assumptions the Fokker–Planck
Equation (12.98) becomes after some manipulations in the new coordinates

d�

dt
D 2˛w�C

�
˛wrC D

r

�
@�

@r
C D

@2�

@r2
; (12.100)
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where we have defined a total diffusion coefficient

D D 1
2
.D� C D�/ : (12.101)

Equation (12.100) has some similarity with, for example, wave equations in
quantum mechanics which are solved by the method of separation of variables
and we expect the stationary solution for the phase space density to be of the form
�.r; t/ DP

n Fn.t/Gn.r/. The solution Gn.r/ must meet some particular boundary
conditions. Specifically, at time t D 0, we may have any arbitrary distribution of the
phase space density Gn0.r/. Furthermore, we specify that there be a wall at r D R
beyond which the phase space density drops to zero and consequently, the boundary
conditions are

Gn.r < R/ D Gn0.r/ ;
Gn.r > R/ D 0 : (12.102)

By the method of separation of the constants we find for the functions Fn.t/

Fn.t/ D const: e�˛n t ; (12.103)

where the quantity �˛n is the separation constant. The general form of the
solution for (12.100) may now be expressed by a series of orthogonal functions or
eigenmodes of the distribution Gn.r/ which fulfill the boundary conditions (12.102)

�.r; t/ D
X
n�0

cnGn.r/ e�˛n t : (12.104)

The amplitudes cn in (12.104) are determined such as to fit the initial density
distribution

�0.r; t D 0/ D
X
n�0

cnGn0.r/ : (12.105)

With the ansatz (12.104) we get from (12.100) for each of the eigenmodes the
following second-order differential equation:

@2Gn

@r2
C
�
1

r
C ˛w

D
r

�
@Gn

@r
C ˛w

D

�
2C ˛n

˛w

�
Gn D 0 : (12.106)

All terms with a coefficient ˛n > 0 vanish after some time due to damping (12.103).
Negative values for the damping decrements ˛n < 0 define instabilities which
we will not consider here. Stationary solutions, therefore require the separation
constants to be zero ˛n D 0. Furthermore, all solutions Gn must vanish at the
boundary r D R where R may be any value including infinity if there are no physical
boundaries at all to limit the maximum particle oscillation amplitude. In the latter
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case where there are no walls, the differential equation (12.106) can be solved by
the stationary distribution

�.r; t/ D
X
n�0
˛nD0

cn Gn.r/ / exp
�
� ˛w

2D
r2
�
; (12.107)

which can easily be verified by backinsertion into (12.106). The solution for the
particle distribution in phase space under the influence of damping ˛w and statistical
fluctuations D is a Gaussian distribution with the standard width

�r D
s

D

˛w
: (12.108)

Normalizing the phase space density the stationary solution of the Fokker–
Planck equation for a particle beam under the influence of damping and statistical
fluctuations is

�.r/ D 1p
2��r

e�r2=2�2r : (12.109)

Eigenfunctions for which the eigenvalues ˛n are not zero, are needed to describe
an arbitrary particle distribution, e.g., a rectangular distribution at time t D 0. The
Fokker–Planck equation, however, tells us that after some damping times these
eigensolutions have vanished and the Gaussian distribution is the only stationary
solution left. The Gaussian distribution is not restricted to the r-space alone.
The particle distribution in equilibrium between damping and fluctuations is also
Gaussian in the normalized phase space .w; pw/ as well as in real space. With
r2 D w2 C p2w we get immediately for the density distribution in .w; pw/-space

�.w; pw/ D 1

2��w�pw

e�w2=2�2w e�p2w=2�
2
pw ; (12.110)

where we have set �w D �pw D
q

D
˛w

. The standard deviation in w and pw is the same

as for r which is to be expected since all three quantities have the same dimension
and are linearly related.

In real space we have for u D x or y by definition u D p
ˇuw and p D Pw



where

Pw D dw
d' . On the other hand, p D p

ˇxx0 � ˇ0
2
p
ˇ

x and inserted into (12.107) we get
the density distribution in real space

�.u; u0/ / exp

�
��uu2 � ˇ0

u uu0 C ˇuu02

2 �2w

�
: (12.111)
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This distribution describes the particle distribution in real phase space where
particle trajectories follow tilted ellipses. Note that we carefully avoid replacing the
derivative of the betatron function with ˇ0 D �2˛ because this would lead to a
definite confusion between the damping decrement and the betatron function. To
further reduce confusion we also use the damping times �i D ˛�1

i . Integrating the
distribution (12.111) for all values of the angles u0, for example, gives the particle
distribution in the horizontal or vertical midplane. Using the mathematical relationR 11e�p2x2˙qxdx D

p
�

p eq2=.4p2/ [3], we get

�. u / D 1p
2 �
p
ˇu�w

e�u2=2�2u ; (12.112)

where the standard width of the horizontal Gaussian particle distribution is

�u D
p
ˇ�w D

p
ˇ
p
�uDu: (12.113)

The index u has been added to the diffusion and damping terms to indicate that
these quantities are in general different in the horizontal and vertical plane. The
damping time depends on all bending magnets, vertical and horizontal, but only on
the damping-partition number for the plane under consideration. Similar distinction
applies to the diffusion term.

In a similar way, we get the distribution for the angles by integrating (12.111)
with respect to u

�.u0/ D
p
ˇ

p
2�

q
1C 1

4
ˇ0 2�w

exp

"
� ˇ u0 2

2.1C1
4
ˇ0 2/ �2w

#
; (12.114)

where the standard width of the angular distribution is

� 0
u D

s
4C ˇ0 2

4ˇ
�w D

s
4C ˇ0 2

4ˇ

p
�uDu: (12.115)

We have not made any special assumption as to the horizontal or vertical plane
and find in (12.112)–(12.115) the solutions for the particle distribution in both
planes.

In the longitudinal phase space the equations of motion are mathematically equal
to Eq. (12.11). First we define new variables

Pw D �˝s0

�c
P�; (12.116)
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where ˝s0 is the synchrotron oscillation frequency, �c the momentum compaction
and � the longitudinal deviation of a particle from the reference particle. The
conjugate variable we define by

p D � P�
E0
; (12.117)

where � is the energy deviation from the reference energy E0. After differentiation
of (12.52) and making use of (12.53) and the definition of the synchrotron oscillation
frequency, we use these new variables and obtain the two first-order differential
equations

Pw D C˝sp; (12.118)

Pp D �˝sw � 2˛�p: (12.119)

These two equations are of the same form as (12.11) and the solution of the
longitudinal Fokker–Planck equation is therefore similar to (12.112)–(12.115). The
energy distribution within a particle beam under the influence of damping and
statistical fluctuations becomes with p D ı D �=E0

�.ı/ D 1p
2��ı

e�ı2=2�2ı ; (12.120)

where the standard value for the energy spread in the particle beam is defined by

��

E0
D
p
��D�: (12.121)

In a similar way, we get for the conjugate coordinate � with w D ˝s
�c
� the distribution

�.�/ D 1p
2���

e��2=2�2� : (12.122)

The standard width of the longitudinal particle distribution is finally

�� D j�cj
˝s

p
��D�: (12.123)

The deviation in time � of a particle from the synchronous particle is equivalent
to the distance of these two particles and we may therefore define the standard value
for the bunch length from (12.123) by

�` D cˇ
j�cj
˝s

p
��D�: (12.124)
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By application of the Fokker–Planck equation to systems of particles under the
influence of damping and statistical fluctuations, we were able to derive expressions
for the particle distribution within the beam. In fact, we were able to determine
that the particle distribution is Gaussian in all six degrees of freedom. Since such
a distribution does not exhibit any definite boundary for the beam, it becomes
necessary to define the size of the distributions in all six degrees of freedom by
the standard value of the Gaussian distribution. Specific knowledge of the nature
for the statistical fluctuations are required to determine the numerical values of the
beam sizes.

In Chap. 13 we will apply these results to determine the equilibrium beam
emittance in an electron positron storage ring where the statistical fluctuations are
generated by quantized emission of synchrotron radiation photons.

12.3.2 Particle Distribution within a Finite Aperture

The particle distribution in an electron beam circulating in a storage ring is a
Gaussian if we ignore the presence of walls containing the beam. All other modes of
particle distribution are associated with a finite damping time and vanish therefore
after a short time. In a real storage ring we must, however, consider the presence of
vacuum chamber walls which cut off the Gaussian tails of the particle distribution.
Although the particle intensity is very small in the far tails of a Gaussian distribution,
we cannot cut off those tails too tight without reducing significantly the beam
lifetime. Due to quantum excitation, we observe a continuous flow of particles from
the beam core into the tails and back by damping toward the core. A reduction of
the aperture into the Gaussian distribution absorbs therefore not only those particles
which populate these tails at a particular moment but also all particles which reach
occasionally large oscillation amplitudes due to the emission of a high energy
photon. The absorption of particles due to this effect causes a reduction in the beam
lifetime which we call the quantum lifetime.

The presence of a wall modifies the particle distribution especially close to the
wall. This modification is described by normal mode solutions with a finite damping
time which is acceptable now because any aperture less than an infinite aperture
absorbs beam particles thus introducing a finite beam lifetime. Cutting off Gaussian
tails at large amplitudes will not affect the Gaussian distribution in the core and
we look therefore for small variations of the Gaussian distribution which become
significant only quite close to the wall. Instead of (12.107) we try the ansatz

�.r; t/ D e� ˛w
2D r2g.r/ e�˛t ; (12.125)

where 1=˛ is the time constant for the distribution, with the boundary condition that
the particle density be zero at the aperture or acceptance defining wall r D A or

�.A; t/ D 0 : (12.126)
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Equation (12.125) must be a solution of (12.100) and back insertion of (12.125)
into (12.100) gives the condition on the function g.r/

g00 C
�
1

r
� r

�2

�
g0 C ˛

˛w �2
g D 0 : (12.127)

Since g.r/ D 1 in case there is no wall, we expand the correction into a power series

g.r/ D 1C
X
k�1

Ck xk ; where x D r2

2�2
: (12.128)

Inserting (12.128) into (12.127) and collecting terms of equal powers in r we derive
the coefficients

Ck D 1

.kŠ/2

pDkY
pD1
.p � 1 � X/ � � .k � 1/Š

.kŠ/2
X ; (12.129)

where X D ˛
2˛w
� 1. The approximation X � 1 is justified since we expect the

vacuum chamber wall to be far away from the beam center such that the expected
quantum lifetime 1=˛ is long compared to the damping time 1=˛w of the oscillation
under consideration. With these coefficients (12.128) becomes

g.r/ D 1 � ˛

2˛w

X
k�1

1

k kŠ
xk : (12.130)

For x D A2=.2�2/ � 1 where A is the amplitude or amplitude limit for the
oscillation w, the sum in (12.130) can be replaced by an exponential function

X
k�1

1

k kŠ
xk � ex

x
: (12.131)

From the condition g.A/ D 0 we finally get for the quantum lifetime �q D 1=˛

�q D 1
2
�w

ex

x
; (12.132)

where

x D A2

2�2
: (12.133)

The quantum lifetime �q is related to the damping time. To make the quantum
life time very large of the order of 50 or more hours, the aperture must be at least
about 7�w in which case x D 24:5 and ex=x D 1:8 � 109.
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The aperture A is equal to the transverse acceptance of a storage ring for a one-
dimensional oscillation like the vertical betatron oscillation while longitudinal or
energy oscillations are limited through the maximum energy acceptance allowed by
the rf-voltage. Upon closer look, however, we note a complication for horizontal
betatron oscillations and synchrotron oscillations because of the coupling from
energy oscillation into transverse position due to a finite dispersion function. We
also have assumed that ˛=.2˛w/ � 1 which is not true for tight apertures of less
than one sigma. Both of these situations have been investigated in detail [4, 5] and
the interested reader is referred to those references.

Specifically, if the acceptance A of a storage ring is defined at a location where
there is also a finite dispersion function, Chao [4] derives a combined quantum
lifetime of

� D en2=2

p
2�˛xn3

1

.1C r/
p

r .1 � r/
; (12.134)

where n D A=�T , �2
T
D �2x C �2�2ı , r D �2�2ı =�

2
T
, A the transverse aperture, � the

dispersion function at the same location where the aperture is A, �x the transverse
beam size and �ı D ��=E the standard relative energy width in the beam.

12.3.3 Particle Distribution in the Absence of Damping

To obtain a stationary solution for the particle distribution it was essential that there
were eigensolutions with vanishing eigenvalues ˛n D 0. As a result, we obtained an
equilibrium solution where the statistical fluctuations are compensated by damping.
In cases where there is no damping, we would expect a different solution with
particles spreading out due to the effect of diffusion alone. This case can become
important in very high energy electron positron linear colliders where an extremely
small beam emittance must be preserved along a long beam transport line. The
differential equation (12.106) becomes in this case

@2Gn

@r2
C 1

r

@Gn

@r
C ˛n

D
Gn D 0 : (12.135)

We will assume that a beam with a Gaussian particle distribution is injected into
a damping free transport line and we therefore look for solutions of the form

�n.r; t/ D cnGn.r/ e�˛nt ; (12.136)

where

Gn.r/ D e�r2=2�20 (12.137)
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with �0 being the beam size at t D 0. We insert (12.137) into (12.135) and obtain an
expression for the eigenvalues ˛n

˛n D 2D

�20
� D

�40
r2 : (12.138)

The time dependent solution for the particle distribution now becomes

�.r; t/ D A exp

�
�2D

�20
t

�
exp

��
� r2

2�20

��
1 � 2D

�20
t

��
: (12.139)

Since nowhere a particular mode is used we have omitted the index n. The
solution (12.139) exhibits clearly the effect of the diffusion in two respects. The
particle density decays exponentially with the decrement 2D=�20 . At the same time
the distribution remains to be Gaussian although being broadened by diffusion. The
time dependent beam size � is given by

�2.t/ D �20

1 � 2D
�20

t
� �20

�
1C 2D

�20
t

�
; (12.140)

where we have assumed that the diffusion term is small .2D=�20 /t � 1. Setting
�2 D �2u D �uˇu for the plane u where ˇu is the betatron function at the observation
point of the beam size �u. The time dependent beam emittance is

�u D �u0 C 2D

ˇu
t (12.141)

or the rate of change

d�u

dt
D 2D

ˇu
D D� C D�

ˇu
: (12.142)

Due to the diffusion coefficient D we obtain a continuous increase of the beam
emittance in cases where no damping is available.

The Fokker–Planck diffusion equation provides a tool to describe the evolution
of a particle beam under the influence of conservative forces as well as statistical
processes. Specifically, we found that such a system has a stationary solution in
cases where there is damping. The stationary solution for the particle density is
a Gaussian distribution with the standard width of the distribution � given by the
diffusion constant and the damping decrement.

In particular, the emission of photons due to synchrotron radiation has the
properties of a Markoff process and we find therefore the particle distribution to be
Gaussian. Indeed we will see that this is true in all six dimensions of phase space.
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Obviously not every particle beam is characterized by the stationary solution of
the Fokker–Planck equation. Many modes contribute to the particle distribution and
specifically at time t D 0 the distribution may have any arbitrary form. However,
it has been shown that after a time long compared to the damping times only one
nontrivial stationary solution is left, the Gaussian distribution.

Problems

12.1 (S). Derive from the Vlasov equation an expression for the synchrotron
frequency while ignoring damping. A second rf-system with different frequency
can be used to change the synchrotron tune. Determine a system that would reduce
the synchrotron tune for the reference particle to zero while providing the required
rf-voltage at the synchronous phase. What is the relationship between both voltages
and phases? Is the tune shift the same for all particles?

12.2 (S). Formulate an expression for the equilibrium bunch length in a storage
ring with two rf-systems of different frequencies to control bunch length.

12.3 (S). Energy loss of a particle beam due to synchrotron radiation provides
damping. Show that energy loss due to interaction with an external electromagnetic
field does not provide beam damping.

12.4 (S). An arbitrary particle distribution of beam injected into a storage ring
damps out while a Gaussian distribution evolves with a standard width specific to
the ring design. What happens if a beam from another storage ring with a different
Gaussian distribution is injected? Explain why this beam changes its distribution to
the ring specific Gaussian distribution.

12.5 (S). Consider a 1.5 GeV electron storage ring with a bending field of
1.5 T. The circumference may be covered to 60 % by bending magnets. Let
the bremsstrahlung lifetime be 100 h, the Coulomb scattering lifetime 50 h and
the Touschek lifetime 60 h. Calculate the total beam lifetime including quantum
excitation as a function of aperture. How many “sigma’s” .A=�/ must the apertures
be in order not to reduce the beam lifetime by more than 10% due to quantum
excitation?

12.6. To reduce coupling instabilities between bunches of a multibunch beam it is
desirable to give each bunch a different synchrotron tune. This can be done, for
example, by employing two rf-systems operating at harmonic numbers h and hC 1.
Determine the ratio or required rf-voltages to split the tunes between successive
bunches by 
=
s.

12.7. Attempt to damp out the energy spread of a storage ring beam in the following
way. At a location where the dispersion function is finite one could insert a TM110-
mode cavity. Such a cavity produces accelerating fields which vary linear with
the transverse distance of a particle from the reference path. This together with a
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linear change in particle energy due to the dispersion would allow the correction
of the energy spread in the beam. Derive the complete Vlasov equation for such an
arrangement and discuss the six-dimensional dynamics. Show that it is impossible
to achieve a monochromatic stable beam.

12.8. Derive an expression for the diffusion due to elastic scattering of beam
particles on residual gas atoms. How does the equilibrium beam emittance of an
electron beam scale with gas pressure and beam energy? Determine an expression
for the required gas pressure to limit the emittance growth of a proton or ion beam
to no more than 1% per hour and evaluate numerical for a proton emittance of
10�9 rad-m at an energy of 300 GeV. Is this a problem if the achievable vacuum
pressure is 1 nTorr? Concentrating the allowable scattering to one location of 10 cm
length (gas jet as a target) in a ring of 4 km circumference, calculate the tolerable
pressure of the gas jet.

12.9. For future linear electron colliders it may be desirable to provide a switching
of the beams from one experimental detector to another. Imagine a linear collider
system with two experimental stations separated transversely by 50 m. To guide
the beams from the linear accelerators to the experimental stations use translating
FODO cells and determine the parameters required to keep the emittance growth of
a beam to less than 10% (beam emittance 10�11 rad-m at 500 GeV).
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Chapter 13
Equilibrium Particle Distribution*

The wide variety of particle beam applications require often very specific beam
characteristics in terms of say cross section, divergence, energy spread or pulse
structure. To a large extend such parameters can be adjusted by particular appli-
cation of focusing and other forces. In this chapter, we will discuss some of these
methods of beam optimization and manipulation.

13.1 Particle Distribution in Phase Space

The beam emittance of particle beams is primarily defined by characteristic
source parameters and source energy. Given perfect matching between different
accelerators and beam lines during subsequent acceleration, this source emittance
is reduced inversely proportional to the particle momentum by adiabatic damping
and stays constant in terms of normalized emittance. This describes accurately the
situation for proton and ion beams, for nonrelativistic electrons and electrons in
linear accelerators.

The beam emittance for relativistic electrons, however, evolves fundamentally
different in circular accelerators. Relativistic electron and positron beams passing
through bending magnets emit synchrotron radiation, a process that leads to
quantum excitation and damping. As a result, the original beam emittance at the
source is completely replaced by an equilibrium emittance that is unrelated to the
source characteristics.
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13.1.1 Diffusion Coefficient and Synchrotron Radiation

Emission of a photon causes primarily a change of the particle energy but the
characteristics of the particle motion is changed as well. Neither position nor the
direction of the particle trajectory is changed during the emission of photons. From
beam dynamics, however, we know that different reference trajectories exist for
particles with different energies. Two particles with energies cp0 and cp1 follow two
different reference trajectories separated at the position z along the beam transport
line by a distance

x D �.z/ cp1 � cp0
cp0

; (13.1)

where �.z/ is the dispersion function and cp0 the reference energy. Although
particles in general do not exactly follow these reference trajectories they do perform
betatron oscillations about them. The sudden change of the particle energy during
the emission of a photon leads to a sudden change in the reference path and thereby
to a sudden change in the betatron oscillation amplitude.

Following the discussion of the Fokker-Planck equation in Chap. 12, we may
derive a diffusion coefficient from these sudden changes in the coordinates. Using
normalized coordinates w D x=

p
ˇ, the change in the betatron amplitude at the

moment a photon of energy �� is emitted becomes

w D � D � �.z/p
ˇx

��

E0
: (13.2)

Similarly, the conjugate coordinate Pw Dpˇx x0̌ C ˛x xˇ changes by

 Pw D � D �pˇx�
0 ��
E0
� ˛xp

ˇx

�
��

E0
: (13.3)

The frequency at which these statistical variations occur is the same for � and �
and is equal to the number of photons emitted per unit time

N� D N� D N : (13.4)

From (13.2), (13.3) we get

�2 C �2 D
�
��

E0

�224�2
ˇx
C
 p

ˇx�
0 C ˛xp

ˇx

�

!235 D � ��
E0

�2
H ; (13.5)
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where we have defined a special lattice function

H D ˇx�
02 C 2 ˛x��

0C�x�
2 : (13.6)

We are interested in the average value of the total diffusion coefficient (12.101)

D D 1
2
hN .�2 C �2/iz D 1

2E20
hN h�2� iHiz ; (13.7)

where the average h� � � iz is to be taken along the whole transport line or the whole
circumference of a circular accelerator. Since photon emission does not occur
outside of bending magnets, the average is taken only along the length of the
bending magnets. To account for the variation in photon energies, we use the rms
value of the photon energies h�2� i. The theory of synchrotron radiation is discussed
in much detail in Chap. 23 and we take in the following paragraph only relevant
results of this theory.

The number of photons emitted per unit time with frequencies between ! and
!Cd! is simply the spectral radiation power at this frequency divided by the photon
energy „!: Here, we consider only bending magnet radiation and treat radiation
from insertion devices as perturbations. Of course, this approach must be modified
if a significant part of radiation comes from non-bending magnet radiation. The
spectral photon flux from a single electron is from (25.132) with the synchrotron
radiation power (24.34)

dn.!/

d!
D 1

„!
dP.!/

d!
D P�
„!2c

9
p
3

8�

Z 1

�

K5=3.x/ dx ; (13.8)

where � D !=!c and the critical photon energy defined in (24.49). The total photon
flux is by integration over all frequencies

N D P�
„!c
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Z 1

0

Z 1

�

K5=3.x/ dx d� (13.9)

which becomes with GR(6.561.16) and � .1=6/ � .1=6/ D 5�=3 after integration
by parts from AS(6.1.17)
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„!c

9
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3
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Z 1

0

K5=3.�/ d� D 15
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3

8

P�
„!c

: (13.10)

The rms value of the photon energy h�2� i can be derived in the usual way from
the spectral distribution n .!/ by

h�2� i D
„2
N
Z 1

0

!2n.!/ d! D 9
p
3P�„!c

8�N
Z 1

0

�2
Z 1

�

K5=3.x/ dx d� (13.11)
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and is after integration by parts

h �2� i D
P�„!c

N
9
p
3

8�

1

3

Z 1

0

�3K5=3.�/ d� : (13.12)

The integral of the modified Bessel’s function in (13.12) is from GR[6.561.16]
4 � .2 C 5

6
/ � .2 � 5

6
/ where we use again AS(6.1.17) for �

�
5
6

�
� .1

6
/ D 2� .

Collecting all terms

N h �2� i D
55

24
p
3

P� „!c (13.13)

and the diffusion coefficient (13.7) becomes

D D 1
2
hN .�2 C �2/iz D 55

48
p
3

hP� „!cH iz
E20

: (13.14)

The stationary solution for the Fokker-Planck equation has been derived describ-
ing the equilibrium particle distribution in phase space under the influence of
quantum excitation and damping. In all six dynamical degrees of freedom the
equilibrium distribution is a Gaussian distribution and the standard value of the
distribution width is determined by the damping time and the respective diffusion
coefficient. In this chapter, we will be able to calculate quantitatively the diffusion
coefficients and from that the beam parameters.

13.1.2 Quantum Excitation of Beam Emittance

High energy electron or positron beams passing through a curved beam transport
line suffer from quantum excitation which is not compensated by damping since
there is no acceleration. In Sect. 12.3.3 we have discussed this effect and found
the transverse beam emittance to increase linear with time (12.142) and we get
with (13.14)

d�x

cdt
D d�x
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D 55

24
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re „c
mc2

�5
�H
	3

�
z

: (13.15)

There is a strong energy dependence of the emittance increase along the beam
transport line and the effect becomes significant for high beam energies as proposed
for linear collider systems. Since the emittance blow up depends on the lattice
function H, we would choose a very strong focusing lattice to minimize the dilution
of the beam emittance. For this reason, the beam transport system for the linear
collider at the Stanford Linear Accelerator Center [1] is composed of very strongly
focusing combined bending magnets.
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Particle distributions become modified each time we inject a beam into a circular
accelerator with significant synchrotron radiation. Arbitrary particle distributions
can be expected from injection systems before injection into a circular accelerator. If
the energy in the circular accelerator is too small to produce significant synchrotron
radiation the particular particle distribution is preserved according to Liouville’s
theorem while all particles merely rotate in phase space as discussed in Sect. 12.1.
As the beam energy is increased or if the energy is sufficiently high at injection
to generate significant synchrotron radiation, all modes in the representation of the
initial particle distribution vanish within a few damping times while only one mode
survives or builds up which is the Gaussian distribution with a standard width given
by the diffusion constant and the damping time. In general, any deviation from this
unique equilibrium solution and be it only a mismatch to the correct orientation of
the beam in phase space will persist for a time not longer than a few damping times.

13.2 Equilibrium Beam Emittance

In circular electron accelerators, as in electron storage rings, quantum excitation
is counteracted by damping. Since quantum excitation is not amplitude dependent
but damping is, there is an equilibrium beam emittance when both effects are
equally strong. In the presence of quantum fluctuations Liouville’s theorem is not
applicable strictly anymore. In the case of an electron beam in equilibrium the
phase space density for a beam in equilibrium is preserved, although in a different
way. While Liouville’s theorem is based on Hamiltonian mechanics and demands
that no particle should escape its phase space position we allow in the case of an
electron beam in equilibrium that a particle may escape its phase space position but
be replaced instantly by another particle due to damping.

13.2.1 Horizontal Equilibrium Beam Emittance

The horizontal beam size is related to damping and diffusion coefficient
from (12.113) like

�2x
ˇx
D �xDx : (13.16)

Damping times have been derived in Sect. 12.2 and with (13.7) the horizontal
beam size �x at a location where the value of the betatron function is ˇx becomes

�2x
ˇx
D hN h�

2
� iHiz

2E0 JxhP� iz : (13.17)
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The ratio �2x =ˇx is consistent with our earlier definition of the beam emittance.
For a particle beam which is in equilibrium between quantum excitation and
damping, this ratio is defined as the equilibrium beam emittance being equivalent
to the beam emittance for all particles within one standard value of the Gaussian
distribution. For further simplification, we make use of the expression (13.13) and
get with the radiation power (24.34) and the critical frequency (24.49) the horizontal
beam emittance equation

�x D Cq�
2 hH=j	3jiz

Jx h1=	2iz ; (13.18)

where we adopted Sands’ [2] definition of a quantum excitation constant

Cq D 55

32
p
3

„c
mc2
D 3:84 � 10�13 m: (13.19)

The equilibrium beam emittance scales like the square of the beam energy
and depends further only on the bending radius and the lattice function H. From
the definition of H the horizontal equilibrium beam emittance depends on the
magnitude of the dispersion function and can therefore be adjusted to small or large
values depending on the strength of the focusing for the dispersion function.

13.2.2 Vertical Equilibrium Beam Emittance

The vertical beam emittance follows from (13.18) considering that the dispersion
function and therefore H vanishes. Consequently, the equilibrium vertical beam
emittance seems to be zero because there is only damping but no quantum
excitation. In this case we can no longer ignore the fact that the photons are emitted
into a finite although very small angle about the forward direction of particle
propagation. Each such emission causes both a loss in the particle energy and a
transverse recoil deflecting the particle trajectory. The photons are emitted typically
within an angle 1=� generating a transverse kick without changing the betatron
oscillation amplitude. With ıy D 0 and ıy0 D 1

�

��
E0

, we get for the statistical
variations

�2 D 0 ;
�2 D ˇy

1
�2

�
��
E0

�
2 :

(13.20)

Following a derivation similar to that for the horizontal beam emittance, we get
for the vertical beam emittance equation

�y D Cq
hˇy=j	3jiz
Jyh1=	2iz : (13.21)
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This is the fundamentally lower limit of the equilibrium beam emittance due
to the finite emission angle of synchrotron radiation. For an isomagnetic ring the
vertical beam emittance

�y D Cq
hˇyiz
Jy j	j (13.22)

does not depend on the particle energy but only on the bending radius and the
average value of the betatron function. In most practical circular accelerator designs,
both the bending radius and the betatron function are of similar magnitude and the
fundamental emittance limit therefore is of the order of Cq D 10�13 radian meter,
indeed very small compared to actually achieved beam emittances.

The assumption that the vertical dispersion function vanishes in a flat circular
accelerator is true only for an ideal ring. Dipole field errors, quadrupole misalign-
ments and any other source of undesired dipole fields create a vertical closed orbit
distortion and an associated vertical dispersion function. This vertical dispersion
function, often called spurious dispersion function, is further modified by orbit
correction magnets but it is not possible to completely eliminate it because the
location of dipole errors are not known.

Since the diffusion coefficient D is quadratic in the dispersion function (13.7) we
get a contribution to the vertical beam emittance from quantum excitation similar
to that in the horizontal plane. Indeed, this effect on the vertical beam emittance is
much larger than that due to the finite emission angle of photons discussed above
and is therefore together with coupling the dominant effect in the definition of the
vertical beam emittance.

The contribution to the vertical beam emittance is in analogy to the derivation
leading to (13.18)

�y D Cq�
2 hHy=j	3jiz

Jyh1=	2iz ; (13.23)
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z

: (13.24)

To minimize this effect, orbit correction schemes must be employed which not
only correct the equilibrium orbit but also the perturbation to the dispersion function.
Of course, the same effect with similar magnitude occurs also in the horizontal plane
but is in general negligible compared to ordinary quantum excitation.
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13.3 Equilibrium Energy Spread and Bunch Length

The statistical processes caused by the emission of synchrotron radiation photons
affect not only the four transverse dimensions of phase space but also the energy-
time phase space. Particles orbiting in a circular accelerator emit photons with a
statistical distribution of energies while only the average energy loss is replaced in
the accelerating cavities.

13.3.1 Equilibrium Beam Energy Spread

This leaves a residual statistical distribution of the individual particle energies
which we have derived in Sect. 12.3 to be Gaussian just like the transverse particle
distribution with a standard width given by (12.121). The conjugate coordinate is the
“time” w D ˝

�c
� where � is the deviation in time of a particle from the synchronous

particle, and � the energy deviation of a particle from the reference energy E0.
The emission of a photon will not change the position of the particle in time and

therefore � D 0. The conjugate coordinate being the particle energy will change
due to this event by the magnitude of the photon energy and we have � D ��=E0.
Comparing with (13.5), we note that we get the desired result analogous to the
transverse phase space by setting H D 1 and using the correct damping time for
longitudinal motion. The equilibrium energy spread becomes then from (12.121) in
analogy to (13.18)

�2�

E20
D Cq�

2 hj1=	3jiz
J�h1=	2iz ; (13.25)

which in a separated function lattice depends only on the particle energy and the
bending radius. In a fully or partially combined function lattice, the partition number
J� can be modified providing a way to vary the energy spread.

13.3.2 Equilibrium Bunch Length

There is also a related equilibrium distribution in the longitudinal dimension which
defines the length of the particle bunch. This distribution is also Gaussian and the
standard bunch length is from (12.123), (12.124)

�` D cˇ
j�cj
˝s

��

E0
: (13.26)
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The equilibrium bunch length not only depends on the particle energy and the
bending radius but also on the focusing lattice through the momentum compaction
factor and the partition number as well as on rf-parameters included in the syn-
chrotron oscillation frequency ˝s. To exhibit the scaling, we introduce lattice and
rf-parameters into (13.26) to get with (13.25) and the definition of the synchrotron
frequency (9.32) an expression for the equilibrium bunch length

�2` D
2�Cq

.mc2/2
�cE30R

2

J�he OV0 cos s

hj1=	3jiz
h1=	2iz ; (13.27)

where R is the average radius of the ring. The bunch length can be modified
through more parameters than any other characteristic beam parameter in the six-
dimensional phase space. Lattice design affects the resulting bunch length through
the momentum compaction factor and the partition number. Strong focusing results
in a small value for the momentum compaction factor and a small bunch length.
Independent of the strength of the focusing, the momentum compaction factor can
in principle be adjusted to any value including zero and negative values by allowing
the dispersion function to change sign along a circular accelerator because the
momentum compaction factor is the average of the dispersion function ˛c D h�=	i.
In this degree of approximation the bunch length could therefore be reduced to
arbitrarily small values by reducing the momentum compaction factor. However,
close to the transition energy phase focusing to stabilize synchrotron oscillations is
lost.

Introduction of gradient magnets into the lattice modifies the partition numbers
as we have discussed in Sect. 12.2.1. As a consequence, both, the energy spread
and bunch length increase or decrease at the expense of the opposite effect on
the horizontal beam emittance. The freedom to adjust any of these three beam
parameters in this way is therefore limited but nonetheless an important means to
make small adjustments if necessary. Obviously, the rf-frequency as well as the
rf-voltage have a great influence on the bunch length. The bunch length scales
inversely proportional to the square root of the rf-frequency and is shorter for higher
frequencies. Generally, no strong reasons exist to choose a particular rf-frequency
but might become more important if control of the bunch length is important for the
desired use of the accelerator. The bunch length is also determined by the rate of
change of the rf-voltage in the accelerating cavities at the synchronous phase

PV. s/ D d

d 
OV sin 

ˇ̌̌̌
 D s

D OV cos s : (13.28)

For a single frequency rf-system the bunch length can be shortened when the
rf-voltage is increased. To lengthen the bunch the rf-voltage can be reduced up to a
point where the rf-voltage would fail to provide a sufficient energy acceptance.
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13.4 Phase-Space Manipulation

The distribution of particles in phase space is given either by the injector character-
istics and injection process or in the case of electron beams by the equilibrium of
quantum excitation due to synchrotron radiation and damping. The result of these
processes are not always what is desired and it is therefore useful to discuss some
method to modify the particle distribution in phase space within the validity of
Liouville’s theorem.

13.4.1 Exchange of Transverse Phase-Space Parameters

In beam dynamics we are often faced with the desire to change the beam size in
one of the six phase-space dimensions. Liouville’s theorem tells us that this is not
possible with macroscopic fields unless we let another dimension vary as well so as
not to change the total volume in six-dimensional phase space.

A very simple example of exchanging phase-space dimensions is the increase or
decrease of one transverse dimension at the expense of its conjugate coordinate. A
very wide and almost parallel beam, for example, can be focused to a small spot
size where, however, the beam divergence has become very large. Obviously, this
process can be reversed too and we describe such a process as the rotation of a beam
in phase space or as phase-space rotation.

A more complicated but often very desirable exchange of parameters is the
reduction of beam emittance in one plane at the expense of the emittance in the
other plane. Is it, for example, possible to reduce say the vertical beam emittance to
zero at the expense of the horizontal emittance? Although Liouville’s theorem would
allow such an exchange other conditions in Hamiltonian theory will not allow this
kind of exchange in multidimensional phase space. The condition of symplecticity is
synonymous with Liouville’s theorem only in one dimension. For n dimensions the
symplecticity condition imposes a total of n.2n � 1/ conditions on the dynamics
of particles in phase space [3]. These conditions impose an important practical
limitation on the exchange of phase space between different degrees of freedom.
Specifically, it is not possible to reduce the smaller of two phase-space dimensions
further at the expense of the larger emittance, or if the phase space is the same in
two dimensions neither can be reduced at the expense of the other.

13.4.2 Bunch Compression

Longitudinal phase space can be exchanged also by special application of magnetic
and rf-fields. Specifically, we often face the problem to compress the bunch to a very
short length at the expense of energy spread.
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For linear colliders the following problem exists. Very small transverse beam
emittances can be obtained only in storage rings specially designed for low equilib-
rium beam emittances. Therefore, an electron beam is injected from a conventional
source into a damping ring specially designed for low equilibrium beam emittance.
After storage for a few damping times the beam is ejected from the damping ring
again and transferred to the linear accelerator to be further accelerated. During the
damping process in the damping ring, however, the bunch length will also reach its
equilibrium value which in practical storage rings is significantly longer than could
be accepted in, for example, an S-band or X-band linear accelerator. The bunch
length must be shortened.

This is done in a specially designed beam transport line between the damping
ring and linear accelerator consisting of a non-isochronous transport line and an
accelerating section installed at the beginning of this line (Fig. 13.1).

The accelerating section is phased such that the center of the bunch or the
reference particle does not see any field while the particles ahead of the reference
particle are accelerated and the particles behind are decelerated. Following this
accelerating section, the particles travel through a curved beam transport system
with a finite momentum compaction factor ˛c D 1

L0

R L0
0

�

	
dz where L0 is the length

of the beam transport line. Early particles within a bunch, having been accelerated,
follow a longer path than the reference particles in the center of the bunch while the
decelerated particles being late with respect to the bunch center follow a shortcut.
All particles are considered highly relativistic and the early particles fall back toward
the bunch center while late particles catch up with the bunch center. If the parameters
of the beam transport system are chosen correctly the bunch length reaches its
minimum value at the desired location at, for example, the entrance of the linear
accelerator. From that point on the phase-space rotation is halted because of lack of
momentum compaction in a straight line. Liouville’s theorem is not violated because
the energy spread in the beam has been increased through the phase dependent
acceleration in the bunch-compression system.

δ
τ

δ
τ

τ
τ

δ
δ

δ
τ
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accelerating
section

chromatic bunch
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dispersion
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Fig. 13.1 Bunch-compressor system (schematic)
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Formulating this bunch compression in more mathematical terms, we start from
a particle distribution in longitudinal phase space described by the phase ellipse

O�20 �2 C O�20�2 D O�20 O�20 D a2 ; (13.29)

where a is the longitudinal emittance and � is the particle location along the bunch
measured from the bunch center such that � > 0 if the particle trails the bunch
center. In the first step of bunch compression, we apply an acceleration

� D �eV0 sin!rf� � �eV0 !rf� : (13.30)

The particle energy is changed according to its position along the bunch. Replacing
� in (13.29) by � C� and sorting we get

O�20 �2 � 2 O�20 eV0 !rf �� C . O�20 e2V2
0 !

2
rf C O�20/ �2 D a2 ; (13.31)

where the appearance of the cross term indicates the rotation of the ellipse. The
second step is the actual bunch compression in a non-isochronous transport line of
length L and momentum compaction z=L D �c �=.cp0/. Traveling though this
beam line, a particle experiences a shift in time of

� D z

ˇc
D �cL

ˇc

�

cp0
: (13.32)

Again, the time � in (13.31) is replaced by � C� to obtain the phase ellipse at
the end of the bunch compressor of length L. The shortest bunch length occurs when
the phase ellipse becomes upright. The coefficient for the cross term must therefore
be zero giving a condition for minimum bunch length

eV0 D �cp0 ˇc

L�c!rf
: (13.33)

From the remaining coefficients of �2 and �2, we get the bunch length after
compression

O� D O�0
eVrf !rf

(13.34)

and the energy spread

O� D O�0 !rf eVrf ; (13.35)

where we used the approximation O�0 eV0 !rf � O�0. This is justified because we must
accelerate particles at the tip of the bunch by much more than the original energy
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spread to obtain efficient bunch compression. Liouville’s theorem is obviously kept
intact since

O� O� D O�0 O�0 : (13.36)

For tight bunch compression, a particle beam with small energy spread is required
as well as an accelerating section with a high rf-voltage and frequency. Of course,
the same parameters contribute to the increase of the energy spread which can
become the limiting factor in bunch compression. If this is the case, one could
compress the bunch as much as is acceptable followed by acceleration to higher
energies to reduce the energy spread by adiabatic damping, and then go through a
bunch compression again.

The momentum compaction factor ˛c D 1
L0

R �

	
dz is often referred to as the

R56 of the compression lattice. This designation comes from the TRANSPORT
nomenclature where a 6 � 6-transformation matrix is defined for the variables
.x; x0; y; y0; s; ı/ : Here s is the individual particle path length and ı the relative
energy deviation. The correlation of s with ı is the R56 element and in linear
approximation s D s0CR56ı:Recalling the definition of the momentum compaction
factor ˛c DL=L0

p=p0
we recognize the identity ˛c D 1

L0

R �

	
dz D R56

L0
:

13.4.3 Alpha Magnet

Bunch compression requires two steps. First, an accelerating system must create a
correlation between particle energy and position. Then, we utilize a non-isochronous
magnetic transport line to rotate the particle distribution in phase space until the
desired bunch length is reached.

The first step can be eliminated in the case of an electron beam generated in an
rf-gun. Here the electrons emerge from a cathode which is inserted into an rf-cavity
[4]. The electrons are accelerated immediately where the acceleration is a strong
function of time because of the rapidly oscillating field. In Fig. 13.2 the result from
computer simulations of the particle distribution in phase space [5] is shown for an
electron beam from a 3 GHz rf-gun [6, 7] (Fig. 13.3).

For bunch compression we use an alpha magnet which got its name from
the alpha like shape of the particle trajectories. This magnet is made from a
quadrupole split in half where the other half is simulated by a magnetic mirror plate
at the vertical midplane. While ordinarily a particle beam would pass through a
quadrupole along the axis or parallel to this axis this is not the case in an alpha
magnet. The particle trajectories in an alpha magnet have very unique properties
which were first recognized by Enge [8]. Most obvious is the fact that the entrance
and exit point can be the same for all particles independent of energy. The same
is true also for the total deflection angle. Borland [9] has analyzed the particle
dynamics in an alpha magnet in detail and we follow his derivation here. Particles
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entering the alpha magnet fall under the influence of the Lorentz force

FL D eEC eŒv � B�; (13.37)
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Fig. 13.4 Alpha magnet and
particle trajectories
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where we ignore the electrical field. Replacing the magnetic field by its gradient
B D .g u3; 0; g u1/; we get in the coordinate system of Fig. 13.4 the equation of
motion,

d2u
dz2
D ��2

�
du
dz
� u

�
; (13.38)

where the scaling factor

�2
�
m�2� D e g

mc2ˇ�
D 5:86674� 106 g.T=m/

ˇ�
; (13.39)

and the coordinate vector u D .u1; u2; u3/.
By introducing normalized coordinates U D � u and path length S D �z,

Eq. (13.38) becomes

d2U
dS2
D �

�
dU
dS
� .U3; 0;U1/

�
: (13.40)

The remarkable feature of (13.40) is the fact that it does not exhibit any
dependence on the particle energy or the magnetic field. One solution for (13.40) is
valid for all operating conditions and beam energies. The alpha shaped trajectories
are similar to each other and scale with energy and field gradient according to the
normalization introduced above.

Equation (13.40) can be integrated numerically and in doing so, Borland obtains
for the characteristic parameters of the normalized trajectory in an alpha magnet [9]

�˛ D 0:71052 rad ; S˛ D 4:64210;
D 40:70991 deg ; OU1 D 1:81782; (13.41)
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where �˛ is the entrance and exit angle with respect to the magnet face, S˛ is the
normalized path length and OU1 is the apex of the trajectory in the alpha magnet.
We note specifically that the entrance and exit angle �˛ is independent of beam
energy and magnetic field. It is therefore possible to construct a beam transport line
including an alpha magnet.

Upon introducing the scaling factor (13.39), (13.41) becomes equation

s˛.m/ D S˛
�
D 0:19165

q
ˇ�

g .T=m/ ;

Ou1.m/ D OU1
�
D 0:07505

q
ˇ�

g .T=m/ :
(13.42)

Bunch compression occurs due to the functional dependence of the path length
on the particle energy. Taking the derivative of (13.42) with respect to the particle
momentum Qp0 D ˇ� , one gets the compression equation

ds˛.m/

dQp0
D 0:07505p

2 g .T=m/ Qp0

: (13.43)

For bunch compression, higher momentum particles must arrive first because
they follow a longer path and therefore fall back with respect to later particles. For
example, an electron beam with the phase-space distribution from Fig. 13.2 becomes
compressed as shown in Fig. 13.5.

Because of the small longitudinal emittance of the beam it is possible to generate
very short electron bunches of some 100 f-sec (rms) duration which can be used to
produce intense coherent far infrared radiation [10].

Fig. 13.5 Particle
distribution in longitudinal
phase space after
compression in an alpha
magnet
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13.5 Polarization of a Particle Beam

For high energy physics experimentation, it is sometimes important to have beams
of transversely or longitudinally polarized particles. It is possible, for example, to
create polarized electron beams by photoemission from GaAs cathodes [11]. From
a beam dynamics point of view, we are concerned with the transport of polarized
beams through a magnet system and the resulting polarization status. The magnetic
moment vector of a particle rotates about a magnetic field vector. An electron with
a component of a longitudinal polarization traversing a vertical dipole field would
experience a rotation of the longitudinal polarization about the vertical axis. On the
other hand, the vertical polarization would not be affected while passing through a
horizontally bending magnet. This situation is demonstrated in Fig. 13.6.

Similarly, longitudinal polarization is not affected by a solenoid field. In linear
collider facilities, specific spin rotators are introduced to manipulate the electron
spin in such a way as to preserve beam polarization and obtain the desired spin
direction at an arbitrarily located collision point along the beam transport line. For
the preservation of beam polarization, it is important to understand and formulate
spin dynamics.

Electron and positron beams circulating for a long time in a storage ring
can become polarized due to the reaction of continuous emission of transversely
polarized synchrotron radiation. The evolution of the polarization has been studied
in detail by several researchers [12–15] and the polarization time is given by [15]

1

�pol
D 5
p
3

8

rcc2„�5
mc2	3

(13.44)

with a theoretically maximum achievable polarization of 92.38 %. The polarization
time is a strong function of beam energy and is very long for low energies. At
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Fig. 13.6 Precession of the particle spin in a transverse or longitudinal magnetic field
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energies of several GeV, however, this time becomes short compared to the storage
time of an electron beam in a storage ring.

This build up of polarization is counteracted by nonlinear magnetic field errors
which cause precession of the spin depending on the betatron amplitude and
energy of the particle thus destroying polarization. Again, we must understand spin
dynamics to minimize this depolarization. Simple relations exist for the rotation of
the spin while the particle passes through a magnetic field. To rotate the spin by a
magnetic field, there must be a finite angle between the spin direction and that of the
magnetic field. The spin rotation angle about the axis of a transverse field depends
on the angle between the spin direction � s .j� sj D 1/ and magnetic field B? and is
given by [14]

 ? D C?
�
1C 1

�

�
j� s � B?j ` ; (13.45)

where

�g D g � 2
2
D 0:00115965 ; (13.46)

C? D e�g

mc2
D 0:0068033 �T�1m�1� (13.47)

g the gyromagnetic constant and B?` the integrated transverse magnetic field
strength. Apart from a small term 1=� , the spin rotation is independent of the energy.
In other words, a spin component normal to the field direction can be rotated by 90 ı
while passing though a magnetic field of 2.309 Tm and it is therefore not important
at what energy the spin is rotated.

Equation (13.45) describes the situation in a flat storage ring with horizontal
bending magnets only unless the polarization of the incoming beam is strictly
vertical. Any horizontal or longitudinal polarization component would precess while
the beam circulates in the storage ring. As long as this spin is the same for
all particles the polarization would be preserved. Unfortunately, the small energy
dependence of the precession angle and the finite energy spread in the beam would
wash out the polarization. On the other hand the vertical polarization of a particle
beam is preserved in an ideal storage ring. Field errors, however, may introduce a
depolarization effect. Horizontal field errors from misalignments of magnets, for
example, would rotate the vertical spin. Fortunately, the integral of all horizontal
field components in a storage ring is always zero along the closed orbit and the net
effect on the vertical polarization is zero. Nonlinear fields, however, do not cancel
and must be minimized to preserve the polarization.

A transverse spin can also be rotated about the longitudinal axis of a solenoid
field and the rotation angle is

 k D e

E

�
1C �g

�

1C �
� ˇ̌

� s � Bk
ˇ̌
` (13.48)
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In a solenoid field it is therefore possible to rotate a horizontal polarization
into a vertical polarization, or vice versa. Spin rotation in a longitudinal field is
energy dependent and such spin rotations should therefore be done at low energies
if possible.

The interplay between rotations about a transverse axis and the longitudinal
axis is responsible for a spin resonance which destroys whatever beam polarization
exists. To show this, we assume a situation where the polarization vector precesses
just by 2� , or an integer multiple n thereof, while the particle circulates once around
the storage ring. In this case  ? D n 2� , eB?`=E D 2� , and we get from (13.45)

n D �g.1C �/ : (13.49)

For n D 1, resonance occurs at a beam energy of E D 440:14MeV. At this
energy any small longitudinal field interacts with the polarization vector at the same
phase, eventually destroying any transverse polarization. This resonance occurs at
equal energy intervals of

En.MeV/ D 440:14C 440:65.n� 1/ (13.50)

and can be used in storage rings as a precise energy calibration by observing the loss
of polarization due to spin-resonances at En while the beam energy is changed.

In Fig. 13.7 spin dynamics is shown for the case of a linear collider where
a longitudinally polarized beam is desired at the collision point. For example, a
longitudinally polarized beam is generated at the source and accelerated in a linear
accelerator. No rotation of the polarization direction occurs because no magnetic
fields are involved yet. At an energy of 1.2 GeV the beam is transferred to a damping
ring to reduce the beam emittance. To preserve polarization in the damping ring

Fig. 13.7 Spin manipulation
during beam transfer from
linear accelerator to damping
ring and back
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the polarization must be vertical. In Fig. 13.7, we assume a longitudinal polarized
beam coming out of the linear accelerator. A series of transverse fields amounting
to 5 � 2:309 Tm creating a total deflection angle of 5 � 32:8ı: The longitudinal
spin from the linac is rotated by 5 � 90ı to a horizontal spin as shown in Fig. 13.7
by the open arrows. A solenoid of 6.34 Tm rotates this spin about the beam axis to
become a vertical spin which survives the storage time in the damping ring. After
emittance reduction in a few damping times the beam is ejected again with vertical
spin. Now we have to decide which spin orientation we need at the collision point of
the linear collider. there are two cases. In the first case (left side of the ejected beam
in Fig. 13.7 a solenoid of 6.34 Tm rotates the spin to become transverse followed
by a 32:8ı bending section to make the spin longitudinal. This beam is injected
back into the linac for collisions with longitudinal spin. of course, any bending
downstream must be carefully implemented to preserve the spin. In the second case
we turn the first solenoid after ejection off and the beam with vertical spin arrives at
the second solenoid unaffected by the 32:8ı bend. in the second solenoid the spin is
rotated to become a horizontal spin which is then reinjected into the linac. Note in
both cases there is some spin rotation after the second solenoid yet in both cases the
effect on the spin is just what is desired to have a transverse or longitudinal spin in
the linac.

To rotate the longitudinal into a horizontal spin, followed by a solenoid field
which rotates the horizontal into a vertical spin, is used in the transport line to the
damping ring to obtain the desired vertical spin orientation. This orientation is in
line with all magnets in the damping ring and the polarization can be preserved.

To obtain the desired rotation in the beam transport magnets at a given energy,
the beam must be deflected by a specific deflection angle which is from (13.45)

� D e

ˇE
B?` D  ?

�g

1

1C � : (13.51)

Coming out of the damping ring the beam passes through a combination of two
solenoids and two transverse field sections. Depending on which solenoid is turned
on, we end up with a longitudinal or transverse polarization at the entrance of the
linac. By the use of both solenoids any polarization direction can be realized.

Problems

13.1 (S). Show that the horizontal damping partition number is negative in a fully
combined function FODO lattice as employed in older synchrotron accelerators.
Why, if there is horizontal anti-damping in such synchrotrons, is it possible to retain
beam stability during acceleration? What happens if we accelerate a beam and keep
it orbiting in the synchrotron at some higher energy?
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13.2. Use the high energy, linear part of the particle distribution in Fig. 13.2 and
specify an alpha magnet to achieve best bunch compression at the observation point
2 m downstream from the magnet. By how much is the bunchlength increased if you
now also include the variation of velocities. What are the alpha magnet parameters?
Sketch the particle distribution at the entrance and exit of the alpha magnet.

13.3. Specify relevant parameters for an electron storage ring made of FODO cells
with the goal to produce a very short equilibrium bunch length of �` D 1mm. Use
superconducting cavities for bunch compression with a maximum field of 10 MV/m
and a total length of not more than 10% of the ring circumference.

13.4. Describe spin rotations in bending magnets in matrix formulation.

13.5. Consider an electron storage ring for an energy of 30 GeV and a bending
radius of 	 D 500m and calculate the polarization time. The vertical polarization
will be perturbed by spurious dipole fields. Use statistical methods to calculate the
rms change of polarization direction per unit time and compare with the polarization
time. Determine the alignment tolerances to get a polarized beam.
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Chapter 14
Beam Emittance and Lattice Design

The task of lattice design for proton and ion beams can be concentrated to a
pure particle beam optics problem. Transverse as well as longitudinal emittances
of such beams are constants of motion and therefore do not depend on the
particular design of the beam transport or ring lattice. This situation is completely
different for electron and positron beams in circular accelerators where the emission
of synchrotron radiation determines the particle distribution in six-dimensional
phase space. The magnitude and characteristics of synchrotron radiation effects
can, however, be manipulated and influenced by an appropriate choice of lattice
parameters. We will discuss optimization and scaling laws for the transverse beam
emittance of electron or positron beams in circular accelerators.

Originally electron storage rings have been designed, optimized and constructed
for the sole use as colliding beam facilities for high energy physics. The era of
electron storage rings for experimentation at the very highest particle energies
has, however, reached a serious limitation due to excessive energy losses into
synchrotron radiation. Of course, such a limitation does not exist for proton and ion
beams with particle energies up to the order of some tens of TeV’s and storage rings
are therefore still the most powerful and productive research tool in high-energy
physics. At lower and medium-energies electron storage rings with specially high
luminosity still serve as an important research tool in high energy physics to study
more subtle phenomena which could not be detected on earlier storage rings with
lower luminosity like �- and B-factories.

To overcome the energy limitation in electron colliding beam facilities, the idea
of linear colliders which avoids energy losses into synchrotron radiation [1, 2]
becomes increasingly attractive to reach ever higher center of mass energies for
high-energy physics. Even though electron storage rings are displaced by this
development as the central part of a colliding beam facility they play an important
role for linear colliders in the form of damping rings to prepare very small emittance
particle beams.
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The single purpose of electron storage rings for high-energy physics has been
replaced by a multitude of applications of synchrotron radiation from such rings in
a large variety of basic and applied research disciplines. It is therefore appropriate
to discuss specific design and optimization criteria for electron storage rings.

Synchrotron radiation sources have undergone significant transitions and modi-
fications over past years. Originally, most experiments with synchrotron radiation
were performed parasitically on high energy physics colliding beam storage rings.
Much larger photon fluxes could be obtained from such sources compared to any
other source available. The community of synchrotron radiation users grew rapidly
and so did the variety of applications and fields. By the time the usefulness of
storage rings for high energy physics was exhausted some of these facilities were
turned over to the synchrotron radiation community as fully dedicated radiation
sources. Those are called first generation synchrotron radiation sources. They were
not optimized for minimum beam emittance and maximum photon beam brightness.
Actually, the optimization for high energy physics called for a maximum beam
emittance to maximize collision rates for elementary particle events. The radiation
sources were mostly bending magnets although the development and use of insertion
devices started in these rings. Typically, the beam emittance is in the 100s of
nanometer.

As the synchrotron radiation community further grew, funds became available
to construct dedicated radiation facilities. Generally, these rings were designed as
bending magnet sources but with reduced beam emittance (
 100 nm) to increase
photon brightness. The design emittances were much smaller than those in first
generation rings but still large by present day standards. The use of insertion devices
did not significantly affect the storage ring designs yet. These rings are called second
generation rings.

Third generation synchrotron radiation sources were and are being designed,
constructed and operated now. These rings are specifically designed for insertion
device radiation with minimum beam emittances below 20 nm down to 0.5 nm for
maximum photon beam brightness. As such, they exhibit a large number of magnet-
free insertion straight sections.

Finally, fourth generation synchrotron radiation sources are the latest develop-
ment for synchrotron radiation sources. Such sources are based on linear accelerator
technology and the principle of single pass FELs where a high energy and high
quality electron beam passing through a long undulator produces coherent undulator
radiation in the X-ray regime.

Whatever the applications, in most cases it is the beam emittance which will
ultimately determine the usefulness of the storage ring design for a particular
application. We will derive and discuss physics and scaling laws for the equilibrium
beam emittance in storage rings while using basic phenomena and processes of
accelerator physics as derived in previous sections.
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14.1 Equilibrium Beam Emittance in Storage Rings

The equilibrium beam emittance in electron storage rings is determined by the
counteracting effects of quantum excitation and damping as has been discussed
earlier. Significant synchrotron radiation occurs only in bending magnets and the
radiation from each bending magnet contributes independently to both quantum
excitation and damping. The contribution of each bending magnet to the equilibrium
beam emittance can be determined by calculating the average values for hˇ̌�3ˇ̌Hi and
h�2i by

˝j�j 3H˛z D 1

C

Z C

0

ˇ̌
�3 .z/

ˇ̌H.z/ dz ; (14.1)

where H is defined by (11.52) and C is the circumference of the storage ring.
Obviously, this integral receives contributions only where there is a finite bending
radius and therefore the total integral is just the sum of individual integrals over each
bending magnet.

14.1.1 FODO Lattice

We consider here briefly the FODO lattice because of its simplicity and its ability to
give us a quick feeling for the scaling of beam emittance with lattice parameters. The
beam emittance can be manipulated at design time by adjusting hHi to the desired
value. To calculate the average value hHi in a FODO lattice is somewhat elaborate.
Here, we are interested primarily in the scaling of the beam emittance with FODO
lattice parameters. Recollecting the results for the symmetric solutions of the lattice
functions in a FODO lattice (10.3), (10.5), (10.74) we notice the following scaling
laws

ˇ / L ; (14.2)

ˇ0 / L0 ; (14.3)

� / L2=	 ; (14.4)

�0 / L=	 ; (14.5)

where L is the distance between the centers of adjacent quadrupoles. All three terms
in the function H.z/ D �.z/ �2C 2˛.z/ ��0C ˇ.z/ �02 scale in a similar fashion like

fH.z/g D
�
1

L

L4

	
I L0

L2

	

L

	
I L

L2

	



/ L3

	2
(14.6)
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and the equilibrium emittance for a FODO lattice scales then like

�x D Cq�
2 hH=	3i
h1=	2i / �

2 L3

	3
/ �2�3 ; (14.7)

where� D `b=	 is the deflection angle in each bending magnet. The proportionality
factor depends on the beam focusing. A minimum can be reached for a focal length
of j f j � 1:06 L in each half-quadrupole resulting in a minimum beam emittance
achievable in a FODO lattice given in practical units by

�.rad m/ � 10�11E2.GeV/�3.deg3/ ; (14.8)

where ' D 2�=NM, NM the number of bending magnets in the ring and NM = 2 the
total number of FODO cells in the ring. This result is significant because it exhibits
a general scaling law of the beam emittance proportional to the square of the beam
energy and the cube of the deflecting angle in each bending magnet, which is valid
for all lattice types. The coefficients, though, vary for different lattices. While the
beam energy is primarily driven by the desired photon spectrum, we find that high
brightness photon beams from low emittance electron beams require a storage ring
design composed of many lattice cells with a small deflection angle per magnet. Of
course, there are some limits on how far one can go with this concept due to other
limitations, not the least being size and cost of the ring which both grow with the
number of lattice cells.

14.1.2 Minimum Beam Emittance

While the cubic dependence of the beam emittance on the bending angle is a
significant design criterion, we discuss here a more detailed optimization strategy.
The emittance is determined by the beam energy, the bending radius and the
H-function. Generally, we have no choice on the beam energy which is mostly
determined by the desired critical photon energy of bending magnet and insertion
device radiation or cost. Similarly, the bending radius is defined by the ring
geometry, desired spectrum etc. Interestingly, it is not the bending radius but rather
the bending angle which influences the equilibrium beam emittance. The main
process to minimize the beam emittance is to adjust the focusing such that the
lattice functions in the bending magnets generate a minimum value for hHbiz. The
equilibrium beam emittance (13.18) depends only on the lattice function Hb.z/
inside bending magnets. Independent of any lattice type, we may therefore consider
this function only within bending magnets. For the purpose of this discussion we
assume a regular periodic lattice, where all bending magnets are the same and
all lattice functions within each bending magnet are the same. That allows us to
concentrate our discussion just on one bending magnet. The contribution of any
individual bending magnet to the beam emittance can be determined by calculation
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of the average value for

hHbiz D
1

`b

Z `b

0

Hb.z/ dz ; (14.9)

where `b is the length of the bending magnet and the bending radius is assumed to
be constant within a magnet. From here on, we ignore the index x since we assume
a flat storage ring in the horizontal plane. All lattice functions are therefore to be
taken in the horizontal plane.

In evaluating the integral (14.1) we must include all contributions. The emission
of photons depends only on the bending radius regardless of whether the bending
occurs in the horizontal or vertical plane. Since for the calculation of equilibrium
beam emittances only the energy loss due to the emission of photons is relevant
it does not matter in which direction the beam is bent. The effect of the emission
of a photon on the particle trajectory, however, is different for both planes because
dispersion functions are different resulting in a different quantum excitation factor
H. For a correct evaluation of the equilibrium beam emittances in the horizontal and
vertical plane (14.1) should be evaluated for both planes by determining Hx and Hy

separately but including in both calculations all bending magnets in the storage ring.
The integral in (14.1) can be evaluated for each magnet if the values of the

lattice functions at the beginning of the bending magnet are known. With these
initial values the lattice functions at any point within the bending magnet can be
calculated assuming a pure dipole magnet. With the definitions of parameters from
Fig. 14.1, we find the following expressions for the lattice functions in a bending
magnet where z is the distance from the entrance of the magnet

ˇ.z/ D ˇ0 � 2˛0zC �0z2;
˛.z/ D ˛0 � �0z;
�.z/ D �0;
�.z/ D �0 C �0

0zC 	 .1 � cos �/ ;
�0.z/ D �0

0 C sin �:

(14.10)

dispersion
function (z)

betatron function (z)

'

bending magnet

Fig. 14.1 Lattice functions in a bending magnet
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Here the deflection angle is � D z=	 and ˇ0; ˛0; �0; �0; �
0
0 are the values of the

lattice functions at the beginning of the magnet. Before we use these equations we
assume lattices where �0 D �0

0 D 0. The consequences of this assumption will be
discussed later. Inserting (14.10) into (14.1) we get for small deflection angles after
integration over one dipole magnet

hHbiz D 1
3
�2ˇ0 � ˛0	

1
4
�3 C �0	

2 1
20
�4 CO.�5/; (14.11)

where we have assumed the bending radius to be constant within the length `b of
the magnet. In a storage ring with dipole magnets of different strength, contributions
from all magnets must be added to give the average quantum excitation term for the
whole ring of length C ˝ˇ̌

�3
ˇ̌Hb

˛
z
D 1

C

X
i

˝ˇ̌
�3
ˇ̌Hb,i

˛
z
`b;i ; (14.12)

where we sum over all magnets i with length `b;i. In an isomagnetic ring the
factor h ˇ̌�3ˇ̌Hb=h�2iiz becomes simply j�j hHbiz and the equilibrium beam emit-
tance is

�iso D Cq
�2

Jx
j�j hHbiz : (14.13)

Inserting (14.11) into (14.13) we get for the beam emittance in the lowest order
of approximation

�iso D Cq�
2�3

�
1

3

ˇ0

`b
� 1
4
˛0 C 1

20
�0 `b

�
CO.�4/ ; (14.14)

where �0 D �.z0/ is one of the lattice functions not to be confused with the particle
energy � .

Here we have assumed a separate function lattice where the damping partition
number Jx D 1. For strong bending magnets or sector magnets this assumption
is not always justified due to focusing in the bending magnets and the damping
partition number should be corrected accordingly.

The result (14.14) shows clearly a cubic dependence of the beam emittance
on the deflection angle � of the bending magnets which is a general lattice
property since we have not yet made any assumption on the lattice type yet.
Equation (14.14) exhibits minima with respect to both ˛0 and ˇ0. We solve the
derivation @hHi=@˛0 D 0 for ˛0 and the derivative @hHi=@̌ 0 D 0 for ˇ0 and get
the optimum values for the Twiss functions at the entrance to the bending magnet

ˇ0;opt D
r
12

5
`b ; (14.15a)

˛0;opt D
p
15 (14.15b)
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and the minimum value for hHi is

hHimin D
�3	

4
p
15
: (14.16)

With this, the minimum obtainable beam emittance in any lattice is from (13.18)

�dba;min � Cq�
2 hHb.z/=	3iz
h1=	2iz

� Cq�
2 �3

4
p
15
: (14.17)

The results are very simple for small deflection angles but for angles larger than
about 30ı per bending magnet the error for hHimin exceeds 10 % and higher order
terms must be included.

For simplicity, we assumed that the dispersion functions �0 D 0 and �0 D 0.
This a desirable feature, because it means that the dispersion function is also zero
in the insertion devices (ID) of a synchrotron radiation source. A finite dispersion
function in IDs can lead to an undesirable increase of the beam emittance.

In summary it has been demonstrated that for certain optimum lattice functions
in the bending magnets the equilibrium beam emittance becomes a minimum. No
assumption about a particular lattice has been made. Another observation is that the
beam emittance is proportional to the third power of the magnet deflection angle
and proportional to the square of the beam energy. Therefore many small deflection
magnets interspersed within quadrupoles should be used to achieve a small beam
emittance. Low emittance storage rings, therefore, are characterized by many short
magnet lattice cells.

This approach has been used for a number of third generation synchrotron light
sources. However, soon it was apparent that modification of the dispersion function
could produce even smaller beam emittance in spite of the effect of IDs. Only, as
it became possible in recent years to reach sub-nm beam emittances with sufficient
dynamic aperture did the choice of finite dispersions in the IDs become undesirable
again.

14.2 Absolute Minimum Emittance

In the previous section we found conditions which lead to a minimum beam
emittance in an isomagnetic ring

�x D DCq �
2 1

	`

Z 1
2 `

� 1
2 `

H.z/ dz (14.18)

The H-function in (14.1) is a nonlinear function of z and therefore any asym-
metry of the Twiss functions lead to larger values of the H-integral. We may
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therefore assume that a symmetric H-function may actually give the smallest value
for the integral and emittance [3]. Following Teng we first discuss the case when
�0 D �0

0 D 0; and ˛x0 D 0 at the center of the bending magnet. Note that this
condition is different from the previous assumption for the Twiss functions. At a
distance z from the magnet center the Twiss functions are for small deflection angles�
� / 30ı�

ˇ .z/ D ˇ0 C z2

ˇ0
; ˛ .z/ D � z

ˇ0
; � .z/ D �0 (14.19a)

� .z/ � �0 C 1

2

z2

	
; �0 .z/ D z

	
: (14.19b)

The H-function (11.52) becomes then with ` the length of the bending magnet
hHiz D 1

`

R `
0

�
ˇ�02 C 2˛��0 C ��2� dz;where the three integrals are
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to result finally inZ
H.z/ dz D �20

ˇ0
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�
ˇ0

12	2
� �0

12ˇ0	

�
`3 C 1

320ˇ0	2
`5: (14.20)

First, we consider the case in which we set �0 D 0 andZ
H1.z/ dz D ˇ0

12	2
`3 C 1

320ˇ0	2
`5 D `4

	2

�
ˇ0

12`
C `

320ˇ0

�
:

This integral has a minimum versus ˇ0 and from @
@ˇ0

R H1.z/ dz D 0 the optimum
value for ˇ0 is

ˇ0

`
D
r
3

80
:
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With this optimum
R H1.z/ dz D 1

8
p
15

`4

	3
and the minimum beam emittance is

�x D Cq �
2�

3

Jx

1

8
p
15
: (14.21)

This result has been derived by L. Teng in [3] and immediately rejected as
“absolute minimum but useless”. This judgement was based on the realization that
the dispersion function at either end of the bending magnet is not zero and must
therefore be of finite value at the insertion straight section too. This is not good as
discussed above because insertion devices will enhance the emittance where � ¤ 0
and will also lead to an increased effective emittance for the synchrotron radiation
users. This becomes a serious problem for very small beam emittances as can be
obtained now about 30 years after his note. However there is a way out.

If we cut one bending magnet in a cell into two pieces and install them as the first
and last bending magnet we get a zero dispersion function for all straight sections
without change of the beam emittance. There may be an arbitrary number of such
bending magnets between those half-magnets and there are enough quadrupoles
between the last bending magnet and the center of the straight section to match
the horizontal betatron function to any desired value while the dispersion function
is now zero in the IDs. The vertical betatron function does not contribute to the
emittance and may be matched any way possible within reason. Within the unit
cell we expect a periodic matching section between magnets. Incidentally, the same
result can be obtained if we set ˛0 D 0 in (14.11) and look again for the optimum
ˇ0: However, we must replace the total deflection angle by its half.

Just to be complete in this discussion we assume for a moment that �0 ¤ 0Z
H2.z/ dz D �20

ˇ0
`C ˇ0

12	2
`3 C 1

320ˇ0	2
`5 � �0

12ˇ0	
`3:

From @
@ˇ0

R H2.z/ dz D 0 the optimum betatron function is

ˇ20
`2
D 3

80
C 12�20	

2

`4
� �0	
`2
:

Furthermore there is also an optimum dispersion function and evaluating
@
@�0

R H2.z/ dz D 0 we get an optimum dispersion function in the middle of the
bending magnet of

�0 D `2

24	
D `

24
�
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for which
R H2.z/ dz D 1

12
p
15

`4

	3
and the minimum beam emittance

�x D Cq �
2�

3

Jx

1

12
p
15

(14.22)

which is even smaller.
The reduction in emittance by a factor 3=2 looks desirable but now we have

again a finite although small dispersion function in the long straight section. The
dispersion function scales like the square root of the betatron functions and for a
betatron phase of 90ı; for example; the dispersion function �� in the middle of the

straight section is �� D
q

ˇ�
ˇ0
�0 D

p
ˇ�`
124

4

q
5
3
: For the users the effective emittance

�eff D �0
q
1C ��2ı2

�0ˇ� ; where the relative energy spread is ı2 D Cq�
2 �3

Js	
D �0 12

p
15

	�3
:

Finally, the effective beam emittance is

�eff

�0
D
r
1C 5

12

1

�3
:

To keep the effective beam emittance close to the natural emittance the deflection
angle in the bending magnets must be large. In other words, the effective beam
emittance for finite values of the dispersion function in insertion devices is much
larger for modern low emittance storage rings with small deflection angles per
bending magnet. for an emittance increase of a factor

p
2 the deflection angle per

bending magnet must be � > 0:75 or 42:8ı:

14.3 Beam Emittance in Periodic Lattices

To achieve a small particle beam emittance a number of different basic magnet
storage ring lattice units are available and in principle most any periodic lattice
unit can be used to achieve as small a beam emittance as desired. More practical
considerations, however, will limit the minimum beam emittance achievable in a
lattice. While all lattice types to be discussed have been used in existing storage
rings and work well at medium to large beam emittances, differences in the
characteristics of particular lattice types become more apparent as the desired
equilibrium beam emittance is pushed to very small values.

Of the large variety of magnet lattices that have been used in existing storage
rings the most commonly used ones are based on the double bend achromat (DBA)
and derivatives thereof. In the DBA lattice the straight sections are separated by
two bending magnets forming an achromat. In more recent years this approach has
been modified into a multi-bend achromat where several bending magnets form an
achromat between the straight sections. This trend was stimulated by the desire to
minimize the beam emittance ever more while utilizing the �3 scaling. However,
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at the same time the ring circumference would grow equally because of the higher
number of long insertion straight sections unless there are several bending magnets
between straight sections, thus limiting circumference and costs.

14.3.1 The Double Bend Achromat Lattice (DBA)

The double bend achromat or DBA lattice is designed to make full use of the
minimization of beam emittance by the proper choice of lattice functions as
discussed earlier. In Fig. 14.2 the basic layout of this lattice is shown.

A set of two or three quadrupoles provides the matching of the lattice functions
into the bending magnet to achieve the minimum beam emittance. The central part of
the lattice between the bending magnets may consist of one or more quadrupoles and
its only function is to focus the dispersion function such that it is matched again to
zero at the end of the next bending magnet resulting necessarily in a phase advance
from bending magnet to bending magnet of close to 180ı. This lattice type has been
proposed first by Panofsky [4] and later by Chasman and Green [5] as an optimized
lattice for a synchrotron radiation source. In Fig. 14.3 an example of a synchrotron
light source based on this type of lattice is shown representing the solution of the
design study for the European Synchrotron Radiation Facility ESRF [6].

QF  QD B QF B QD  QF

Fig. 14.2 Double bend achromat (DBA) lattice (schematic) first proposed by Panofsky [4]

2015 s(m)1050

10

20

0

30

η
x

β
x

β
y

.4

.2

0

η(m)β (m)

Fig. 14.3 European synchrotron radiation facility, ESRF [6] (one half of 16 superperiods). The
lattice is asymmetric to provide a mostly parallel beam in one insertion and a small beam cross
section in the other



470 14 Beam Emittance and Lattice Design

The ideal minimum beam emittance (14.17) in this lattice type for small bending
angles and an isomagnetic ring with Jx D 1 is

�DBA D
Cq

4
p
15
�2�3 (14.23)

or in more practical units

�DBA.rad m/ D 5:036 � 10�13E2.GeV2/�3.deg3/ : (14.24)

This lattice type can be very useful for synchrotron light sources where many
component and dispersion free straight sections are required for the installation of
insertion devices. For damping rings this lattice type is not quite optimum since it
is a rather “open” lattice with a low bending magnet fill factor and consequently a
long damping time. Other more compact lattice types must be pursued to achieve in
addition to a small beam emittance also a short damping time.

14.3.2 The FODO Lattice

The FODO lattice, shown schematically in Fig. 14.4 is the most commonly used and
best understood lattice in storage rings optimized for high-energy physics colliding
beam facilities where large beam emittances are desired. This choice is obvious
considering that the highest beam energies can be achieved while maximizing the
fill factor of the ring with bending magnets.

This lattice provides the most space for bending magnets compared to other
lattices. The usefulness of the FODO lattice, however, is not only limited to high-
energy large emittance storage rings. By using very short cells very low beam
emittances can be achieved as has been demonstrated in the first low emittance
storage ring designed [7] and constructed [8] as a damping ring for the linear collider
SLC to reach an emittance of 11 � 10�9 m at 1 GeV.

The lattice functions in a FODO structure have been derived and discussed in
detail and are generally determined by the focusing parameters of the quadrupoles.

Fig. 14.4 FODO lattice
(schematic)

BQDB

cell length: 2L

1/2QF 1/2QF
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Fig. 14.5 Electron beam
emittance of a FODO lattice
as a function of the betatron
phase advance per half cell in
the deflecting plane
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Since FODO cells are not achromatic the dispersion function is in general not zero
at either end of the bending magnets.

The beam emittance can be derived analytically in thin lens approximation by
integrating the quantum excitation factor along the bending magnets. The result is
shown in Fig. 14.5 where the function ŒhHi=.	�3/� is plotted as a function of the
betatron phase advance per FODO half cell which is determined by the focal length
of the quadrupoles.

The beam emittance for an isomagnetic FODO lattice is given by [9]

�FODO D Cq�
2�3 `b

`b;0

hHi
	�3

; (14.25)

where `b;0 is the actual effective length of one bending magnet and 2`b the length
of a FODO cell. From Fig. 14.5 it becomes apparent that the minimum beam
emittance is reached for a betatron phase of about 136:8ı per FODO cell. In this
case hHi=.	�3/ � 1:25 and the minimum beam emittance in such a FODO lattice
in practical units is

�FODO.rad m/ D 97:53 � 10�13 `b

`b;0
E2.GeV2/�3.deg3/ : (14.26)

Comparing the minimum beam emittance achievable in various lattice types
the FODO lattice seems to be the least appropriate lattice to achieve small beam
emittances. This, however, is only an analytical distinction. FODO cells can be made
much shorter than the lattice units of other structures and for a given circumference
many more FODO cells can be incorporated than for any other lattice. As a
consequence, the deflection angles per FODO cell can be much smaller. For very
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low emittance storage ring, therefore, it is not a priori obvious that one lattice
is better than another. However, additional requirements like number of desired
insertion straight sections for a particular application must be included in the
decision for the optimum storage ring lattice.

14.3.3 Optimum Emittance for Colliding Beam Storage Rings

The single most important parameter of colliding beam storage rings is the
luminosity and most of the design effort for such facilities is aimed at maximizing
the collision rate. As a consequence of the beam-beam effect, the beam emittance
must be chosen to be as large as possible for maximum luminosity as will be
discussed in Sect. 21.2.2. Since for most high energy storage rings a FODO lattice is
employed it is clear that for maximum emittance the phase advance per cell should
be kept low as indicated in Fig. 14.5. Of course, there is a practical limit given by
increasing magnet apertures and associated costs.

In linear colliders there is no beam stability concern due to the beam-beam effect
like in a storage ring and a much smaller beam cross section can be chosen. The
limit here is the total beam-beam disruption due to the large electromagnetic fields
at the surface of the colliding beams. Strong synchrotron radiation introduce, for
example, significant energy losses which jeopardize the analysis of high energy
physics events.

Problems

14.1 (S). Derive an approximate expression of the beam emittance in an isomag-
netic FODO lattice as a function of phase per cell and determine the minimum value
of the emittance. Use a lattice which is symmetric in both planes and assume that
the bending magnets are as long as the half cells .`b D L/.

14.2 (S). Consider a storage ring made of FODO cells at an energy of your choice.
How many bending magnets or half cells do you need to reach a beam emittance of
no more than �x D 5 � 10�9 m?
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Part V
Perturbations



Chapter 15
Perturbations in Beam Dynamics

The study of beam dynamics under ideal conditions is the first basic step toward
the design of a beam transport system. In the previous sections we have followed
this path and have allowed only the particle energy to deviate from its ideal
value. In a real particle beam line or accelerator we may, however, not assume
ideal and linear conditions. More sophisticated beam transport systems require the
incorporation of nonlinear sextupole fields to correct for chromatic aberrations.
Deviations from the desired field configurations can be caused by transverse or
longitudinal misplacements of magnets with respect to the ideal beam path. Of
similar concern are errors in the magnetic field strength, undesirable field effects
caused in the field configurations at magnet ends, or higher order multipole fields
resulting from design, construction, and assembly tolerances. Still other sources of
errors may be beam-beam perturbations, magnetic detectors for high energy physics
experiments, insertion devices in beam transport systems or accelerating sections,
which are not part of the magnetic lattice configurations. The impact of such errors
is magnified in strong focusing beam transport systems as has been recognized soon
after the invention of the strong focusing principle. Early overviews and references
can be found for example in [1, 2].

A horizontal bending magnet has been characterized as a magnet with only a
vertical field component. This is true as long as this magnet is perfectly aligned,
in most cases perfectly level. Small rotations about the magnet axis result in the
appearance of horizontal field components which must be taken into account for
beam stability calculations.

We also assumed that the magnetic field in a quadrupole or higher multipole
vanishes at the center of magnet axis. Misalignments of any multipole generates all
lower order perturbations which is known as “spill-down”.

In addition, any multipole can be rotated by a small angle with respect to the
reference coordinate system. As a result we observe the appearance of a small
component of a rotated or skew quadrupole causing coupling of horizontal and
vertical betatron oscillations.

477

This chapter has been made Open Access under a CC BY 4.0 license. For details on rights

https://doi.org/10.1007/978-3-319-18317-6_15

© The Author(s) 2015  

and licenses please read the Correction https://doi.org/10.1007/978-3-319-18317-6_28

H. Wiedemann, Particle Accelerator Physics, Graduate Text in Physics,



478 15 Perturbations in Beam Dynamics

Although such misalignments and field errors are unintentional and undesired,
we have to deal with their existence since there is no way to avoid such errors
in a real environment. The particular effects of different types of errors on beam
stability will be discussed. Tolerance limits on these errors as well as corrective
measures must be established to avoid destruction of the particle beam. Common to
all these perturbations from ideal conditions is that they can be considered small
compared to forces of linear elements. We will therefore discuss mathematical
perturbation methods that allow us to determine the effects of perturbations and
to apply corrective measures for beam stability. The equations of motion with
perturbations are

u00 C �kC �2u� u D prsn .z/ xryn�s where u D x or y (15.1)

and r; s D 0; 1; 2 : : : with r C s C 1 D n and n the order of perturbation. In the
remainder of this text whenever r D 0 or s D 0 we use pn instead of prsn.1

15.1 Magnet Field and Alignment Errors

First we consider field errors created by magnet misalignments like displacements
or rotations from the ideal positions. Such magnet alignment errors, however, are
not the only cause for field errors. External sources like the earth magnetic field,
the fields of nearby electrical current carrying conductors, magnets connected to
vacuum pumps or ferromagnetic material in the vicinity of beam transport magnets
can cause similar field errors. For example electrical power cables connected to
other magnets along the beam transport line must be connected such that the
currents in all cables are compensated. This occurs automatically for cases, where
the power cables to and from a magnet run close together. In circular accelerators
one might, however, be tempted to run the cables around the ring only once to save
the high material and installation costs. This, however, causes an uncompensated
magnetic field in the vicinity of cables which may reach as far as the particle beam
pipe. The economic solution is to seek electrical current compensation among all
magnet currents by running electrical currents in different directions around the
ring. Careful design of the beam transport system can in most cases minimize the
impact of such field perturbations while at the same time meeting economic goals.

Multipole errors in magnets are not the only cause for perturbations. For beams
with large divergence or a large cross section, kinematic perturbation terms may
have to be included. Such terms are neglected in paraxial beam optics discussed
here, but will be derived in detail later.

1Note that for this definition p0 D 0 and therefore there is no conflict with the momentum p0.
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15.1.1 Self Compensation of Perturbations

The linear superposition of individual dipole contributions to the dispersion function
can be used in a constructive way. Any contribution to the dispersion function by a
short magnet can be eliminated again by a similar magnet located 180ı in betatron
phase downstream from the first magnet. If the betatron function at the location of
both magnets is the same, the magnet strengths are the same too. For quantitative
evaluation we assume two dipole errors introducing a beam deflection by the angles
�1 and �2 at locations with betatron functions of ˇ1 and ˇ2 and betatron phases  1
and  2, respectively. Since the dispersion function or fractions thereof evolve like
a sine like function, we find for the variation of the dispersion function at a phase
 .z/   2

D.z/ D �1
p
ˇˇ1 sin Œ .z/ �  1�C �2

p
ˇˇ2 sin Œ .z/ �  2�: (15.2)

For the particular case where �1 D �2 and ˇ1 D ˇ2 we find

D.z/ D 0 for  2 �  1 D .2nC 1/�: (15.3)

If �1 D ��2
D.z/ D 0 for  2 �  1 D 2n�; (15.4)

where n is an integer. This property of the dispersion function can be used in periodic
lattices if, for example, a vertical displacement of the beam line is desired. In this
case we would like to deflect the beam vertically and as soon as the beam reaches
the desired elevation a second dipole magnet deflects the beam by the same angle
but opposite sign to level the beam line parallel to the horizontal plane again. In an
arbitrary lattice such a beam displacement can be accomplished without creating a
residual dispersion outside the beam deflecting section if we place two vertical or
rotated bending magnets of opposite sign at locations separated by a betatron phase
of 2� .

Similarly, a deflection in the same direction by two dipole magnets does not
create a finite dispersion outside the deflecting section if both dipoles are separated
by a betatron phase of .2n C 1/� . This feature is important to simplify beam-
transport lattices since no additional quadrupoles are needed to match the dispersion
function.

Sometimes it is necessary to deflect the beam in both the horizontal and vertical
direction. This can be done in a straightforward way by a sequence of horizontal and
vertical bending sections leading, however, to long beam lines. In a more compact
version, we combine the beam deflection in both planes within one or a set of
magnets. To obtain some vertical deflection in an otherwise horizontally deflecting
beam line, we may rotate a whole arc section about the beam axis at the start of
this section to get the desired vertical deflection. Some of the horizontal deflection
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is thereby transformed into the vertical plane. At the start of such a section we
introduce by the rotation of the coordinate system a sudden change in all lattice
functions. Specifically, a purely horizontal dispersion function is coupled partly
into a vertical dispersion. If we rotate the beam line and coordinate system back
at a betatron phase of 2n� downstream from the start of rotation, the coupling of the
dispersion function as well as that of other lattice functions is completely restored.
For that to work without further matching, however, we require that the rotated
part of the beam line has a phase advance of 2n� in both planes as, for example,
a symmetric FODO lattice would have. This principle has been used extensively
for the terrain following beam transport lines of the SLAC Linear Collider to the
collision point.

15.2 Dipole Field Perturbations

Dipole fields are the lowest order magnetic fields and therefore also the lowest order
field perturbations. The equation of motion (15.1) is in this case

u00 C �kC �2u� u D p1 .z/ ; (15.5)

where p1 .z/ represents any dipole field error, whether it be chromatic or not. In
trying to establish expressions for dipole errors due to field or alignment errors,
we note that the bending fields do not appear explicitly anymore in the equations
of motions because of the specific selection of the curvilinear coordinate system
and it is therefore not obvious in which form dipole field errors would appear in
the equation of motion (15.5). In (6.95) or (6.96) we note, however, a dipole field
perturbation due to a particle with a momentum error ı. This chromatic term �x0 ı is
similar to a dipole field error as seen by a particle with the momentum ˇE0.1C ı/.
For particles with the ideal energy we may therefore replace the chromatic term
�ı by a field error ��. Perturbations from other sources may be obtained by
variations of magnet positions .x; y/ or magnet strengths. Up to second order,
the horizontal dipole perturbation terms due to magnet field .�/ and alignment
errors .x; y/ are from (6.95)

p1;;x.z/ D ��x0 C .�2x0 C k0/xC .2�x0�x0 Ck/x (15.6)

� 1
2
m .x2 � 2xcx �y2 C 2ycy/CO.3/ ;

where we used x D xˇ C xc �x and y D yˇ C yc �y with .xˇ; yˇ/ the betatron
oscillations and .xc; yc/ the closed orbit deviation in the magnet. In the presence of
multipole magnets the perturbation depends on the displacement of the beam with
respect to the center of multipole magnets.
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There is a similar expression for vertical dipole perturbation terms and we get
from (6.96) ignoring vertical bending magnets

�
�y0 D 0

�
but not vertical dipole

errors,�y0 ¤ 0,

p1;y.z/ D ��y0 � k0y � m.xcyC ycx/CO.3/ : (15.7)

Such dipole field errors deflect the beam from its ideal path and we are interested
to quantify this perturbation and to develop compensating methods to minimize the
distortions of the beam path. In an open beam transport line the effect of dipole field
errors on the beam path can be calculated within the matrix formalism.

A dipole field error at point zk deflects the beam by an angle � . If M.zmjzk/ is the
transformation matrix of the beam line between the point zk, where the kick occurs,
and the point zm, where we observe the beam position, we find a displacement of
the beam center line, for example, in the x-plane by

x D M12 � ; (15.8)

where M12 is the element of the transformation matrix in the first row and the
second column. Due to the linearity of the equation of motion, effects of many
kicks caused by dipole errors can be calculated by summation of individual beam
center displacements at the observation point zm for each kick. The displacement of
a beam at the location zm due to many dipole field errors is then given by

x.zm/ D
X

k

M12.zmjzk/ �k ; (15.9)

where �k are kicks due to dipole errors at locations zk < zm and M12.zmjzk/ the
M12-matrix element of the transformation matrix from the perturbation at zk to the
monitor at zm.

Generally, we do not know the strength and location of errors. Statistical methods
are applied therefore to estimate the expectation value for beam perturbation and
displacement. With M12.zmjzk/ D

p
ˇmˇk sin. m� k/we calculate the root-mean-

square of (15.9) noting that the phases  k are random and cross terms involving
different phases cancel. With h�2k i D �2� and hu2i D �2u we get finally from (15.9)
the expectation value of the path distortion �u at zm due to statistical errors with a
standard value ��

�u D
p
ˇmhˇki

p
N��� ; (15.10)

where hˇki is the average betatron function at the location of errors and N� the
number of dipole field errors. Random angles are not obvious, but if we identify
the potential sources, we may be in a better position to estimate �� : For example,
alignment errors �u of quadrupoles are related to �� by �� D k`q�u, where 1

f D
k`q are the inverse focal lengths of the quadrupoles.
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15.2.1 Dipole Field Errors and Dispersion Function

The dispersion function of a beam line is determined by the strength and placement
of dipole magnets. As a consequence, dipole field errors also contribute to the
dispersion function and we determine such contributions to the dispersion function
due to dipole field errors. First, we note from the general expression for the linear
dispersion function that the effect of dipole errors adds linearly to the dispersion
function by virtue of the linearity of the equation of motion. We may therefore
calculate separately the effect of dipole errors and add the results to the ideal
solution for the dispersion function.

15.2.2 Perturbations in Open Transport Lines

While these properties are useful for specific applications, general beam dynamics
requires that we discuss the effects of errors on the dispersion function in a more
general way. To this purpose we use the general equation of motion up to linear
terms in ı and add constant perturbation terms. In the following discussion we use
only the horizontal equation of motion, but the results can be immediately applied to
the vertical plane as well. The equation of motion with only linear chromatic terms
and a quadratic sextupole term is then

x00 C .kC �2x /x D kxı � 1
2
mx2.1 � ı/ ��x.1� ı/CO.2/ : (15.11)

We observe two classes of perturbation terms, the ordinary chromatic terms
and those due to field errors. Taking advantage of the linearity of the solution we
decompose the particle position into four components

x D xˇ C xc C �xı C vxı ; (15.12)

where xˇ is the betatron motion, xc the distorted beam path or orbit, �x the ideal
dispersion function and vx the perturbation of the dispersion that derives from field
errors. The individual parts of the solution then are determined by the following set
of differential equations:

x00̌ C .kC �2x / xˇ D � 12mx2ˇ C mxˇxc ; (15.13a)

x00
c C .kC �2x / xc D ��x � 1

2
mx2c ; (15.13b)

�00
x C .kC �2x / �x D �x ; (15.13c)

v00
x C .kC �2x / vx D C�x C 1

2
mx2c C kxc � mxc�x : (15.13d)
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In the ansatz (15.12) we have ignored the energy dependence of the betatron
function since it will be treated separately as an aberration and has no impact on the
dispersion. We have solved (15.13a)–(15.13c) before and concentrate therefore on
the solution of (15.13d). Obviously, the field errors cause distortions of the beam
path xc which in turn cause additional variations of the dispersion function. The
principal solutions are

C.z/ D pˇ.z/=ˇ0 cos Œ .z/ �  0� ; (15.14)

S.z/ D pˇ.z/ˇ0 sin Œ .z/ �  0� ; (15.15)

and the Greens function becomes

G.z; �/ D S.z/C.�/ � S.�/C.z/ D
p
ˇ.z/ˇ.�/ sin Œ .z/ �  .�/� : (15.16)

With this the solution of (15.13d) is

vx.z/ D �xc.z/ (15.17)

Cpˇx.z/
Z z

0

.k � m�x/
p
ˇx.�/xc.�/ sinŒ x.z/ �  x.�/�d�:

Here, we have split off the solution for the two last perturbation terms in (15.13d)
which, apart from the sign, is exactly the orbit distortion (15.13b). In a closed lattice
we look for a periodic solution of (15.17), which can be written in the form

vx .z/ D �xc.z/C
p
ˇx.z/

2 sin�
x
(15.18)

�
Z zCLp

z
.k � m�x/

p
ˇx.�/xc.�/ cos f
x Œ'x.z/ � 'x.�/C ��g d�;

where xc.z/ is the periodic solution for the distorted orbit and Lp the length of the
orbit. In the vertical plane we have exactly the same solution except for a change in
sign for some terms

vy.z/ D �yc.z/�
p
ˇy.z/

2 sin�
y
(15.19)

�
Z zCLp

z
.k � m�x/

q
ˇy.�/yc.�/ cos

�

y
�
'y.z/� 'y.�/C �

�	
d� :

For reasons of generality we have included here sextupoles to permit chromatic
corrections in long curved beam lines with bending magnets. The slight asymmetry
due to the term m�x in the vertical plane derives from the fact that in real
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accelerators only one orientation of the sextupoles is used. Due to this orientation
the perturbation in the horizontal plane is � 1

2
mx2.1 � ı/ and in the vertical plane

mxy.1� ı/. In both cases we get the term m�x in the solution integrals.
Again we may ask how this result varies as we add acceleration to such a

transport line. Earlier in this section we found that the path distortion is independent
of acceleration under certain periodic conditions. By the same arguments we can
show that the distortion of the dispersions (15.18) and (15.19) are also independent
of acceleration and the result of this discussion can therefore be applied to any
periodic focusing channel.

15.2.3 Existence of Equilibrium Orbits

Particles orbiting around a circular accelerator perform in general betatron oscilla-
tions about the equilibrium orbit and we will discuss properties of this equilibrium
orbit. Of fundamental interest is of course that such equilibrium orbits exist at all.
We will not try to find conditions for the existence of equilibrium orbits in arbitrary
electric and magnetic fields but restrict this discussion to fields with midplane
symmetry as they are used in particle beam systems. The existence of equilibrium
orbits can easily be verified for particles like electrons and positrons because these
particles radiate energy in form of synchrotron radiation as they orbit around the
ring.

We use the damping process to find the eventual equilibrium orbit in the presence
of arbitrary dipole perturbations. To do this, we follow an orbiting particle starting
with the parameters x D 0 and x0 D 0. This choice of initial parameters will not
affect the generality of the argument since any other value of initial parameters is
damped independently because of the linear superposition of betatron oscillations.

As an electron orbits in a circular accelerator it will encounter a number of kicks
from dipole field errors or field errors due to a deviation of the particle energy from
the ideal energy. After one turn the particle position is the result of the superposition
of all kicks the particle has encountered in that turn. Since each kick leads to a
particle oscillation given by

x.z/ D
p
ˇ.z/ˇ�� sinŒ
'.z/ � 
'� �

we find for the superposition of all kicks in one turn

x.z/ Dpˇ.z/X
i

p
ˇi�i sinŒ
'.z/� 
'i�; (15.20)

where the index i indicates the location of the kicks. We ask ourselves now what
is the oscillation amplitude after many turns. For that we add up the kicks from all
past turns and include damping effects expressed by the factor e�kT0=� on the particle
oscillation amplitude, where T0 is the revolution time, kT0 is the time passed since
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the kick occurred k turns ago, and � the damping time. The contribution to the
betatron oscillation due to kicks k turns ago, is then given by

xk .z/ D
p
ˇ.z/e�kT0=�

X
i

p
ˇi�i sinŒ2�
kC 
'.z/� 
'i� : (15.21)

Adding the contributions from all past turns results in the position x.z/ of the particle

x.z/ D
1X

kD0

p
ˇ.z/e�kT0=�

X
i

p
ˇi�i sinŒ2�
kC 
'.z/� 
'i� : (15.22)

After some rearranging (15.22) becomes

x.z/ D C�

1X
kD0

e�kT0=� sin.2�
k/C S�

1X
kD0

e�kT0=� cos.2�
k/ ; (15.23)

where

C� DPi

p
ˇ.z/ˇi�i cosŒ'.z/ � 'i�;

S� DPi

p
ˇ.z/ˇi�i sinŒ'.z/ � 'i�:

(15.24)

With the definition q D e�T0=� we use the mathematical identities

1X
kD0

e�kT0=� sin.2�
k/ D q sin 2�


1 � 2q cos 2�
 C q2
(15.25)

and

1X
kD0

e�kT0=� cos.2�
k/ D 1 � q cos 2�


1 � 2q cos2�
 C q2
(15.26)

and get finally instead of (15.23)

x.z/ D C�q sin 2�
 C S� .1 � q cos 2�
/

1 � 2q cos 2�
 C q2
: (15.27)

The revolution time is generally much shorter than the damping time T0 � �

and therefore q � 1. In this approximation we get after some manipulation and
using (15.24)

x.z/ D
p
ˇ.z/

2 sin�


X
i

p
ˇi�i cosŒ
'.z/� 
'i C 
�� : (15.28)
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Equation (15.28) describes the particle orbit reached by particles after some
damping times. The solution does not include anymore any reference to earlier turns
and kicks except those in one turn and the solution therefore is a steady state solution
defined as the equilibrium orbit .

The cause and nature of the kicks �i is undefined and can be any perturbation,
random or systematic. A particular set of such errors are systematic errors in the
deflection angle for particles with a momentum error ı for which �i D �i`iı is the
deflection angle of the bending magnet i. These errors are equivalent to those that
led to the dispersion or �-function. Indeed, setting �.z/ D x.z/=ı in (15.28) we get
the solution (10.91) for the � function. The trajectories x.z/ D �.z/ı therefore are
the equilibrium orbits for particles with a relative momentum deviation ı D p=p0

from the ideal momentum p0.
In the next subsection we will discuss the effect of random dipole field errors �i

on the beam orbit. These kicks, since constant in time, are still periodic with the
periodicity of the circumference and lead to a distorted orbit which turns out to be
again equal to the equilibrium orbit found here.

To derive the existence of equilibrium orbits we have made use of the damping
of particle oscillations. Since this damping derives from the energy loss of particles
due to synchrotron radiation we have proof only for equilibrium orbits for radiating
particles like electrons and positrons. The result obtained applies also to any other
charged particle. The damping time may be extremely long, but is not infinite and
a particle will eventually reach the equilibrium orbit. The concept of equilibrium
orbits is therefore valid even though a proton or ion will never reach that orbit in a
finite time but will oscillate about it.

15.2.4 Closed Orbit Distortion

The solution (15.28) for the equilibrium orbit can be derived also directly by solving
the equation of motion. Under the influence of dipole errors the equation of motion
is

u00 C K.z/u D p1.z/ ; (15.29)

where the dipole perturbation p0.z/ is independent of coordinates .x; y/ and energy
error ı. This differential equation has been solved earlier in Sect. 5.5.4, where a
dipole field perturbation was introduced as an energy error of the particle. Therefore,
we can immediately write down the solution for an arbitrary beam line for which
the principal solutions C.z/ and S.z/ are known

u.z/ D C.z/ u0 C S.z/ u0
0 C P.z/ ı (15.30)
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with

P.z/ D
Z z

0

p1.�/ ŒS.z/C.�/� S.�/C.z/� d� : (15.31)

The result (15.30) can be interpreted as a composition of betatron oscillations
with initial values (u0; u0

0) and a superimposed perturbation P.z/ which defines the
equilibrium trajectory for the betatron oscillations. In (15.31) we have assumed
that there is no distortion at the beginning of the beam line, P.0/ D 0. If there
were already a perturbation of the reference trajectory from a previous beam line,
we define a new reference path by linear superposition of new perturbations to
the continuation of the perturbed path from the previous beam line section. The
particle position .u0; u0

0/ is composed of the betatron oscillation .u0ˇ; u0
0ˇ/ and the

perturbation of the reference path .u0c; u0
0c/. With u0 D u0ˇCu0c and u0

0 D u0
0ˇCu0

0c
we get

u.z/ D
h
u0ˇC.z/C u0

0ˇS.z/
i
C �u0cC.z/C u0

0cS.z/
	C P.z/: (15.32)

In a circular accelerator we look for a self-consistent periodic solution. Because
the differential equation (15.29) is identical to that for the dispersion function, the
solution must be similar to (10.91) and is called the closed orbit, reference orbit or
equilibrium orbit given by

uc.z/ D
p
ˇ.z/

2 sin�


I zCC

z
p1.�/

p
ˇ.�/ cos Œ
'.z/� 
'.�/C 
�� d� ; (15.33)

where C is the circumference of the accelerator. We cannot anymore rely on a super-
periodicity of length Lp since the perturbations prsn.�/ due to misalignment or field
errors are statistically distributed over the whole ring. Again the integer resonance
character discussed earlier for the dispersion function is obvious, indicating there
is no stable orbit if the tune of the circular accelerator is an integer. The influence
of the integer resonance is noticeable even when the tune is not quite an integer.
From (15.33) we find a perturbation p1.z/ to have an increasing effect the closer
the tune is to an integer value. The similarity of the closed orbit and the dispersion
function in a circular accelerator is deeper than merely mathematical. The dispersion
function defines closed orbits for energy deviating particles approaching the real
orbit (15.33) as ı ! 0.

Up to second order the horizontal and vertical dipole perturbation terms due to
magnet field and alignment errors are given by (15.6) and (15.7). In the presence of
multipole magnets the perturbation depends on the displacement of the beam with
respect to the center of multipole magnets.

A vertical closed orbit distortion is shown in Fig. 15.1 for the PEP storage ring.
Here, a Gaussian distribution of horizontal and vertical alignment errors with an rms
error of 0.05 mm in all quadrupoles has been simulated. In spite of the statistical
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Fig. 15.1 Simulation of the closed orbit distortion in the sixfold symmetric PEP lattice due to
statistical misalignments of quadrupoles by an amount hxirms D hyirms D 0:05mm
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Fig. 15.2 Closed orbit distortion of Fig. 15.2 in normalized coordinates as a function of the
betatron phase '

distribution of errors a strong oscillatory character of the orbit is apparent and
counting oscillations we find 18 oscillations being equal to the vertical tune of PEP
as we would expect from the denominator of (15.33).

We also note large values of the orbit distortion adjacent to the interaction points
(dashed lines), where the betatron function becomes large, again in agreement
with expectations from (15.33) since uc /

p
ˇ. A more regular representation

of the same orbit distortion can be obtained if we plot the normalized closed
orbit uc.z/=

p
ˇ.z/ as a function of the betatron phase  .z/ shown in Fig. 15.2. In

this representation the strong harmonic close to the tune becomes evident while
the statistical distribution of perturbations appears mostly in the amplitude of the
normalized orbit distortion.

For the sake of simplicity terms of third or higher order as well as terms asso-
ciated with nonlinear magnets have been neglected in both Eqs. (15.6) and (15.7).
All terms in (15.6) and (15.7) are considered small perturbations and can therefore
be treated individually and independent of other perturbations terms. Sextupole and



15.2 Dipole Field Perturbations 489

higher multipole perturbations depend on the orbit itself and to get a self-consistent
periodic solution of the distorted orbit, iteration methods must be employed.

Solutions for equilibrium orbits can be obtained by inserting the perturba-
tion (15.6) or (15.7) into (15.33). First, we will concentrate on a situation, where
only one perturbing kick exists in the whole lattice, assuming the perturbation to
occur at z D zk and to produce a kick �k D

R
p1.�/ d� in the particle trajectory. The

orbit distortion at a location z < zk in the lattice is from (15.33)

u0.z/ D 1
2

p
ˇ.z/ˇ.zk/ �k

cos Œ
� � 
'.zk/C 
'.z/�
sin�


: (15.34)

If on the other hand we look for the orbit distortion downstream from the
perturbation z > zk the integration must start at z, follow the ring to z D C and
then further to z D zC C. The kick, therefore, occurs at the place C C zk with the
phase '.C/C '.zk/ D 2� C '.zu/ and the orbit is given by

u0.z/ D 1
2

p
ˇ.z/ˇ.zk/ �k

cosŒ
� � 
'.z/C 
'.zk/�

sin�

: (15.35)

This mathematical distinction of cases z < zk and z > zk is a consequence of
the integration starting at z and ending at zC C and is necessary to account for the
discontinuity of the slope of the equilibrium orbit at the location of the kick. At
the point z D zk obviously both equations are the same. In Fig. 15.3 the normalized
distortion of the ideal orbit due to a single dipole kick is shown. In a linear lattice this
distortion is independent of the orbit and adds in linear superposition. If, however,
sextupoles or other coupling or nonlinear magnets are included in the lattice, the
distortion due to a single or multiple kick depends on the orbit itself and self-
consistent solutions can be obtained only by iterations.

In cases where a single kick occurs at a symmetry point of a circular accelerator
we expect the distorted orbit to also be symmetric about the kick. This is expressed
in the asymmetric phase terms of both equations. Indeed, since '.zk/ � '.z/ D
' for zk > z and '.z/ � '.zk/ D ' for z > zk the orbit distortion extends
symmetrically in either direction from the location of the kick.

Fig. 15.3 Distorted orbit due
to a single dipole kick for a
tune just above an integer
(left) and for a tune below an
integer (right) ψ(z) ψ(z)

kickkick

Δu/√β Δu/√β
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The solution for the perturbed equilibrium orbit is specially simple at the place
where the kick occurs. With '.z/ D '.zk/ the orbit distortion is

uk D 1
2
ˇk�k cot�
: (15.36)

In situations where a short bending magnet like an orbit correction magnet and
a beam position monitor are at the same place or at least close together we may
use these devices to measure the betatron function at that place zk by measuring the
tune 
 of the ring and the change in orbit uk due to a kick �k. Equation (15.36) can
then be solved for the betatron function ˇk at the location zk. This procedure can
obviously be applied in both planes to experimentally determine ˇx as well as ˇy.

15.2.5 Statistical Distribution of Dipole Field
and Alignment Errors

In a real circular accelerator a large number of field and misalignment errors of
unknown location and magnitude must be expected. If the accelerator is functional
we may measure the distorted orbit with the help of beam position monitors and
apply an orbit correction as discussed later in this section. During the design stage,
however, we need to know the sensitivity of the ring design to such errors in order to
determine alignment tolerances and the degree of correction required. In the absence
of detailed knowledge about errors we use statistical methods to determine the most
probable equilibrium orbit. All magnets are designed, fabricated, and aligned within
statistical tolerances, which are determined such that the distorted orbit allows the
beam to stay within the vacuum pipe without loss. An expectation value for the orbit
distortion can be derived by calculating the root-mean-square of (15.33)

u20.z/ D
ˇ.z/

4 sin2 �


I zCC

z

I zCC

z
p1.�/ p1.�/

p
ˇ.�/

p
ˇ.�/ (15.37)

� cos Œ
 .'z � '� C �/� cos Œ
 .'z � '� C �/� d� d� ;

where for simplicity 'z D '.z/ etc. This double integral can be evaluated by
expanding the cosine functions to separate the phases '� and '� . We get terms like
cos 
'� cos 
'� and sin 
'� sin 
'� or mixed terms. All these terms tend to cancel
except when � D � since both the perturbations and their locations are statistically
distributed in phase. Only for � D � will we get quadratic terms that contribute to a
finite expectation value for the orbit distortion

hp21.�/
�
cos2 
.'z C �/ cos2 
'� C sin2 
.'z C �/ sin2 
'�

	 i
D hp21.�/iŒcos2 
.'z C �/hcos2 
'� i C sin2 
.'z C �/hsin2 
'� i�
D hp21.�/i 12 ;
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and with this (15.37) becomes

hu20.z/i D
ˇ.z/

8 sin2 �


X
i

hp21.�i/ˇ.�i/`
2
i i ; (15.38)

where the integrals have been replaced by a single sum over all perturbing fields
of length `i. This can be done since we assume that the betatron phase does not
change much over the length of individual perturbations. Equation (15.38) gives
the expectation value for the orbit distortion at the point z and since the errors are
statistically distributed we get from the central limit theorem a Gaussian distribution
of the orbit distortions with the standard deviation �2u .z/ D hu20.z/i from (15.38).
In other words if an accelerator is constructed with tolerances hp21.�i/i there is a

68 % probability that the orbit distortions are of the order
q
hu20.z/i as calculated

from (15.38) and a 98 % probability that they are not more than twice that large.
As an example, we consider a uniform beam transport line, where all quadrupoles

have the same strength and the betatron functions are periodic like in a FODO
channel. This example seems to be very special since hardly any practical beam
line has these properties, but it is still a useful example and may be used to simulate
more general beam lines for a quick estimate of alignment tolerances. Assuming a
Gaussian distribution of quadrupole misalignments with a standard deviation �u

and quadrupole strength k, the perturbations are p1 .z/ D k�u and the expected
orbit distortion is q

hu20.z/i D
p
ˇ.z/A�u ; (15.39)

where A is called the error amplification factor defined by

A2 D N

8 sin2 �

h.k`q/

2ˇi � N

8 sin2 �


ˇ

f 2
; (15.40)

h.k`q/
2ˇi is taken as the average value for the expression in all N misaligned

quadrupoles, f is the focal length of the quadrupoles, and ˇ the average betatron
function.

The expectation value for the maximum value of the orbit distortion hOu20.z/i is
larger. In (15.38) we have averaged the trigonometric functions

hcos2 
'.�/i D hsin2 
'.�/i D 1
2

and therefore

hOu20i D 2 hu20.z/i : (15.41)

These methods obviously require a large number of misalignments to become
statistically accurate. While this is not always the case for shorter beam lines it is
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still useful to perform such calculations. In cases where the statistical significance is
really poor, one may use 100 or more sets of random perturbations and apply them
to the beam line or ring lattice. This way a better evaluation of the distribution of
possible perturbations is possible.

Clearly, the tolerance requirements increase as the average value of betatron
functions, the quadrupole focusing, or the size of the accelerator or number of
magnets N is increased. No finite orbit can be achieved if the tune is chosen to be
an integer value. Most accelerators work at tunes which are about one quarter away
from the next integer to maximize the trigonometric denominator j sin�
j � 1.
From a practical standpoint we may wonder what compromise to aim for between
a large aperture and tight tolerances. It is good practice to avoid perturbations
as reasonable as possible and then, if necessary, enlarge the magnet aperture to
accommodate distortions which are too difficult to avoid. As a practical measure
it is possible to restrict the uncorrected orbit distortion in most cases to 5–10 mm
and provide magnet apertures that will accommodate this.

What happens if the expected orbit distortions are larger than the vacuum
aperture which is virtually sure to happen at least during initial commissioning
of more sensitive accelerators? In this case one relies on fluorescent screens or
electronic monitoring devices located along the beam line, which are sensitive
enough to detect even small beam intensities passing by only once. By empirically
employing corrector magnets the beam can be guided from monitor to monitor thus
establishing a path and eventually a closed orbit. Once all monitors receive a signal,
more sophisticated and computerized orbit control mechanism may be employed.

15.2.6 Dipole Field Errors in Insertion Devices

Periodic magnet arrays like wiggler and undulator magnets are used often in
synchrotron radiation sources to produce specific radiation characteristics. The
requirement for such insertion devices is that the total deflection angle be zero as to
not affect the closed orbit in the storage ringZ C1

�1
B?dz D 0:

In reality that is not possible because of manufacturing tolerances. A real
trajectory through an undulator may look like shown in Fig. 15.4 [3].

From Fig. 15.4 it is obvious that a particle entering the undulator on axis will exit
the magnet with a large distance from the axis and with a significant angle. Both
will contribute to the orbit distortions. The problem here is that this orbit distortion
is gap dependent and as the experimental user changes the gap the orbit changes
all around the storage ring moving at the same time the source position for all other
users. It is therefore imperative to correct this distortion before it can affect the orbit.
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Fig. 15.4 Trajectory through
an undulator without any
special corrections [3]
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There are two quantities which must be corrected, both being called the first and
second integral

I1 D
Z

B dz D 0 and (15.42)

I2 D
Z

dz0
Z

B dz D 0:

Both integrals should be zero because I1 is proportional to the exit angle and
I2 proportional to the position at the undulator exit. Both errors should and can be
corrected by a steering magnet before the entrance and right after the undulator exit.
By adjusting the entrance steering magnet the exit angle can be varied and the exit
beam displacement can be made to be zero. After adjusting the exit beam position
to zero the angle still may be wrong which can be adjusted to zero with the exit
steering magnet. With this correction the undulator effect on the orbit is eliminated.
Unfortunately, the first and second integral can be in a permanent magnet device
gap-dependent. Therefore, before using the undulator the steering corrections must
be determined experimentally as a function of gap size. This information is stored
in the control computer and as the gap size is changed by the user the computer will
also change the steering field such that the orbit stays constant during change of the
gap. This procedure is know as feed-forward. With this correction the undulkator
has become a true insertion device from an accelerator physics point of view.

We notice, however, in Fig. 15.4 that the oscillating trajectory within the
undulator is not along a straight line. In the particular case of Fig. 15.4 the trajectory
resembles an arc which can reduce the radiation characteristics especially for higher
harmonics. This can be corrected by two long coils one each around the full array of
poles. This coil can deflect the beam on a dipole trajectory such that it compensates
the average curvature within the undulator. Of course if this is done then the
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correction of the first and second integral must be repeated again. The long coil
current is also gap dependent and for successful feed-forward three tables must be
prepared for the computer control of undulator gap changes.

15.2.7 Closed Orbit Correction

Due to magnetic field and alignment errors a distorted equilibrium orbit is generated
as discussed in the previous section. Specifically for distinct localized dipole field
errors at position zk

u0.z/ D
p
ˇ.z/

2 sin�


X
k

p
ˇk�k cosŒ
'.z/ � 
'k C 
�� : (15.43)

Since orbit distortions reduce the available aperture for betatron oscillations and
can change other beam parameters it is customary in accelerator design to include
a special set of magnets for the correction of distorted orbits. These orbit correction
magnets produce orbit kicks and have, therefore, the same effect on the orbit as
dipole errors. However, now the location and the strength of the kicks are known.
Before we try to correct an orbit it must have been detected with the help of beam
position monitors. The position of the beam in these monitors is the only direct
information we have about the distorted orbit. From the set of measured orbit
distortions ui at the m monitors i we form a vector

um D .u1; u2; u3; : : : ; um/ (15.44)

and use the correctors to produce additional “orbit distortions” at the monitors
through carefully selected kicks �k in orbit correction magnets which are also called
trim magnets. For n corrector magnets the change in the orbit at the monitor i is

ui D
p
ˇi

2 sin�


nX
kD1

p
ˇk�k cos Œ
.'i � 'k C �/� ; (15.45)

where the index k refers to the corrector at z D zk. The orbit changes at the beam
position monitors due to the corrector kicks can be expressed in a matrix equation

�um DM�n ; (15.46)

where �um is the vector formed from the orbit changes at all m monitors, �n the
vector formed by all kicks in the n correction magnets, and M the response matrix
M D .Mik/ with

Mik D
p
ˇiˇk

2 sin�

cos Œ
.'i � 'k C �/� : (15.47)
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The distorted orbit can be corrected at least at the position monitors with corrector
kicks �k chosen such that �um D �um or

�n D �M�1um : (15.48)

Obviously, this equation can be solved exactly if n D m and also for n > m if not all
correctors are used. Additional conditions could be imposed in the latter case like
minimizing the corrector strength.

While an orbit correction according to (15.48) is possible it is not always the
optimum way to do it. A perfectly corrected orbit at the monitors still leaves finite
distortions between the monitors. To avoid large orbit distortions between monitors
sufficiently many monitors and correctors must be distributed along the beam line.
A more sophisticated orbit correction scheme would only try to minimize the sum
of the squares of the orbit distortions at the monitors

.um ��um/
2
min D .um �M�n/

2
min; (15.49)

thus avoiding extreme corrector settings due to an unnecessary requirement for
perfect correction at monitor locations.

This can be achieved for any number of monitors m and correctors n although the
quality of the resulting orbit depends greatly on the actual number of correctors and
monitors. To estimate the number of correctors and monitors needed we remember
the similarity of dispersion function and orbit distortion. Both are derived from
similar differential equations. The solution for the distorted orbit, therefore, can also
be expressed by Fourier harmonics similar to (10.99). With Fn being the Fourier
harmonics of �ˇ3=2.z/�.z/; the distorted orbit is

u0.z/ D
p
ˇ.z/

C1X
nD�1


2Fn ein'


2 � n2
; (15.50)

which exhibits a resonance for 
 D n. The harmonic spectrum of the uncorrected
orbit u0.z/ has therefore also a strong harmonic content for n � 
. To obtain an
efficient orbit correction both the beam position monitor and corrector distribution
around the accelerator must have a strong harmonic close to the tune 
 of the
accelerator. It is, therefore, most efficient to distribute monitors and correctors
uniformly with respect to the betatron phase  .z/ rather than uniform with z and
use at least about four units of each per betatron wave length.

With sufficiently many correctors and monitors the orbit can be corrected in
different ways. One could excite all correctors in such a way as to compensate
individual harmonics in the distorted orbit as derived from beam position measure-
ment. Another simple and efficient way is to look for the first corrector that most
efficiently reduces the orbit errors then for the second most efficient and so on. This
latter method is most efficient since the practicality of other methods can be greatly
influenced by errors of the position measurements as well as field errors in the
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Fig. 15.5 Orbit of Fig. 15.2
before and after correction
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correctors. The single most effective corrector method can be employed repeatedly
to obtain an acceptable orbit. Of similar practical effectiveness is the method of
beam bumps. Here, a set of three to four correctors are chosen and powered in such
a way as to produce a beam bump compensating an orbit distortion in that area. This
method is a local orbit correction scheme while the others are global schemes.

As a practical example, we show the vertical orbit in the storage ring PEP
before and after correction (Fig. 15.5) in normalized units. The orbit distortions are
significantly reduced and the strong harmonic close to the betatron frequency has all
but disappeared. Even in normalized units the orbit distortions have now a statistical
appearance and further correction would require many more correctors. The peaks at
the six interaction points of the lattice, indicated by dashed lines, are actually small
orbit distortions and appear large only due to the normalization to a very small value
of the betatron function ˇy at the interaction point.

15.2.8 Response Matrix

In the last section we found the relation of the beam position response at each
position monitor .BPM/ due to a change in any of the steering magnets in the
circular accelerator. The matrix made up of these relations (15.47) is called the
response matrix. The elements of this response matrix gives us an inside look at
perturbations, calibration errors and alignment and field tolerances. Each element
of the response matrix is defined by the movement of the beam at a particular
beam position monitor due to a known change in a particular steering magnet.
That response is made up of all fields encountered by the beam from the steerer to
the BPM, all ideal bending, quadrupole and sextupole fields, but also all undesired
fields originating from manufacturing tolerances, alignment errors, field errors, stray
fields etc. Also included are calibration and alignment errors .offset/ of BPMs
and steering magnets. Therefore these response matrix elements contain all the
information of perturbations which we would like to know. Unfortunately such
errors are not spelled out in clear text but must be assumed. To find such errors
one uses a computer program like LOCO [4, 5] which allows the user to choose
a specific source of suspected errors. The program then uses such errors and tries
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a fit to measured response matrix data. Usually most if not all errors are found to
be corrected in a series of different approximations. Of course, the measurement of
some 5,000 to 10,000 response matrix elements takes time. It is a very repetitive
measurement which is best left to a computer. Such programs are part of the
Accelerator Tool box .AT/ [6] which includes many more routines to analyse and
optimize electron storage rings.

15.2.9 Orbit Correction with Single Value Decomposition
.SVD/

Space age developments have had their impact on accelerator physics too. Transmis-
sion of pictures from space craft and communication in general push for methods to
get the information with a minimum of data transfers. Mathematicians found a way
to invert a big matrix and determine the most significant eigenvalues. In accelerator
physics, we know from the last section that a series of approximations based on
the most significant corrector leads to a greatly improved closed orbit. Now, with
the new approach, which is called Singe Value Decomposition .SVD/ ; we get the
desired result in one application. The method of SVD provides us with the matrix
inversion (15.48) such that all steering corrections are listed in order of magnitude.

Single Value Decomposition (SVD)

Assume a n � m matrix A like the one in (15.46). This matrix can be decomposed
into three matrices such that

A D UWVT: (15.51)

Here, the columns of U are the eigenvectors of AAT and V is made up of rows
which are the eigenvectors of ATA: Finally, W is a diagonal matrix with elements
being the “singular values” equal to the square root of the eigenvalues of both AAT

and ATA: The inverse A�1 is

A�1 D V W�1UT (15.52)

and the desired corrector strength are from (15.48)

�n D �A�1um : (15.53)

where �1 is the strongest and �n the weakest corrector.
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Fig. 15.6 3-D graph of the horizontal response matrix elements before correction (left) and after
applying SVD (right). The values are shown versus the number of steering magnets and the number
of BPMs each close to 100

More visually, we show the process in some graphs from the synchrotron light
source PLS-II in Pohang, Korea.2 The response matrix before correction is shown
in Fig. 15.6 in a 3-D graph (lower left) where the two axis are the number of steering
magnets and number of BPMs.

There are somewhat regular oscillation in the values of the matrix elements
visible, which are due to the repetition of the betatron oscillation in each super-
periods. Applying SVD the inverse response matrix is of diagonal form and shown
in Fig. 15.6 (lower right). The strength of the steering magnets to correct the closed
orbit is finally shown in Fig. 15.7 where it is quite obvious that only a few correctors
are very effective. Of the 96 corrector magnets installed in PLS-II only about 30 to
50 are effective. All others do not contribute to orbit correction but rather fight each
other and therefore should not be used.

While it is not known which corrector magnets and BPMs are the most effective
a sufficient number of both, about 6 per betatron oscillation, should be installed.
Eventually, correction of the orbit defines the most effective correctors and BPMs,
about 4 each per betatron oscillation. In the vertical plane the process is exactly the
same with some variation of numbers due to the different tune.

2I thank Dr. Sheungwan Shin, PLS-II, Pohang, Korea for providing the data and graphs.
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Fig. 15.7 Strength of the corrector magnets ordered from most to least effective

15.3 Quadrupole Field Perturbations

The dipole perturbation terms cause a shift in the beam path or closed orbit without
affecting the focusing properties of the beam line. The next higher perturbation
terms which depend linearly on the transverse particle offset from the ideal orbit
will affect focusing because these perturbations act just like quadrupoles. Linear
perturbation terms are of the form

u00 C �ku C �2u
�

u D p2 .z/ u; (15.54)

where u stand for x and y, respectively. More quantitatively, these linear perturba-
tions are from (15.6) and (15.7)

p2;x .z/ D �
�
kx C �2x

�
x � mx xC : : :

p2;y .z/ D Cky yC mx yC : : :
(15.55)

As a general feature, we recognize the “feed down” from misalignments of higher
order multipoles. A misaligned sextupole, for example, generates dipole as well as
gradient fields. Any misaligned multipole produces fields in all lower orders.

Quadrupole fields determine the betatron function as well as the phase advance or
tune in a circular accelerator. We expect therefore that linear field errors will modify
these parameters and we will derive the effect of gradient errors on lattice functions
and tune.
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15.3.1 Betatron Tune Shift

Gradient field errors have a first order effect on the betatron phase and tune.
Specifically in circular accelerators we have to be concerned about the tune not
to deviate too much from stable values to avoid beam loss. The effect of a linear
perturbation on the tune can be easily derived in matrix formulation for one single
perturbation. For simplicity we choose a symmetry point in the lattice of a circular
accelerator and insert on either side of this point a thin half-lens perturbation with
the transformation matrix

Mp D
�

1 0

�1=f 1

�
; (15.56)

where f �1 D � 1
2

R
p2.z/ dz and p2.z/ is the total perturbation. Combining this with

the transformation of an ideal ring (8.74) with ˇ D ˇ0; ˛ D ˛0 D 0 and 0 D 2�
0

M0 D
0@ C.z/ S.z/

C0.z/ S0.z/

1A D
0@ cos 0 ˇ0 sin 0

� 1
ˇ0

sin 0 cos 0

1A
we get for the trace of the total transformation matrix M DMp M0Mp

TrM D 2 cos 0 � 2ˇ0
f

sin 0 ; (15.57)

where ˇ0 is the unperturbed betatron function at the location of the perturbation and
 0 D 2�
0 the unperturbed phase advance per turn. The trace of the perturbed ring
is TrM D 2 cos and we have therefore

cos D cos 0 � ˇ0
f

sin 0 : (15.58)

With D 2�
 D 2�
0C2�ı
 and cos D cos 0 cos 2�ı
�sin 0 sin 2�ı

we get for small perturbations the tune shift

ı
 D 1

2�

ˇ0

f
D � ˇ0

4�

Z
p2.z/ dz : (15.59)

For more than a single gradient error one would simply add the individual
contribution from each error to find the total tune shift. The same result can be
obtained from the perturbed equation of motion (15.54). To show this, we introduce
normalized coordinates w D u=

p
ˇ and ' D R dz


ˇ
and (15.54) becomes

RwC 
20w D 
20ˇ2.z/ p2.z/w : (15.60)
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For simplicity, we drop the index u and recognize that all equations must
be evaluated separately for x and y: Since both the betatron function ˇ.z/ and
perturbations p2.z/ are periodic, we may Fourier expand the coefficient of 
0w on
the r.h.s. and get for the lowest, non-oscillating harmonic

F0 D 1

2�

Z 2�

0


0ˇ
2p2 .z/ d' D 1

2�

I
ˇ.z/p2.z/ dz : (15.61)

Inserting this into (15.60) and collecting terms linear in w we get

RwC .
20 � 
0F0/w D 0 (15.62)

and the new tune 
 D 
0 C ı
 is determined by


2 D 
20 � 
0 F0 � 
20 C 2
0ı
 : (15.63)

Solving for ı
 gives the linear tune perturbation

ı
 D � 1
2
F0 D � 1

4�

I
ˇ.z/p2.z/ dz (15.64)

in complete agreement with the result obtained in (15.59). The tune shift produced
by a linear perturbation has great diagnostic importance. By varying the strength of
an individual quadrupole and measuring the tune shift it is possible to derive the
value of the betatron function in this quadrupole.

The effect of linear perturbations contributes in first approximation only to a
static tune shift. In higher approximation, however, we note specific effects which
can affect beam stability and therefore must be addressed in more detail. To derive
these effects we solve (15.60) with the help of a Green’s function as discussed in
Sect. 5.5.4 and obtain the perturbation

P.'/ D
Z '

0


0ˇ
2.�/p2.�/w.�/ sin Œ
0.' � �/� d� ; (15.65)

where we have made use of the principal solutions. We select a particular,
unperturbed trajectory, w.�/ D w0 cos .
�/ with Pw0 D 0 and get the perturbed
particle trajectory

w.
'/ D w0 cos .
0'/C w0
0

Z '

0

ˇ2p2 cos .
0�/ sin Œ
0.' � �/� d� ; (15.66)

where ˇ D ˇ.�/ and p2 D p2.�/. If, on the other hand, we consider the
perturbations to be a part of the lattice, we would describe the same trajectory by

w.'/ D w0 cos 
' : (15.67)
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Both solutions must be equal. Specifically the phase advance per turn must be
the same and we get from (15.66), (15.67) after one turn ' D 2� for the perturbed
tune 
 D 
0 C ı


cos 2�.
0 C ı
/ D cos 2�
0 C 
0

Z 2�

0
ˇ2.'/p2.'/ cos.
0'/ sin Œ
0.2� � '/� d' ;

(15.68)
which can be solved for the tune shift d
. Obviously the approximation breaks down
for large values of the perturbation as soon as the r.h.s. becomes larger than unity.
For small perturbations, however, we expand the trigonometric functions and get

ı
 D � 1

4 �

I
ˇ.z/p2.z/ dz (15.69)

� 1

4� sin 2�
0

I
ˇ.z/p2.z/ sin f2
0 Œ� � '.z/�g dz :

The first term is the average tune shift which has been derived before, while the
second term is of oscillatory nature averaging to zero over many turns if the tune
of the circular accelerator is not equal to a half integer or multiples thereof. We
have found hereby a second resonance condition to be avoided which occurs for
half integer values of the tunes


0 6D 1
2
n : (15.70)

This resonance is called a half integer resonance and causes divergent solutions
for the lattice functions.

15.3.2 Optics Perturbation Due to Insertion Devices

The use of insertion devices in synchrotron light sources can introduce significant
focusing perturbations. Undulators and wiggler magnets are a series of dipole
magnets with end effects causing vertical focusing. This focusing will perturb the
periodic betatron function in the storage ring and with it all correction that have
been made. Because the perturbation scales like the square of the magnet field it is
for most undulators too small to be significant. However, wiggler magnet may cause
some problems. Like for orbit correction we do not like to spread the correction of
the betatron functions all around the ring. To localize the correction to the vicinity of
the insertion device we consider only the closest lattice quadrupoles on either side of
the wiggler magnet which are not yet beyond the next insertion device. To minimize
the number of quadrupoles needed for correction we start away from the wiggler
where we expect the betatron functions to stay unperturbed, say in the middle of the
next long straight section. Starting from there we adjust quadrupoles such that in the
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middle of the wiggler magnet ˛x;y D 0 and �0 D 0: That requires three quadrupoles
for matching. If we match from the middle of the wiggler magnet to the middle of the
next straight section we would need six quadrupoles to match ˇx;y, ˛x;y; � and �0. For
optimum localization of the perturbation one should use the three quadrupole closest
to the wiggler magnet. This correction does not take care of the perturbations in the
betatron phase. If two more quadrupoles are available one could try to use them for
tune correction. This, however, is not always possible and one might therefore use
two quadrupole families for the whole ring to readjust the tunes to the original value.
Because there usually are many superperiods, the effect of a small tune correction
is distributed around the ring and causes little variation in the beatron functions.
The corrections in the quadrupoles are again for a permanent magnet wiggler gap-
dependent and must be determined before general use to establish feed-forward of
the computer control of the wiggler.

15.3.3 Resonances and Stop Band Width

Calculating the tune shift from (15.68) we noticed that there is no solution if the
perturbation is too large such that the absolute value of the r.h.s. becomes larger than
unity. In this case the tune becomes imaginary leading to ever increasing betatron
oscillation amplitudes and beam loss. This resonance condition occurs not only at
a half integer resonance but also in a finite vicinity. The region of instability is
called the stop band and the width of unstable tune values is called the stop band
width which can be calculated by using a higher approximation for the perturbed
solution. Following the arguments of Courant and Snyder [1] we note that the
perturbation (15.65) depends on the betatron oscillation w.'/ itself and we now
use in the perturbation integral the first order approximation (15.66) rather than the
unperturbed solution to calculate the perturbation (15.65). Then instead of (15.68)
we get with


0ˇ
2.'/ p2.'/ D g .'/ (15.71)

cos 2�.
0 C ı
/� cos 2�
0 DC
Z 2�

0
g.'/ cos.
0'/ sin 
0.2� � '/ d'

C 
0

Z 2�

0
g.�/ sin 
0.2� � �/ (15.72)

�
Z �

0
g.�/ cos .
0�/ sin 
0.� � �/ d� d� :

This expression can be used to calculate the stop band width due to gradient
field errors which we will do for the integer resonance 
0 D nC ı
 and for the half
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integer resonance 
0 D nC1=2Cı
 where n is an integer and ı
 the deviation of the
tune from these resonances. To evaluate the first integral I1, on the r.h.s. of (15.72)
we make use of the relation

cos .
0'/ sin Œ
0.2� � '/� D 1
2

sin .2�
0/C 1
2

sinŒ2
0.� � '/� (15.73)

and get with dz D 
0ˇd' andI
ˇ.z/ p2.z/ dz D

Z 2�

0

g.'/ d' D 2�F0 (15.74)

from (15.62) for the first integral

I1 D �F0 sin .2�
0/C 1
2

Z 2�

0

g.'/ sin Œ2
0.� � '/� d' : (15.75)

The second term of the integral I1 has oscillatory character averaging to zero over
many turns and with ı � 1

I1 D �F0 sin 2�
0 �
8<: 2�

2F0 ı
 for 
0 D nC ı


�2�2F0 ı
 for 
0 D nC 1
2
C ı


: (15.76)

The second integral I2 in (15.72) can best be evaluated while expressing
the trigonometric functions in their exponential form. Terms like e˙i
.2��2�/ or
e˙i
.2��2&/ vanish on average over many turns. WithZ 2�

0

f .�/ d�
Z �

0

f .�/ d� D 1
2

Z 2�

0

f .�/ d�
Z 2�

0

f .�/ d�

we get for the second integral

I2 D � 
0

16

Z 2�

0

g.�/
Z 2�

0

g.�/ (15.77)

� ˚.ei2�
0 C e�i2�
0/ � Œei2
0.���C�/ C e�i2
0.���C�/�


d� d�:

Close to the integer resonance 
0 D nC ı
 and

I2;n D � 
0

16

Z 2�

0

g.�/
Z 2�

0

g.�/ (15.78)

� ˚.ei2�ı
 C e�i2�ı
/ � Œei2n.���/ C e�i2n.���/�


d� d�
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while in the vicinity of the half integer resonance 
0 D nC 1
2
C ı


I2;nC 1
2
D � 
0

16

Z 2�

0

g.�/
Z 2�

0

g.�/
˚�.ei2�ı
 C e�i2�ı
/

C
h
ei2.nC 1

2 /.���/ C e�i2.nC 1
2 /.���/

io
d� d� :

The integralscan now be expressed in terms of Fourier harmonics of

0ˇ

2 .'/ p1.'/, where the amplitudes of the harmonics Fq with integer q > 0

are given by

jFqj2 D FqF�
q D


0

�2

Z 2�

0

g.�/ e�iq� d�
Z 2�

0

g.�/ eiq� d� : (15.79)

For F0 we have from the Fourier transform the result

F0 D hg.'/i D 
0
˝
ˇ2.'/p2.'/

˛
(15.80)

and we get for (15.78) with this and ignoring terms quadratic in ı


I2;n � 1
8
�2
�
F22n � 4F20 cos 2�ı


�
(15.81)

and for (9.57)

I2;nC 1
2
� � 1

8
�2
�
F22nC1 � 4F20 cos 2�ı


�
: (15.82)

At this point we may collect the results and get on the l.h.s. of (15.72) for 
0 D nCı


cos 2�.
0 C ı
/� cos 2�
0 D cos 2�.
0 C ı
/� 1C 2�2 ı
2 :

This must be equated with the r.h.s. which is the sum of integrals I1 and I2 and with
F20 cos 2�ı
 D O.ı4
/

cos 2�.
0 C ı
/� 1 D �2�2ı
2 C 2�2F0 ı
 C 1
8
�2.F22n � 4F20/ : (15.83)

The boundaries of the stop band on either side of the integer resonance 
0 �
n can be calculated from the condition that cos2�.
0 C ı
/ 
 1 which has two
solutions ı
1;2. From (15.83) we get therefore

ı
2 � F0 ı
 D 1
16
.jF2n j2 � 4F20/

and solving for ı


ı
1;2 D 1
2
F0 ˙ 1

4
jF2n j (15.84)
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the stop band width is finally


 D ı
1 � ı
2 D 1
2
jF2nj D 1

2�

I
ˇ.z/ p2.z/ e�i2n�.z/ dz : (15.85)

The stop band width close to the integer tune 
 � n is determined by the second
harmonic of the Fourier spectrum for the perturbation. The vicinity of the resonance
for which no stable betatron oscillations exist increases with the value of the gradient
field error and with the value of the betatron function at the location of the field error.
For the half integer resonance 
0 � nC 1

2
, the stop band width has a similar form


1
2
D 1

2
jF2nC1j D 1

2�

Z 2�

0

ˇ.z/ p2.z/ e�i.2nC1/�.z/ dz : (15.86)

The lowest order Fourier harmonic n D 0 determines the static tune shift while
the resonance width depends on higher harmonics. The existence of finite stop
bands is not restricted to linear perturbation terms only. Nonlinear, higher order
perturbation terms lead to higher order resonances and associated stop bands. In
such cases one would replace in (15.60) the linear perturbation ˇ

1
2 p2.z/w by the

nth order nonlinear perturbation ˇn=2pn.z/wn�1 and basically go through the same
derivation. Later in this chapter, we will use a different way to describe resonance
characteristics caused by higher order perturbations. At this point we note only that
perturbations of order n are weighted by the n=2 power of the betatron function at the
location of the perturbation and increased care must be exercised, where large values
of the betatron functions cannot be avoided. Undesired fields at such locations must
be minimized.

15.3.4 Perturbation of Betatron Function

The existence of linear perturbation terms causes not only the tunes but also betatron
functions to vary around the ring or along a beam line. This variation, also called
beta-beat can be derived by observing the perturbation of a particular trajectory like
for example the sine-like solution given by

S0.z0jz/ D
p
ˇ.z/

p
ˇ0 sin 
0Œ'.z/ � '0� : (15.87)

The sine-like function or trajectory in the presence of linear perturbation terms
is by the principle of linear superposition the combination of the unperturbed
solution (8.74) and perturbation (5.75)

S.z0jz/ D
p
ˇ.z/

p
ˇ0 sin 
0'.z/

Cpˇ.z/ Z z

z0

p2.�/
p
ˇ.�/S0.z0j�/ sin 
0Œ'.z/ � '.�/� d� :
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Following the sinusoidal trajectory for the whole ring circumference or length
of a superperiod Lp, we have with z D z0 C Lp, ˇ.z0 C Lp/ D ˇ.z0/ D ˇ0 and
'.z0 C Lp/ D 2� C '0

S.z0jz0 C Lp/ D ˇ0 sin 2�
0 C ˇ0

I z0CLp

z0

ˇ.�/ p1.�/ (15.88)

� sin 
0Œ'.�/ � '0� sin Œ
0 .2� C '0 � '.�//� d� :

The difference due to the perturbation from the unperturbed trajectory (15.87) at
z D z0 C Lp is

S D S.z0jz0 C Lp/ � S0.z0jz0 C Lp/ (15.89)

D ˇ0

Z z0CLp

z0

ˇ.�/ p2.�/ sinŒ
0.'� � '0/� sinŒ
0.2� C '0 � '�/� d� ;

where we abbreviated '.z0/ D '0 etc.
The variation of the sine like function can be derived also from the variation of

the M12 element of the transformation matrix for the whole ring

S D .ˇ sin 2�
/ D ˇ sin 2�
0 C ˇ0 2�
 cos 2�
0 : (15.90)

We use (15.64) for the tune shift ı
 D � 1
2

F0, equate (15.90) with (15.89)
and solve for ˇ=ˇ. After some manipulations, where we replace temporarily
the trigonometric functions by their exponential expressions, the variation of the
betatron function becomes at '.z/

ˇ.z/

ˇ.z/
D 1

2 sin 2�
0

I
ˇ.�/ p2.�/ cos Œ2
0 .'.z/ � '.�/C �/� d� : (15.91)

The perturbation of the betatron function shows clearly resonance character
and a half integer tune must be avoided. We observe a close similarity with the
solution (10.91) of the dispersion function or the closed orbit (15.28). Setting
d� D 
0ˇ.�/ d'; we find by comparison that the solution for the perturbed
betatron function can be derived from a differential equation similar to a modified
equation (10.88)

d2

d'2

�
ˇ

ˇ

�
C .2
0/2ˇ

ˇ
D .2
0/2 12ˇ2.z/ p2.z/ : (15.92)

Expanding the periodic function 
0ˇ2p2 DPq Fq eiq' we try the periodic ansatz

ˇ

ˇ
D
X

q

BqFq eiq' (15.93)
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and get from (15.92)X
q

��q2 C .2
0/2
	

BqFq eiq' D 2
0
X

q

Fq eiq' :

This can be true for all values of the phase ' only if the coefficients of the
exponential functions vanish separately for each value of q or if

Bq D 2
0

.2
0/2 � q2
: (15.94)

Inserting into the periodic ansatz (15.93) the perturbation of the betatron function
in another form is

ˇ

ˇ
D 
0

2

X
q

Fq eiq'


20 � .q=2/2
: (15.95)

Again we recognize the half inter resonance leading to an infinitely large
perturbation of the betatron function. In the vicinity of the half integer resonance

0 � nC 1

2
D q=2 the betatron function can be expressed by the resonant term only

ˇ

ˇ
� 1

2
jF2nC1jcos.2nC 1/'


0�
�
nC 1

2

�
and with jF2nC1j D 2
1

2
from (15.86) we get again the perturbation of the betatron

function (15.91). The beat factor for the variation of the betatron function is define
by

BF D 1C
�
ˇ

ˇ0

�
max
D 1C 
2nC1

2
0 � .2nC 1/ ; (15.96)

where 
2nC1 is the half integer stop band width. The beating of the betatron
function is proportional to the stop band width and therefore depends greatly on the
value of the betatron function at the location of the perturbation. Even if the tune is
chosen safely away from the next resonance, a linear perturbation at a large betatron
function may still cause an unacceptable beat factor. It is generally prudent to design
lattices in such a way as to avoid large values of the betatron functions. As a practical
note, any value of the betatron function which is significantly larger than the
quadrupole distances should be considered large. For many beam transport problems
this is easier said than done. Therefore, where large betatron functions cannot be
avoided or must be included to meet our design goals, results of perturbation theory
warn us to apply special care for beam line component design, alignment and to
minimize undesirable stray fields.
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15.4 Chromatic Effects in a Circular Accelerator

Energy independent perturbations as discussed in previous sections can have a
profound impact on the stability of particle beams in the form of perturbations of the
betatron function or through resonances. Any beam transport line must be designed
and optimized with these effects in mind since it is impossible to fabricate ideal
magnets and align them perfectly. Although such field and alignment errors can
have a destructive effect on a beam, it is the detailed understanding of these effects
that allow us to minimize or even avoid such problems by a careful design within
proven technology.

To complete the study of perturbations, we note that a realistic particle beam is
never quite mono-energetic and includes a finite distribution of particle energies.
Bending as well as focusing is altered if the particle momentum is not the
ideal momentum. We already derived the momentum dependent reference path in
transport lines involving bending magnets. Beyond this basic momentum dependent
effect we observe other chromatic aberrations which contribute in a significant way
to the perturbations of lattice functions. The effect of chromatic aberrations due to
a momentum error is the same as that of a corresponding magnet field error and for
beam stability we must include chromatic aberrations.

15.4.1 Chromaticity

Perturbations of beam dynamics can occur in beam transport systems even in the
absence of magnet field and alignment errors. Deviations of particle energies from
the ideal design energy cause perturbations in the solutions of the equations of
motion. We have already derived the variation of the equilibrium orbit for different
energies. Energy related or chromatic effects can be derived also for other lattice
functions. Focusing errors due to an energy error cause such particles to be imaged
at different focal points causing a blur of the beam spot. In a beam transport system,
where the final beam spot size is of great importance as, for example, at the collision
point of linear colliders, such a blur causes a severe degradation of the attainable
luminosity. In circular accelerators we have no such direct imaging task but note
that the tune of the accelerator is determined by the overall focusing and tune errors
occur when the focusing system is in error.

In this chapter we will specifically discuss effects of energy errors on tunes of a
circular accelerator and means to compensate for such chromatic aberrations . The
basic means of correction are applicable to either circular or open beam transport
systems if, for the latter case, we only replace the tune by the phase advance of
the transport line in units of 2� . The control of these chromatic effects in circular
accelerators is important for two reasons, to avoid loss of particles due to tune shifts
into resonances and to prevent beam loss due to an instability, which we call the
head tail instability to be discussed in more detail in Sect. 22.5.
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Fig. 15.8 Chromatic
focusing errors

s

f (Δp/p
o
= 0)

f (Δp/p
o
 < 0)

f (Δp/p
o 
> 0)

Fig. 15.9 Chromaticity
correction with sextupoles

sextupole

focal length

=0
o

p/p

>0
o

p/pΔ

Δ

quadrupole

p/pΔ <0o

The lowest order chromatic perturbation is caused by the variation of the focal
length of the quadrupoles with energy (Fig. 15.8). This kind of error is well known
from light optics, where a correction of this chromatic aberration can at least
partially be obtained by the use of different kinds of glasses for the lenses in a
composite focusing system.

In particle beam optics no equivalent approach is possible. To still correct for
the chromatic perturbations we remember that particles with different energies
can be separated by the introduction of a dispersion function. Once the particles
are separated by energy we apply different focusing corrections depending on the
energy of the particles. Higher energy particles are focused less than ideal energy
particles and lower energy particles are over focused. For a correction of these
focusing errors we need a magnet which is focusing for higher energy particles and
defocusing for lower energy particles (Fig. 15.9). A sextupole has just that property.

The variation of tunes with energy is called the chromaticity and is defined by

� D 


p=p0
: (15.97)

The chromaticity derives from second and higher order perturbations in .x; y; ı/
and the relevant equations of motion are from

x00 C k x D kxı� 1
2
m.x2 � y2/ ;

y00 � k x D �kyı C mxy :
(15.98)
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Setting x D xˇ C �x ı and y D yˇ, assuming that �y � 0, we retain only betatron
oscillation terms involving xˇ or yˇ to derive chromatic tune shifts. In doing so we
note three types of chromatic perturbation terms, those depending on the betatron
motion only, those depending on the momentum error only, and terms depending on
both. With these expansions (15.98) becomes

x00̌ C kxˇ D kxˇı �m�xxˇı � 1
2
m.x2ˇ � y2ˇ/CO.3/ ;

y00̌ � kyˇ D �kyˇı C m�xyˇı C mxˇyˇ CO.3/ : (15.99)

We ignore for the time being non chromatic terms of second order which will be
discussed later as geometric aberrations and get

x00̌ C k xˇ D .k � m �x/ xˇı ;

y00̌ � k yˇ D �.k �m �x/ yˇı :
(15.100)

The perturbation terms now are linear in the betatron amplitude and therefore
have the character of a gradient error. From Sect. 15.3 we know that these types of
errors lead to a tune shift which by comparison with (15.64) becomes in terms of a
phase shift

 x D � 12 ı
H
ˇx.k �m�x/ dz;

 y D C 1
2
ı
H
ˇy.k �m �x/ dz :

(15.101)

Equations (15.101) are applicable for both circular and open beam lines. Using
the definition of the chromaticity for circular accelerators we have finally

�x D � 1
4�

H
ˇx.k � m�x/ dz ;

�y D C 1
4�

H
ˇy.k � m�x/ dz :

(15.102)

Similar to the definition of tunes the chromaticities are also an integral property
of the circular accelerator lattice. Setting the sextupole strength m to zero one gets
the natural chromaticities determined by focusing terms only

�x0 D � 1
4�

H
ˇxk dz ;

�y0 D C 1
4�

H
ˇyk dz :

(15.103)

The natural chromaticities are always negative which is to be expected since
focusing is less effective for higher energy particles .ı > 0/ and therefore the
number of betatron oscillations is reduced.

For a thin lens symmetric FODO lattice the calculation of the chromaticity
becomes very simple. With the betatron function ˇC at the center of a focusing
quadrupole of strength kC D k and ˇ� at the defocusing quadrupole of strength
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k� D k; the chromaticity of one FODO half cell is

�x0 D � 1

4�

�
ˇC

Z
kCdzC ˇ�

Z
k�dz

�
D �ˇ

C � ˇ�

4�

Z
k dz : (15.104)

With ˇC (10.3) and ˇ� (10.5) and
R

kdz D 1=f D 1=.�L/, where � is the FODO
strength parameter and L the length of a FODO half cell, we get the chromaticity
per FODO half-cell in a more practical formulation

�x0 D � 1

2�

1p
�2 � 1 D �

1

�
tan

�
1

2
 x

�
; (15.105)

where  x is the horizontal betatron phase for the full FODO cell. The same result
can be obtained for the vertical plane.

The natural chromaticity for each 90ı FODO cell is therefore equal to 1=� .
Although this value is rather small, the total chromaticity for the complete lattice
of a storage ring or synchrotron, made up of many FODO cells, can become quite
large. For the stability of a particle beam and the integrity of the imaging process by
quadrupole focusing it is important that the natural chromaticity be corrected.

It is interesting at this point to discuss for a moment the chromatic effect if, for
example, all bending magnets have a systematic field error with respect to other
magnets. In an open beam transport line the beam would follow an off momentum
path as determined by the difference of the beam energy and the bending magnet
“energy”. Any chromatic aberration from quadrupoles as well as sextupoles would
occur just as discussed.

In a circular accelerator the effect of systematic field errors might be different.
We consider, for example, the case where we systematically change the strength
of all bending magnets. In an electron storage ring, the particle beam would
automatically stay at the ideal design orbit with the particle energy being defined by
the strength of the bending magnets. The strength of the quadrupoles and sextupole
magnets, however, would now be systematically too high or too low with respect
to the bending magnet field and particle energy. Quadrupoles introduce therefore a
chromatic tune shift proportional to the natural chromaticity while the sextupoles
are ineffective because the beam orbit leads through magnet centers. Changing the
strength of the bending magnets by a fraction  in an electron circular accelerator
and measuring the tune change 
 one can determine experimentally the natural
chromaticity .�0 D �
=/ of the ring. In Fig. 15.10 the measurement of the tunes
as a function of the bending magnet current is shown for the storage ring SPEAR.
From the slope of the graphs we derive the natural chromaticities of the SPEAR
storage ring as �x D �11:4 and �y D �11:7.

In a proton accelerator the beam energy must be changed through acceleration
or deceleration together with a change of the bending magnet strength to keep the
beam on the reference orbit before this measurement can be performed.
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Fig. 15.10 Experimental
determination of the natural
chromaticity in a storage ring
by measuring the tunes as a
function of the excitation
current I D I0 CI in the
bending magnets
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15.4.2 Chromaticity Correction

Equations (15.102) clearly suggest the usefulness of sextupole magnets for chro-
matic correction. Sextupoles must be placed along the orbit of a circular accelerator
or along a beam transport line at locations, where the dispersion function does not
vanish, �x 6D 0. A single sextupole is sufficient, in principle, to correct the chro-
maticity for the whole ring or transport line but its strength may exceed technical
limits or cause problems of geometric aberrations to the beam stability. This is
due to the nonlinear nature of sextupole fields which causes dynamic instability for
large amplitudes for which the sextupole field is no more a perturbation. The largest
betatron oscillation amplitude which is still stable in the presence of nonlinear fields
is called the dynamic aperture. To maximize the dynamic aperture it is prudent to
distribute many chromaticity correcting sextupoles along the beam line or circular
accelerator.

To correct both the horizontal and the vertical chromaticity two different groups
of sextupoles are required. For a moment we assume that there be only two
sextupoles. To calculate the required strength of these sextupoles for chromaticity
correction we use thin lens approximation and replacing integrals in (15.102) by a
sum the corrected chromaticities are

�x D �x0 C 1
4�
.m1�x1ˇx1 C m2�x2ˇx2/`s D 0 ;

�y D �y0 C 1
4�
.m1�x1ˇy1 C m2�x2ˇy2/`s D 0 :

(15.106)

Here we assume that two different sextupoles, each of length `s, are available at
locations z1 and z2. Solving for the sextupole strengths we get from (15.106)

m1`sD �4�
�x1

�x0 ˇy2 � �y0 ˇx2

ˇx1ˇy2 � ˇx2ˇy1
; (15.107a)

m2`sD �4�
�x2

�x0 ˇy1 � �y0 ˇx1

ˇx1ˇy2 � ˇx2ˇy1
: (15.107b)
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It is obvious that the dispersion function at sextupoles should be large to
minimize sextupoles strength. It is also clear that the betatron functions must be
different preferably with ˇx � ˇy at the m1 sextupole and ˇx � ˇy at the
m2 sextupole to avoid “fighting” between sextupoles leading to excessive strength
requirements.

In general this approach based on only two sextupoles in a ring to correct chro-
maticities leads to very strong sextupoles causing both magnetic design problems
and strong higher order aberrations. A more gentle correction uses two groups
or families of sextupoles with individual magnets distributed more evenly around
the circular accelerator and the total required sextupole strength is spread over
all sextupoles. In cases of severe aberrations, as discussed later, we will need
to subdivide all sextupoles into more than two families for a more sophisticated
correction of chromaticities. Instead of (15.106) we write for the general case of
chromaticity correction

�x D �x0 C 1
4�

P
i mi�xiˇxi`si

�y D �y0 C 1
4�

P
i mi�xiˇyi `si ;

(15.108)

where the sum is taken over all sextupoles. In the case of a two family correction
scheme we still can solve for m1 and m2 by grouping the terms into two sums.

The chromaticity of a circular accelerator as defined in this section obviously
does not take care of all chromatic perturbations. Since the function .k � m�x/

in (15.100) is periodic, we can Fourier analyze it and note that the chromaticity only
describes the effect of the non-oscillating lowest order Fourier component (15.103).
All higher order components are treated as chromatic aberrations. In Sect. 17.2 we
will discuss in more detail such higher order chromatic and geometric aberrations.

15.4.3 Chromaticity in Higher Approximation

So far we have used only quadrupole and sextupole fields to define and calculate
the chromaticity. From the general equations of motion we know, however, that
many more perturbation terms act just like sextupoles and therefore cannot be
omitted without further discussion. To derive the relevant equations of motion
from (6.95), (6.96) we set x D xˇ C �xı and y D yˇ C �yı where we keep
for generality the symmetry between vertical and horizontal plane. Neglecting,
however, coupling terms we get with perturbations quadratic in .x; y; ı/ but at most
linear in ı and after separating the dispersion function a differential equation of the
form .u D xˇ or yˇ/

u00̌ C K uˇ D �K uˇı �L u0̌ ı ; (15.109)
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where

Kx D �2x C k ; (15.110)

Ky D �2y � k ; (15.111)

�Kx D 2�2x C k � .mC 2�3x C 4�xk/�x (15.112)

�.mC 2�xkC 2�yk/�y C �0
x�

0
x � �0

y�
0
y ;

�Ky D 2�2y � kC .m � 2�ykC 2�xk/�x (15.113)

C.m � 2�3y C 4�yk/�y � �0
x�

0
x C �0

y�
0
y ;

�Lx D �Ly D C�0
x�x C �0

y�y C �x�
0
x C �y�

0
y (15.114)

D C d

dz
.�x�x C �y�y/ :

The perturbation terms (15.109) depend on the betatron oscillation amplitude as
well as on the slope of the betatron motion. If by some manipulation we succeed in
transforming (15.109) into an equation with terms proportional only to u we obtain
immediately the chromaticity. We try a transformation of the form u D v f .z/ where
f .z/ is a still to be determined function of z. With u0 D v0f C v f 0 and u00 D v00f C
2v0f 0 C v f 00 (15.109) becomes

v00f C 2v0f 0 C vf 00 C Kvf CKvf ı CLv0f ı CLvf 0ı D 0 : (15.115)

Now we introduce a condition defining the function f such that in (15.115) the
coefficients of v0 vanish. This occurs if

2f 0 D �L f ı : (15.116)

To first order in ı this equation can be solved by

f D 1C 1
2
ı.�x�x C �y�y/ (15.117)

and (15.115) becomes

v00 C �K C . f 00 C ıK/
	
v D 0 : (15.118)

The chromaticity in this case is � D 1
4�

H
. f 00
ı
C K/ˇdz; which becomes with

2f 00
ı
D d2

dz2
.�x�x C �y�y/ and (15.112)

�x D 1

4�

I �
f 00

ı
CKx

�
ˇx dz (15.119)

D 1

4�

I
1
2

d2

dz2
.�x�x C �y�y/ˇx dz
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� 1
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ˇx
�
.2�2x C k/C �0

x�
0
x � �0

y�
0
y

�.mC 2�3x C 4�xk/ �x�.mC 2�xkC 2�yk/ �y
	

dz :

The first integral can be integrated twice by parts to give
H
1
2
.�x�x C �y�y/ ˇ

00dz.
Using 1

2
ˇ00 D �x � Kˇ, and (15.119) the horizontal chromaticity is finally

�x D 1

4�

I ��.kC 2 �2x /� �0
x�

0
x � �0

y�
0
y (15.120)

C.mC �3x C 3�xk/�x C .mC 2�xkC �yk/�y
	
ˇx dz

C 1

4�

I
.�x�x C �y�y/�x dz :

A similar expression can be derived for the vertical chromaticity

�y D 1

4�

I �
.�2�2y C k/C �0

x�
0
x � �0

y�
0
y (15.121)

�.mC 2�xkC �yk/�x � .m��3y C 3�yk/�y
	
ˇy dz

C 1

4�

I
.�x�x C �y�y/�y dz :

In deriving the chromaticity we used the usual curvilinear coordinate system for
which the sector magnet is the natural bending magnet. For rectangular or wedge
magnets the chromaticity must be determined from (15.121) by taking the edge
focusing into account. Generally, this is done by applying a delta function focusing
at the edges of dipole magnets with a focal length of

1

fx
D 1

	
tan �

Z
ı.zedge/ dz : (15.122)

Similarly, we proceed with all other terms which include focusing.
The chromaticity can be determined experimentally simply by measuring the

tunes for a beam circulating with a momentum slightly different from the lattice
reference momentum. In an electron ring, this is generally not possible since any
momentum deviation of the beam is automatically corrected by radiation damping
within a short time. To sustain an electron beam at a momentum different from the
reference energy, we must change the frequency of the accelerating cavity. Due
to the mechanics of phase focusing, a particle beam follows such an orbit that
the particle revolution time in the ring is an integer multiple of the rf-oscillation
period in the accelerating cavity. By proper adjustment of the rf-frequency the beam
orbit is centered along the ideal orbit and the beam momentum is equal to the ideal
momentum as determined by the actual magnetic fields.
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If the rf-frequency is raised, for example, the oscillation period becomes shorter
and the revolution time for the beam must become shorter too. This is accomplished
only if the beam momentum is changed in such a way that the particles now follow a
new orbit that is shorter than the ideal reference orbit. Such orbits exist for particles
with momenta less than the reference momentum. The relation between revolution
time and momentum deviation is a lattice property expressed by the momentum
compaction which we write now in the form

frf
frf
D ��c

cp

cp0
: (15.123)

Through the knowledge of the lattice and momentum compaction we can relate a
relative change in the rf-frequency to a change in the beam momentum. Measure-
ment of the tune change due to the momentum change determines immediately the
chromaticity.

15.4.4 Non-linear Chromaticity*

The chromaticity of a circular accelerator is defined as the linear rate of change
of the tunes with the relative energy deviation ı. With the increased amount of
focusing that is being applied in modern circular accelerators, especially in storage
rings, to obtain specific particle beam properties like very high energies in large
rings or a small emittance, the linear chromaticity term is no longer sufficient to
describe the chromatic dynamics of particle motion. Quadratic and cubic terms in ı
must be considered to avoid severe stability problems for particles with energy error.
Correcting the chromaticity with only two families of sextupoles we could indeed
correct the linear chromaticity but the nonlinear chromaticity may be too severe to
permit stable beam operation.

We derive the nonlinear chromaticity from the equation of motion expressed in
normalized coordinates and including up to third-order chromatic focusing terms

RwC 
200w D 
200ˇ
2p2.'/w D .aı C bı2 C cı3/w ; (15.124)

where the coefficients a; b; c are perturbation functions up to third order in ı and
linear in the amplitude w, and where 
00 is the unperturbed tune. From (6.95)
and (6.96) these perturbations are

a D 
200ˇ
2
��

kC 2�2x
�C m�x C : : :

	
, (15.125)

b D 
200ˇ
2
�� �kC 2�2x � � m�x C : : :

	
, (15.126)

c D 
200ˇ
2
��

kC 2�2x
�C m�x C : : :

	
. (15.127)
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This equation defines nonlinear terms for the chromaticity which have been
solved for the quadratic term [7] and for the cubic term [8, 9]. While second
and third-order terms become significant in modern circular accelerators, higher-
order terms can be recognized by numerical particle tracking but are generally
insignificant.

Since the perturbations on the r.h.s. of (15.124) are periodic for a circular
accelerator we may Fourier expand the coefficients

a.'/ D a0 C P
n¤0

an ein';

b.'/ D b0 C P
n¤0

bn ein';

c.'/ D c0 C P
n¤0

cn ein':

(15.128)

From the lowest-order harmonics of the perturbations we get immediately the first
approximation of nonlinear chromaticities


20 D 
200 � ı
�
a0 C b0ı C c0ı

2
�

(15.129)

or


20 D 
200
�
1 � ˇ2

Z 2�

0

p1.'/ d'

�
: (15.130)

With this definition we reduce the equation of motion (15.124) to

RwC 
200 w D 
20ˇ2ı
 X

n>0

2an cos n' C ı
X
n>0

2bn cos n' C ı2
X
n>0

2cn cos n'

!
w

(15.131)

The remaining perturbation terms on the r.h.s. look oscillatory and therefore seem
not to contribute to an energy dependent tune shift. In higher-order approximation,
however, we find indeed resonant terms which do not vanish but contribute to
a systematic tune shift. Such higher-order tune shifts cannot be ignored in all
cases and therefore an analytical expression for this chromatic tune shift will be
derived. To solve the differential equation (15.131), we consider the r.h.s. as a small
perturbation with ı serving as the smallness parameter. Mathematical methods for
a solution have been developed and are based on a power series in ı. We apply this
method to both the cosine and sine like principal solution and try the ansatz

C.'/ D
X
n�0

Cn.'/ ı
n and S.'/ D

X
n�0

Sn.'/ ı
n (15.132)

Concentrating first on the cosine like solution we insert (15.132) into (15.131) and
sort for same powers in ı noting that each term must vanish separately to make the
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ansatz valid for all values of ı. The result is a set of differential equations for the
individual solution terms

RC0 C 
20C0 D 0 ;
RC1 C 
20C1 D 
20ˇ2.'/p2.'/C0;

� � � � � � (15.133)

RCn C 
20Cn D 
20ˇ2.'/p2.'/Cn�1;

where derivatives RCi are taken with respect to the phase '; e.g. RCi D @2Ci=@'
2:

These are defining equations for the functions C0;C1; � � �Cn with Ci D Ci.'/ and
each function depending on a lower-order solution. The lowest-order solutions are
the principal solutions of the unperturbed motion

C0.'/ D cos 
0' and S0.'/ D 1


0
sin 
0' : (15.134)

The differential equations (15.133) can be solved with the Green’s Function method
which we have applied earlier to deal with perturbation terms. All successive
solutions can now be derived from the unperturbed solutions through

CnC1.'/ D 1

0

R '
0
ˇ.�/p2.�/ sin Œ
0 .� � '/�Cn.�/ d� ;

SnC1.'/ D 1

0

R '
0 ˇ.�/p2.�/ sin Œ
0 .� � '/� Sn.�/ d� :

(15.135)

With the unperturbed solution C0 we get for C1

C1.'/ D 1


0

Z '

0

ˇ.�/p2.�/ sin Œ
0 .� � '/� cos .
0�/ d� ; (15.136)

and utilizing this solution C2 becomes

C2.'/ D 1


20

Z '

0

ˇ.�/p2.�/ sin Œ
0 .� � '/� cos .
0�/ (15.137)

�
Z �

0

ˇ.�/p2.�/ sin Œ
0 .� � �/� cos .
0�/ d� d�:

Further solutions are derived following this procedure although the formulas get
quickly rather elaborate. With the cosine and sine like solutions we can formulate
the transformation matrix for the whole ring

M D
�

C.2�/ S.2�/
PC.2�/ PS.2�/

�
(15.138)
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and applying Floquet’s theorem, the tune of the circular accelerator can be deter-
mined from the trace of the transformation matrix

2 cos 2�
 D C.2�/C PS.2�/ ; (15.139)

where PS DdS/d'. With the ansatz (15.132) this becomes

2 cos 2�
 D
X
n �0

Cn.2�/ ı
n C

X
n �0
PSn.2�/ ı

n ; (15.140)

Retaining only up to third-order terms in ı; we finally get after some manipulations
with (15.135)

cos 2�
 D cos 2�
0 � 1

2
0
sin 2�
0

Z 2�

0

p2.�/ d� (15.141)

C 1
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C 1
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Z �

0

Z �
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p2.�/ p2.�/ p.�/ sin Œ
0 .� � � � 2�/�

� sin Œ
0 .� � �/� sin Œ
0 .� � �/� d� d� d� :

These integrals can be evaluated analytically and (15.141) becomes after some
fairly lengthy but straightforward manipulations

cos 2�
 D cos 2�
0 � ı2
 
� sin 2�
0

2
0

X
n>0

a2n
n2 � 4
20

!
(15.142)
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1C 4
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t.sCt/

.sC t/2 � 4
20
C ajs�tj

1 � 4
20
t.s�t/

.sC t/2 � 4
20

359=;CO.ı4/ :

This expression defines the chromatic tune shift up to third order. Note that
the tune 
0 is not the unperturbed tune but already includes the lowest-order
approximation of the chromaticity (15.129). The relevant perturbations here are
linear in the betatron amplitude and drive therefore half-integer resonances as is
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Fig. 15.11 Variation of the
vertical tune with energy in
the storage ring PEP if the
chromaticities are corrected
by only two families of
sextupoles
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obvious from (15.142). The main contribution to the perturbation observed here are
from the quadrupole and sextupole terms

p2.'/ D 
20ˇ2 .k � m�x/
�
ı � ı2 C ı3 : : :� : (15.143)

In large storage rings the nonlinear chromaticity becomes quite significant as
demonstrated in Fig. 15.11. Here the tune variation with energy in the storage
ring PEP is shown both for the case where only two families of sextupoles
are used to compensate for the natural chromaticities [8]. Since in this ring an
energy acceptance of at least ˙1% is required, we conclude from Fig. 15.11 that
insufficient stability is available because of the nonlinear chromaticity terms shifting
the tunes for off-momentum particles to an integer resonance within the desired
energy acceptance.

For circular accelerators or rings with a large natural chromaticity it is important
to include in the calculation of the nonlinear chromaticity higher-order terms of the
dispersion function �x. Following the discussion in Sect. 9.4.1 we set in (15.143)

�x.'/ D �x0 C �1ı C �2ı2 C : : : (15.144)

and find the Fourier components an and bn in (15.142) defined by


20ˇ
2.k � m�x0/ D

X
n�0

2an cos n' ; (15.145)

�
20ˇ2.k � m�x0 Cm�1/D
X
n�0

2bn cos n' : (15.146)

Nonlinear energy terms in the �-function can sometimes become quite significant
and must be included to improve the accuracy of analytical expressions for the
nonlinear chromaticity. In such cases more sophisticated methods of chromaticity
correction are required to control nonlinear chromaticities as well. One procedure is
to distribute sextupoles in more than two families while keeping their total strength
to retain the desired chromaticity. Using more than two families of sextupoles
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allows us to manipulate the strength of specific harmonics an such as to minimize
the nonlinear chromaticities. Specifically, we note in (15.142) that the quadratic

chromaticity term originates mainly from the resonant term a2n
n2�4
20 . This term can

be minimized by a proper distribution of sextupoles suppressing the nth-harmonic of
the chromaticity function 
2ˇ2.k�m�/. Special computer programs like PATRICIA
[8] calculate the contribution of each sextupole to the Fourier coefficients an and
provide thereby the information required to select optimum sextupole locations and
field strength to minimize quadratic and cubic chromaticities.

15.5 Kinematic Perturbation Terms*

The rules of linear beam dynamics allow the design of beam transport systems with
virtually any desired beam characteristics. Whether such characteristics actually can
be achieved depends greatly on our ability or lack thereof to control the source
and magnitude of perturbations. Only the lowest-order perturbation terms were
discussed in the realm of linear, paraxial beam dynamics. With the continued
sophistication of accelerator design and increased demand on beam quality it
becomes more and more important to also consider higher-order magnetic field
perturbations as well as kinematic perturbation terms.

The effects of such terms in beam-transport lines, for example, may compromise
the integrity of a carefully prepared very low emittance beam for linear colliders or
may contribute to nonlinear distortion of the chromaticity in circular accelerators
and associated reduced beam stability. Studying nonlinear effects we will not only
consider nonlinear fields but also the effects of linear fields errors in higher order,
whether it be higher-order perturbation terms or higher-order approximations for
the equations of motion. The sources and physical nature of perturbative effects
must be understood to determine limits to beam parameters and to design correcting
measures.

Perturbations of beam dynamics not only occur when there are magnetic field and
alignment errors present. During the derivation of the general equation of motion
in Chap. 5 we encountered in addition to general multipole fields a large number
of kinematic perturbation terms or higher-order field perturbations which appear
even for ideal magnets and alignment. Generally, such terms become significant for
small circular accelerators or wherever beams are deflected in high fields generating
bending radii of order unity or less. If, in addition, the beam sizes are large the
importance of such perturbations is further aggravated. In many cases well-known
aberration phenomena from light optics can be recognized.

Of the general equations of motion, we consider terms up to third order for
ideal linear upright magnets and get the equation of motion in the horizontal and
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deflecting plane
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In the nondeflecting or vertical plane the equation of motion is

y00 � ky D C2�xk xy � �0
x .x

0y � xy0/C �xx0y0 (15.148)
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It is quite clear from these equations that most perturbations become significant
only for large amplitudes and oblique particle trajectories or for very strong mag-
nets. The lowest-order quadrupole perturbations are of third order in the oscillation
amplitudes and therefore become significant only for large beam sizes. Second-
order perturbations occur only in combined-function magnets and for particle
trajectories traversing a quadrupole at large amplitudes or offsets from the axis.
Associated with the main fields and perturbation terms are also chromatic variations
thereof and wherever beams with a large energy spread must be transported such
perturbation terms become important. Specifically, the quadrupole terms kxı and
kyı determine the chromatic aberration of the focusing system and play a significant
role in the transport of beams with large momentum spread. In most cases of beam
dynamics, all except the linear chromatic terms can be neglected.

Evaluating the effect of perturbations on a particle beam, we must carefully select
the proper boundary conditions for bending magnets. Only for sector magnets is the
field boundary normal to the reference path and occurs therefore at the same location
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z independent of the amplitude. Generally, this is not true and we must adjust the
integration limits according to the particle oscillation amplitudes x and y and actual
magnet boundary just as we did in the derivation of linear transformation matrices
for rectangular or wedge magnets.

15.6 Perturbation Methods in Beam Dynamics

In this chapter, mathematical procedures have been developed to evaluate the
effect of specific perturbations on beam dynamics parameters. It is the nature of
perturbations that they are unknown and certain assumptions as to their magnitude
and distribution have to be made. Perturbations can be systematic, statistical
but periodic or just statistical and all can have a systematic or statistical time
dependence.

Systematic perturbations in most cases become known through careful magnetic
measurements and evaluation of the environment of the beam line. By construction
magnet parameters may be all within statistical tolerances but systematically off
the design values. This is commonly the case for the actual magnet length. Such
deviations generally are of no consequences since the assumed magnet length in
the design of a beam-transport line is arbitrary within limits. After the effective
length of any magnet type to be included in a beam line is determined by magnetic
measurements, beam optics calculations need to be repeated to reflect the variation
in length. Similarly, deviations of the field due to systematic errors in the magnet
gap or bore radius can be cancelled by experimental calibration of the fields with
respect to the excitation current. Left are then only small statistical errors in the
strength and length within each magnet type.

One of the most prominent systematic perturbation is an energy error a particle
may have with respect to the ideal energy. We have treated this perturbation in much
detail leading to dispersion or �-functions and chromaticities.

Other sources of systematic field errors come from the magnetic field of ion
pumps or rf-klystrons, from earth magnetic field, and current carrying cables along
the beam line. The latter source can be substantial and requires some care in the
choice of the direction the electrical current flows such that the sum of currents in all
cables is mostly if not completely compensated. Further sources of systematic field
perturbations originate from the vacuum chamber if the permeability of the chamber
or welding material is too high, if eddy currents exist in cycling accelerators or
due to persistent currents in superconducting materials which are generated just like
eddy currents during the turn on procedure. All these effects are basically accessible
to measurements and compensatory measures in contrast to statistical perturbations
as a result of fabrication tolerances.
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15.6.1 Periodic Distribution of Statistical Perturbations

Whatever statistical perturbations exist in circular accelerators, we know that these
perturbations are periodic, with the ring circumference being the period length. The
perturbation can therefore always be expressed by a Fourier series. The equation
of motion in the presence of, for example, dipole field errors is in normalized
coordinates

RwC 
20w D �
20ˇ3=2� : (15.149)

The dipole perturbation ˇ3=2� is periodic and can be expressed by the Fourier
series

ˇ3=2� D
X

n

Fn ein' ; (15.150)

where 
0' is the betatron phase and the Fourier harmonics Fn are given by

Fn D 1

2�

I �q
ˇ1=2.�/�.�/

�
e�in'.�/ d� : (15.151)

The location of the errors is not known and we may therefore only calculate
the expectation value for the perturbation by multiplying (15.151) with its complex
conjugate. In doing so, we note that each localized dipole perturbation deflects the
beam by an angle � and replace therefore the integral in (15.151) by a sum over all
perturbations. With

R
�d� � � we get for FnF�

n D jFnj2

jFnj2 D 1

4�2

24X
k

ˇk�
2
k C

X
k¤j

q
ˇkˇj�k�j e�in.'k�'j/

35 ; (15.152)

where ˇk is the betatron function at the location of the dipole perturbation. The
second sum in (15.152) vanishes in general, since the phases for the perturbations
are randomly distributed.

For large circular accelerators composed of a regular lattice unit like FODO cells
we may proceed further in the derivation of the effects of perturbations letting us
determine the field and alignment tolerances of magnets. For simplicity, we assume
that the lattice magnets are the source of dipole perturbations and that the betatron
functions are the same at all magnets. Equation (15.152) then becomes

jFnj2 D 1

4�2
Nmˇm�

2
� ; (15.153)

where �� is the expectation value for the statistical deflection angle due to dipole
perturbations. In a little more sophisticated approach, we would separate all magnets
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into groups with the same strength and betatron function and (15.153) becomes

jFnj2 D 1

4�2

X
m

Nmˇm�
2
�;m ; (15.154)

where the sum is taken over all groups of similar perturbations and Nm is the number
of perturbations within the group m. In a pure FODO lattice, for example, obvious
groups would be all QF’s, all QD’s and all bending magnets. From now on we will,
however, not distinguish between such groups anymore to simplify the discussion.

Periodic dipole perturbations cause a periodic orbit distortion which is
from (15.149)

w.'/ D �
X

n


20 Fn

.
20 � n2/
ein' : (15.155)

The expectation value for the orbit distortion is obtained by multiplying (15.155)
with it’s complex conjugate and we get with w.'/ D u.z/=

p
ˇ .z/

u u� D ˇ.z/
4jFnj2
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.
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: (15.156)

The sums can be replaced by �� cos 
.��'/

 sin 
� and we get finally for the expectation

value of the orbit distortion �u at locations with a betatron function ˇ

�2u D ˇ
N Ň�2�
8 sin2 �


; (15.157)

where Ň is the average betatron function at the locations of perturbations. This
result is in full agreement with the result (15.39) for misaligned quadrupoles, where
�� D �u=f , �u the statistical quadrupole misalignment and f the focal length of the
quadrupole.

This procedure is not restricted to dipole errors only but can be applied to
most any perturbation occurring in a circular accelerator. For this we determine
which quantity we would like to investigate, be it the tunes, the chromaticity,
perturbation of the dispersion functions, or any other beam parameter. Variation of
expressions for such quantities due to variations of magnet parameters and squaring
such variation we get the perturbation of the quantity under investigation. Generally,
perturbation terms of order n in normalized coordinates are expressed by

Pn.z/ D 
20ˇ3=2ˇn=2pn .z/ wn�1: (15.158)

Because the perturbations are assumed to be small, we may replace the oscillation
amplitudes wn in the perturbation term by their principle unperturbed solutions.
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Considering that the beam position w is a composite of, for example, betatron
oscillation wˇ, orbit distortion wc, and energy error w� we set

w D wˇ C wc C w� (15.159)

and note that any higher-order perturbation contributes to the orbit, the eta-function,
the tunes, betatron functions, and other beam parameters. Orbit distortions in
sextupoles of strength m, for example, produce the perturbations

P2.z/ D 1
2

20ˇ

5=2mw2 (15.160)

which for w� D 0 can be decomposed into three components

P20.z/ D 1
2

20ˇ

5=2mw2c ;

P21.z/ D 
20ˇ5=2mwcwˇ ; (15.161)

P22.z/ D 1
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20ˇ

5=2mw2ˇ :

The perturbation P20 causes an orbit distortion and since the perturbations are
randomly distributed the contribution to the orbit according to (15.157) is

�2u D ˇu
Ns ˇus �

2
�

8 sin2 �
u
; (15.162)

where Ns is the number of sextupoles, ˇus the value of the betatron function and
�c the rms orbit distortion at the sextupoles, �� D 1

2
m�2c `s and `s is the effective

sextupole deflection and length, respectively. In cases of very strong sextupoles
iteration methods must be applied since the orbit perturbation depends on the orbit.
Similarly, we could have set wc D 0 to calculate the perturbation of the �-function
due to sextupole magnets.

The linear perturbation P21 in (15.161) causes a statistical tune shift and a
perturbation of the betatron function. Following the derivation of tune shifts in
Sect. 15.3, we find the expectation value for the tune shift to be

hı2
i D 1

16�2

X
k

ˇk mk`k hu20ik ; (15.163)

where hu20i is the random misalignment of the sextupole magnets or random orbit
distortions in the sextupoles.

We find the interesting result, that sextupoles contribute to a tune error only if
there is a finite orbit distortion or misalignment u0, while a finite betatron oscillation
amplitude of a particle in the same sextupoles does not contribute to a tune shift.
Similarly, we may use the effects of systematic errors to get expressions for the
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probable variation of the betatron function (15.91) due to gradient errors from
misaligned sextupoles.

In the approximation of small perturbations, we are able to determine the
expectation value for the effect of statistical errors on a particular beam parameter
or lattice function. This formalism is used particularly when we are interested to
define tolerances for magnetic field quality and magnet alignment by calculating
backwards from the allowable perturbation of beam parameters to the magnitude of
the errors. Some specific statistical effects will be discussed in subsequent sections.

15.6.2 Periodic Perturbations in Circular Accelerators

Alignment and field errors in circular accelerators not only cause a distortion of
the orbit but also a perturbation of the �-functions. Although these perturbations
occur in both the horizontal and vertical plane, we will discuss only the effect in
the vertical plane. While the derivations are the same for both planes the errors
contribute only to a small perturbation of the already existing horizontal �-function
while the ideal vertical �-function vanishes, and therefore the perturbation can
contribute a large variation of beam parameters. This is specifically true for electron
storage ring where the vertical beam emittance is very small and a finite vertical
�-function may increase this emittance considerably.

Similar to (15.11) we use the equation of motion

y00 � ky D C�y ��yı � kyı C mxy (15.164)

with the decomposition

y D yc C vy ı (15.165)

and get in normalized coordinates Qy D y=
p
ˇy, while ignoring the betatron motion,

the differential equations for the orbit distortion Qyc

RQyc C 
2y Qyc D C
2yˇ3=2y .�y Cmxcyc/ (15.166)

and for the perturbation of the �-function Qvy D vy=
p
ˇy

RQvy C 
2y Qvy D �
2yˇ3=2y �y C 
2yˇ2y .k �m�x/Qyc : (15.167)

First, we note in a linear lattice where m D 0 that the differential equations for
both the closed orbit distortion and the �-function perturbation are the same except
for a sign in the perturbation. Therefore, in analogy to (15.157)

hv2y .z/i D
ˇ.z/ Ň�
8 sin2 �


X
i

�2i� : (15.168)
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The perturbation of the �-function becomes more complicated in strong focusing
lattices, where the chromaticity is corrected by sextupole fields. In this case, we note
that all perturbation terms on the r.h.s. are periodic and we express them in Fourier
series


2ˇ3=2y �y D
nDC1X
nD�1

Fn ein' (15.169)

with

Fn D 
2

2�

Z 2�

0

ˇ3=2�y e�in� d� (15.170)

and


2ˇ2y .k � m�x/ D
nDC1X
nD�1

An ein' (15.171)

with

An D 
2

2�

Z 2�

0

ˇ2.k � m�x/ e�in� d� : (15.172)

We also make use of the periodicity of the perturbation of the �-function and set

Qvy D
nDC1X
nD�1

En ein' : (15.173)

Inserting (15.169)–(15.173) into (15.167) we get with the periodic solution of the
closed orbit

Qyc.'/ D
X

n

Fn


2 � n2
ein' (15.174)

X
n

Œ.
2 � n2/En C Fn� ein' �
X
m;r

AmFr


2 � n2
ei.mCr/' D 0 : (15.175)

Noting that this equation must be true for all phases ' all terms with the same
exponential factor must vanish separately and we may solve for the harmonics of
the �-function

En D � Fn


2 � n2
C
X

r

An�r Fr

.
2 � n2/ .
2 � r2/
: (15.176)
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The perturbation of the �-function is therefore

Qvy.'/ D �Qyc.'/C
X
n;r

An�r Fr

.
2 � n2/ .
2 � r2/
ein' ; (15.177)

We extract from the double sum on the r.h.s. of (15.177) all terms with n D r and
get from those terms the expression A0

P
n

Fn
.
2�n2/2

ein' . The coefficient A0, however,
is just the natural chromaticity A0 D 2�0y=
y and the perturbation of the �-function
is from (15.177)

Qvy.'/ D �Qyc.'/C 2�y


y

X
n

Fn ein'

.
2 � n2/2
C
X
n¤r

An�r Fr ein'

.
2 � n2/.
2 � r2/
: (15.178)

By correcting the orbit distortion and compensating the chromaticity, we are able
to greatly reduce the perturbation of the vertical �-function. All terms with r D 0

vanish for a truly random distribution of misalignment errors since F0 D 0. Taking
the quadrupole lattice as fixed we find the remaining terms to depend mainly on
the distribution of the orbit correction Fr and sextupole positions Ai. For any given
sextupole distribution the orbit correction must be done such as to eliminate as much
as possible all harmonics of the orbit in the vicinity of the tunes r 6� 
y and to center
the corrected orbit such that F0 D 0.

Furthermore, we note that some care in the distribution of the sextupoles must
be exercised. While this distribution is irrelevant for the mere correction of the
natural chromaticities, higher harmonics of the chromaticity function must be held
under control as well. The remaining double sum is generally rather small since the
resonance terms have been eliminated and either 
 � n or 
 � r is large. However,
in very large rings or very strong focusing rings this contribution to the perturbation
of the �-function may still be significant.

15.6.3 Statistical Methods to Evaluate Perturbations

In an open beam-transport line the perturbation effect at a particular point depends
only on the upstream perturbations. Since perturbations cannot change the position
but only the slope of particle trajectories, we merely transform the random kick
angle �k from the location of the perturbation to the observation point. Adding all
perturbations upstream of the observation point we get with  D  .z/

u.z/D pˇ.z/ P
k

 k< .z/

p
ˇk sin. �  k/ �k ;

u0.z/D 1p
ˇ.z/

P
k

 k< .z/

p
ˇk cos. �  k/ �k :

(15.179)
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The expectation value for the position of the beam center at the observation point
becomes from the first equation (15.179) noting the complete independence of the
perturbations

�u.z/ D
p
ˇ.z/ 1

2
N
p
hˇi�� : (15.180)

Random variations of the beam position are customarily corrected by special
steering magnets if such correction is required at all. In long beam-transport systems
like those required in linear colliders a mere correction of the beam position at
the collision point, for example, may not be acceptable. Specifically, nonlinear
perturbations lead to an incoherent increase of the beam size which can greatly
reduce the usefulness of the colliding-beam system. In the next subsection we will
therefore discuss general perturbations in beam-transport lines and their effect on
the beam cross section.

15.7 Control of Beam Size in Transport Lines

For the transport of beams with a very small beam size or beam emittance like in a
linear collider facilities we are specially concerned about the impact of any kind of
perturbation on the integrity of a small beam emittance. Errors can disturb the beam
size in many ways. We have discussed already the effect of dipole errors on the
dispersion. The distortion of the dispersion causes an increase in the beam size due
to the energy spread in the beam. Quadrupole field errors affect the value of betatron
functions and therefore the beam size. Vertical orbit distortions in sextupoles give
rise to vertical—horizontal coupling. In this section we will try to evaluate these
effects on the beam size.

We use the equations of motion (6.95), (6.96) up to second order in x; y and
ı, and assume the curvature to be small of the order or less than .x; y; ı/. This is
a proper assumption for high-energy beam transport lines like in linear colliders.
For lower-energy beam lines very often this assumption is still correct and where a
better approximation is needed more perturbation terms must be considered. For the
horizontal plane we get

x00 C .�2x C k/ x D �xı � �xı
2 � ky � 1

2
m.x2 � y2/.1� ı/ (15.181)

��x.1 � ı/C kxı Ckx.1 � ı/C O.3/

and for the vertical plane

y00 � k y D �yı � �yı
2 � kxC mxy.1 � ı/ � kyı (15.182)

��y.1 � ı/ �k y.1 � ı/CO.3/
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In these equations rotated magnets .�y; k;m/ are included as small quantities
because rotational alignment errors of upright magnets cause rotated error fields
although no rotated magnets per se are used in the beam line. For the solution
of (15.181) and (15.182) we try the ansatz

x Dxˇ C xc C �xı C vxı C wxı
2 ;

y D yˇ C yc C �yı C vyı C wyı
2 :

(15.183)

Here we define .xˇ; yˇ/ as the betatron oscillations, .xc; yc/ the orbit distortions,
.�x; �y/ the dispersion function, .vx; vy/ the perturbations of the dispersion functions
due to magnetic field errors, and .wx;wy/ the first-order chromatic perturbation of
the dispersion functions .�tot D �CvCwıC : : :/. This ansatz leads to the following
differential equations in the horizontal plane where we assume the bending radii to
be large and �x, �y are therefore treated as small quantities

x00̌ C kxˇ D �kyˇ � 1
2
m.x2ˇ � y2ˇ/ �m.xˇxc � yˇyc/Ckxˇ ; a/

x00
c C kxc D ��x Ckxc � k yc � 1

2
m.x2c � y2c/ ; b/

�00
x C k�x D C �x ; c/
v00

x C kvx D � kvy � m .xˇ C xc/.�x C vx/C m .yˇ C yc/.�y C vy/ d/
Ck.xc C xˇ/C�x Ck .�x C vx/

Ckxˇ C kxc C 1
2
m.x2c � y2c/C kyc ;

w00
x C k wx D ��x � 1

2
m.�2x C 2�xvx � 2�yvy � v2y /C k.�x C vx/ e/

D Cm .xc�x C xcvx � yc�y � ycvy/C .�x C vx/xˇ � vyyˇ :
(15.184)

Similarly, we get for the vertical plane

y00̌ � kyˇ D �kxˇ C m xˇyˇ �kyˇ C m.xcyˇ C xˇyc/ ; a/

y00
c � kyc D ��y �kyc � kxc C mxcyc ; b/
�00

y � k�y D C�y ; c/
v00

y � kvy D C�y � k.�y C vy/C m.xˇ C xc/.�y C vy/ d/
Cm .�x C vx/.yˇ C yc/Ck.yˇ C yc/C k xc � mxcyc

�k.yˇ C yc/ �k.�y C vy/ ;

w00
y � kwy D ��y C k.�y C vy/ e/

D Cm .�x�y C �xvy C vx�y C vxvy/ :
(15.185)

The solution of all these differential equations is, if not already known, straight-
forward. We consider every perturbation to be localized as a thin element causing
just a kick which propagates along the beam line. If ˇj is the betatron function at
the observation point and ˇi that at the point of the perturbation pni the solutions
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of (15.184), (15.185) have the form

uj D
q
ˇj

X
i

p
ˇi sin ji

Z
pni dz : (15.186)

The kick due to the perturbation is �i D
R

pni dz, where the integral is taken along
the perturbation assumed to be short. To simplify the equations to follow we define
the length `i D �i=hpnii. Since most errors derive from real magnets, this length is
identical with that of the magnet causing the perturbation and  ji D  j �  i is the
betatron phase between perturbation and observation point. A closer look at (15.184)
and (15.185) shows that many perturbations depend on the solution itself requiring
an iterative solution process. Here we will, however, concentrate only an the first
iteration.

Ignoring coupling terms we have in (15.184) two types of perturbations, sta-
tistically distributed focusing errors k and geometric aberration effects due to
sextupoles. We assume here that the beam line is chromatically corrected by the use
of self-correcting achromats in which case the term 1

2
m.x2ˇ � y2ˇ/ is self-canceling.

The expectation value for the betatron oscillation amplitude due to errors is then

x2ˇ.z/ D ˇx.z/
X

i

ˇxi

D
.pni`i/

2
E

sin2  ji (15.187)

or

hx2ˇ.z/i D ˇx.z/ˇxhk2y2ˇ Ck2x2ˇ C m2.x2ˇx2c C y2ˇy2c/i 12NM`
2 ; (15.188)

where ˇx is the average value of the betatron functions at the errors, NM the number
of perturbed magnets and ` the magnet length. With k D k˛, where ˛ is the
rotational error, we get

hx2ˇ.z/iD 1
2
ˇx.z/ˇxNMk2`2 (15.189)

�
�
�2˛�

2
y C �2k �2x C

m2

k2
.�2x �

2
yc � �2y �2yc/

�
:

We have assumed the errors to have a Gaussian distribution with standard width
� . Therefore, �2˛ D h˛2i, �2k D h.k=k/2i; �xc D hx2ci, etc., and �y; �x the standard
beam size for the Gaussian particle distribution. Since hx2ˇ.z/i=ˇ.z/ D �x is the

increase in beam emittance and �2x D �xˇx; �
2
y D �yˇy we get for a round beam

for which �x D �y and the average values for the betatron functions are the same
(ˇx D ˇy)

�x

�x
D 1

2
ˇ
2
NMk2`2

�
�2˛ C �2k C

m2

k2
.�2xc C �2yc/

�
: (15.190)
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To keep the perturbation of the beam small the alignment �˛ and magnet field
quality �k must be good and the focusing weak which, however, for other reasons
is not desirable. For a chromatically corrected beam line we have k=m D N�x, which
can be used in (15.190). The perturbation of the vertical beam emittance follows
exactly the same results because we used a round beam.

The expectation value for the shift of the beam path is derived from (15.184a),
(15.185b) with (15.186) in a similar way as for the betatron oscillations

hx2c.z/i D 1
2
ˇx.z/ˇxNM`

2
�h�2x i C k2�2k hx2ci C k2�2˛hy2ci

	
: (15.191)

This expression for the path distortion, however, is not to be used to calculate the
perturbation of the dispersion. In any properly operated beam line one expects this
path distortion to be corrected leading to a smaller residual value depending on the
correction scheme applied and the resolution of the monitors. With some effort the
path can be corrected to better than 1mm rms which should be used to evaluate path
dependent perturbation terms in (15.184), (15.185). In the vertical plane we get

hy2c.z/i D 1
2
ˇy.z/ˇyNM`

2
�h�2y i C k2�2k

˝
y2c
˛C k2�2˛hx2ci

	
: (15.192)

The perturbation of the dispersion is with (15.184d) and (15.186)

vx.z/ D �xc.z/C
p
ˇx.z/

X
i

p
ˇxipxi`i sin xji : (15.193)

In (15.184d) we note the appearance of the same perturbation terms as for the path
distortion apart from the sign and we therefore separate that solution in (15.193).
The perturbations left are then

pxi D .k � m�x/.xˇ C xc/C m.yˇ C yc/�y Ck�x C � � � (15.194)

In this derivation the betatron phase  ji does not depend on the energy since
the chromaticity is corrected. Without this assumption, we would get another
contribution to vx from the beam-path distortion. We also note that the chromaticity
factor .k � m�x/ can to first order be set to zero for chromatically corrected beam
lines. The expectation value for the distortion of the dispersion is finally given by

hv2x .z/i D x2c.z/C 1
2
ˇx.z/ˇxNM`

2
h
hk2i�x

2 C m2�y
2hy2ˇi C m2�y

2hy2ci
i

(15.195)

or with some manipulation

hv2x .z/i D hx2c.z/iC 1
2
ˇx.z/ˇxNMk2`2

"
�2k �x

2C
�
�y

�x

�2
.ˇy�y C �2yc/

#
(15.196)
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The perturbation of the dispersion function is mainly caused by quadrupole field
errors while the second term vanishes for a plane beam line where �y D 0.
In principle, the perturbation can be corrected if a specific path distortion is
introduced which would compensate the perturbation at the point z as can be seen
from (15.193).

In the vertical plane we proceed just the same and get instead of (15.193)

vy.z/ D �yc.z/C
q
ˇy.z/

X
i

q
ˇyi
�
pyi`i

�
sin yji (15.197)

with

pyi D �.k � m�x/.yˇ C yc/C mvx.yˇ C yc/ (15.198)

C m.�y C vy/.xˇ C xc/�k.�y C vy/ � k.�y C vy/ :

Again due to chromaticity correction we have .k � m�x/ � 0 and get for the
expectation value of

˝
v2y
˛

in first approximation with vy � 0 in (15.198) and the
average values N�x and Nvx

hv2y .z/i D hy2c.z/i C 1
2
ˇy.z/ ŇyNMk2`2 (15.199)

�
��
�2k C �2˛ C

hx2ci
N�2x

�
N�2y C

Nv2x
N�2x
�
ˇy�y C hy2c i

��
:

For a plane beam line where �y � 0; we clearly need to go through a further
iteration to include the perturbation of the dispersion which is large compared to
�y D 0. In this approximation, we also set yc.z/ D 0 and

hv2y .z/i D
Nv2x
N�2x
�
ˇy�y C hy2ci

�
: (15.200)

Using this in a second iteration gives finally for the variation of the vertical
dispersion function due to field and alignment errors

hv2y .z/i D hy2c.z/iC 1
2
ˇy.z/ ŇyNMk2`2

�
�2k C �2˛ C

hx2ci
N�2x

�
(15.201)

�
"
. N�2y C Nv2y /C

Nv2y
N�2x
ˇx�x C Nv

2
x

N�2x
.ˇy�y C hy2ci/

#
:

This second-order dispersion due to dipole field errors is generally small
but becomes significant in linear-collider facilities where extremely small beam
emittances must be preserved along beam lines leading up to the collision point.
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Problems

15.1 (S). Use the perturbation terms P22 .z/ in (15.161) and show that pure betatron
oscillations in sextupoles do not cause a tune shift in first approximation. Why is
there a finite tune shift for the P21 .z/-term?

15.2 (S). Show analytically that the dispersion function for a single bending magnet
with a bending angle � seems approximately to emerge from the middle of the
magnet with a slope D0 D � .

15.3 (S). Use the lattice of example #3 in Table 10.1 and introduce vertical rms
misalignments of all quadrupoles by hıxirms D 0:1mm. Calculate the vertical
rms dispersion function. Then, add also rotational alignment errors of the bending
magnets by hı˛irms D 0:17mrad and calculate again the vertical rms dispersion.

15.4 (S). Use two bending magnets separated by a drift space of length `: Both
bending magnets are of equal but opposite strength. Such a deflection arrangement
causes a parallel displacement d of the beam path. Show that in this case the
contribution to the dispersion at the end of the second bending magnet is D D �d
and D0 D 0:
15.5 (S). For the rings in Problems 15.6 or 15.7 calculate the rms tolerance on
the quadrupole strength to avoid the integer or half integer resonance. What is
the corresponding tolerance on the quadrupole length? To avoid gradient fields
in bending magnets the pole profiles must be aligned parallel with respect to the
horizontal midplane. What is the angular tolerance for parallelism of the poles?

15.6. Use parameters of example #4 in Table 10.1 for a FODO lattice and construct
a full ring. Adjust the quadrupole strength such that both tunes are an integer plus
a quarter. Calculate the rms alignment tolerance on the quadrupoles required to
keep the beam within �x D 0:1mm and �x D 0:1mm of the ideal orbit. What
is the amplification factor? Determine the rms deflection tolerance of the bending
magnets to keep the beam within 0.1 mm of the ideal orbit. A rotation of the bending
magnets about its axis creates vertical orbit distortions. If the magnets are aligned
to a rotational tolerance of �˛ D 0:17mrad (this is about the limit of conventional
alignment techniques) what is the expectation value for the vertical orbit distortion?

15.7. Repeat the calculation of Problem 15.6 with the lattice example #1 in
Table 10.1. The alignment tolerances are much relaxed with respect to the ring
in Problem 15.6. What are the main three contributions influencing the tolerance
requirements? Make general recommendations to relax tolerances.

15.8. Design an electrostatic quadrupole with an aperture radius of 3 cm which is
strong enough to produce a tune split of ı
 D 0:01 between a counter rotating
particle and antiparticle beam at an energy of 3 GeV. Assume the quadrupole to
be placed at a location with a betatron function of ˇ D 10m. How long must the
quadrupole be if the electric field strength is to be limited to no more than 15 kV/cm?
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15.9. Consider a long straight beam-transport line for a beam with an emittance of
� D 10�12 rad-m from the end of a 500 GeV linear collider linac toward the collision
point. Use a FODO channel with ˇmax D 5 m and determine statistical tolerances
for transverse and rotational alignment and strength tolerances for the FODO cell
quadrupoles to prevent the beam emittance from dilution by more than 10 %.

15.10. Use parameters of example #4 in Table 10.1 for a FODO lattice and
construct a full ring. Adjust the quadrupole strength such that both tunes are an
integer plus a quarter. Calculate the rms alignment tolerance on the quadrupoles
required to keep the beam within �x D 0:1mm and �x D 0:1mm of the ideal
orbit. What is the amplification factor? Determine the rms deflection tolerance of
the bending magnets to keep the beam within 0.1 mm of the ideal orbit. A rotation of
the bending magnets about its axis creates vertical orbit distortions. If the magnets
are aligned to a rotational tolerance of �˛ D 0:17mrad (this is about the limit of
conventional alignment techniques) what is the expectation value for the vertical
orbit distortion?

15.11. Consider statistical transverse alignment errors of the quadrupoles in the
large hadron collider lattice example #4 in Table 10.1 of hıxirms D 0:1mm. What
is the rms path distortion at the end of one turn? Determine the allowable rotational
alignment error of the bending magnets to produce a vertical path distortion of no
more than that due to quadrupole misalignments. How precise must the bending
magnet fields be aligned to not contribute more path distortion than the quadrupole
misalignments.

15.12. Repeat the calculation of Problem 15.10 with the lattice example #1 in
Table 10.1. The alignment tolerances are much relaxed with respect to the ring
in Problem 15.10. What are the main three contributions influencing the tolerance
requirements? Make general recommendations to relax tolerances.

15.13. Calculate the expectation value for the integer and half integer stop band
width of the ring in Problem 15.5. Gradient errors introduce a perturbation of the
betatron functions. What is the probable perturbation of the betatron function for
the case in Problem 15.5?

15.14. Consider a FODO cell equal to examples #1, #2, and #4 in Table 10.1, adjust
the phase advance per cell to equal values and calculate the natural chromaticities.
Insert thin sextupoles into the center of the quadrupoles and adjust to zero
chromaticities. How strong are the sextupoles? Why must the sextupoles for lattice
#2 be so much stronger compared with lattice #4 even though the chromaticity per
cell is about the same?

15.15. Consider the transformation of phase ellipses through one full FODO cell
of the examples in Problem 15.14. Let the emittance for the phase ellipses be � D
10mm mrad. First transform the equation for the phase ellipse into a circle by setting
u D x and v D ˛x C ˇx0. Transform the phase circle from the center of the QF
through one full FODO cell to the center of the next QF ignoring any sextupole
terms. Repeat this transformation but include now the sextupole in the first QF only
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as calculated in Problem 15.14. Discuss the distortions of the phase circle for the
three different FODO lattices.
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Chapter 16
Resonances

Particle resonances in circular accelerators occur as a result of perturbation terms
involving particular Fourier harmonics. That approach is based on the common
knowledge that periodic perturbations of a harmonic oscillator can cause a res-
onance when the perturbation frequency is equal to an eigenfrequency of the
oscillator.

16.1 Lattice Resonances

Perturbation terms in the equation of motion can lead to a special class of beam
instabilities called resonances, which occur if perturbations act on a particle in
synchronism with its oscillatory motion. While such a situation is conceivable in a
very long beam transport line composed of many periodic sections, the appearance
of resonances is generally restricted to circular accelerators. There, perturbations
occur periodically at every turn and we may Fourier analyze the perturbation with
respect to the revolution frequency. If any of the harmonics of the perturbation
terms coincides with the eigenfrequency of the particles a resonance can occur and
particles may get lost. Such resonances caused by field imperfections of the magnet
lattice are also called structural resonances or lattice resonances. We have already
come across two such resonances, the integer and the half-integer resonances.

The characteristics of these two resonances is that the equilibrium orbit and
the overall focusing is not defined. Any small dipole or quadrupole error would
therefore lead to particle loss as would any deviation of the particle position and
energy from ideal values. Since these resonances are caused by linear field errors,
we call them also linear resonances. Higher order resonances are caused in a similar
way by nonlinear fields which are considered to be field errors with respect to the
ideal linear lattice even though we may choose to specifically include such magnets,
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like sextupoles or octupoles, into the lattice to compensate for particular beam
dynamics problems.

16.1.1 Resonance Conditions

In this section the characteristics of resonances in circular accelerators will be
derived starting from the equation of motion in normalized coordinates with only
the nth order multipole perturbation term. This is no restriction of generality since in
linear approximation each multipole perturbation having its own resonance structure
will be superimposed to that of other multipole perturbations. On the other hand, the
treatment of only a single multipole perturbation will reveal much clearer the nature
of the resonance. The equation of motion in normalized horizontal coordinates for
an nth-order perturbation is from (15.1)

RwC 
20xw D 
20xˇ
3=2
x ˇr=2

x ˇs=2
y prs.'/w

rvs; (16.1)

where 
0x is the unperturbed horizontal tune and r; s D 0; 1; 2 : : :integers with r C
s D n�1. A similar equation holds for vertical oscillations by replacing w .'/ ; 
0x; x
with v.'/; etc. and vice versa. The perturbations can be any appropriate term in
the equations of motion (6.95) and (6.96), however, we will consider primarily
perturbation terms which occur most frequently in circular accelerators and are
due to rotated quadrupole or nonlinear multipole fields. The general treatment of
resonances for other perturbations is not fundamentally different and is left to the
interested reader. From Chap. 9 we extract the dominant perturbation terms of order
n D r C sC 1 in normalized coordinates and compile them in Table 16.1 ordered
by perturbations of order r and s. To keep track of all types of perturbations requires
the use of many indices. We will keep the discussion more simple by ignoring
coupling, which will be treated separately, and concentrate only on a single order

Table 16.1 Lowest order
perturbation terms

Order

r s 
2x0

q
ˇ
.rC3/
x ˇs

yprs;x.'/wrvs 
2y0ˇ
r=2
x ˇ

.sC3/=2
y prs;y.'/

0 1 �
2x0ˇ3=2x ˇ
1=2
y kv

1 0 �
2y0ˇ1=2x ˇ
3=2
y kw

2 0 �
2x0ˇ5=2x
1
2
mw2

2 2 �
2y0ˇ1=2x ˇ2y m wv

0 2 C
2x0ˇ3=2x ˇy
1
2
mv2

4 1 �
2x0ˇ3x 16 r w3

2 1 C
2y0ˇxˇ
2
y
1
2
r w2v

1 2 C
2x0ˇ2xˇy
1
2
r wv2

0 3 �
2y0ˇ3y 16 r v3
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of perturbation. For simplicity we drop from here on the index x and set ˇx D ˇ.
Equation (16.1) becomes then

RwC 
20w D 
20ˇn=2C1pn.'/w
n�1; (16.2)

All perturbations are periodic in ' and can be expanded into a Fourier series

qn .'/ D 
20ˇn=2C1pn.'/ D
X

m

qnmeim': (16.3)

Since the perturbation is supposed to be small, we will insert the unperturbed
oscillation w0 on the right-hand side of (16.2). The general form of the unperturbed
betatron oscillation can be written like

w0.'/ D a ei
0' C b e�i
0'; (16.4)

where a and b are arbitrary constants and we may now express the amplitude factor
in the perturbation term wn�1.'/ by a sum of exponential terms which we use on
the right hand side of (16.2) as a first approximation

wn�1.'/ � wn�1
0 .'/ D

X
jlj�n�1

Wl e�il
0': (16.5)

Inserting both (16.3) and (16.5) into (16.2) we get for the equation of motion

RwC 
20w D
X
l;m

Wl qnm e�i.mCl
0/': (16.6)

The solution of this equation includes resonant terms whenever there is a
perturbation term with a frequency equal to the eigenfrequency 
0 of the oscillator.
The resonance condition is therefore .m; n; l are integers/

mC l
0 D 
0 with jlj 
 n � 1: (16.7)

From earlier discussions we expect to find here the integer resonance caused by
dipole errors n D 1. In this case the index l can only be l D 0 and we get from (16.7)


0 D m (16.8)

which is indeed the condition for an integer resonance.
Magnetic gradient field errors .n D 2/ can cause both a half integer-resonance as

well as an integer resonance. The index l can have the values l D 0 and l D ˙1.
Note however that not all coefficients Wl necessarily are nonzero. In this particular
case, the coefficient for l D 0 is indeed zero as becomes obvious by inspection
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of (16.4). The resonance conditions for these second order resonances are

mC 
0 D 
0 ! m D 0 ! tune shift at any tune,
m � 
0 D 
0 ! m D 2
0 ! integer and half integer resonance,
m D 
0 ! no resonance because W0 D 0:

(16.9)

Among the resonance conditions (16.9) we notice that for m D 0 the effect of the
perturbation on the particle motion exists independent of the particular choice of the
tune 
0. The perturbation includes a nonvanishing average value q20 which in this
particular case represents the average gradient error of the perturbation. Like any
other gradient field in the lattice, this gradient error also contributes to the tune and
therefore causes a tune shift. From (16.2) we find the new tune to be determined by


2 D 
20

h
1 � ˝ˇ2p2˛'i and the tune shift is ı
 � � 1

2

0
˝
ˇ2p2

˛
'

in agreement with

our earlier result in Sect. 15.3.1.
Third order resonances .n D 3/ can be driven by sextupole fields and the index l

can have values

l D �2; �1; 0; C1; C2 : (16.10)

Here we note that W1 D W�1 D 0 and therefore no resonances occur for l D ˙1.
The resonance for sextupole field perturbations are then

m � 2
0 D 
0 ! m D 3
0 ! third order resonance,
m D 
0 ! m D 
0 ! integer resonance,
mC 2
0 D 
0 ! m D �
0 ! integer resonance.

(16.11)

Sextupole fields can drive third order resonances at tunes of


0 D rC 1
3

or 
0 D r � 1
3
; (16.12)

where r is an integer. They also can drive integer resonances.
Finally we derive resonance conditions for octupole fields .n D 4/ where

l D �3; �2; �1; 0; C1; C2; C3 (16.13)

and again some values of l do not lead to a resonance since the amplitude coefficient
Wq is zero. For octupole terms this is the case for l D 0 and l D ˙2. The remaining
resonance terms are then

m � 3
0 D 
0 ! m D 4
0 ! quarter integer resonance,
m � 
0 D 
0 ! m D 2
0 ! half integer resonance,
mC 
0 D 
0 ! m D 0 ! tune spread at any tune,
mC 3
0 D 
0 ! m D �2
0 ! half integer resonance.

(16.14)
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The resonance condition for m D 0 leads to a shift in the oscillation frequency.
Different from gradient errors, however, we find the tune shift generated by

octupole fields to be amplitude dependent 
2 D 
20
h
1 � ˝ˇ3p4w2˛'i. The amplitude

dependence of the tune shift causes an asymmetric tune spread to higher or lower
values depending on the sign of the perturbation term p4 while the magnitude of the
shift is determined by the oscillation amplitude of the particle.

The general resonance condition for betatron oscillations in one plane can be
expressed by

jmj D .jlj ˙ 1/
0; (16.15)

where jlj 
 n � 1 and the value jlj C 1 is the order of resonance. The index m is
equal to the order of the Fourier harmonic of the perturbation and we call therefore
these resonances structural or lattice resonances to distinguish them from resonances
caused, for example, by externally driven oscillating fields.

The maximum order of resonances in this approximation depends on the order
of nonlinear fields present. An nth-order multipole field can drive all resonances
up to nth-order with driving amplitudes that depend on the actual multipole field
strength and locations within the lattice. Generally, the higher the order n the weaker
is the resonance. In electron circular accelerators radiation damping makes higher
order resonances ineffective. This is not the case for proton or ion beams which
accumulate any effect leading, if not to beam loss, then to beam dilution or emittance
blow-up.

The term resonance is used very generally to include also effects which do not
necessarily lead to a loss of the beam. Such “resonances” are characterized by
m D 0 and are independent of the tune. In the case of gradient errors this condition
was shown to lead to a stable shift in tune for the whole beam. Unless this tune
shift moves the beam onto another resonance the beam stability is not affected.
Similarly, octupole fields introduce a spread of tunes in the beam proportional to
the square of the oscillation amplitude. Again no loss of particles occurs unless the
tune spread reaches into the stop band of a resonance. By induction we conclude
that all even perturbation terms, where n is an even integer, lead to some form
of tune shift or spread. No such tune shifts occur for odd order perturbations
in the approximation used here. Specifically we note that dipoles, sextupoles or
decapoles etc. do not lead to a tune shift for weak perturbations. Later, however,
we will discuss the Hamiltonian resonance theory and find, for example, that strong
sextupole perturbations can indeed cause a tune spread in higher order.

In this derivation of resonance parameters we have expanded the perturbations
into Fourier series and have assumed the full circular accelerator lattice as the
expansion period. In general, however, a circular accelerator is composed of one
or more equal superperiods. For a circular lattice composed of N superperiods the
Fourier expansion has nonzero coefficients only every Nth-harmonic and therefore
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the modified resonance conditions are

j jjN D .jlj ˙ 1/
0 ; (16.16)

where j is an integer. A high super-periodicity actually eliminates many resonances
and is therefore a desirable design feature for circular accelerator lattices. The
integer and half-integer resonances, however, will always be present independent
of the super-periodicity because the equilibrium orbits and the betatron functions
respectively are not defined. On the other hand, integer and half-integer resonances
driven by multipole perturbations may be eliminated in a high periodicity lattice
with the overall effect of a reduced stop band width. It should be noted here, that the
reduction of the number of resonances works only within the applied approximation.
“Forbidden” resonances may be driven through field and alignment errors which
compromise the high lattice periodicity or by strong non-linearities and coupling
creating resonant driving terms in higher order approximation. Nevertheless, the
forbidden resonances are weaker in a lattice of high periodicity compared to a low
periodicity lattice.

16.1.2 Coupling Resonances

Betatron motion in a circular accelerator occurs in both the horizontal and vertical
plane. Perturbations can be present which depend on the betatron oscillation
amplitude in both planes. Such terms are called coupling terms. The lowest order
coupling term is caused by a rotated quadrupole or by the rotational misalignment
of regular quadrupoles. In general we have in the horizontal plane the equation of
motion from (16.1)

RwC 
20xw D 
20xˇ
3=2
x ˇr=2

x ˇs=2
y prs.'/w

rvs; (16.17)

where r; s are integers and w; v describe betatron oscillations in the horizontal
and vertical plane, respectively. Again we use the unperturbed solutions w0.'/
and v0x.'/ of the equations of motion in the form (16.4) and express the higher
order amplitude terms in the perturbation by the appropriate sums of trigonometric
expressions:

qrs.'/ D 
20xˇ
3=2
x ˇr=2

x ˇs=2
y prs.'/ D

X
m

qrsmeim'; (16.18)

and similar to (16.5)

wr�1.'/ D
X

jlj � r�1
Wleil
0x'; (16.19a)

vs�1.'/ D
X

j`j � s�1
V`e

i`
0y': (16.19b)
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Insertion into (16.17) gives after some sorting

RwC 
20xw D
X

qrsmWlV`eiŒ.mCl
0xC`
0y/'�; (16.20)

where m; l and ` are integers. The resonance condition is

mC l
0x C `
0y D 
0x ; (16.21)

and the quantity

jlj C j`j C 1 
 n (16.22)

designates the order of the coupling resonances. Again, for a super-periodicity N
we replace m by jN, where j is an integer. As an example, we discuss a perturbation
term caused by a rotated quadrupole for which the equation of motion is

RwC 
20w D q01.'/v : (16.23)

In this case we have n D 2 and r D 0 and the lowest order resonance condition with
l D 0 and ` D ˙1 is from (16.21)

mC `
0y D 
0x: (16.24)

Resonance occurs for

jmj D 
0x C 
0y and jmj D 
0x � 
0y: (16.25)

There is no coupling resonance for ` D 0 since V0 D 0. The resonances identified
in (16.25) are called linear coupling resonances or linear sum resonance .left/ and
linear difference resonance .right/ ; respectively.

Delaying proof for a later discussion we note at this point that the sum resonance
can lead to a loss of beam while the difference does not cause a loss of beam
but rather leads to an exchange of horizontal and vertical betatron oscillations. In
circular accelerator design we therefore adjust the tunes such that a sum resonance
is avoided.

16.1.3 Resonance Diagram

The resonance condition (16.15) has been derived for horizontal motion only, but a
similar equation can be derived for the vertical motion. Both resonance conditions
can be written in a more symmetric way

l
0x C `
0y D jN; (16.26)
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Fig. 16.1 Resonance
diagram for a ring with
superperiodicity one, N D 1
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νy

where l; `; j are integers and jlj C j`j is the order of the resonance. Plotting all
lines (16.26) for different values of l; `; j in a .
y; 
x/ diagram produces what is
called a resonance diagram. In Fig. 16.1 an example of a resonance diagram for
N D 1 is shown displaying all resonances up to third order with jlj C j`j 
 3.

The operating points for a circular accelerator are chosen to be clear of any of
these resonances. It should be noted here that the resonance lines are not mathemat-
ically thin lines in the resonance diagram but rather exhibit some “thickness” which
is called the stop band width. This stop band width depends on the strength of the
resonance as was discussed earlier.

Not all resonances are of the same strength and generally get weaker with
increasing order. While a particle beam would not survive on an integer or a half-
integer resonance all other resonances are basically survivable, at least for electron
beams. For proton or ion beams higher order resonance must be avoided to prevent
beam dilution. Only in particular cases, where strong multipole field perturbations
cause a higher order resonance, may we observe beam loss. This is very likely to
be the case for third order resonances in rings, where strong sextupole magnets are
employed to correct for chromatic aberrations.

The beneficial effect of a high super-periodicity or symmetry N in a circular
accelerator becomes apparent in such a resonance diagram because the density
of resonance lines is reduced by the factor N and the area of stability between
resonances to operate the accelerator becomes proportionately larger. In Fig. 16.2,
the resonance diagram for a ring with super-periodicity four .N D 4/ is shown and
the reduced number of resonances is obvious. Wherever possible a high symmetry in
the design of a circular accelerator should be attempted. Conversely, breaking a high
order of symmetry can lead to a reduction in stability if not otherwise compensated.
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Fig. 16.2 Resonance
diagram for a ring with
superperiodicity four, N D 4
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16.2 Hamiltonian Resonance Theory*

In the realm of Hamiltonian resonance theory we will be able to derive not only
obvious resonant behavior but also resonant dynamics which does not necessarily
lead to a loss of the beam but to a significant change of beam parameters. We
also will be able to determine the strength of resonances, effectiveness, escape
mechanisms and more.

16.2.1 Non-linear Hamiltonian

While simple Fourier expansions of perturbations around a circular accelerator
allow us to derive the locations of lattice resonances in the tune diagram, we
can obtain much deeper insight into the characteristics of resonances through the
application of the Hamiltonian theory of linear and nonlinear oscillators. Soon after
the discovery of strong focusing, particle dynamicists noticed the importance of
perturbations with respect to beam stability and the possibility of beam instability
even in the presence of very strong focusing.

Extensive simulations and development of theories were pursued in an effort to
understand beam stability in high-energy proton synchrotrons then being designed
at the Brookhaven National Laboratory and CERN. The first Hamiltonian theory
of linear and non linear perturbations has been published by Schoch [1] which
includes also references to early attempts to solve perturbation problems. A modern,
consistent and complete theory of all resonances has been developed, for example,



548 16 Resonances

by Guignard [2]. In this text, we will concentrate on main features of resonance
theory and point the interested reader for more details to these references.

Multipole perturbations have been discussed as the source of resonances and
we will discuss in this chapter the Hamiltonian resonance theory. The equation of
motion under the influence of an nth-order perturbation is in normalized coordinates
and in the horizontal plane without coupling (see Table 16.1)

RwC 
20w D qn.'/wn�1; (16.27)

which can be also derived from the nonlinear Hamiltonian

Hw D 1
2
Pw2 C 1

2

20 w2 C qn.'/

�
0
2

�n=2
wn: (16.28)

Here we introduced

qn.'/ D �qn.'/
1

n

�
0

2

��n=2
(16.29)

for future convenience.
To discuss resonance phenomena it is useful to perform a canonical transfor-

mation from the coordinates .w; Pw/ to action-angle variables .J;  / which can be
derived from the generating function (5.52) and the new Hamiltonian expressed in
action-angle variables is

H D 
0J C qn.'/J
n=2 cosn . � #/ : (16.30)

The action-angle variables take on the role of an “energy” and frequency of the
oscillatory system. Due to the phase dependent perturbation pn .'/ the oscillation
amplitude J is no more a constant of motion and the circular motion in phase space
becomes distorted as shown in Fig. 16.3 for a sextupolar perturbation. The oscillator
frequency P D @ =@' D 
 is similarly perturbed and can be derived from the
second Hamiltonian equation of motion

@H

@J
D P D 
0 C n

2
qn.'/J

n=2�1 cosn . � #/ : (16.31)

Perturbation terms seem to modify the oscillator frequency 
0 but because of the
oscillatory trigonometric factor it is not obvious if there is a net shift or spread in
the tune. We therefore expand the perturbation qn.'/ as well as the trigonometric
factor cosn  to determine its spectral content. The distribution of the multipole
perturbations in a circular accelerator is periodic with a periodicity equal to the
length of a superperiod or of the whole ring circumference and we are therefore
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Fig. 16.3 Nonlinear
perturbation of phase-space
motion

able to expand the perturbation qn.'/ into a Fourier series

qn.'/ D
X

l

qnl e�ilN'; (16.32)

where N is the super-periodicity of the circular accelerator. We also expand the
trigonometric factor in (16.31) into exponential functions, while dropping the
arbitrary phase #

cosn  D
X

jmj�n

cnm eim (16.33)

and get

qn.'/ cosn  D
X

l

qnl e�ilN'
X

jmj�n

cnm eim 

D
X

ljmj�n

cnmqnl ei.m �lN'/ (16.34)

D cn0qn0 C
X
l�0

0<m�n

2cnmqnl cos.m � lN'/ :

In the last equation, the perturbation qn.'/ is expanded about a symmetry point
merely to simplify the expressions of resonant terms. For asymmetric lattices the
derivation is similar but includes extra terms. We have also separated the non-
oscillatory term cn0pn0 from the oscillating terms to distinguish between systematic
frequency shifts and mere periodic variations of the tune. The Hamiltonian (16.30)
now becomes with (16.34)

H D 
0J C cn0 qn0 Jn=2 C Jn=2
X
l�0

0<m�n

2cnm qnl cos.m � lN'/ : (16.35)
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The third term on the r.h.s. consists mostly of fast oscillating terms which in this
approximation do not lead to any specific consequences. For the moment we will
ignore these terms and remember to come back later in this chapter. The shift of the
oscillator frequency due to the lowest-order perturbation becomes obvious and may
be written as

@H

@J
D P D 
0 C n

2
cn0 qn0 Jn=2�1 C oscillatory terms. (16.36)

Since cn0 ¤ 0 for even values of n only, we find earlier results confirmed, where
we observed the appearance of amplitude-dependent tune shifts and tune spreads for
even-order perturbations. Specifically we notice, that there is a coherent amplitude
independent tune shift for all particles within a beam in case of a gradient field
perturbation with n D 2 and an amplitude dependent tune spread within a finite
beam size for all other higher- and even-order multipole perturbations.

To recapitulate the canonical transformation of the normalized variables to
action-angle variables has indeed eliminated the angle coordinate as long as we
neglect oscillatory terms. The angle variable therefore is in this approximation a
cyclic variable and the Hamiltonian formalism tells us that the conjugate variable, in
this case the amplitude J is a constant of motion or an invariant. This is an important
result which we obtained by simple application of the Hamiltonian formalism
confirming our earlier expectation to isolate constants of motion.

This has not been possible in a rigorous way since we had to obtain approximate
invariants by neglecting summarily all oscillatory terms. In certain circumstances
this approximation can lead to totally wrong results. To isolate these circumstances
we pursue further canonical transformations to truly separate from the oscillating
terms all non-oscillating terms of order n=2 while the rest of the oscillating terms
are transformed to a higher order in the amplitude J.

16.2.2 Resonant Terms

Neglecting oscillating terms is justified only in such cases where these terms
oscillate rapidly. Upon closer inspection of the arguments in the trigonometric
functions we notice however that for each value of m in (16.35) there exists a value
l which causes the phase

mr r � m � lN' (16.37)

to vary only slowly possibly leading to a resonance. The condition for the occurrence
of such a resonance is  r � 0 or with  � 
0'

mr
0 � rN; (16.38)
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where we have set l D r to identify the index for which the resonance condi-
tion (16.38) is met. The index mr is the order of the resonance and can be any
integer 1 
 mr 
 n.

The effects of resonances do not only appear when the resonance condition
is exactly fulfilled for  r D 0. Significant changes in the particle motion can
be observed when the particle oscillation frequency approaches the resonance
condition. We therefore keep all terms which vary slowly compared to the betatron
frequency P .

After isolating resonant terms we may now neglect all remaining fast oscillating
terms with m 6D mr. Later we will show that these terms can be transformed to
higher order and are therefore of no consequence to the order of approximation of
interest. Keeping only resonant terms defined by (16.38) we get from (16.35) the
nth-order Hamiltonian in normalized coordinates

H D 
0J C cn0 qn0J
n=2 C Jn=2

X
r

0<mr�n

2cnmr qnr cos.mr r/: (16.39)

The value of mr indicates the order of the resonance and we note that the
maximum order of resonance driven by a multipole of order n is not higher than n.
A dipole field therefore can drive only an integer resonance, a quadrupole field up to
a half-integer resonance, a sextupole up to a third-order resonance, an octupole up
to a quarter resonance and so forth although not all allowed resonances become real.
We know for example already that a sextupole does not drive a tune shift or a quarter
integer resonance in the approximation used so far. As we have noticed before,
whenever we derive mathematical results we should keep in mind that such results
are valid only within the approximation under consideration. It is, for example,
known [3] that sextupoles can also drive quarter integer resonances through higher-
order terms. In nonlinear particle beam dynamics any statement about stability or
instability must be accompanied by a statement defining the order of approximation
made to allow independent judgement for the validity of a result to a particular
problem.

The interpretation of the Hamiltonian (16.39) becomes greatly simplified after
another canonical transformation to eliminate the appearance of the independent
variable '. We thereby transform to a coordinate system that moves with the
reference particle, thus eliminating the linear motion that we already know. The
new coordinates rotate once per revolution and thereby eliminate the linear rotation
in phase space that we know already. This can be achieved by a canonical similarity
transformation from the coordinates .J;  / to .J1;  1/ which we derive from the
generating function

G1 D J1

�
 � rN'

mr

�
: (16.40)
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From this we get the relations between the old and new coordinates

@G1

@J1
D  1 D  � rN

mr
' (16.41)

and

@G1

@ 
D J D J1 : (16.42)

The quantity  1 now describes the phase deviation of a particle from that of
the reference particle. Since the generating function depends on the independent
variable ' we get for the new Hamiltonian H1 D H C @G1=@' or

H1 D
�

0 � rN

mr

�
J1 C cn0 qn0J

n=2
1 C 2cnmr qnrJ

n=2
1 cos.mr 1 C rN'/; (16.43)

where we have retained for simplicity only the highest-order resonant term
.mr D n/ : With P D .d =d'/ D 
 and (16.38) a resonance condition occurs
whenever


0 � rN

mr
D 
r: (16.44)

Setting
r D 
0 � 
r for the distance of the tune 
0 from the resonance tune 
r the
Hamiltonian becomes with all perturbation terms

H D 
r J1 C
X

n

cn0 qn0 Jn=2
1 C

X
n

Jn=2
1

X
r

0<mr�n

2cnmr qnr cos.mr 1/: (16.45)

The coefficients cn0 are defined by (16.33) and the harmonic amplitudes of
the perturbations are defined by the Fourier expansion (16.32). The resonance
order r and integer mr depend on the ring tune and are selected such that (16.44)
is approximately met. A selection of most common multipole perturbations are
compiled in Table 16.1 and picking an nth-order term we get from (16.29) the
expression for qnr .

In the course of the mathematical derivation we started out in (16.28) with only
one multipole perturbation of order n. For reasons of generality, however, all orders
of perturbation n have been included again in (16.45). We will, however, not deal
with the complexity of this multi-resonance Hamiltonian nor do we need to in
order to investigate the character of individual resonances. Whatever the number
of actual resonances may be in a real system the effects are superpositions of
individual resonances. We will therefore investigate in more detail single resonances
and discuss superpositions of more than one resonance later in this chapter.
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16.2.3 Resonance Patterns and Stop-Band Width

Equation (16.45) can be used to calculate the stop band width of resonances and
to explore resonance patterns which are a superposition of particle trajectories
H Dconst in . 1; J1/ phase-space. Depending on the nature of the problem
under study, we may use selective terms from both sums in (16.45). Specifically
to illustrate characteristic properties of resonances, we will use from the first sum
the term c40q40, which originates from an octupole field. This is the lowest order
term that provides some beam stability as we will see. From the second sum we
choose a single nth-order term driving the rth-order resonance and get the simplified
Hamiltonian

H1 D 
rJ1 C c40 q40J21 C 2cnmr qnr Jn=2
1 cos.mr 1/ D const. (16.46)

To further simplify the writing of equations and the discussion of results we
divide (16.46) by 2cnmr qnr Jn=2

10 ; where the amplitude J10 is an arbitrary reference
amplitude of a particle at the starting point. Defining an amplitude ratio or beat
factor

R D J1
J10
; (16.47)

and considering only resonances of order mr � n, (16.46) becomes

RC R2˝ C Rn=2 cos n 1 D const (16.48)

where the detuning from the resonance is

 D 
r

2cnmr qnr Jn=2�1
10

(16.49)

and the tune-spread parameter

˝ D c40 q40

2cnmr qnr Jn=2�2
10

: (16.50)

This expression has been derived first by Schoch [1] for particle beam dynamics.
Because the ratio R describes the variation of the oscillation amplitude in units of
the starting amplitude J0 we call the quantity R the beat factor of the oscillation.

Before we discuss stop-bands and resonance patterns we make some general
observations concerning particle stability. The stability of particle motion in the
vicinity of resonances depends strongly on the distance of the tune from the nearest
nth-order resonance and on the tune-spread parameter˝ . When both parameters
and˝ vanish we have no stability for any finite oscillation amplitude, since (16.48)
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can be solved for all values of  1 only if R D 0. For a finite tune-spread parameter
˝ ¤ 0 while  D 0 (16.48) becomes R2

�
˝ C Rn=2�2 cos n 1

� D const and
resonances of order n > 4 exhibit some range of stability for amplitudes Rn=2�2 <
j˝j. Oscillations in the vicinity of, for example, a quarter resonance are all stable for
j˝j > 1 and all unstable for smaller values of the tune-spread parameter j˝j < 1.
A finite tune-spread parameter ˝ appears in this case due to an octupolar field and
has a stabilizing effect at least for small amplitudes.

For very small oscillation amplitudes .R! 0/ the oscillating term in (16.48)
becomes negligible for n > 4 compared to the detuning term and the particle
trajectory approaches the form of a circle with radius R. This well behaved character
of particle motion at small amplitudes becomes distorted for resonances of order
n D 2 and n D 3 in case of small detuning and a finite tune spread parameter. We
consider D 0 and have

R2˝ C Rn=2 cos n D const, (16.51)

where n D 2 or n D 3. For very small amplitudes the quadratic term is
negligible and the dominant oscillating term alone is unstable. The amplitude for
a particle starting at R � 0 and  1 D 0 grows to large amplitudes as  1
increases, reaching values which make the quadratic tune-spread term dominant
before the trigonometric term becomes negative. The resulting trajectory in phase
space becomes a figure of eight for the half-integer resonance as shown in Fig. 16.4.

In the case of a third-order resonance small-amplitude oscillations behave
similarly and follow the outline of a clover leave as shown in Fig. 16.5.

Fig. 16.4 .R;  1/ phase-space motion for a half-integer resonance. Top row from left to right:
˝ D 0 and  D .�5;�2;�1:1; 0; 2/ I bottom row: ˝ D 1 and  D .�5;�2;�1:1; 0; 2/
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Fig. 16.5 .R;  1/ phase-space motion for a third–order resonance. Top row from left to right:
˝ D 0;  D .�6;�2; 0; 3/ I bottom row: ˝ D 1;  D .�6;�2; 0; 3/

16.2.4 Half-Integer Stop-Band

A more detailed discussion of (16.45) will reveal that instability due to resonances
does not only happen exactly at resonant tunes. Particle oscillations become unstable
within a finite vicinity of resonance lines in the resonance diagram and such areas
of instability are known as stop-bands. The most simple case occurs for˝ D 0 and
a half-integer resonance, where n D 2 and

R.C cos 2 1/ D const : (16.52)

For this equation to be true for all values of the angle variable  1 we require that
the quantity in the brackets does not change sign while  1 varies from 0 to 2 � . This
condition cannot be met if jj 
 1. To quantify this we observe a particle starting
with an amplitude J D J0 at  1 D 0 and (16.52) becomes

RC R cos 2 1 D C 1: (16.53)

Now we calculate the variation of the oscillation amplitude R as the angle
variable  1 increases. The beat factor R reaches its maximum value at 2 1 D �

and is

Rmax D C 1
 � 1 > 0: (16.54)
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The variation of the amplitude R is finite as long as  > 1. If  < 0; we get a
similar stability condition

Rmax D jj � 1jj C 1 > 0 (16.55)

and stability occurs for  < �1. The complete resonance stability criterion for the
half-integer resonance is therefore

jj > 1: (16.56)

Beam instability due to a half-integer resonance .n D 2/ occurs within a finite
vicinity 
r D ˙2c2rq2r as defined by (16.49) and the total stop-band width for
a half-integer resonance becomes



.2/
stop D ˙2c2mr q2r : (16.57)

The width of the stop-band increases with the strength of the perturbation
but does not depend on the oscillation amplitude J0. However, for higher-order
resonances the stop band width does depend on the oscillation amplitudes as will
be discussed later.

To observe the particle trajectories in phase space, we calculate the contour lines
for (16.48) setting n D 2 and obtain patterns as shown in Fig. 16.4. Here the particle
trajectories are plotted in the . ; J/ phase space for a variety of detuning parameters
 and tune-spread parameters ˝ . Such diagrams are called resonance patterns.
The first row of Fig. 16.4 shows particle trajectories for the case of a half-integer
resonance with a vanishing tune-spread parameter ˝ D 0. As the detuning  is
increased we observe a deformation of particle trajectories but no appearance of
a stable island as long as jj < 1. Although we show mostly resonance patterns
for negative values of the detuning  < 0 the patterns look exactly the same for
 > 0 except that they are rotated by 90ı. For jj > 1 the unstable trajectories
part vertically from the origin and allow the appearance of a stable island that grows
as the detuning grows. In the second row of resonance patterns, we have included
a finite tune-spread parameter of ˝ D 1 which leads to a stabilization of all large
amplitude particle trajectories. Only for small amplitudes do we still recognize the
irregularity of a figure of eight trajectory as mentioned above.

16.2.5 Separatrices

The appearance of island structures as noticeable from the resonance patterns is a
common phenomenon and is due to tune-spread terms of even order like that of an
octupole field. In Fig. 16.6 common features of resonance patterns are shown and
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Fig. 16.6 Common features of resonance patterns

we note specifically the existence of a central stable part and islands surrounding
the central part.

The boundaries of the areas of stable motion towards the islands are called
separatrices. These separatrices also separate the area of stable motion from that
for unstable motion. The crossing points of these separatrices, as well as the center
of the islands, are called fixed points of the dynamic system and are defined by the
conditions

@H1

@ 1
D 0 and

@H1

@J1
D 0 : (16.58)

Application of these conditions to (16.46) defines the location of the fixed points
and we find from the first equation (16.58) the azimuthal positions  1 D  f of the
fixed points from

sin .mr 1f/ D 0 (16.59)

or

mr 1f k D k�; (16.60)

where k is an integer number in the range 0 < k < 2mr. From the second
equation (16.58) we get an expression for the radial location of the fixed points Jf k


r C 2c40q40Jf k C n
2
2cnmr qnrJ

n=2�1
f k cos.�k/ D 0: (16.61)

There are in principle 2mr separate fixed points in each resonance diagram.
Closer inspections shows that alternately every second fixed point is a stable fixed
point or an unstable fixed point, respectively. The unstable fixed points coincide with
the crossing points of separatrices and exist even in the absence of octupole terms.
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Fig. 16.7 Fourth-order resonance patterns. From left to right: ˝ D 0, . < 0; D 0; > 0/

Stable fixed points define the center of stable islands and, except for the primary
stable fixed point at the origin of the phase diagram, exist only in the presence of a
tune spread caused by octupole like terms cn0 qn0 Jn=2 in (16.43), which contribute
to beam stability. Trajectories that were unstable without the octupole term become
closed trajectories within an island area centered at stable fixed points. This island
structure is characteristic for resonances since the degree of symmetry is equal to
the order of the resonance (see Fig. 16.7).

16.2.6 General Stop-Band Width

From the discussion of the half-integer resonance, it became apparent that certain
conditions must be met to obtain stability for particle motion. Specifically we expect
instability in the vicinity of resonances and we will try to determine quantitatively
the area of instability or stop-band width for general resonances. Similar to (16.53)
we look for stable solutions from

RC Rn=2 cos n 1 D ˙ 1; (16.62)

which describes a particle starting with an amplitude R D 1. Equation (16.62) must
be true along all points of the trajectory and for reasons of symmetry the particle
oscillation amplitude approaches again the starting amplitude for  1 D 0 as  1 !
2�=n. Solving for  we get real solutions for R only if

C  � Rn=2 � 1
R � 1 H) �

1
2
n for R � 1; (16.63)
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where the index C indicates the sign to be used on the r.h.s. of (16.62). Similarly,
following a particle starting with R D 1 at  1 D �=n to  1 D 3�=n we get the
condition

� 
 1
2
n: (16.64)

The total nth-order stop-band width is therefore with (16.49)



.n/
stop D n jcnmr qnrj Jn=2�1

0 (16.65)

indicating that stable particle motion is possible only for tunes outside this stop-
band. The stop-band width of nonlinear resonances .n > 2/ is strongly amplitude
dependent and special effort must be exercised to minimize higher-order pertur-
bations. Where higher-order magnetic fields cannot be eliminated it is prudent to
minimize the value of the betatron functions at those locations.

Where higher-order magnetic fields cannot be eliminated it is prudent to min-
imize the value of the betatron functions at those locations. Such a case occurs,
for example, in colliding-beam storage rings, where the strongly nonlinear field of
one beam perturbs the trajectories of particles in the other beam. This effect is well
known as the beam-beam effect.

Through a series of canonical transformations and redefinitions of parameters
we seem to have parted significantly from convenient laboratory variables and
parameters. We will therefore convert (16.65) back to variables we are accustomed
to use. We set l D r and mr D n where r � n

N 
0 and tacitly ignored lower-order
resonances mr < n. From (16.32) we find the Fourier components

qnr D
1

2�

Z 2�

0

qn.'/e
irN'd' ; (16.66)

and from (16.33) we have cnn D 1
2n . The amplitude factor Jn=2�1

0 is replaced
by (8.95) which becomes with (5.54a), (5.54b) and  1 D 0

J0 D 1
2

0w20 D 1

2

0

x20
ˇ
: (16.67)

Finally, we recall the definition (16.29) qn.'/ D � 1n qn .'/
�

0
2

��n=2
and get for the

nth-order stop-band width



.n/
stop D

wn�2
0

2n�1�
0

ˇ̌̌̌Z 2�

0

qn.'/e
irN'd'

ˇ̌̌̌
; (16.68)

where qn is the nth-order perturbation from Table 16.1. This result is general and
includes our earlier finding for the half-integer resonance. For resonances of order
n > 2 the stop-band width increases with amplitude limiting the stability of particle
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Fig. 16.8 Stop-band width as a function of the amplitude J0 for resonances of order n D 2; 3; 4; 5

and detuning parameter ˝ D 0

Fig. 16.9 Fifth-order resonance patterns. From left to right: ˝ D 0, . < 0; D 0; > 0/

beams to the vicinity of the axis (Fig. 16.8). The introduction of sufficiently strong
octupole terms can lead to a stabilization of resonances and we found, for example,
that the quarter resonance is completely stabilized if ˝  1. For resonances of
order n > 4; however, the term Rn=2 cos n 1 becomes dominant for large values of
the amplitude and resonance therefore cannot be avoided.

Figure 16.9 shows, for example, a stable area for small amplitudes at the fifth-
order resonance, as we would expect, but at larger amplitudes the motion becomes
unstable.

16.3 Third-Order Resonance

The third-order resonance plays a special role in accelerator physics and we will
therefore discuss this resonance in more detail. The special role is generated by
the need to use sextupoles for chromaticity correction. While such magnets are
beneficial in one respect, they may introduce third-order resonances that need to
be avoided or at least kept under control. Sometimes the properties of a third-order
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resonance are also used constructively to eject particles at the end of a synchrotron
acceleration cycle slowly over many turns.

In the absence of octupole fields the Hamiltonian for the third-order resonance is
from (16.46) for n D 3 and q40 D 0

H1 D 
1=3J1 C q3rJ
3=2
1 cos 3 1: (16.69)

We expand cos 3 1D cos3  1 � 3 cos 1 sin2  1 and return to normalized coordi-
nates

w D
s
2 J1

0

cos 1; and Pw D
p
2
0J1 sin 1: (16.70)

In these coordinates the Hamiltonian reveals the boundaries of the stable
region from the unstable resonant region. Introducing the normalized coordinates
into (16.69), we get the Hamiltonian

H1 D 
1=3

0

2

�
w2 C Pw

2


20

�
C q3r



3=2
0

23=2

�
w3 � 3w

Pw2

20

�
: (16.71)

Dividing by q3r

�

0
2

�3=2
and subtracting a constant term 1

2
W 3
0 , where

W0 D 4

3


1=3

q3r

p
2
0

; (16.72)

the Hamiltonian assumes a convenient form to exhibit the boundaries between the
stable and unstable area

QH1 D 3
2
W0

�
w2 C Pw

2


20

�
C
�

w3 � 3w
Pw2

20

�
� 1

2
W 3
0

D �w � 1
2
W0

� �
w �p3 Pw


0
CW0

��
wCp3 Pw


0
CW0

�
: (16.73)

This Hamiltonian has three linear solutions for QH1 D 0 defining the separatrices.
The resonance plot for (16.73) is shown in Fig. 16.10 where we have assumed that
W0 is positive. For a given distribution of the sextupoles q3r the resonance pattern
rotates by 180ı while moving the tune from one side of the resonance to the other.
Clearly, there is a stable central part bounded by separatrices. The area of the central
part depends on the strength and distribution of the sextupole fields summarized by
q3r and the distance 
1=3 of the tune from the third-order resonance.
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Fig. 16.10 Third-order resonance

The higher-order field perturbation q3r depends on the distribution of the
sextupoles around the circular accelerator. In the horizontal plane

q3.'/ D �
20ˇ5=2
1

2
m : (16.74)

or with (16.29)

q3.'/ D 1
3

p
2
0ˇ

5=2m : (16.75)

The Fourier components of this perturbation are given by

q3r D 1

2�

Z 2�

0

q3.'/eirN'd' (16.76)

and the perturbation term becomes finally with mr D 3 and c33 D 1
8

from (16.33)

q3r D
p
2
0

24�

Z 2�

0

ˇ5=2meirN'd' (16.77)

where ' D R z
0

d�

0 ˇ
; m D m.'/ is the sextupole distribution and ˇ D ˇ .'/

the horizontal betatron function. From this expression, it becomes clear that
the perturbation and with it the stable area in phase space depends greatly on
the distribution of the sextupoles around the ring. Minimizing the rth Fourier
component obviously benefits beam stability.
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16.3.1 Particle Motion in Phase Space

It is interesting to study particle motion close to a resonance in some more detail
by deriving the equations of motion from the Hamiltonian (16.69). The phase
variation is

@H1

@J1
D @ 1

@'
D 
1=3 C 3

2
q3r J1=21 cos 3 1 : (16.78)

Now, we follow a particle as it orbits the ring and observe its coordinates every
time it passes by the point with phase '0 or  0, which we assume for convenience
to be zero. Actually, we observe the particle only every third turn, since we are not
interested in the rotation of the resonance pattern in phase space by 120ı every turn.

For small amplitudes the first term is dominant and we note that the particles
move in phase space clockwise or counter clockwise depending on 
1=3 being
negative or positive, respectively. The motion becomes more complicated in the
vicinity and outside the separatrices, where the second term is dominant. For a
particle starting at  1 D 0 the phase  1increases or decreases from turn to turn
and asymptotically approaches 1 D ˙30ı depending on the perturbation q3r being
positive or negative, respectively. The particles therefore move clockwise or counter
clockwise and the direction of this motion is reversed, whenever we move into an
adjacent area separated by separatrices because the trigonometric term has changed
sign.

To determine exactly the position of a particle after 3q turns we have with .q/ D
3q � 2�
0

 1.q/ D 2� .3
0 � rN/ q (16.79)

With this phase expression we derive the associated amplitude J1q from the
Hamiltonian (16.69) and may plot the particle positions for successive triple turns
3q D 0; 3; 6; 9; : : : in a figure similar to Fig. 16.10. The change in the oscillation
amplitude is from the second Hamiltonian equation of motion

@H1

@ 1
D �@J1

@'
D �3q3r J3=21 sin 3 1 (16.80)

and is very small in the vicinity of  1 � 0 or even multiples of 30ı (for w >

separatrix in Fig. 16.10). For  1 being equal to odd multiples of 30ı, on the other
hand, the oscillation amplitude changes rapidly as shown in Fig. 16.10 on the left
side beyond the crossing point of the separatrixes or beyond the unstable point.
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Problems

16.1 (S). Consider a simple optimized FODO lattice forming a circular ring.
Calculate the natural chromaticity (ignore focusing in bending magnets) and correct
the chromaticities to zero by placing thin sextupoles in the center of the quadrupoles.
Calculate and plot the horizontal third-order stop-band width as a function of the
horizontal tune.

16.2 (S). Show that in (16.33) the coefficients cn0 are non-zero only for even values
of n:

16.3 (S). Show that in (16.33) the coefficients cnn D 1
2n :

16.4. Plot a resonance diagram up to fourth order for the PEP lattice with tunes

x D 21:28 and 
y D 18:16 and a super-periodicity of N D 6 or any other
circular accelerator lattice with multiple super-periodicity. Choose the parameters
of the diagram such that a resonance environment for the above tunes of at least ˙3
(˙ half the number of superperiods) integers is covered.

16.5. Choose numerical values for parameters of a single multipole in the Hamilto-
nian (16.45) and plot a resonance diagram H .J;  / Dconst. Determine the stability
limit for your choice of parameters. What would the tolerance on the multipole field
perturbation be if you require a stability for an emittance as large as � D 100mm-
mrad?

16.6. Take the lattice of Problem 16.1 and adjust its tune to the third-order
resonance so that the unstable fixed point on the symmetry axis are 5 cm from
the beam center. Determine the equations for the separatrices. Choose a point P
just outside the stable area and close to the crossing of two separatrices along the
symmetry axis. Where in the diagram would a particle starting at P be after 3, 6, and
9 turns? At what amplitude could you place a 5 mm thin septum magnet to eject the
beam from the accelerator?
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Chapter 17
Hamiltonian Nonlinear Beam Dynamics*

Deviations from linear beam dynamics in the form of perturbations and aberrations
play an important role in accelerator physics. Beam parameters, quality and stability
are determined by our ability to correct and control such perturbations. Hamiltonian
formulation of nonlinear beam dynamics allows us to study, understand and quantify
the effects of geometric and chromatic aberrations in higher order than discussed so
far. Based on this understanding we may develop correction mechanisms to achieve
more and more sophisticated beam performance. We will first discuss higher-order
beam dynamics as an extension to the linear matrix formulation followed by specific
discussions on aberrations. Finally, we develop the Hamiltonian perturbation theory
for particle beam dynamics in accelerator systems.

17.1 Higher-Order Beam Dynamics

Chromatic and geometric aberrations appear specifically in strong focusing trans-
port systems designed to preserve carefully prepared beam characteristics. As a
consequence of correcting chromatic aberrations by sextupole magnets, nonlinear
geometric aberrations are introduced. The effects of both types of aberrations on
beam stability must be discussed in some detail. Based on quantitative expressions
for aberrations, we will be able to determine criteria for stability of a particle beam.

17.1.1 Multipole Errors

The general equations of motion (6.95), (6.96) exhibit an abundance of driving
terms which depend on second or higher-order transverse particle coordinates
.x; x0; y; y0/ or linear and higher-order momentum errors ı. Magnet alignment and
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field errors add another multiplicity to these perturbation terms. Although the
designers of accelerator lattices and beam guidance magnets take great care to
minimize undesired field components and avoid focusing systems that can lead to
large transverse particle deviations from the reference orbit, we cannot completely
ignore such perturbation terms.

In previous sections we have discussed the effect of some of these terms and have
derived basic beam dynamics features as the dispersion function, orbit distortions,
chromaticity and tune shifts as a consequence of particle momentum errors or
magnet alignment and field errors. More general tools are required to determine the
effect of any arbitrary driving term on the particle trajectories. In developing such
tools we will assume a careful design of the accelerator under study in layout and
components so that the driving terms on the r.h.s. of (6.95), (6.96) can be treated
truly as perturbations. This may not be appropriate in all circumstances in which
cases numerical methods need to be applied. For the vast majority of accelerator
physics applications it is, however, appropriate to treat these higher-order terms as
perturbations.

This assumption simplifies greatly the mathematical complexity. Foremost, we
can still assume that the general equations of motion are linear differential equations.
We may therefore continue to treat every perturbation term separately as we have
done so before and use the unperturbed solutions for the amplitude factors in the
perturbation terms. The perturbations are reduced to functions of the location z along
the beam line and the relative momentum error ı only and such differential equations
can be solved analytically as we will see. Summing all solutions for the individual
perturbations finally leads to the composite solution of the equation of motion in the
approximation of small errors.

The differential equations of motion (6.95), (6.96) can be expressed in a short
form by

u00 C K.z/ u D
X

�;
;�;	;��0

p�
�	� .z/ x�x0
y�y0	ı� ; (17.1)

where u D x or u D y and the quantities p�
�	� .z/ represent the coefficients of
perturbation terms. The same form of equation can be used for the vertical plane but
we will restrict the discussion to only one plane neglecting coupling effects.

Some of the perturbation terms p�
�	� can be related to aberrations known from
geometrical light optics. Linear particle beam dynamics and Gaussian geometric
light optics works only for paraxial beams where the light rays or particle trajectories
are close to the optical axis or reference path. Large deviations in amplitude, as well
as fast variations of amplitudes or large slopes, create aberrations in the imaging
process leading to distortions of the image known as spherical aberrations, coma,
distortions, curvature and astigmatism. While corrections of such aberrations are
desired, the means to achieve corrections in particle beam dynamics are different
from those used in light optics. Much of the theory of particle beam dynamics is
devoted to diagnose the effects of aberrations on particle beams and to develop and
apply such corrections.
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The transverse amplitude x can be separated into its components which under the
assumptions made are independent from each other

x D xˇ C x0 C xı C
X

x�
�	� : (17.2)

The first three components of solution (17.2) have been derived earlier and are
associated with specific lowest order perturbation terms:

xˇ.z/ is the betatron oscillation amplitude and general solution of the homoge-
neous differential equation of motion with vanishing perturbations p�
�	� D 0 for
all indices.

xc.z/ is the orbit distortion and is a special solution caused by amplitude and
momentum independent perturbation terms like dipole field errors or displacements
of quadrupoles or higher multipoles causing a dipole-field error. The relevant
perturbations are characterized by � D 
 D � D 	 D � D 0 but otherwise
arbitrary values for the perturbation p00000. Note that in the limit p00000 ! 0 we get
the ideal reference path or reference orbit xc.z/ D 0.

xı.z/ is the chromatic equilibrium orbit for particles with an energy different
from the ideal reference energy, ı ¤ 0, and differs from the reference orbit with or
without distortion xc.z/ by the amount xı.z/ which is proportional to the dispersion
function �.z/ and the relative momentum deviation ı; xı.z/ D � .z/ ı. In this case
� D 
 D � D 	 D 0 and � D 1.

All other solutions x�
�	� are related to remaining higher-order perturbations.
The perturbation term p10000, for example, acts just like a quadrupole and may be
nothing else but a quadrupole field error causing a tune shift and a variation in the
betatron oscillations. Other terms, like p00100 can be correlated with linear coupling
or with chromaticity if p10001 ¤ 0. Sextupole terms p20000 are used to compensate
chromaticities, in which case the amplitude factor x2 is expressed by the betatron
motion and chromatic displacement

x2 � .xˇ C xı/
2 D .xˇ C �ı/2 H) 2�xˇı : (17.3)

The x2ˇ-term, which we neglected while compensating the chromaticity, is the
source for geometric aberrations due to sextupolar fields becoming strong for large
oscillation amplitudes and the �2ı2-term contributes to higher-order solution of
the �-function. We seem to make arbitrary choices about which perturbations to
include in the analysis. Generally therefore only such perturbations are included in
the discussion which are most appropriate to the problem to be investigated and
solved. If, for example, we are only interested in the orbit distortion xc, we ignore
in lowest order of approximation the betatron oscillation xˇ and all chromatic and
higher-order terms. Should, however, chromatic variations of the orbit be of interest
one would evaluate the corresponding component separately. On the other hand, if
we want to calculate the chromatic variation of betatron oscillations, we need to
include the betatron oscillation amplitudes as well as the off momentum orbit xı.



568 17 Hamiltonian Nonlinear Beam Dynamics*

In treating higher-order perturbations we make an effort to include all perturba-
tions that contribute to a specific aberration to be studied or to define the order of
approximation used if higher-order terms are to be ignored. A careful inspection
of all perturbation terms close to the order of approximation desired is prudent
to ensure that no significant term is missed. Conversely such an inspection might
very well reveal correction possibilities. An example is the effect of chromaticity
which is generated by quadrupole field errors for off momentum particles but can be
compensated by sextupole fields at locations where the dispersion function is finite.
Here the problem is corrected by fields of a different order from those causing the
chromaticity.

To become more quantitative we discuss the analytical solution of (17.1). Since in
our approximation this solution is the sum of all partial solutions for each individual
perturbation term, the problem is solved if we find a general solution for an arbitrary
perturbation. The solution of, for example, the horizontal equation of motion

x00 C K.z/x D p�
�	� x�x0
y�y0	ı� (17.4)

can proceed in two steps. First we replace the oscillation amplitudes on the r.h.s. by
their most significant components

x�! .xˇ C x0 C xı/� ; x0
! .x0̌ C x0
0 C x0

ı/

 ;

y�! .yˇ C y0 C yı/� ; y0	! .y0̌ C y0
0 C y0

ı/
	 :

(17.5)

As discussed before, in a particular situation only those components are even-
tually retained that are significant to the problem. Since most accelerators are
constructed in the horizontal plane we may set the vertical dispersion yı D 0.
The decomposition (17.5) is inserted into the r.h.s of (17.4) and again only terms
significant for the particular problem and to the approximation desired are retained.
The solution x�
�	� can be further broken down into components each relating to
only one individual perturbation term. Whatever number of perturbation terms we
decide to keep, the basic differential equation for the perturbation is of the form

P00 C K.z/P D p.xˇ; x
0̌ ; xc; x

0
c; xı; x

0
ı; yˇ; y

0̌ ; yc; y
0
c; yı; y

0
ı; ı; z/ ; (17.6)

for which we have discussed the solution in Sect. 5.5.4. Following these steps we
may calculate, at least in principle, the perturbations P.z/ for any arbitrary higher-
order driving term p.z/. In praxis, however, even principal solutions of particle
trajectories in composite beam transport systems can be expressed only in terms
of the betatron functions. Since the betatron functions cannot be expressed in a
convenient analytical form, we are unable to obtain an analytical solution and must
therefore employ numerical methods.
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17.1.2 Non-linear Matrix Formalism

In linear beam dynamics this difficulty has been circumvented by the introduction of
transformation matrices, a principle which can be used also for beam transport sys-
tems including higher-order perturbation terms. This non-linear matrix formalism
was developed by Karl Brown [1–3] and we follow his reasoning in the discussion
here. The solution to (17.1) can be expressed in terms of initial conditions. Similar
to discussions in the context of linear beam dynamics we solve (17.6) for individual
lattice elements only where K.z/ D const. In this case (5.75) can be solved for any
piecewise constant perturbation along a beam line. Each solution depends on initial
conditions at the beginning of the magnetic element and the total solution can be
expressed in the form

x.z/ D c110 x0 C c120 x0
0 C c130 ı0 C c111 x20 C c112 x0x0

0 C : : : : ;
x0.z/ D c210 x0 C c220 x0

0 C c230 ı0 C c211 x20 C c212 x0x0
0 C : : : : ;

(17.7)

where the coefficients cijk are functions of z. The nomenclature of the indices
becomes obvious if we set x1 D x; x2 D x0; and x3 D ı. The coefficient cijk then
determines the effect of the perturbation term xjxk on the variable xi. In operator
notation we may write

cijk D hxijxj0xk0i: (17.8)

The first-order coefficients are the principal solutions

c110.z/ D C.z/ ; c210.z/ D C0.z/ ;

c120.z/ D S.z/ ; c220.z/ D S0.z/ ;

c130.z/ D D.z/ ; c230.z/ D D0.z/ :

(17.9)

Before continuing with the solution process, we note that the variation of the
oscillation amplitudes .x0; y0/ are expressed in a curvilinear coordinate system
generally used in beam dynamics. This definition, however, is not identical to the
intuitive assumption that the slope x0 of the particle trajectory is equal to the angle
� between the trajectory and reference orbit. In a curvilinear coordinate system the
slope x0 D dx=dz is a function of the amplitude x. To clarify the transformation, we
define angles between the trajectory and the reference orbit by

dx

ds
D � and

dy

ds
D ˚ ; (17.10)

where

ds D .1C �x/ dz : (17.11)
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In linear beam dynamics there is no numerical difference between x0 and� which
is a second-order effect nor is there a difference in straight parts of a beam transport
line where � D 0. The relation between both definitions is from (17.10), (17.11)

� D x0

1C �x
and ˚ D y0

1C �x
; (17.12)

where x0 D dx=dz and y0 D dy=dz. We will use these definitions and formulate
second-order transformation matrices in a Cartesian coordinate system .x; y; z/.
Following Brown’s notation [1], we may express the nonlinear solutions of (17.4)
in the general form

ui D
3X

jD1
cij0uj0 C

3X
jD1
kD1

Tijk.z/ uj0 uk0 ; (17.13)

with

.u1; u2; u3/ D .x; �; ı/ ; (17.14)

where z is the position along the reference particle trajectory. Nonlinear transforma-
tion coefficients Tijk are defined similar to coefficients cijk in (17.8) by

Tijk D huijuj0uk0i ; (17.15)

where the coordinates are defined by (17.14). In linear approximation both
coefficients are numerically the same and we have0@ c110 c120 c130

c210 c220 c230
c310 c320 c330

1A D
0@ C.z/ S.z/ D.z/

C0.z/ S0.z/ D0.z/
0 0 1

1A : (17.16)

Earlier in this section we decided to ignore coupling effects which could be
included easily in (17.13) if we set for example x4 D y and x5 D y0 and expand
the summation in (17.13) to five indices. For simplicity, however, we will continue
to ignore coupling.

The equations of motion (6.95), (6.96) are expressed in curvilinear coordinates
and solving (5.75) results in coefficients cijk which are different from the coefficients
Tijk if one or more variables are derivatives with respect to z. In the equations of
motion all derivatives are transformed like (17.12) generating a �-term as well as
an x�-term. If, for example, we were interested in the perturbations to the particle
amplitude x caused by perturbations proportional to x0 �0, we are looking for the
coefficient T112 D hx jx0 �0 i. Collecting from (6.95) only second-order perturbation
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terms proportional to xx0; we find

x D c112 x0 x0
0 D c112 x0 �0 CO.3/ : (17.17)

An additional second-order contribution appears as a spill over from the linear
transformation

x D c120 x0
0 D c120 .1C �x x0/ �0 : (17.18)

Collecting all x0 �0�terms, we get finally

T112 D c112 C c120 �x D c112 C �xS.z/ : (17.19)

To derive a coefficient like T212 D h� jx0 �0 i we also have to transform the
derivative of the particle trajectory at the end of the magnetic element. First, we
look for all contributions to x0 from x0x0

0-terms which originate from x0 D c220 x0
0C

c212x0x0
0: Setting in the first term x0

0 D �0 .1C �x x0/ and in the second term x0x0
0 �

x0 �0 ; we get with c220 D S0.z/ and keeping again only second-order terms

x0 D �c212 C �x S0.z/
	

x0�0 : (17.20)

On the l.h.s. we replace x0 by � .1C �x x/ and using the principal solutions we
get

x� � .Cxx0 C Sx�0/
�
C0

xx0 C S0
x�0

� D �CxS0
x C C0

xSx
�

x0�0 (17.21)

keeping only the x0�-terms. Collecting all results, the second-order coefficient for
this perturbation becomes

T212 D h� jx0 �0 i D c212 C �x S0.z/ � �x
�
CxS0

x C C0
xSx
�
: (17.22)

In a similar way we can derive all second-order coefficients Tijk. Equa-
tions (17.13) define the transformation of particle coordinates in second order
through a particular magnetic element. For the transformation of quadratic terms
we may ignore the third order difference between the coefficients cijk and Tijk and
get

x2 D �Cxx0 C Sxx0
0 C Dxı0

�2
;

xx0 D �Cxx0 C Sxx0
0 C Dxı0

� �
C0

xx0 C S0
xx0
0 C D0

xı0
�

xı D �Cxx0 C Sxx0
0 C Dxı0

�
ı0

::: etc.

(17.23)
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All transformation equations can now be expressed in matrix form after correctly
ordering equations and coefficients and a general second-order transformation
matrix can be formulated in the form0BBBBBBBBBBBBB@

x
�

ı

x2

x�
x ı
�2

� ı

ı2

1CCCCCCCCCCCCCA
DM

0BBBBBBBBBBBBB@

x0
�0

ı0
x20

x0 �0
x0 ı0
�2
0

�0 ı0
ı20

1CCCCCCCCCCCCCA
; (17.24)

where we have ignored the y-plane. The second-order transformation matrix is then

M D (17.25)0BBBBBBBBBBBBB@

C S D T111 T112 T116 T122 T126 T166
C0 S0 D0 T211 T212 T216 T222 T226 T266
0 0 1 0 0 0 0 0 0

0 0 0 C2 2CS 2CD S2 2SD D2

0 0 0 CC0 CS0CC0S CD0CC0D SS0 SD0CS0D DD0
0 0 0 0 0 C 0 S D
0 0 0 C0 2 2C0S0 2C0D S0 2 2S0D0 D0 2

0 0 0 0 0 C0 0 S0 D0
0 0 0 0 0 0 0 0 1

1CCCCCCCCCCCCCA
with C D Cx; S D Sx;. . . etc.

A similar equation can be derived for the vertical plane. If coupling effects are to
be included the matrix could be further expanded to include also such terms. While
the matrix elements must be determined individually for each magnetic element in
the beam transport system, we may in analogy to linear beam dynamics multiply
a series of such matrices to obtain the transformation matrix through the whole
composite beam transport line. As a matter of fact the transformation matrix has
the same appearance as (17.24) for a single magnet or a composite beam transport
line and the magnitude of the nonlinear matrix elements will be representative of
imaging errors like spherical and chromatic aberrations.

To complete the derivation of second-order transformation matrices we derive,
as an example, an expression of the matrix element T111 from the equation of
motion (6.95). To obtain all x20-terms, we look in (6.95) for perturbation terms
proportional to x2, xx0 and x02, replace these amplitude factors by principal solutions



17.2 Aberrations 573

and collect only terms quadratic in x0 to get the relevant perturbation

p.z/ D �� � 1
2
mC 2�xkC �3x

�
C2

x C 1
2
�xC02

x C �0
xCxC0

x

	
x20 : (17.26)

First, we recollect that the theory of nonlinear transformation matrices is based
on the constancy of magnet strength parameters and we set therefore �0

x D 0. Where
this is an undue simplification like in magnet fringe fields one could approximate the
smooth variation of �x by a step function. Inserting (17.26) into (5.75) the second-
order matrix element

c111 D T111 (17.27)

D �. 1
2
mC 2�xkC �3x /

Z z

0

C2
x .�/G.z; �/ d� � 1

2
�x

Z z

0

C02
x .�/G.z; �/ d� :

The integrands are powers of trigonometric functions and can be evaluated
analytically. In a similar way we may now derive any second-order matrix element
of interest. A complete list of all second order matrix elements can be found in [1].

This formalism is valuable whenever the effect of second-order perturbations
must be evaluated for particular particle trajectories. Specifically, it is suitable for
nonlinear beam simulation studies where a large number of particles representing
the beam are to be traced through nonlinear focusing systems to determine, for
example, the particle distribution and its deviation from linear beam dynamics at
a focal point. This formalism is included in the program TRANSPORT [4] allowing
the determination of the coefficients Tijk for any beam transport line and providing
fitting routines to eliminate such coefficients by proper adjustment and placement
of nonlinear elements like sextupoles.

17.2 Aberrations

From light optics we are familiar with the occurrence of aberrations which cause the
distortion of optical images. We have repeatedly noticed the similarity of particle
beam optics with geometric or paraxial light optics and it is therefore not surprising
that there is also a similarity in imaging errors. Aberrations in particle beam optics
can cause severe stability problems and must therefore be controlled.

We distinguish two classes of aberrations, geometric aberrations and for off
momentum particles chromatic aberrations. The geometric aberrations become
significant as the amplitude of betatron oscillations increases while chromatic
aberration results from the variation of the optical system parameters for different
colors of the light rays or in our case for different particle energies. For the
discussion of salient features of aberration in particle beam optics we study the
equation of motion in the horizontal plane and include only bending magnets,
quadrupoles and sextupole magnets. The equation of motion in this case becomes
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in normalized coordinates

RwC 
20w D 
20ˇ3=2�ı C 
20ˇ2kwı � 1
2

20ˇ

5=2mw2 ; (17.28)

where ˇ D ˇx. The particle deviation w from the ideal orbit is composed of two
contributions, the betatron oscillation amplitude wˇ and the shift in the equilibrium
orbit for particles with a relative momentum error ı. This orbit shift wı is determined

by the normalized dispersion function at the location of interest
�

wı D Q� ı D �p
ˇ
ı
�

and the particle position can be expressed by the composition

w D wˇ C wı D wˇ C Q�ı: (17.29)

Inserting (17.29) into (17.28) and employing the principle of linear superposi-
tion (17.28) can be separated into two differential equations, one for the betatron
motion and one for the dispersion function neglecting quadratic or higher-order
terms in ı. The differential equation for the dispersion function is then

RQ�C 
20 Q� D 
20ˇ1=2� C 
20ˇ2k Q�ı � 1
2

20ˇ

5=2m Q�2ı ; (17.30)

which has been solved earlier in Sect. 9.4.1. All other terms include the betatron
oscillation wˇ and contribute therefore to aberrations of betatron oscillations
expressed by the differential equation

Rwˇ C 
20wˇ D 
20ˇ2kwˇ ı � 
20ˇ2m�wˇ ı � 1
2

20ˇ

5=2m w2ˇ : (17.31)

The third term in (17.31) is of geometric nature causing a perturbation of beam
dynamics at large betatron oscillation amplitudes and, as will be discussed in
Sect. 17.3, also gives rise to an amplitude dependent tune shift. This term appears
as an isolated term in second order and no local compensation scheme is possible.
Geometric aberrations must therefore be expected whenever sextupole magnets are
used to compensate for chromatic aberrations.

The first two terms in (17.31) represent the natural chromaticity from
quadrupoles and the compensation by sextupole magnets, respectively. Whenever
it is possible to compensate the chromaticity at the location where it occurs both
terms would cancel for m� D k. Since the strength changes sign for both magnets
going from one plane to the other the compensation is correct in both planes. This
method of chromaticity correction is quite effective in long beam transport systems
with many equal lattice cells. An example of such a correction scheme are the
beam transport lines from the SLAC linear accelerator to the collision point of the
Stanford Linear Collider, SLC, [5]. This transport line consists of a dense sequence
of strong magnets forming a combined function FODO channel (for parameters
see example #2 in Table 10.1). In these magnets dipole, quadrupole and sextupole
components are combined in the pole profile and the chromaticity compensation
occurs locally.
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This method of compensation, however, does not work generally in circular
accelerators because of special design criteria which often require some parts of the
accelerator to be dispersion free and the chromaticity created by the quadrupoles in
these sections must then be corrected elsewhere in the lattice. Consequently both
chromaticity terms in (17.31) do not cancel anymore locally and can be adjusted to
cancel only globally.

The consequence of these less than perfect chromaticity correction schemes
is the occurrence of aberrations through higher-order effects. We get a deeper
insight for the effects of these aberrations in a circular accelerator by noting
that the coefficients of the betatron oscillation amplitude wˇ for both chromatic
perturbations are periodic functions in a circular accelerator and can therefore be
expanded into a Fourier series. Only non-oscillatory terms of these expansions
cancel if the chromaticity is corrected while all other higher harmonics still appear
as chromatic aberrations.

17.2.1 Geometric Aberrations

Geometric perturbations from sextupole fields scale proportional to the square of the
betatron oscillation amplitude leading to a loss of stability for particles oscillating
at large amplitudes. From the third perturbation term in (17.31) we expect this limit
to occur at smaller amplitudes in circular accelerators where either the betatron
functions are generally large or where the focusing and therefore the chromaticity
and required sextupole correction is strong or where the tunes are large. Most
generally this occurs in large proton and electron colliding-beam storage rings or
in electron storage rings with strong focusing.

Compensation of Nonlinear Perturbations

In most older circular accelerators the chromaticity is small and can be corrected
by two families of sextupoles. Although in principle only two sextupole magnets
for the whole ring are required for chromaticity compensation, this is in most
cases impractical since the strength of the sextupoles becomes too large exceeding
technical limits or leading to loss of beam stability because of intolerable geometric
aberrations. For chromaticity compensation we generally choose a more even
distribution of sextupoles around the ring and connect them into two families
compensating the horizontal and vertical chromaticity, respectively. This scheme
is adequate for most not too strong focusing circular accelerators. Where beam
stability suffers from geometric aberrations more sophisticated sextupole correction
schemes must be utilized.

To analyze the geometric aberrations due to sextupoles and develop correction
schemes we follow a particle along a beam line including sextupoles. Here we
understand a beam line to be an open system from a starting point to an image point
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Fig. 17.1 Linear particle
motion in phase space

x

x'

Fig. 17.2 Typical phase
space motion in the presence
of nonlinear fields

x'

x

at the end or one full circumference of a circular accelerator. Following any particle
through the beam line and ignoring for the moment nonlinear fields we expect the
particle to move along an ellipse in phase space as shown in Fig. 17.1. Travelling
through the length of a circular accelerator with phase advance D 2�
0 a particle
moves 
0 revolutions around the phase ellipse in Fig. 17.1.

Including nonlinear perturbations due to, for example, sextupole magnets the
phase space trajectory becomes distorted from the elliptical form as shown in
Fig. 17.2. An arbitrary distribution of sextupoles along a beam line can cause large
variations of the betatron oscillation amplitude leading to possible loss of particles
on the vacuum chamber wall even if the motion is stable in principle. The PEP
storage ring [6] was the first storage ring to require a more sophisticated sextupole
correction [7] beyond the mere compensation of the two chromaticities because
geometric aberrations were too strong to give sufficient beam stability. Chromaticity
correction with only two families of sextupoles in PEP would have produced large
amplitude dependent tune shifts leading to reduced beam stability.

Such a situation can be greatly improved with additional sextupole families
[7] to minimize the effect of these nonlinear perturbation. Although individual
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perturbations may not be reduced much by this method the sum of all perturbations
can be compensated to reduce the overall perturbation to a tolerable level.

In this sextupole correction scheme the location and strength of the individual
sextupoles are selected such as to minimize the perturbation of the particle motion
in phase space at the end of the beam transport line. Although this correction scheme
seems to work in not too extreme cases it is not sufficient to guarantee beam stability.
This scheme works only for one amplitude due to the nonlinearity of the problem
and in cases where sextupole fields are no longer small perturbations we must expect
a degradation of this compensation scheme for larger amplitudes. As the example
of PEP shows, however, an improvement of beam stability can be achieved beyond
that obtained by a simple two family chromaticity correction. Clearly, a more formal
analysis of the perturbation and derivation of appropriate correction schemes are
desirable.

Sextupoles Separated by a �I-Transformation

A chromaticity correction scheme that seeks to overcomes this amplitude dependent
aberration has been proposed by Brown and Servranckx [8]. In this scheme possible
sextupole locations are identified in pairs along the beam transport line such that
each pair is separated by a negative unity transformation

� I D

0BB@
�1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1CCA : (17.32)

Placing sextupoles of equal strength at these two locations we get an additive
contribution to the chromaticity correction. The effect of geometric aberrations,
however, is canceled for all particle oscillation amplitudes. This can be seen if we
calculate the transformation matrix through the first sextupole, the �I section, and
then through the second sextupole. The sextupoles are assumed to be thin magnets
inflicting kicks on particle trajectories by the amount

x0 D � 1
2
m0`s

�
x2 � y2

�
; (17.33)

and

y0 D �m0`sxy ; (17.34)



578 17 Hamiltonian Nonlinear Beam Dynamics*

where `s is the sextupole length. We form a 4 � 4 transformation matrix through a
thin sextupole and get0BB@

x
x0
y
y0

1CCA DMs .x0; y0/

0BB@
x0
x0
0

y0
y0
0

1CCA

D

0BB@
1 0 0 0

� 1
2
m0`sx0 1 1

2
m0`sx0 0

0 0 1 0

0 0 m0`sx0 1

1CCA
0BB@

x0
x0
0

y0
y0
0

1CCA (17.35)

To evaluate the complete transformation we note that in the first sextupole the
particle coordinates are .x0; y0/ and become after the �I-transformation in the
second sextupole .�x0;�y0/. The transformation matrix through the complete unit
is therefore

Mt DMs .x0; y0/ .�I/Ms .�x0;�y0/ : (17.36)

Independent of the oscillation amplitude we observe a complete cancellation of
geometric aberrations in both the horizontal and vertical plane. This correction
scheme has been applied successfully to the final focus system of the Stanford
Linear Collider [9], where chromatic as well as geometric aberrations must be
controlled and compensated to high accuracy to allow the focusing of a beam to
a spot size at the collision point of only a few micrometer.

The effectiveness of this correction scheme and its limitations in circular
accelerators has been analyzed in more detail by Emery [10] and we will discuss
some of his findings. As an example, we use strong focusing FODO cells for
an extremely low emittance electron storage ring [10] and investigate the beam
parameters along this lattice. Any other lattice could be used as well since the
characteristics of aberrations is not lattice dependent although the magnitude may
be. The particular FODO lattice under discussion as shown in Fig. 17.3 is a thin
lens lattice with 90ı cells, a distance between quadrupoles of Lq D 3:6m and an

90o cell90o cell90o cell

180o

sextupole sextupole

1/2QF QD QF QD QF QD 1/2QF

Fig. 17.3 FODO lattice and chromaticity correction
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a) b) c)

d) e) f)

Fig. 17.4 Phase ellipses along a FODO channel including nonlinear aberrations due to thin
sextupole magnets separated by exactly 180ı in betatron phase (consult text for details)

integrated half quadrupole strength of .k`q/
�1 D p2Lq. The horizontal and vertical

betatron functions at the symmetry points are 12.29 and 2.1088 m respectively.
Three FODO cells are shown in Fig. 17.3 including one pair of sextupoles separated
by 180ı in betatron phase space. We choose a phase ellipse for an emittance of
� D 200mm-mrad which is an upright ellipse at the beginning of the FODO
lattice, Fig. 17.4a. Due to quadrupole focusing the ellipse becomes tilted at the
entrance to the first sextupole, Fig. 17.4b. The thin lens sextupole introduces a
significant angular perturbation (Fig. 17.4c) leading to large lateral aberrations in
the quadrupole QF (Fig. 17.4d). At the entrance to the second sextupole the distorted
phase ellipse is rotated by 180ı and all aberrations are compensated again by this
sextupole, Fig. 17.4e. Finally, the phase ellipse at the end of the third FODO cell is
again an upright ellipse with no distortions left, Fig. 17.4f. The range of stability
therefore extends to infinitely large amplitudes ignoring any other detrimental
effects.

The compensation of aberrations works as long as the phase advance between
sextupoles is exactly 180ı. A shift of the second sextupole by a few degrees or a
quadrupole error resulting in a similar phase error between the sextupole pair would
greatly reduce the compensation. In Fig. 17.5 the evolution of the phase ellipse from
Fig. 17.4 is repeated but now with a phase advance between the sextupole pair of
only 175ı. A distortion of the phase ellipse due to aberrations can be observed
which may build up to instability as the particles pass through many similar cells.
Emery has analyzed numerically this degradation of stability and finds empirically
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a) b) c)

Fig. 17.5 Thin sextupole magnets separated by 175ı in betatron phase space. The unperturbed
phase ellipse (a) becomes slightly perturbed (b) at the end of the first triple FODO cell (Fig.17.3,
and more so after passing through many such triplets (c)

a) b) c)

Fig. 17.6 Phase ellipses along a FODO channel including nonlinear aberrations due to finite
length sextupole magnets placed exactly 180 degrees apart. Phase ellipse (a) transforms to (b)
after one FODO triplet cell and to (c) after passage through many such cells

the maximum stable betatron amplitude to scale with the phase error like '�0:52
[10]. The sensitivity to phase errors together with unavoidable quadrupole field
errors and orbit errors in sextupoles can significantly reduce the effectiveness of
this compensation scheme.

The single most detrimental arrangement of sextupoles compared to the perfect
compensation of aberrations is to interleave sextupoles which means to place other
sextupoles between two pairs of compensating sextupoles [8]. Such interleaved
sextupoles introduce amplitude dependent phase shifts leading to phase errors and
reduced compensation of aberrations. This limitation to compensate aberrations is
present even in a case without apparent interleaved sextupoles as shown in Fig. 17.6
for the following reason.

The assumption of thin magnets is sometimes convenient but, as Emery points
out, can lead to erroneous results. For technically realistic solutions, we must
allow the sextupoles to assume a finite length and find, as a consequence, a loss
of complete compensation for geometric aberrations because sextupoles of finite
length are only one particular case of interleaved sextupole arrangements. If we
consider the sextupoles made up of thin slices we still find that each slice of the first
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sextupole has a corresponding slice exactly 180ı away in the second sextupoles.
However, other slices are interleaved between such ideal pairs of thin slices. In
Fig. 17.6 the sequence of phase ellipses from Fig. 17.4 is repeated with the only
difference of using now a finite length of 0.3 m for the sextupoles. From the last
phase ellipse it becomes clear that the aberrations are not perfectly compensated
as was the case for thin sextupoles. Although the �I-transformation scheme to
eliminate geometric aberrations is not perfectly effective for real beam lines it is
still prudent to arrange sextupoles in that way, if possible, to minimize aberrations
and apply additional corrections.

17.2.2 Filamentation of Phase Space

Some distortion of the unperturbed trajectory in phase space due to aberrations
is inconsequential to beam stability as long as this distortion does not build up
and starts growing indefinitely. A finite or infinite growth of the beam emittance
enclosed within a particular particle trajectory in phase space may at first seem
impossible since we deal with macroscopic, non-dissipating magnetic fields where
Liouville’s theorem must hold. Indeed numerical simulations indicate that the total
phase space occupied by the beam does not seem to increase but an originally
elliptical boundary in phase space can grow, for example, tentacles like a spiral
galaxy leading to larger beam sizes without actually increasing the phase space
density. This phenomenon is called filamentation of the phase space and can evolve
like shown in Fig. 17.7.

For particle beams this filamentation is as undesirable as an increase in beam
emittance or beam loss. We will therefore try to derive the causes for beam
filamentation in the presence of sextupole non-linearities which are the most
important non-linearities in beam dynamics. In this discussion we will follow the
ideas developed by Autin [11] which observes the particle motion in action-angle
phase space under the influence of nonlinear fields.

b) c)a)

Fig. 17.7 Filamentation of phase space after passage through an increasing number of FODO cells
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For simplicity of expression, we approximate the nonlinear sextupoles by thin
magnets. This does not restrict our ability to study the effect of finite length
sextupoles since we may always represent such sextupoles by a series of thin
magnets. A particle in a linear lattice follows a circle in action-angle phase space
with a radius equal to the action J0. The appearance of a nonlinearity along the
particle trajectory will introduce an amplitude variation J to the action which is
from the Courant-Snyder invariant for both the horizontal and vertical plane

Jx D 
x0wwC 1

x0
Pw Pw D 1


x0
Pw Pw ;

Jy D 
y0vv C 1

y0
Pv Pv D 1


y0
Pv Pv ; (17.37)

since w D v D 0 for a thin magnet. Integration of the equations of motion in
normalized coordinates over the “length” ` of the thin magnet produces a variation
of the slopes

 Pw D 
x0

p
ˇx

1
2
m`.x2 � y2/ ;

 Pv D �
y0

p
ˇym` xy :

(17.38)

We insert (17.38) into (17.37) and get after transformation into action-angle
variables and linearization of the trigonometric functions the variation of the action

Jx D m`
4

q
2Jxˇx

x0

n�
Jxˇx � 2Jyˇy


x

y

�
sin x C Jxˇx sin 3 x

�Jyˇy

x

y

�
sin. x C 2 y/C sin. x � 2 y/

	o
;

Jy Dm`
2

q
2Jxˇx

x0

JyˇyŒsin. x C 2 y/� sin. x � 2 y/� :

(17.39)

Since the action is proportional to the beam emittance, (17.39) allow us to study
the evolution of beam filamentation over time. The increased action from (17.39) is
due to the effect of one nonlinear sextupole magnet and we obtain the total growth
of the action by summing over all turns and all sextupoles. To sum over all turns
we note that the phases in the trigonometric functions increase by 2�
0;x;y every
turn and we have for the case of a single sextupole after an infinite number of turns
expressions of the form

1X
nD0

sinŒ. xj C 2�
x0n/C 2. yj C 2�
y0n/� ; (17.40)

where  xj and  yj are the phases at the location of the sextupole j. Such sums of
trigonometric functions are best solved in the form of exponential functions. In this
case the sine function terms are equivalent to the imaginary part of the exponential
functions

ei. xjC2 yj/ ei2�.
x0C2
y0/n: (17.41)
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The second factor forms an infinite geometric series and the imaginary part of the
sum is therefore

Im
ei. xjC2 yj/

1 � ei2�.
x0C2
y0/
D cosŒ. xj � �
x0/C 2. yj � �
y0/�

2 sinŒ�.
x0 C 2
y0/�
: (17.42)

This solution has clearly resonant character leading to an indefinite increase of
the action if 
x0 C 2
y0 is an integer. Similar results occur for the other three terms
and Autin’s method to observe the evolution of the action coordinate over many
turns allows us to identify four resonances driven by sextupolar fields which can
lead to particle loss and loss of beam stability if not compensated. Resonant growth
of the apparent beam emittance occurs according to (17.39) for


x0 D q1 ; or 
x0 C 2
y0 D q3 ;
3
x0 D q2 ; or 
x0 � 2
y0 D q4 ;

(17.43)

where the qi are integers. In addition to the expected integer and third integer
resonance in the horizontal plane, we find also two third order coupling resonances
in both planes where the sum resonance leads to beam loss while the difference
resonance only initiates an exchange of the horizontal and vertical emittances. The
asymmetry is not fundamental and is the result of our choice to use only upright
sextupole fields.

So far we have studied the effect of one sextupole on particle motion. Since no
particular assumption was made as to the location and strength of this sextupole, we
conclude that any other sextupole in the ring would drive the same resonances and
we obtain the beam dynamics under the influence of all sextupoles by adding the
individual contributions. In the expressions of this section we have tacitly assumed
that the beam is observed at the phase  x0;y0 D 0. If this is not the desired location
of observation the phases  xj need to be replaced by  xj �  x0, etc., where the
phases  xj;yj define the location of the sextupole j. Considering all sextupoles in a
circular lattice we sum over all such sextupoles and get, as an example, for the sum
resonance used in the derivation above from (17.39)

Jx;
xC2
y D �
X

j

mj`j

4

s
2Jxˇxj


x0
Jyˇyj


x


y
sin. xj C 2 yj/ : (17.44)

Similar expressions exist for other resonant terms. Equation (17.44) indicates a
possibility to reduce the severity of driving terms for the four resonances. Sextupoles
are primarily inserted into the lattice where the dispersion function is nonzero to
compensate for chromaticities. Given sufficient flexibility these sextupoles can be
arranged to avoid driving these resonances. Additional sextupoles may be located
in dispersion free sections and adjusted to compensate or at least minimize the
four resonance driving terms without affecting the chromaticity correction. The
perturbation J is minimized by distributing the sextupoles such that the resonant
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driving terms in (17.39) are as small as possible. This is accomplished by harmonic
correction which is the process of minimization of expressionsX

j
mj`jˇ

3=2
x ei xj ! 0 ; (17.45)X

j
mj`jˇ

3=2
x ei3 xj ! 0 ; (17.46)X

j
mj`jˇ

1=2
x ˇy ei xj ! 0 ; (17.47)X

j
mj`jˇ

1=2
x ˇy ei. xjC2 yj/ ! 0 ; (17.48)X

j
mj`jˇ

1=2
x ˇy ei. xj�2 yj/ ! 0 : (17.49)

The perturbations of the action variables in (17.39) cancel perfectly if we insert
sextupoles in pairs at locations which are separated by a �I transformation as
discussed previously in this chapter. The distribution of sextupoles in pairs is
therefore a particular solution to (17.45) for the elimination of beam filamentation
and specially suited for highly periodic lattices while (17.45)–(17.49) provide more
flexibility to achieve similar results in general lattices and sextupole magnets of
finite length.

Cancellation of resonant terms does not completely eliminate all aberrations
caused by sextupole fields. Because of the existence of nonlinear sextupole fields
the phases  j depend on the particle amplitude and resonant driving terms are
therefore canceled only to first order. For large amplitudes we expect increasing
deviation from the perfect cancellation leading eventually to beam filamentation
and beam instability. Maximum stable oscillation amplitudes in .x; y/-space due to
nonlinear fields form the dynamic aperture which is to be distinguished from the
physical aperture of the vacuum chamber. This dynamic aperture is determined by
numerical tracking of particles. Given sufficiently large physical apertures in terms
of linear beam dynamics the goal of correcting nonlinear aberrations is to extend the
dynamic aperture to or beyond the physical aperture. Methods discussed above to
increase the dynamic aperture have been applied successfully to a variety of particle
storage rings, especially by Autin [11] to the antiproton cooling ring ACOL, where
a particularly large dynamic aperture is required.

17.2.3 Chromatic Aberrations

Correction of natural chromaticities is not a complete correction of all chromatic
aberrations. For sensitive lattices nonlinear chromatic perturbation terms must
be included. Both linear as well as nonlinear chromatic perturbations have been
discussed in detail in Sect. 9.4.1. Such terms lead primarily to gradient errors and
therefore the sextupole distribution must be chosen such that driving terms for half
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integer resonances are minimized. Together with tune shifts due to gradient field
errors we observe also a variation of the betatron function. Chromatic gradient errors
in the presence of sextupole fields are

p1.z/ D .k � m�/ ı (17.50)

and the resulting variation of the betatron function has been derived in Sect. 15.3.
For the perturbation (17.50) the linear variation of the betatron function with
momentum is from (15.91)

ˇ.z/

ˇ0
D ı

2 sin 2�
0

Z zCL

z
ˇ.k � m�/ cosŒ2
0.'z � '� C 2�/�d� ; (17.51)

where L is the length of the superperiod, 'z D '.z/ and '� D '.�/. The same result
can be expressed in the form of a Fourier expansion for Ns superperiods in a ring
lattice by

ˇ

ˇ
D ı 
0

4�

X
q

FqeiNsq'


20 � .Nsq=2/2
; (17.52)

where

Fq D 
0

2�

Z 2�

0

ˇ2.k � m�/eiNsq' d' : (17.53)

Both expressions exhibit the presence of half integer resonances and we must
expect the area of beam stability in phase space to be reduced for off momentum
particles because of the increased strength of the resonances. Obviously, this
perturbation does not appear in cases where the chromaticity is corrected locally
so that .k � m�/ � 0 but few such cases exist. To minimize the perturbation
of the betatron function, we look for sextupole distributions such that the Fourier
harmonics are as small as possible by eliminating excessive “fighting” between
sextupoles and by minimizing the resonant harmonic q D 2
0. Overall, however,
it is not possible to eliminate this beta-beat completely. With a finite number of
sextupoles the beta-beat can be adjusted to zero only at a finite number of points
along the beam line.

In colliding-beam storage rings, for example, we have specially sensitive sections
just adjacent to the collision points. To maximize the luminosity the lattice is
designed to produce small values of the betatron functions at the collision points
and consequently large values in the adjacent quadrupoles. In order not to further
increase the betatron functions there and make the lattice more sensitive to errors,
one might choose to seek sextupole distributions such that the beta-beat vanishes at
the collision point and its vicinity.
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Having taken care of chromatic gradient errors we are left with the variation of
geometric aberrations as a function of particle momentum. Specifically, resonance
patterns vary and become distorted as the particle momentum is changed. Generally
this should not cause a problem as long as the dynamic aperture can be optimized
to exceed the physical aperture. A momentum error will introduce only a small
variation to the dynamic aperture as determined by geometric aberrations for on
momentum particles only. If, however, the dynamic aperture is limited by some
higher-order resonances even a small momentum change can cause a big difference
in the stable phase space area.

Analytical methods are useful to minimize detrimental effects of geometric
and chromatic aberrations due to nonlinear magnetic fields. We have seen how
by careful distribution of the chromaticity correcting sextupoles, resonant beam
emittance blow up and excessive beating of the betatron functions for off momentum
particles can be avoided or at least minimized within the approximations used. In
Sect. 17.3, we will also find that sextupolar fields can produce strong tune shifts
for larger amplitudes leading eventually to instability at nearby resonances. Here
again a correct distribution of sextupoles will have a significant stabilizing effect.
Although there are a number of different destabilizing effects, we note that they
are driven by only a few third order resonances. Specifically, in large circular
lattices a sufficient number of sextupoles and locations for additional sextupoles
are available for an optimized correction scheme. In small rings such flexibility
often does not exist and therefore the sophistication of chromaticity correction
is limited. Fortunately, in smaller rings the chromaticity is much smaller and
some of the higher-order aberrations discussed above are very small and need
not be compensated. Specifically, the amplitude dependent tune shift is generally
negligible in small rings while it is this effect which limits the dynamic aperture in
most cases of large circular accelerators.

The optimization of sextupole distribution requires extensive analysis of the
linear lattice and it is best to use a numerical program to do the well known but
cumbersome work. At present the program OPA [12] is widely used. This program
uses a linear lattice and adjusts the sextupoles such that chromaticities and some
harmonics are corrected. With the new sextupole strengths the dynamic aperture
can be obtained in the same program.

In trying to solve aberration problems in beam dynamics we are, however,
mindful of approximations made and terms neglected for lack of mathematical tools
to solve analytically the complete nonlinear dynamics in realistic accelerators. The
design goals for circular accelerators become more and more demanding on our
ability to control nonlinear aberrations. On one hand the required cross sectional
area in the vicinity of the ideal orbit for a stable beam remains generally constant
for most designs but the degree of aberrations is increased in an attempt to reach very
special beam characteristics. As a consequence, the nonlinear perturbations become
stronger and the limits of dynamic aperture occur for smaller amplitudes compared
to less demanding lattices and require more and more sophisticated methods of
chromaticity correction and control of nonlinear perturbations.
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17.2.4 Particle Tracking

No mathematical methods are available yet to calculate analytically the limits of the
dynamic aperture for any but the most simple lattices. High order approximations
are required to treat strong aberrations in modern circular accelerator designs. The
most efficient way to determine beam stability characteristics for a particular lattice
design is to perform numerical particle tracking studies.

Perturbations of localized nonlinear fields on a particle trajectory are easy to cal-
culate and tracking programs follow single particles along their path incorporating
any nonlinear perturbation encountered. Since most nonlinear fields are small, we
may use thin lens approximation and passage of a particle through a nonlinear field
of any order inflicts therefore only a deflection on the particle trajectory. During the
course of tracking the deflections of all non-linearities encountered are accumulated
for a large number of turns and beam stability or instability is judged by the particle
surviving the tracking or not, respectively. The basic effects of nonlinear fields
in numerical tracking programs are therefore reduced to what actually happens
to particles travelling through such fields producing results in an efficient way.
Of course from an intellectual point of view such programs are not completely
satisfactory since they serve only as tools providing little direct insight into actual
causes for limitations to the dynamic aperture and instability.

The general approach to accelerator design is to develop first a lattice in linear
approximation meeting the desired design goals followed by an analytical approach
to include chromaticity correcting sextupoles in an optimized distribution. Further
information about beam stability and dynamic aperture can at this point only
be obtained from numerical tracking studies. Examples of widely used computer
programs to perform such tracking studies are in historical order PATRICIA [7],
RACETRACK [13], OPA [12] and more.

Tracking programs generally require as input an optimized linear lattice and
allow then particle tracking for single particles as well as for a large number of
particles simulating a full beam. Nonlinear fields of any order can be included as thin
lenses in the form of isolated multipole magnets like sextupoles or a multipole errors
of regular lattice magnets. The multipole errors can be chosen to be systematic or
statistical and the particle momentum may have a fixed offset or may be oscillating
about the ideal momentum due to synchrotron oscillations.

Results of such computer studies contribute information about particle dynamics
which is not available otherwise. The motion of single particles in phase space can
be observed together with an analysis of the frequency spectrum of the particle
under the influence of all nonlinear fields included and at any desired momentum
deviation.

Further information for the dynamics of particle motion can be obtained from
the frequency spectrum of the oscillation. An example of this is shown in Fig. 17.8
as a function of oscillation amplitudes. For small amplitudes we notice only
the fundamental horizontal betatron frequency 
x. As the oscillation amplitude is
increased this basic frequency is shifted toward lower values while more frequencies
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Fig. 17.8 Frequency spectrum for betatron oscillations with increasing amplitudes (x) as deter-
mined by particle tracking with PATRICIA

appear. We note the appearance of higher harmonics of 
x due to the nonlinear nature
of motion.

The motion of a particle in phase space and its frequency spectrum as a result of
particle tracking can give significant insight into the dynamics of a single particle.
For the proper operation of an accelerator, however, we also need to know the overall
stability of the particle beam. To this purpose we define initial coordinates of a large
number of particles distributed evenly over a cross section normal to the direction of
particle propagation to be tested for stability. All particles are then tracked for many
turns and the surviving particles are displayed over the original cross section at the
beginning of the tracking thus defining the area of stability or dynamic aperture.

17.3 Hamiltonian Perturbation Theory

The Hamiltonian formalism has been applied to derive tune shifts and to discuss
resonance phenomena. This was possible by a careful application of canonical
transformation to eliminate, where possible, cyclic variables from the Hamiltonian
and obtain thereby an invariant of the motion. We have also learned that this
“elimination” process need not be perfect. During the discussion of resonance
theory, we observed that slowly varying terms function almost like cyclic variables
giving us important information about the stability of the motion.

During the discussion of the resonance theory, we tried to transform perturbation
terms to a higher order in oscillation amplitude than required by the approximation
desired and where this was possible we could then ignore such higher-order fast-
oscillating terms. This procedure was successful for all terms but resonant terms.
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In this section we will ignore resonant terms and concentrate on higher-order
terms which we have ignored so far [14]. By application of a canonical identity
transformation we try to separate from fast oscillating terms those which vary only
slowly. To that goal, we start from the nonlinear Hamiltonian (16.30)

H D 
0 J C pn.'/ Jn=2 cosn  : (17.54)

Fast-oscillating terms can be transformed to a higher order by a canonical transfor-
mation which can be derived from the generating function

G1 D  J1 C g. ; '/ Jn=2
1 ; (17.55)

where the function g. ; '/ is an arbitrary but periodic function in  and ' which
we will determine later. From (17.55) we get for the new angle variable  1 and the
old action variable J

 1 D dG1
dJ1
D  C n

2
g. ; '/ Jn=2�1;

J D dG1
d D J1 C @g

@ 
Jn=2�1
1 ;

(17.56)

and the new Hamiltonian is

H1 D H C dG1

d '
D H C @g. ; '/

@ '
Jn=2
1 : (17.57)

We replace now the old variables . ; J/ in the Hamiltonian by the new variables
.J1;  1/ and expand

Jn=2 D
�

J1 C @g

@ 
Jn=2
1

�n=2

D Jn=2
1 C

n

2

@g

@ 
Jn�1
1 C � � � : (17.58)

With (17.56), (17.58) the Hamiltonian (17.57) becomes

H1 D 
0 J1 C Jn=2
1

�

0
@g

@ 
C pn.'/ cosn  C @g

@'

�
(17.59)

C Jn�1
1

�
n

2
pn.'/ cosn  

@g

@ 

�
CO

�
JnC1=2
1

�
:

All terms of order nC1=2 or higher in the amplitude J as well as quadratic terms
in g. ; '/ or derivations thereof have been neglected. We still must express all terms
of the Hamiltonian in the new variables and define therefore the function

Q. ; '/ D 
0 @g

@ 
C pn.'/ cosn  C @w

@ '
: (17.60)
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In the approximation of small perturbations we have  1 �  or  1 D  C and
may expand (17.60) like

Q1. 1; '/ D Q. ; '/C @Q

@ 
 (17.61)

D Q. ; '/C n

2
g. 1; '/ Jn=2�1

1

@Q

@ 
; (17.62)

where we used the first equation of (17.56). The Hamiltonian can be greatly
simplified if we make full use of the periodic but otherwise arbitrary function
g. 1; '/. With (17.62) we obtain from (17.59)

H1 D 
0 J1 C Jn=2
1 Q1. 1; '/

C n

2
Jn�1
1

�
pn.'/ cosn  1

@w

@ 
� g. ; '/

@Q

@ 

�
C � � � : (17.63)

and we will derive the condition that

Q. ; '/ D 0 : (17.64)

First we set

cosn  1 D
nX

mD�n

anmeim 1 (17.65)

and try an expansion of g. 1; '/ in a similar way by setting

g. 1; '/ D
nX

mD�n

gm.'/eim. 1�
0'/; (17.66)

where the function g obviously is still periodic in  and ' as long as gm.'/ is
periodic. With

@g

@ 1
D

nX
mD�n

gm.'/ im eim. 1�
0'/ (17.67)

and

@g

@'
D

nX
mD�n

�
@gm

@'
� i
0mgm.'/

�
eim. 1�
0'/ (17.68)
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we get instead of (17.60)

Q. 1; '/ � Q. ; '/ D

i
0

nX
mD�n

mgm eim. 1�
0'/ C pn.'/

nX
mD�n

anmeim 1

C
nX

mD�n

�
@gm

@'
� i
0mgm

�
eim. 1�
0'/ D 0

noting from (17.62) that the difference Q D Q. 1; '/ � Q. ; '/ contributes
nothing to the term of order Jn=2

1 for n > 2. The imaginary terms cancel and we
get

Q. 1; '/ � pn.'/

nX
mD�n

anmeim C
nX

mD�n

@gm

@'
eim. �
0'/ D 0 : (17.69)

This equation must be true for all values of ' and therefore the individual terms of
the sums must vanish independently

pn.'/anm C @gm

@'
e�im
0' D 0 (17.70)

for all values of m. After integration we have

gm.'/ D gm0 � anm

Z '

0

pn.�/eim
0�d� (17.71)

and since the coefficients gm.'/ must be periodic
�
gm.'/ D gm.' C 2�

N /
	

where N
is the super-periodicity, we are able to eventually determine the function g. 1; '/.
With
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N

�
eim. 1�
0'� 2�

N 
0/ (17.72)

and (17.71) we have
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Solving for gm0 we get

gm0

�
1 � eim 2�

N 
0
�
D anm

Z 2�
N

0

pn. N�/eim
0 N�d N� : (17.73)

A solution for gm0 exists only if there are no perturbations and p.'/ � 0 or if�
1 � eim 2�

N 
0

�
¤ 0. In other words we require the condition

m
0 ¤ qN ; (17.74)

where q is an integer number. The canonical transformation (17.55) leads to the
condition (17.64) only if the particle oscillation frequency is off resonance. We have
therefore the result that all nonresonant perturbation terms can be transformed to
higher-order terms in the oscillation amplitudes while the resonant terms lead to
phenomena discussed earlier. From (17.73) we derive gm0, obtain the function gm.'/

from (17.71) and finally the function g. 1; '/ from (17.66). Since Q. 1; '/ D 0;

the Hamiltonian is from (17.63)

H1 D 
0 J1 C Jn=2
1 Q1. 1; '/ (17.75)

C n

2
Jn�1
1

�
pn.'/ cosn  1

@g

@ 1
� g. 1; '/

@Q

@ 1

�
C � � � :

Nonresonant terms appear only in order Jn�1
1 . As long as such terms can be

considered small we conclude that the particle dynamics is determined by the linear
tune 
0, a tune shift or tune spread caused by perturbations and resonances. Note that
the Hamiltonian (17.75) is not the complete form but addresses only the nonresonant
case of particle dynamics while the resonant case of the Hamiltonian has been
derived earlier.

We will now continue to evaluate (17.75) and note that the product

g. 1; '/
@Q. 1; '/

@ 1
D 0 (17.76)

in this approximation and get

T. ; '/ D n

2
pn.'/ cosn  

@g

@ 
; (17.77)

where we have dropped the index on  and set from now on  1 D  which is not
to be confused with the variable  used before the transformation (17.55). Using
the Fourier spectrum for the perturbations and summing over all but resonant terms
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q ¤ qr we get from (17.73)
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or

gm0 D i anm

X
q6Dqr

pnq

m
0 � qN
: (17.79)

Note that we have excluded in the sums the resonant terms q D qr where
mr
0 � qrN D 0. These resonant terms include also terms q D 0 which do not
cause resonances of the ordinary type but lead to tune shifts and tune spreads. After
insertion into (17.71) and some manipulations we find
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and with (17.66)
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From (17.77) we get with (17.65) and (17.81)
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anm eim m g. ; '/ : (17.82)

This function T. ; '/ is periodic in  and ' and we may apply a Fourier expansion
like

T. ; '/ D
X

r

X
s 6D r
0

N

Trs ei.r �sN'/ ; (17.83)
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where the coefficients Trs are determined by

Trs D N

4�2

2�Z
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e�ir d 

2�=NZ
0

eisN'T. ; '/ d' : (17.84)

To evaluate (17.84) it is most convenient to perform the integration with respect
to the betatron phase  before we introduce the expansions with respect to '.
Using (17.65), (17.66), (17.77), we get from (17.84) after some reordering

Trs D i
nN

4�

nX
mD�n

m
Z 2�

0

nX
jD�n

anj

2�
ei.jCm�r/ d 

�
Z 2�=N

0

pn.'/ gm.'/ei.m
0�sN/' d' :

The integral with respect to  is zero for all values j C m � r ¤ 0 and therefore
equal to an;r�m

Trs D i
nN

4�

mX
mD�n

m am;r�m

2�=NZ
0

pn.'/ gm.'/ e�i.m
0�sN/' d' : (17.85)

Expressing the perturbation pn.'/ by its Fourier expansion and replacing gm.'/

by (17.80), (17.85) becomes

Trs D �n

2

nX
m D�n

mam;r�m an;m

X
q6Dqr

pn;s�q pn;q

m
0 � qN
: (17.86)

With this expression we have fully defined the function T. ; '/ and obtain for the
non-resonant Hamiltonian (17.75)

H D 
0 J C Jn�1X
r

X
s 6D r

N 
0

Trs ei.r �sN'/ : (17.87)

We note in this result a higher-order amplitude dependent tune spread which has
a constant contribution T00 as well as oscillatory contributions.

Successive application of appropriate canonical transformations has lead us
to derive detailed insight into the dynamics of particle motion in the presence
of perturbations. Of course, every time we applied a canonical transformation
of variables it was in the hope of obtaining a cyclic variable. Except for the
first transformation to action-angle variables, this was not completely successful.
However, we were able to extract from perturbation terms depending on both
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action-angle variables such elements that do not depend on the angle variable. As a
result, we are now able to determine to a high order of approximation shifts in the
betatron frequency caused by perturbations as well as the occurrence and nature of
resonances.

Careful approximations and simplifications had to be made to keep the math-
ematical formulation manageable. Specifically we had to restrict the perturbation
theory in this section to one order of multipole perturbation and we did not address
effects of coupling between horizontal and vertical betatron oscillations.

From a more practical view point one might ask to what extend this higher-
order perturbation theory is relevant for the design of particle accelerators. Is the
approximation sufficient or is it more detailed than needed? As it turns out so often
in physics we find the development of accelerator design to go hand in hand with the
theoretical understanding of particle dynamics. Accelerators constructed up to the
late sixties were designed with moderate focusing and low chromaticities requiring
no or only very weak sextupole magnets. In contrast more modern accelerators
require much stronger sextupole fields to correct for the chromaticities and as a
consequence, the effects of perturbations, in this case third-order perturbations,
become more and more important. The ability to control the effects of such
perturbations actually limits the performance of particle accelerators. For example,
in colliding-beam storage rings the strongly nonlinear fields introduced by the beam-
beam effect limit the attainable luminosity while a lower limit on the attainable beam
emittance for synchrotron light sources or damping rings is determined by strong
sextupole fields.

17.3.1 Tune Shift in Higher Order

In (16.36) we found the appearance of tune shifts due to even order multipole
perturbations only. Third-order sextupole fields, therefore, would not affect the
tunes. This was true within the degree of approximation used at that point. In this
section, however, we have derived higher-order tune shifts and should therefore
discuss again the effect of sextupolar fields on the tune.

Before we evaluate the sextupole terms, however, we like to determine the
contribution of a quadrupole perturbation to the higher-order tune shift. In lower
order we have derived earlier a coherent tune shift for the whole beam. We
use (17.86) and calculate T00 for n D 2

T00 D
X
q6Dqr

p2;q p2;�q

2X
mD�2

ma2;m a2;�m

m
0 � qN
: (17.88)
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With 4a2;2 D a2;�2 D 2a2;0 D 1 and a2;1 D a2;�1 D 0 the term in the bracket
becomes

�2
�2
0 � qN

C 2

2
0 � qN
D 2qN

.2
0/
2� .qN/2

and (17.88) is simplified to

T00 D �
X
q6Dqr

p2;q p2;�q
2qN

.2
0/
2 � .qN/2

: (17.89)

In this summation we note the appearance of the index q in pairs as a positive
and a negative value. Each such pair cancels and therefore

T00;2 D 0 ; (17.90)

where the index 2 indicates that this coefficient was evaluated for a second-
order quadrupole field. This result is not surprising since all quadrupole fields
contribute directly to the tune and formally a quadrupole field perturbation cannot
be distinguished from a “real” quadrupole field.

In a similar way we derive the T00 coefficient for a third-order multipole or a
sextupolar field. From (17.86) we get for n D 3

T00;3 D �3
2

X
q6Dqr

p3;q p3;�q

3X
mD�3

ma3;m a3;�m

m
0 � qN
: (17.91)

Since cos3  is an even function we have a3;m D a3;�m; a3;1 D 3
8

and a3;3 D 1
8
.

The second sum in (17.91) becomes now

1

64

�
3

3
0 C qN
C q


0 C qN
C q


0 � qN
C 3

3
0 � qN

�

D 1

64

 
18
0


20� .qN/2
C 18
0

.3
0/
3� .qN/2

!
;

and after separating out the terms for q D 0; (17.91) becomes

T00;3 D � 15

32
0
p23;0 (17.92)

� 27
0

64

X
q6Dqr

p3;q p3;�q

"
1


20� .qN/2
C 1

.3
0/
3� .qN/2

#
:
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This expression in general is nonzero and we found, therefore, that sextupole
fields indeed, contribute to a tune shift although in a high order of approximation.
This tune shift can actually become very significant for strong sextupoles and for
tunes close to an integer or third integer resonances. Although we have excluded
resonances .q D qr/ ; terms close to resonances become important. Obviously, the
tunes should be chosen such as to minimize both terms in the bracket of (17.92).
This can be achieved with 
0 D qN C 1

2
N and 3
0 D rN C 1

2
N where q and r are

integers. Eliminating 
0 from both equations we get the condition 3q � r C 1 D 0

or r D 3q C 1. With this we finally get from the two tune conditions the relation
2
0 D .2qC 1/N or


opt D 2qC 1
2

N : (17.93)

Of course, an additional way to minimize the tune shift is to arrange the sextupole
distribution in such a way as to reduce strong harmonics in (17.92). In summary, we
find for the non-resonant Hamiltonian in the presence of sextupole fields.

H3 D 
0J C T00;3J
2 C higher order terms (17.94)

and the betatron oscillation frequency or tune is given by


 D 
0 C 2T00;3J: (17.95)

In this higher-order approximation of beam dynamics we find that sextupole
fields cause an amplitude dependent tune shift in contrast to our earlier first-order
conclusion





0
D 
 � 
0


0
D T00;3

�
�u2 C 2u u0C ˇ u0 2

�
D T00;3 � ; (17.96)

where we have used (5.59) with � the emittance of a single particle oscillating with
a maximum amplitude a2 D ˇ�. We have shown through higher-order perturbation
theory that odd order nonlinear fields like sextupole fields, can produce amplitude
dependent tune shifts which in the case of sextupole fields are proportional to
the square of the betatron oscillation amplitude and therefore similar to the tune
shift caused by octupole fields. In a beam where particles have different betatron
oscillation amplitudes this tune shift leads to a tune spread for the whole beam.

In practical accelerator designs requiring strong sextupoles for chromaticity
correction it is mostly this tune shift which moves large amplitude particles onto
a resonance thus limiting the dynamic aperture. Since this tune shift is driven by
the integer and third-order resonance, it is imperative in such cases to arrange the
sextupoles such as to minimize this driving term for geometric aberration.
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Problems

17.1 (S). Derive the expression for the second-order matrix element T166 and give
a physical interpretation for this term.

17.2 (S). Show that the perturbation proportional to x20 is p
�
z
ˇ̌
x20
� Dh�� 1

2
m � �3 � 2�k

�
CC 1

2
� C0 2

i
x20 , where C D C .z/ D cos

p
kz and C0 D C0 .z/

and the second-order matrix element
T111 D

�� 1
2
m � �3 � 2�k

�
1
3k

�
kS2 C .1 � C/

	C 1
6
�
�
2 .1 � C/ � kS2

	
.

17.3 (S). Consider a large circular accelerator made of many FODO cells with
a phase advance of 90ı per cell. Locate chromaticity correcting sextupoles in
the center of each quadrupole and calculate the magnitude for one of the five
expressions (17.45)–(17.49). Now place non-interleaved sextupole in pairs 180ı
apart and calculate the same two expressions for the new sextupole distribution.

17.4 (S). Use the lattice of Problem 17.3 and determine the tunes of the ring. Are
the tunes the best choices for the super-periodicity of the ring to avoid resonance
driven sextupole aberrations? How would you go about improving the situation?

17.5. Expand the second-order transformation matrix to include path length terms
relevant for the design of an isochronous beam transport system and derive expres-
sions for the matrix elements. Which elements must be adjusted and how would you
do this? Which parameters would you observe to control your adjustment?

17.6. Sextupoles are used to compensate for chromatic aberrations at the expense
of geometric aberrations. Derive a condition for which the geometric aberration
has become as large as the original chromatic aberration. What is the average
perturbation of geometric aberrations on the betatron motion? Try to formulate a
“rule of thumb” stability criteria for the maximum sextupole strength. Is it better to
place a chromaticity correcting sextupole at a high beta location (weak sextupole)
or at a low beta location (weak aberration)?

17.7. Consider both sextupole distributions of Problem 17.3 and form a phasor
diagram of one of expressions (17.45)–(17.49) for the first four or more FODO cells.
Discuss desirable features of the phasor diagram and explain why the �I correction
scheme works well. A phasor diagram is constructed by adding vectorially each
term of an expression (17.45)–(17.49) going along a beam line.

17.8. The higher-order chromaticity of a lattice may include a strong quadratic
term. What dependence on energy would one expect in this case for the beta beat?
Why? Can your findings be generalized to higher-order terms?



References 599

References

1. K.L. Brown, R. Belbeoch, P. Bounin, Rev. Sci. Instrum. 35, 481 (1964)
2. K.L. Brown, The adjustable phase planar helical undulator, in 5th International Conference

on High Energy Accelerators, Frascati, Italy (1965)
3. K.L. Brown, Adv. Part. Phys. 1, 71 (1967)
4. K.L. Brown, D.C. Carey, C.H. Iselin, F. Rothacker, Technical Report SLAC-75, CERN 73-16,

SLAC-91, CERN-80-4, CERN,FNAL,SLAC (1972)
5. Slac linear collider, conceptual design report. Technical Report SLAC-229, SLAC, Stanford,

CA (1981)
6. Pep technical design report. Technical Report SLAC-189, LBL-4299, SLAC, Stanford, CA

(1976)
7. H. Wiedemann, Chromaticity correction in large storage rings. Technical Report PEP-Note

220, Stanford Linear Accelerator Center, Stanford, CA (1976)
8. K.L. Brown, R.V. Servranckx, in 11th International Conference on High Energy Accelerators.

Stanford linear Accelerator Center, Birkäuser, Basel (1980)
9. J.J. Murray, K.L. Brown, T. Fieguth, in 1987 IEEE Particle Accelerators Conference,

Washington. IEEE Cat. No. 87CH2387-9 (1987)
10. L. Emery, A wiggler-based ultra-low-emittance damping ring lattice and its chromatic

correction. Ph.D. thesis, Stanford University, Stanford, CA (1990)
11. B. Autin, The cern anti-proton collector. Technical Report CERN 74-2, CERN, CERN, Geneva

(1974)
12. A. Streun, Opa. Available from PSI (2010)
13. A. Wrulich, in Proceedings of Workshop on Accelerator Orbit and Partickle Tracking

Programs. Technical Report BNL-317615, BNL, Brookhaven, NY (1982)
14. F.T. Cole, Longitudinal motion in circular accelerators, in Physics of Particle Accelerators,

vol. AIP 153, ed. by M. Month, M. Dienes (The American Institute of Physics, New York,
1987), p. 44



Part VI
Acceleration



Chapter 18
Charged Particle Acceleration

Particle acceleration by rf-fields has been discussed, for example, in considerable
detail in [1, 2] where relationships between longitudinal phase oscillation and beam
stability are derived and discussed. The accelerating fields were assumed to be
available in resonant cavities, but we ignored conditions that must be met to generate
such fields and ensure positive energy transfer to the particle beam. In this chapter,
we will discuss relevant characteristics of rf-cavities and study the interaction of the
rf-generator with accelerating cavity and beam.

It is not the intention here to develop a general microwave theory but we
will restrict ourselves rather to such aspects which are of importance for particle
accelerator physics. Considerable performance limits occur in accelerators by
technical limitations in various accelerator systems as, for example, the rf-system
and it is therefore useful for the accelerator designer to have a basic knowledge of
such limits.

18.1 Rf-Waveguides and Cavities

Commonly, high frequency rf-fields are used to accelerate charged particles and
the interaction of such electromagnetic waves with charged particles has been
discussed earlier together with the derivation of synchronization conditions to obtain
continuous particle acceleration. In doing so plane rf-waves have been used ignoring
the fact that such fields do not have electrical field components in the direction of
particle and wave propagation. Although this assumption has not made the results
obtained so far obsolete, a satisfactory description of the wave-particle interaction
must include the establishment of appropriate field configurations.

Electromagnetic waves useful for particle acceleration must exhibit field compo-
nents in the direction of particle propagation which in our coordinate system is the
z-direction. The synchronization condition can be achieved in two ways. First, an
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604 18 Charged Particle Acceleration

electromagnetic wave travels along the direction of the desired particle acceleration
with a phase velocity which is equal to the velocity of the particle. In this case, a
particle starting, say, at the crest of the wave where the field strength is largest, would
be continuously accelerated at the maximum rate as it moves along with the wave.
Another way of particle acceleration occurs from electromagnetic fields created in
rf-cavities placed at particular locations along the particle path. In this case, the
phase velocity of the wave is irrelevant. For positive particle acceleration the phase
of the electromagnetic field must be adjusted such that the integrated acceleration is
positive, while the particle passes through the cavity. Obviously, if the velocity of
the particle or the length of the cavity is such that it takes several oscillation periods
for a particle to traverse the cavity no efficient acceleration is possible.

18.1.1 Wave Equation

To generate electromagnetic field components in the direction of wave propagation
we cannot use free plane waves, but must apply specific boundary conditions
by properly placing conducting metallic surfaces to modify the electromagnetic
wave into the desired form. The theory of electromagnetic waves, waveguides and
modes is well established and we repeat here only those aspects relevant to particle
acceleration. For more detailed reading consult, for example, [3, 4]. Maxwell’s
equations for our application in a charge free environment are

r.�E/ D 0; r � E D � dB
dt ;

rB D 0; c2r � B D �� dE
dt ;

(18.1)

and we look for solutions in the form of rf-fields oscillating with frequency ! and
U D U0ei!t where U D E or B. A uniform medium is assumed which need not
be a vacuum but may have a dielectric constant � and a magnetic permeability �.
Maxwell’s curl equations become then

r � ED �i!B;
c2r � B D i›�!E:

(18.2)

Eliminating the magnetic or electric field strength from both equations and using the
vector relation r � .r � a/ D r .ra/ � r2a we get the respective wave equations

r2EC k
2E D 0;

r2BC k
2B D 0; (18.3)

where

k D ��!
2

c2
: (18.4)
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In the case of a plane wave propagating along the z-axis the transverse partial
derivatives vanish @

@x D @
@y D 0; since field parameters of a plane wave do not

vary transverse to the direction of propagation. The differential equation (18.3) for

the electrical field component then becomes
�
@2

@z2
C k2

�
E D 0 and the solution is

E D E0ei .!t�kz/: (18.5)

For real values of the wave number k the solutions of (18.3) describe waves
propagating with the phase velocity

vph D z

t
D cp

��

 c: (18.6)

An imaginary component of k, on the other hand, would lead to an exponential
damping term for the fields, a situation that occurs, for example, in a conducting
surface layer where the fields decay exponentially over a distance of the skin
depth. Between conducting boundaries, the wave number is real and describes
propagating waves of arbitrary frequencies. As has been noted before, however,
such plane waves lack electrical field components in the direction of propagation.
In the following section, we will therefore derive conditions to obtain from (18.3)
waves with longitudinal field components.

18.1.2 Rectangular Waveguide Modes

Significant modification of wave patterns can be obtained from the proximity of
metallic boundaries. To demonstrate this, we evaluate the electromagnetic field of
a wave propagating along the axis of a rectangular metallic pipe or rectangular
waveguide as shown in Fig. 18.1. Since we are interested in getting a finite value
for the z-component of the electrical field we try the ansatz

Ez D  x.x/ y.y/ z.z/ (18.7)

b

a

y

z x

Fig. 18.1 Rectangular waveguide
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and look for boundary conditions that are required to obtain nonvanishing longitu-
dinal fields. Insertion into (18.3) gives

 00
x .x/

 x.x/
C  00

y .y/

 y.y/
C  00

z .z/

 z.z/
D ���!

2

c2
D �k2; (18.8)

where the r.h.s. is a constant while the functions  u.u/ are functions of the variable
u D x; y, or z. In order that this equation be true for all values of the coordinates, the

ratios  00
u .u/
 u.u/

must be constant and we may write (18.8) in the form

k2x C k2y C k2z D k2: (18.9)

Differentiating (18.7) twice with respect to z results in the differential equation
for the z-component of the electrical field

d2Ez

dz2
D �k2z Ez ; (18.10)

which can be solved readily. The wavenumber kz must be real for propagating waves
and with the definition

k2c D k2x C k2y ; (18.11)

we get with (18.9)

k2z D k2 � k2c : (18.12)

The solution (18.7) of the wave equation for the z-component of the electrical field
is then finally

Ez D E0z x.x/ y.y/ ei .!t�kzz/ : (18.13)

The nature of the parameters in this equation will determine if the wave fields are
useful for acceleration of charged particles. The phase velocity is given by

vph D !

kz
D !p

k2 � k2c
: (18.14)

An electromagnetic wave in a rectangular metallic pipe is propagating only if
the phase velocity is real or k > kc and the quantity kc is therefore called the
cutoff wave number. For frequencies with a wave number less than the cutoff
value the phase velocity becomes imaginary and the wave decays exponentially like

exp
�
�pjk2 � k2c jz

�
.
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Conducting boundaries modify electromagnetic waves in such a way that finite
longitudinal electric field components can be produced which, at least in principle,
can be used for particle acceleration. Although we have found solutions seemingly
suitable for particle acceleration, we cannot use such an electromagnetic wave
propagating in a smooth rectangular pipe to accelerate particles. Inserting (18.9)
into (18.14) the phase velocity of a traveling waveguide mode in a rectangular pipe
becomes

vph D c
p
��
p
1 � .kc=k/2

(18.15)

and is with k > kc in vacuum or air .� � � � 1/ larger than the velocity of light.
There can be no net acceleration since the wave rolls over the particles, which cannot
move faster than the speed of light. This problem occurs in a smooth pipe of any
cross section. We must therefore seek for modifications of a smooth pipe in such
a way that the phase velocity is reduced or to allow a standing wave pattern, in
which case the phase velocity does not matter anymore. The former situation occurs
for traveling wave linac structures, while the latter is specially suited for single
accelerating cavities.

For a standing wave pattern kz D 0 or k D kc and with (18.9), (18.11) the cutoff-
frequency is

!c D ckcp
��
: (18.16)

To complete the solution (18.13) for transverse dimensions, we apply boundary
conditions to the amplitude functions  x and  y. The rectangular waveguide with
a width a in the x-direction and a height b in the y-direction (Fig. 18.1) be aligned
along the z-axis. Since the tangential component of the electrical field must vanish
at conducting surfaces, the boundary conditions are

 x.x/D 0 for x D ˙ 1
2
a ;

 y.y/D 0 for y D ˙ 1
2
b :

(18.17)

The solutions must be cosine functions to meet the boundary conditions and the
complete solution (18.13) for the longitudinal electric field can be expressed by

Ez D E0 cos
m�x

a
cos

n�y

b
ei .!t�kzz/; (18.18)

where m  1 and n  1 are integers defining transverse field modes. The
trigonometric functions are eigenfunctions of the differential equation (18.10) with
boundary conditions (18.17) and the integers m and n are eigenvalues. In a similar
way we get an expression for the z-component of the magnetic field strength Bz.
The boundary conditions require that the tangential magnetic field component at a
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conducting surface is the same inside and outside the conductor which is equivalent
to the requirement that

@Bz

@x

ˇ̌̌̌
xD˙ 1

2 a

D 0 and
@Bz

@y

ˇ̌̌̌
yD˙ 1

2 b

D 0 : (18.19)

These boundary conditions can be met by sine functions and the z-component of
the magnetic field strength is therefore in analogy to (18.18) given by

Bz D B0 sin
m�x

a
sin

n�y

b
ei .!t�kzz/ : (18.20)

The cutoff frequency is the same for both the electrical and magnetic field
component and is closely related to the dimension of the wave guide. With the
definition (18.11) the cutoff frequency can be determined from

k2c D Ck2x C k2y D
�m�

a

�2C �n�

b

�2
: (18.21)

All information necessary to complete the determination of field components
have been collected. Using (18.3), (18.18) the component equations are with @

@z D�ikz

�i!Bx D @Ez
@y C ikzEy ; i��!

c Ex D c @Bz
@y C ikzcBy ;

�i!By D �ikzEx � @Ez
@x ; i��!

c Ey D �ikzcBx � c @Bz
@x ;

�i!Bz D @Ey

@x � @Ex
@y ; i��!

c Ez D c @By

@x � c @Bx
@y :

(18.22)

From the first four equations we may extract expressions for the transverse field
components Ex;Ey;Bx;By as functions of the known z-components

Ex D �i 1
k2c

�
kz
@Ez
@x C!

c c @Bz
@y

�
;

Ey D i 1
k2c

�
�kz

@Ez
@y C!

c c @Bz
@x

�
;

cBx D i 1
k2c

�
kzc

@Bz
@x C��!

c
@Ez
@y

�
;

cBy D �i 1
k2c

�
kzc

@Bz
@y C��!

c
@Ez
@x

�
;

(18.23)

where

k2z D k2 �
�m�

a

�2 � �n�

b

�2
(18.24)

and k2 D ��!2=c2:
By application of proper boundary conditions at the conducting surfaces of a

rectangular waveguide we have derived expressions for the z-component of the
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electromagnetic fields and are able to formulate the remaining field components
in terms of the z-component. Two fundamentally different field configurations can
be distinguished depending on whether we choose Ez or Bz to vanish. All field
configurations, for which Ez D 0, form the class of transverse electrical modes or
short TE-modes. Similarly, all fields for which Bz D 0 form the class of transverse
magnetic modes or short TM-modes. Each class of modes consists of all modes
obtained by varying the indices m and n. The particular choice of these mode
integers is commonly included in the mode nomenclature and we speak therefore
of TMmn or TEmn-modes. For the remainder of this chapter we will concentrate
only on the transverse magnetic or TM-modes, since TE-modes are useless for
particle acceleration. The lowest order TM-mode is the TM11-mode producing the
z-component of the electrical field, which is maximum along the z-axis of the
rectangular waveguide and falls off from there like a cosine function to reach zero
at the metallic surfaces. Such a mode would be useful for particle acceleration if
it were not for the phase velocity being larger than the speed of light. In the next
subsection we will see how this mode may be used anyway. The next higher mode,
the TM21-mode would have a similar distribution in the vertical plane but exhibits a
node along the x-axis.

Before we continue the discussion on field configurations we note that electro-
magnetic waves with frequencies above cutoff frequency .k > kc/ propagate along
the axis of the rectangular waveguide. A waveguide wavelength can be defined by

�z D 2�p
k2 � k2c

> � ; (18.25)

which is always longer than the free space wavelength � D 2�=k and

1

�2
D 1

�2z
C 1

�2c
; (18.26)

where �c D 2�=kc.
The frequency of this traveling electromagnetic wave is from (18.25) with (18.9),

(18.16)

! D !c

s
1C k2z

k2c
: (18.27)

Electromagnetic energy travels along the waveguide with a velocity known as the
group velocity defined by

vg D d!

dkz
D cp

��

s
1 � k2c

k2
<

cp
��

< c: (18.28)
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In contrast to the phase velocity, the group velocity is always less than the speed
of light as it should be. Rectangular waveguides are mostly used to transport high
frequency microwaves from the generator to the accelerating cavity. The bandwidth
of waveguides is rather broad and the mechanical tolerances relaxed. Small variation
in dimension due to pressurization or evacuation to eliminate field breakdown do
generally not matter.

18.1.3 Cylindrical Waveguide Modes

For accelerating cavities we try to reach the highest fields possible at a well defined
wavelength. Furthermore, accelerating cavities must be operated under vacuum.
These requirements result in very tight mechanical tolerances which can be met
much easier in round rf-cavities. Analogous to the rectangular case we derive
therefore field configurations in cylindrical cavities (Fig. 18.2). The derivation of
the field configuration is similar to that for rectangular waveguides although now
the wave equation (18.3) is expressed in cylindrical coordinates .r; '; z/ and we get
for the z-component of the electrical field

@2Ez

@r2
C 1

r

@Ez

@r
C 1

r2
@2Ez

@'2
C @2Ez

@z2
C k2Ez D 0: (18.29)

with

k2 D ��!
2

c2
: (18.30)

In a stationary configuration the field is expected to be periodic in ' while the
z-dependence is the same as for rectangular waveguides. Using the derivatives @

@'
D

Fig. 18.2 Cylindrical
resonant cavity (pill box
cavity)

a1

j

d
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�im, where m is an integer eigenvalue, and @
@z D �ikz, we get from (18.29) for the

z-component of the electric field

@2Ez

@r2
C 1

r

@Ez

@r
C
�

k2c �
m2

r2

�
Ez D 0; (18.31)

where k2c D k2�k2z consistent with its previous definition. This differential equation
can be solved with Bessel’s functions in the form [5]

Ez D E0Jm.kcr/ei.!t�m'�kzz/; (18.32)

which must meet the boundary condition Ez D 0 for r D a; where a is the radius of
the cylindrical waveguide. The location of the cylindrical boundaries are determined
by the roots of Bessel’s functions of order m. For the lowest order m D 0 the first
root a1 is (see Fig. 18.3)

kca1 D 2:405 or at a radius a1 D 2:405

kc
: (18.33)

Fig. 18.3 Electromagnetic
field pattern for a
TM010-mode in a circular
waveguide. Three
dimensional field
configuration (a) and radial
dependence of fields (b) beam
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To define a cylindrical cavity two counter propagating waves are created by adding
end caps at z D ˙ 1

2
d and with ikz D �p

d and (18.12)

k2c D ��
!2

c2
� �

2p2

d2
: (18.34)

Solving for the resonance frequency ! of the lowest order or the TM010-mode, we
get with (18.33), m D 0 and p D 0

!010 D cp
��

2:405

a1
(18.35)

and the z-component of the electrical field is

Ez D Ez;010J0

�
2:405

r

a1

�
ei!010t: (18.36)

The waveguide wavenumber

k2z D k2 � k2c (18.37)

must be positive in order to obtain a travelling wave rather than a wave decaying
exponentially along the waveguide

�
k2z < 0

�
. Solving for kz we get with !c D ckc

k2z D k2
�
1 � !

2
c

!2

�
: (18.38)

The cutoff frequency is determined by the diameter of the waveguide and limits
the propagation of electromagnetic waves in circular waveguides to wavelengths
which are less than the diameter of the pipe. To determine the phase velocity of the
wave we set  D !t � kzz D const and get from the derivative P D ! � kzPz D 0

the phase velocity

vph D Pz D !

kz
: (18.39)

Inserting (18.38) into (18.39) we get again a phase velocity which exceeds the
velocity of light and therefore any velocity a material particle can reach. We were
able to modify plane electromagnetic waves in such a way as to produce the
desired longitudinal electric field component but note that these fields are not yet
suitable for particle acceleration because the phase rolls over the particles and the
net acceleration is zero. To make such electromagnetic waves useful for particle
acceleration further modifications of the waveguide are necessary to slow down the
phase velocity.

To complete our discussion we determine also the group velocity which
is the velocity of electromagnetic energy transport along the waveguide. The
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group velocity vg is defined by

vg D d!

dkz
: (18.40)

Differentiating (18.38) with respect to kz we get

kz D !

c2
d!

dkz
(18.41)

or with (18.39) the group velocity

vg D d!

dkz
D c2kz

!
D c

c

vph
< c; (18.42)

since vph > c.

TM-Mode Field Components in Cylindrical Waveguides

Similar to the case of rectangular waveguides we can derive all field components.
Since we know Ez and Bz we may use (18.2), expressed in cylindrical coordinates,
to determine all other field components. Furthermore, we note from (18.32) that
@
@'
D �im and @

@z D �ikz:Maxwell’s equations (18.2) in cylindrical coordinates are
in component form

i m
r Ez � ikzE' D i!Br; i m

r cBz � ikzcB' D i��!
c Er;

ikzEr C @Ez
@r D Ci!B'; �ikzcBr � c @Bz

@r D �i��!
c E';

1
r E' C @E'

@r C i m
r Er D �i!Bz;

1
r cB' C c @B'

@r C i m
r cBr D �i��!

c Ez;

(18.43)

These equations can be used to define individual field components. For example,
from the first equation (left) and the second equation (right) we may eliminate Br

and solve for E' in terms of Ez and Bz:We are mostly interested in TM-mode fields
where Bz: Conversely, for TE-modes Ez D 0: The field components applicable to
both modes are given by (18.44). For the TM-modes B0 D 0 and for TE-modes
E0 D 0:
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�
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cBz D B0Jm.kcr/ ei.!t�m'�kzz/:

(18.44)
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18.2 Rf-Cavities

18.2.1 Square Cavities

The waveguide modes are not yet ready to be used for particle acceleration because
of excessive phase velocities. This problem can be solved by considering two waves
travelling in opposite directions on the same axis of the waveguide. Both fields have
the form of (18.18) and the superposition of both waves gives

Ez D 2E0 cos
m�x

a
cos

n�y

b
cos

p�z

d
ei!t; (18.45)

where d is defined by

d D �p

kz
(18.46)

and p is an integer.
The superposition of two equal but opposite waves form a standing wave with

nodes half a waveguide length apart. Closing off the waveguide at such nodes points
with a metallic surface fulfills automatically all boundary conditions. The resulting
rectangular box forms a resonant cavity enclosing a standing electro-magnetic wave
which can be used for particle acceleration.In analogy to the waveguide mode
terminology we extend the nomenclature to cavities by adding a third index for
the eigenvalue p: The lowest cavity mode is the TM110-mode. The indices m and n
cannot be zero because of the boundary conditions for Ez: For p D 0 we find Ez

to be constant along the axis of the cavity varying only with x and y:The boundary
conditions are met automatically at the end caps since with p D 0 also k D 0 and the
transverse field components vanish everywhere. The electrical field configuration
for the TM110-mode consists therefore of a finite Ez-component being constant
only along z and falling off transversely from a maximum value to zero at the
walls. In practical applications rectangular boxes are rarely used as accelerating
cavities. There are, however, special applications like beam position monitors where
rectangular cavities are preferred.

18.2.2 Cylindrical Cavity

Similarly, we may form a cylindrical cavity by two counter propagating waves. By
adding endcaps at z D ˙ 1

2
d standing waves are established and with kz D p�

d we
get from (18.37)

k2c D ��
!2

c2
� p2�2

d2
: (18.47)
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Solving for the resonance frequency ! of the lowest order or the TM010-mode, we
get with (18.33), m D 0 and p D 0

!010 D cp
��

2:405

a1
(18.48)

and the z-component of the electrical field is

Ez D 2Ez;010J0

�
2:405

r

a1

�
cos .!010t/ : (18.49)

The resonance frequency is inversely proportional to the radius of the cavity and to
keep the size of accelerating cavities manageable, short wave radio frequencies are
chosen. For electron linear accelerators a wavelength of � D 10 cm is often used
corresponding to a frequency of 2997.93 MHz and a cavity radius of a1 D 3:83 cm.
For storage rings a common frequency is 499.65 MHz or � D 60 cm and the
radius of the resonance cavity is a1 D 22:97 cm. The size of the cavities is in both
cases quite reasonable. For much lower rf-frequencies the size of a resonant cavity
becomes large. Where such low frequencies are desired the diameter of a cavity
can be reduced at the expense of efficiency by loading it with magnetic material
like ferrite with a permeability � > 1 as indicated by (18.48). This technique also
allows the change of the resonant frequency during acceleration to synchronize
with low energy protons, for example, which have not yet reached relativistic
energies. To keep the rf-frequency synchronized with the revolution frequency, the
permeability of the magnetic material in the cavity can be changed by an external
electrical current. The drawback of using materials like ferrites is that they are lossy
in electromagnetic fields, get hot and produce significant outgassing in vacuum
environments.

The nomenclature for different modes is similar to that for rectangular waveg-
uides and cavities. The eigenvalues are equal to the number of field maxima in '; r
and z and are indicated as indices in this order. The TM010-mode, therefore exhibits
only a radial variation of field strength independent of ' and z. Again, we distinguish
TM-modes and TE-modes but continue to consider only TM-modes for particle
acceleration. Electrical fields in such a cavity have all the necessary properties for
particle acceleration. Small openings along the z-axis allow the beam to pass through
the cavity and gain energy from the accelerating field. Cylindrical cavities can be
excited in many different modes with different frequencies. For particle acceleration
the dimensions of the cavity are chosen such that at least one resonant frequency
satisfies the synchronicity condition of the circular accelerator. In general this is the
frequency of the TM010-mode which is also called the fundamental cavity mode or
frequency.

From the expressions (18.44) we find that the lowest order TM-mode does not
include transverse electrical field components since kz D 0 and m D 0: The only
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transverse field is the azimuthal magnetic field which is with (18.49)

cp
��

B' D �i Ez;010J1

�
2:405

r

a1

�
ei!010t : (18.50)

18.2.3 Energy Gain

The kinetic energy gained in such a cavity can be obtained by integrating the time
dependent field along the particle path. The cavity center be located at z D 0 and a
particle entering the cavity at time !010t D ��=2 or at z D �d=2 may encounter
the phase ı of the microwave field. The electric field along the z-axis as seen by the
particle travelling with velocity v has the form Ez D Ez0 sin

�
! z
v
C ı� and we get

for the kinetic energy gain of a particle passing through the cavity with velocity v

Ekin D eEz0

Z 1
2 d

� 1
2 d

cos
�
!

z

v
C ı

�
dz : (18.51)

In general, the change in the particle velocity is small during passage of one
rf-cavity and the integral is a maximum for ı D �=2 when the field reaches a
maximum at the moment the particle is half way through the cavity. Defining an
accelerating cavity voltage

Vrf D Ez0d D E010d (18.52)

the kinetic energy gain is after integration

Ekin D eVrf
sin !d

2v
!d
2v

D eVcy ; (18.53)

where we have defined an effective cavity voltage and the transit-time factor is

T D sin !d
2v

!d
2v

: (18.54)

The transit-time factor provides the correction on the particle acceleration due to
the time variation of the field while the particles traverse the cavity. In a resonant pill
box cavity (Fig. 18.4a) we have d D �=2 and the transit-time factor for a particle
traveling approximately at the speed of light is

Tpillbox D 2

�
< 1 : (18.55)
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Fig. 18.4 Resonant cavities with drift tubes (schematic). (a) Pill box cavity. (b) Cavity with nose
cones. (c) Cavity with drift tubes

As the cavity length or the active accelerating gap in the cavity is reduced, the
transient time factor can be increased. The simple pill box cavity may be modified
by adding nose cones (Fig. 18.4b) or by adding drift tubes at the entrance and exit
of the cavity as shown in Fig. 18.4c. In this case the parameter d in (18.54) is the
active accelerating gap.

For small velocities .v � c/ the transit time factor and thereby the energy gain
is small or maybe even negative. Maximum energy gain is obtained for particles
travelling at or close to the speed of light. Externally driven accelerating cavity

18.2.4 Rf-Cavity as an Oscillator

Accelerator cavities can be described as damped oscillators with external excitation.
Damping occurs due to energy losses in the walls of the cavity and transfer of energy
to the particle beam while an external rf-power source is connected to the cavity
to sustain the rf-fields. Many features of an accelerating cavity can be expressed
in well-known terms of a damped, externally excited harmonic oscillator which is
described in the form

RxC 2˛PxC !20x D Dei!t; (18.56)

where ˛ is the damping decrement, !0 the unperturbed oscillator frequency and
D the amplitude of the external driving force with frequency !. The equilibrium
solution can be expressed in the form x D Aei!t, where the complex amplitude A is
determined after insertion of this ansatz into (18.56)

A D D

!20 � !2 C i2˛!
D aei� (18.57)
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Fig. 18.5 Resonance curve
for a damped oscillator

356 357 358 359 360

fw hm=

frequency (MHz)

The angle � is the phase shift between the external excitation and the oscillator
and the amplitude a DRe.A/ is from (18.57)

a D Dq�
!20 � !2

�2 C 4˛2!2 ; (18.58)

Plotting the oscillation amplitude a as a function of the excitation frequency !;
we get the resonance curve for the oscillator as shown in Fig. 18.5. The resonance
frequency at which the oscillator reaches the maximum amplitude depends on the
damping and is

!r D
q
!20 � 2˛2: (18.59)

For an undamped oscillator the resonance amplitude becomes infinite but is finite
whenever there is damping. The oscillator can be excited within a finite distance
from the resonance frequency and the width of the resonance curve at half maximum
amplitude is

!1
2
� ˙2p3˛ for ˛ � !r : (18.60)

If there were no external excitation to sustain the oscillation, the amplitude would
decay like a /e�˛t: The energy of the oscillator scales like W / A2 and the energy
loss per unit time P D �dW=dt D 2˛W ;which can be used to determine the quality
factor of this oscillator as defined in (18.80)

Q D !r

2˛
: (18.61)



18.2 Rf-Cavities 619

The quality factor is reduced as damping increases. For the case of an accel-
erating cavity, we expect therefore a higher Q-value called the unloaded Q0 when
there is no beam, and a reduced quality factor called loaded Q when there is a beam
extracting energy from the cavity. The time constant for the decay of oscillation
amplitudes or the cavity damping time is

td D 1

˛
D 2Q

!r
(18.62)

and the field amplitude decays to 1/e during Q=� oscillations.
Coming back to the equation of motion (18.56) for this oscillator, we have the

solution

x.t/ D a ei.!tC�/ (18.63)

noting that the oscillator assumes the same frequency as the external excitation but
is out of synchronism by the phase � . The magnitude and sign of this phase shift
depends on the excitation frequency and can be derived from (18.57) in the form

!2r � !2 C i2˛! D D

a
e�i� D D

a
.cos� � i sin�/ :

Both the real and imaginary parts must separately be equal and we get for the
phase shift between excitation and oscillator

cot� D !2 � !2r
2˛!

� 2Q
! � !r

!r
; (18.64)

where we have made use of (18.61) and the approximation! � !r. For excitation at
the resonance frequency we find the oscillator to lag behind the driving force by 1

2
�

and is almost in phase or totally out of phase for very low or very high frequencies,
respectively. In rf-jargon this phase shift is called the tuning angle.

18.2.5 Cavity Losses and Shunt Impedance

Radio frequency fields can be enclosed within conducting surfaces only because
electrical surface currents are induced by these fields which provide the shielding
effect. For a perfect conductor with infinite surface conductivity these currents
would be lossless and the excitation of such a cavity would persist indefinitely. This
situation is achieved to a considerable degree, albeit not perfect, in superconducting
cavities. In warm cavities constructed of copper or aluminum the finite resistance
of the material causes surface currents to produce heating losses leading to a
depletion of field energy. To sustain a steady field in the cavity, radio frequency
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power must be supplied continuously. The surface currents in the conducting cavity
boundaries can be derived from Maxwell’s curl equation or Ampere’s law (18.2). In
cylindrical coordinates this vector equation becomes for the lowest order TM-mode
in component form

�@B'
@z
D �0�jr ;

0D j' ; (18.65)

@rB'
r @r
D B'

r
C @B'

@r
D �0�jz C i

��

c2
!Ez :

Because we do not consider perfectly but only well conducting boundaries,
we expect fields and surface currents to penetrate somewhat into the conducting
material. The depth of penetration of fields and surface currents into the conductor
is well-known as the skin depth [3]

ıs D
s

2

�0�w! �w
; (18.66)

where �w is the conductivity of the cavity wall and �w the permeability of the wall
material. The azimuthal magnetic field component induces surface currents in the
cylindrical walls as well as in the end caps. In both cases the magnetic field decays
within a skin depth from the surface inside the conductor. The first Eq. (18.65)
applies to the end caps and the integral through the skin depth isZ SCıs

S

@B'.r/

@z
dz � B'.r/jSCıs

S � �B'.r; S/ ; (18.67)

since B'.r; SCıs/ � 0 just under the surface S of the wall. We integrate also the third
Eq. (18.65) at the cylindrical walls and get for the first term

R
B'=r dr � B'ıs=a1,

which is negligible small, while the second term has a form similar to (18.67). The
electrical term Ez vanishes because of the boundary condition and the surface current
densities for the cylindrical wall and end caps, respectively, are therefore related to
the magnetic fields by

�0�jzıs D B'.a1; z/ ;
�0�jrıs D B'.r;˙ 1

2
d/ :

(18.68)

The cavity losses per unit wall surface area are given by

dPcy

dS
D Qrsj

2
s ; (18.69)
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where js is the surface current density and Qrs is the surface resistance given by

Qrs D
r
�0�w!

2 �w
: (18.70)

With js D jr;z ıs, (18.50), (18.66) and the integration of (18.69) is performed over
all inside surfaces of the cavity to give

Pcy D 1
4
�0!ıs�

�w

�
E2010

Z
S

J21

�
2:405

r

a1

�
dS ; (18.71)

where � and � is the dielectric constant and permeability of the material inside
the cavity, respectively and �w the wall permeability. Evaluating the integral over
all surfaces, we get for the cylindrical wall the integral value 2�a1dJ21.2:405/. For
each of the two end caps the integral 2�

R a1
0

J21.2:405
r

a1
/ r dr must be evaluated and

is from integration tables [6]
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Z a1
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J21

�
2:405

r

a1

�
rdr D �a21J

2
1.2:405/ : (18.72)

The total cavity wall losses become finally with Vrf D E010d from (18.52)

Pcy D 1
2
��0!ıs�

�w

�
V2

rf J21.2:405/
a1.a1 C d/

d2
: (18.73)

It is convenient to separate fixed cavity parameters from adjustable parameters.
Once the cavity is constructed, the only adjustable parameter is the strength of the
electrical field E010 or the effective cavity voltage Vcy. Expressing the cavity losses
in terms of an impedance, we get from (18.73) and (18.53)

Pcy D
V2

cy

2Rs
; (18.74)

where the cavity shunt impedance including transient time factor is defined by1

Rs D 1

��0

1

!ıs�

�

�w

d2

a1.a1 C d/

1

J21.2:405/

 
sin !d

2v
!d
2v

!2
: (18.75)

The factor of 2 in (18.74) results from the fact that on average the rf-voltage

is
D
V2

cy D OV2
cy sin2 !t

E
D 1

2
OV2

cy. In accelerator design, we prefer sometimes to use

1The shunt impedance is defined in the literature sometimes by Pcy D V2
cy=Rs in which case the

numerical value of the shunt impedance is larger by a factor of two.
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the shunt impedance per unit length or the specific shunt impedance. The required
length depends on the accelerating voltage needed and the rf-power available. With
the cavity shunt impedance per unit length

rs D Rs

d
(18.76)

the cavity losses are instead of (18.74)

Pcy D
OV2

cy

2rsLcy
; (18.77)

where Lcy is the total length of all cavities producing the voltage OVcy. Since the
cavity shunt impedance scales like Rs / 1=p! and the length for a resonant cavity
like d / 1=!; the specific shunt impedance is proportional to the square root of the
rf-frequency rs / p! favoring high frequencies. A practical limit is reached when
the cavity apertures become too small for the particle beam to pass through or when
the size of the cavities prevents an efficient cooling of wall losses.

As an example, we calculate from (18.75) the shunt impedance for a pill box
cavity designed for a resonance frequency of 358MHz. The wavelength is � D
85 cm, the cavity length d D 42:5 cm and the cavity radius a1 D 32:535 cm. This
cavity was constructed with nose cones for the storage ring PEP [7] from aluminum.
With a skin depth of ıs D 4:44 �m the specific shunt impedance becomes rs D 15.2
M�/m while the measured value for this cavity is 18.0 M�/m.

The difference is due to two competing effects. The open aperture along the axis
for the beam has the tendency to reduce the shunt impedance while the nose cones
being a part of the actual cavity increase the transient time factor and thereby the
effective shunt impedance (18.75). The simple example of a pill box cavity produces
rather accurate results, however, for more precise estimates computer programs
have been developed to calculate the mode frequencies and shunt impedances for
all modes in arbitrary rotational symmetric cavities (for example, SUPERFISH [8]
or URMEL [9]). More sophisticated three-dimensional programs are available (for
example, MAFIA [9]) to simulate rf-properties of arbitrary forms of cavities.

The specific shunt impedance for a pill box cavity can be expressed in a simple
form as a function of the rf-frequency only and is for realistic cavities approximately

rs.M˝=m/ � 1:28pfrf .MHz/ for copper and
rs.M˝=m/ � 1:06pfrf .MHz/ for aluminum :

(18.78)

The shunt impedance should be maximum in order to minimize cavity losses for
a given acceleration. Since the interior of the cavity must be evacuated � D � D 1

and �w D 1 because we do not consider magnetic materials to construct a cavity.
The only adjustable design parameters left are the skin depth and the transient time
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factor. The skin depth can be minimized by using well conducting materials like
copper or aluminum.

To derive the quality factor of the cavity the energy W stored in the electro-
magnetic field within the cavity must be calculated. The field energy is the volume
integral of the square of the electrical or magnetic field and we have in case of a
TM010-mode with W D 1

2
�0 �

R
V E2z dV and (18.49) for the stored cavity energy

W D 1
2
�0�E

2
010da21J

2
1.2:405/ : (18.79)

The quality factor Q of a resonator is defined as the ratio of the stored energy to the
energy loss per radian

Q D 2� stored energy

energy loss/cycle
D ! W

Pcy
; (18.80)

or with (18.73), (18.79)

Q D d

ıs

�w

�

a1
a1 C d

: (18.81)

The quality factor determines the cavity time constant since the fields decay
exponentially like e�t=�cy due to wall losses, where �cy is the cavity time constant
and the decay rate of the stored energy in the cavity is

dW

dt
D � 2

�cy
W : (18.82)

The change in the stored energy is equal to the cavity losses Pcy and the cavity time
constant is with (18.80)

�cy D 2W

Pcy
D 2Q

!
; (18.83)

which is equal to (18.62) and also called the cavity filling time because it describes
the build up time of fields in a cavity following a sudden application of rf-power.

18.3 Rf-Parameters

A variety of rf-parameters has to be chosen for a circular accelerator. Some
parameters relate directly to beam stability criteria and are therefore easy to
determine. Other parameters have less of an impact on beam stability and are
often determined by nonphysical criteria like availability and economics. Before
rf-parameters can be determined a few accelerator and lattice parameters must be
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known. Specifically, we need to know the desired minimum and maximum beam
energy, the beam current, the circumference of the ring, the momentum compaction
factor, and the bending radius of the magnets. Further, we make a choice of the
maximum desired rate of particle acceleration per turn or determine the energy
loss per turn to synchrotron radiation which needs to be compensated. During the
following discussion we assume that these parameters are known.

One of the most prominent parameters for rf-accelerating systems is the rf-
frequency of the electromagnetic fields. For highly relativistic beams there is no
fundamental reason for a particular choice of the rf-frequency and it can therefore
be selected on technical and economic grounds. The rf-frequency must, however,
be an integer multiple, the harmonic number, of the particle revolution frequency.
The harmonic number can be any integer from a beam stability point of view. In
specific cases, the harmonic number need to be a multiple of a smaller number.
Considering, for example, a colliding beam facility with NIP collision points an
optimum harmonic number is divisible by NIP=2. In this case NIP=2 bunches
could be filled in each of the two counter rotating beams leading to a maximum
collision rate. Other such considerations may require the harmonic number to
contain additional factors. In general, most flexibility is obtained if the harmonic
number is divisible by small prime numbers.

Within these considerations the harmonic number can be chosen from a large
range of rf-frequencies without generally affecting beam stability. Given complete
freedom of choice, however, a low frequency is preferable to a high frequency.
For low rf-frequencies the bunch length is longer and electromagnetic interaction
with the beam environment is reduced since high frequency modes are not excited
significantly. A longer bunch length also reduces the particle density in the bunch
and thereby potentially troublesome intra-beam scattering [10, 11]. In proton and
heavy ion beams a longer bunch length leads to a reduced space charge tune
shift and therefore allows to accelerate a higher beam intensity. For these reasons
lower frequency systems are used mostly in low energy circular accelerators. The
downside of low rf-frequencies is the fact that the accelerating cavities become very
large or less efficient and rf-sources are limited in power capability.

The size of circular accelerators imposes a lower limit on the rf-frequency
since the synchronicity condition requires that the rf-frequency be at least equal
to the revolution frequency in which case the harmonic number is equal to unity.
A higher harmonic number to accommodate more than a single particle bunch
further increases the required rf-frequency. Most electron and very high energy
proton accelerators operate at rf-frequencies of a few hundred MHz, while lower
frequencies are preferred for ion or medium energy proton accelerators.

For some applications it is critical to obtain short particle bunches which is
much easier to achieve with a high rf-frequency. The appropriate choice of the rf-
frequency therefore dependents much on the desired parameters for the particular
application and is mostly chosen as a compromise between competing requirements
including economic considerations like cost and availability.
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18.3.1 Synchronous Phase and Rf-voltage

The most common use of an rf-system is for acceleration while particles pass
through a resonant cavity at the moment when the voltage reaches the crest of the
rf-wave and particles gain a kinetic energy equivalent to the full cavity voltage.
This is the general accelerating mode in linear accelerators. In circular accelerators,
however, the principle of phase focusing requires that particles be accelerated off
the crest at a synchronous phase  s, where the effective accelerating voltage is
Va D OVcy sin s. The peak rf-voltage OVcy and the synchronous phase are determined
by the desired energy acceptance and acceleration per turn.

The energy acceptance of a circular accelerator has been derived in Chap. 9,
is proportional to the square root of the cavity voltage and must be adjusted for
the larger of several energy acceptance requirements. To successfully inject a beam
into a circular accelerator the voltage must be sufficiently large to accept the finite
energy spread in the injected beam. In addition, any phase spread or timing error of
the incoming beam translates into energy errors due to synchrotron oscillations. For
acceleration of a high intensity beam an additional allowance to the rf-voltage must
be made to compensate beam loading, which will be discussed later in more detail.

After injection into a circular accelerator an electron beam may change con-
siderably its energy spread due to quantum excitation as a result of emitting
synchrotron radiation. This energy spread has a Gaussian distribution and to assure
long beam lifetime the energy acceptance must be large enough to contain at
least seven standard deviations. In proton and heavy ion accelerators some phase
space manipulation may be required during the injection process which contributes
another lower limit for the required rf-voltage. In general, there are a number of
requirements that determine the ultimate energy acceptance of an accelerator and
the most stringent requirement may very well be different for different accelerator
designs and applications. Generally, circular accelerators are designed for an energy
acceptance of a few percent.

18.4 Linear Accelerator

The phase velocity vph must be equal to the particle velocity vp for efficient
acceleration and we need therefore to modify or “load” the wave guide structure to
reduce the phase velocity to become equal to the particle velocity. This can be done
by inserting metallic structures into the aperture of the circular wave guide. Many
different ways are possible, but we will consider only the disk loaded waveguide
which is the most common accelerating structure for electron linear accelerators.

In a disk loaded waveguide metallic plates are inserted normal to the waveguide
axis at periodic intervals with iris apertures to allow for the passage of the particle
beam as shown in Fig. 18.6.
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Fig. 18.6 Disk loaded accelerating structure for an electron linear accelerator (schematic)

The boundary conditions and therefore the electromagnetic fields in such a
structure are significantly more complicated than those in a simple circular tube.
It would exceed the goal of this text to derive the theory of disk loaded waveguides
and the interested reader is referred to the review article by Slater [12].

Insertion of disks in periodic intervals into a uniform waveguide essentially
creates a sequence of cavities with electromagnetic coupling through either the
central hole, holes at some radius on the disks or external coupling cavities. The
whole arrangement of cells acts like a band pass filter allowing electromagnetic
fields of certain frequencies to propagate. By proper choice of the geometric
dimensions the pass band can be adjusted to the desired frequency and the phase
velocity can be designed to be equal to the velocity of the particles. For electron
linear accelerators the phase velocity is commonly adjusted to the velocity of light
since electrons quickly reach such a velocity.

18.4.1 Basic Waveguide Parameters

Without going into structure design and detailed determination of geometric
parameters we can derive parameters relating to the acceleration capability of such
structures. Conservation of energy requires that

@W

@t
C @P

@z
C Pw C nevEz D 0; (18.84)

where W is the stored energy per unit length, P the energy flux along z, Pw wall
losses per unit length and nev Ez the energy transferred to n particles with charge e
each moving with the velocity v in the electric field Ez. The wall losses are related
to the quality factor Q of the structure defined by

Q D !W

Pw
; (18.85)
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where Pw=! are wall losses per unit length and per radian of field oscillation. The
energy flux P is with the group velocity vg

P D vgW: (18.86)

In case of equilibrium, the stored energy in the accelerating structure does not
change with time, @W=@t D 0, and

@P

@z
D �Pw � ibEz D � !P

vgQ
� ibEz ; (18.87)

where ib D nev is the beam current. Considering the case of small beam loading
ib Ez � !P=.vgQ/ we may integrate (18.87) to get

P D P0 exp

�
� !

vgQ
z

�
D P0 e�2˛z ; (18.88)

where we have defined the attenuation coefficient

2˛ D !

vgQ
: (18.89)

Equation (18.88) shows an exponential decay of the energy flux along the
accelerating structure with the attenuation coefficient 2˛. The wall losses are often
expressed in terms of the total voltage or the electrical field defined by

Pw D
OV2
0

ZsL
D OE

2

rs
; (18.90)

where Zs D rsL is the shunt impedance for the whole section, OE the maximum
value of the accelerating field, Ez D OE cos s;  s the synchronous phase at which
the particle interacts with the wave, rs the shunt impedance per unit length, and L
the length of the cavity. From (18.90) we get with (18.87) and (18.89) for negligible
beam current the accelerating field

OE2 D !

vg

rs

Q
P D 2˛rsP: (18.91)

The total accelerating voltage along a structure of length L is

V0 D
Z L

0

Ezdz D OE cos s

Z L

0

e�˛z dz (18.92)
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or after integration

V0 D 1 � e�˛L

˛
OE cos s : (18.93)

Defining an attenuation factor � by

� D ˛L (18.94)

we get with (18.91) for the total accelerating voltage per section of length L

V0 D
p

rsLP0
p
2�
1 � e��

�
cos s : (18.95)

The maximum energy is obtained if the particles are accelerated at the crest of
the wave, where  s D 0.

Tacitly it has been assumed that the shunt impedance rs is constant resulting
in a variation of the electrical field strength along the accelerating section. Such a
structure is called a constant impedance structure and is characterized physically by
equal geometric dimensions for all cells.

In a constant impedance structure the electric field is maximum at the beginning
of the section and drops off toward the end of the section. A more efficient use
of accelerating sections would keep the electric field at the maximum possible
value just below field break down throughout the whole section. A structure with
such characteristics is called a constant gradient structure because the field is now
constant along the structure.

As an example for an electron linear accelerator, the SLAC constant gradient
linac structure has the following parameters [13]

frf D 2856 MHz L D 10 ft D 3:048m
rs D 53 M˝/m ai D 0:040 m
Q � 12000 � D 0:57

(18.96)

A constant gradient structure can be realized by varying the iris holes in the disks
to smaller and smaller apertures along the section. This kind of structure is actually
used in the SLAC accelerator as well as in most modern linear electron accelerators.
The field OE D const and therefore from (18.88) with (18.94)

@P

@z
D P.L/� P0

L
D �.1 � e�2� /

P0

L
(18.97)

On the other hand, we have from (18.87)

@P

@z
D �!P0

Qvg
D const (18.98)



18.4 Linear Accelerator 629

and to make @P=@z constant the group velocity must vary linearly with the local
rf-power like

vg 	 P.z/ D P0 C @P

@z
z : (18.99)

Furthermore, since @P=@z < 0 the group velocity is made to decrease along the
section by reducing gradually the iris radii. From (18.98)

vg.z/ D �!
Q

P.z/

@P=@z
(18.100)

or with (18.97)

vg.z/ D �!
Q

P0 C @P
@z z

@P=@z
D C!

Q

L � .1 � e�2� / z

1 � e�2� (18.101)

and the filling time is after integration of (18.101)

tF D
Z L

0

dz

vg
D 2�Q

!
: (18.102)

The electric field in the accelerating section is from (18.90) with (18.87)

OE D
s

rs

ˇ̌̌̌
@P

@z

ˇ̌̌̌
(18.103)

and the total accelerating voltage V0 or gain in kinetic energy per section is

Ekin D eV0 D e
Z L

0
Ezdz D e

p
rsLP0

p
1 � e�2� cos s ; (18.104)

where s is the synchronous phase at which the particles travel with the electromag-
netic wave. The energy gain scales with the square root of the accelerating section
length and rf-power delivered.

As a numerical example, we find for the SLAC structure from (18.104) the gain
of kinetic energy per 10 ft section as

Ekin .MeV/ D 10:48pP0 .MW/ ; (18.105)

where P0 is the rf-power delivered to the section. The energy gain (18.105) is
the maximum value possible ignoring beam loading or energy extraction from the
fields by the beam. The total accelerating voltage is reduced when we include beam
loading due to a pulse current ib. Referring the interested reader to reference [13]



630 18 Charged Particle Acceleration

we only quote the result for the energy gain in a linear accelerator with constant
gradient sections including beam loading

Vi D
p

rsLP0
p
1 � e�2� � 1

2
ibrsL

�
1 � 2�e�2�

1 � e�2�

�
: (18.106)

For the SLAC linac structure this equation becomes with � D 0:57

Ekin .MeV/ D 10:48pP0 .MW/ � 37:47ib .A/ : (18.107)

The beam loading depends greatly on the choice of the attenuation factor �
as is shown in Figs. 18.7 and 18.8 where the coefficients fv D

p
1 � e2� and

fi D 1
2

�
1 � 2� e�2�

1�e�2�

�
are plotted as functions of � . Both coefficients increase as the

attenuation factor is increased and reach asymptotic limits. The ratio fv=fi, however,
decreases from infinity to a factor two which means that beam loading occurs much
stronger for large values of the attenuation factor compared to low values. During the
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Fig. 18.7 Energy coefficient fv as a function of �
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Fig. 18.8 Beam loading coefficient fi as a function of �
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Fig. 18.9 Optimum beam current as a function of �
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Fig. 18.10 Linac efficiency as a function of beam current

design of the linac structure it is therefore useful to know the intended use requiring
different optimization for high-energy or high-current acceleration.

We may also ask for the efficiency of transferring rf-power into beam power
which is defined by

� D ibVi

P0
D ib

s
rsL

P0

p
1 � e�2� � 1

2
i2brs

L

P0

�
1 � 2� e�2�

1 � e�2�

�
: (18.108)

The linac efficiency has clearly a maximum and the optimum beam current is

ib;opt D
s

P0
rsL

.1 � e�2� /3=2

1 � .1C 2�/e�2� : (18.109)

The optimum beam current is plotted in Fig. 18.9 as a function of the attenuation
coefficient � and the linac efficiency is shown in Fig. 18.10 as a function of beam
current in units of the optimum current with the attenuation factor as a parameter.
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The optimum beam current increases as the attenuation factor is reduced while
the linac efficiency reaches a maximum for the optimum beam current.

18.4.2 Particle Capture in a Linear Accelerator Field*

The capture of particles and the resulting particle energy at the end of the acceler-
ating section depends greatly on the relative synchronism of the particle and wave
motion. If particles with velocity vp are injected at low energy

�
vp � c

�
into an

accelerator section designed for a phase velocity vph  vp the electromagnetic
wave would roll over the particles with reduced acceleration. The particle velocity
and phase velocity must be equal or at least close to each other. Because small
mismatches are quite common, we will discuss particle dynamics under those
circumstances and note that there is no fundamental difference between electron
and proton linear accelerators. The following discussion is therefore applicable to
any particle type being accelerated by traveling electromagnetic fields in a linear
accelerator.

We observe the relative motion of both the particle and the wave from the
laboratory system. During the time t particles move a distance zp D vpt and
the wave a distance zph D vpht. The difference in the distance traveled can be
expressed in terms of a phase shift

 D �k.zph �zp/ D �k.vph � vp/
zp

vp
: (18.110)

The wave number k is

k D !

vph
D 2�c

�rfvph
(18.111)

and inserted into (18.110) the relative phase shift over a distancezp becomes

 D �2�c

�rf

vph � vp

vphvp
zp : (18.112)

To complete the equation of motion we consider the energy gain of the particles
along the same distancezp which is

Ekin D �eEz. /zp: (18.113)

Equations (18.112) and (18.113) form the equations of motion for particles
in phase space. Both equations are written as difference equations for numerical
integration since no analytic solution exists. For the most trivial case vph D vp

and  D const allowing easy integration of (18.113). This trivial case becomes the
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Fig. 18.11 Capture of electrons in a 3 m linac section for initial phase  0 and initial kinetic energy
Ekin;0. Contour lines are lines of constant particle energy in MeV at the end of the section. The phase
 0 D 0 corresponds to the crest of the accelerating wave

overwhelming common case for electrons which reach a velocity very close to the
speed of light. Consistent with this, most accelerating sections are dimensioned for
a phase velocity equal to the speed of light.

As an illustrative example, we integrate (18.112) and (18.113) numerically to
determine the beam parameters at the end of a single 3 m long accelerating section�
vph D c

�
for an initial particle distribution in phase and momentum at the entrance

to the accelerating section. This situation is demonstrated in Fig. 18.11 for a constant
field gradient of OE D 12:0 MeV/m. The momentum and phase at the end of the
accelerating section are shown as functions of the initial momentum and phase. We
note from Fig. 18.11 that particles can be captured in the accelerating field only
in the vicinity of  0 � 0 to C90ı at almost any initial phase and momentum. At
phases from  0 � �45 to �160ı slow particles at sub-relativistic energies loose
whatever little energy they had to move randomly in the rf-wave rolling over them.
On the other hand, particles which enter the accelerating section ahead of the crest
. 0 & 0ı/ gain maximum momentum while the wave’s crest moves over them.

Such diagrams calculated for particular parameters under consideration provide
valuable information needed to prepare the beam for optimum acceleration. The
most forgiving operating parameters are, where the contour lines are far apart. In
those areas a spread in initial phase or energy has little effect on the final phase or
energy. If a beam with a small energy spread at the end of acceleration is desired,
the initial phase should be chosen to be at small positive values or just ahead of the
wave crest as shown in Fig. 18.11. Even for a long bunch the final energy spread is
small while reaching the highest total energy.

On the other hand, if a short bunch length at the end of acceleration is of biggest
importance, an initial phase of around  0 � 100ı seems to be more appropriate. In
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this case, however, the final energy is lower than the maximum possible energy and
the energy spread is large.

Once the particular particle distribution delivered to the linear accelerator and the
desired beam quality at the end is known one can use Fig. 18.11 for optimization.
Conversely such diagrams can be used to judge the feasibility of a particular design
to reach the desired beam characteristics.

18.5 Preinjector and Beam Preparation*

Although the proper choice of the initial rf-phase with respect to the particle beam
greatly determines the final beam quality, the flexibility of such adjustments is
limited. Special attention must be given to the preparation of the beam before
acceleration. In most cases, particles are generated in a continuous stream or from a
microwave source of different frequency. Depending on the particle source, special
devices are used for initial acceleration and bunching of the beam. We will discuss
basic principles of beam preparation.

18.5.1 Prebuncher

Many particle sources, be it for electrons, protons or ions, produce a continuous
stream of particles at modest energies limited by electrostatic acceleration between
two electrodes. Not all particles of such a beam will be accelerated because of the
oscillatory nature of the accelerating field. For this reason and also in case short
bunches or a small energy spread at the end of the linac is desired, the particles
should be concentrated at a particular phase. This concentration of particles in
the vicinity of an optimum phase maximizes the particle intensity in the bunch in
contrast to a mechanical chopping of a continuous beam. To bunch particles requires
specific beam manipulation which we will discuss here in more detail.

A bunched beam can be obtained from a continuous stream of nonrelativistic
particles by the use of a prebuncher. The basic components of a prebuncher is
an rf-cavity followed by a drift space. As a continuous stream of particles passes
through the prebuncher, some particles get accelerated and some are decelerated.
The manipulation of the continuous beam into a bunched beam is best illustrated in
the phase space diagrams of Fig. 18.12.

Figure 18.12a shows the continuous particle distribution in energy and phase at
the entrance of the prebuncher. Depending on the phase of the electric field in the
prebuncher at the time of passage, a particle becomes accelerated or decelerated
and the particle distribution at the exit of the prebuncher is shown in Fig. 18.12b.
The particle distribution has been distorted into a sinusoidal energy variation.
Since the particles are nonrelativistic the energy modulation reflects also a velocity
modulation. We concentrate on the origin of the distribution at ' D 0 and
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Fig. 18.12 Phase space diagrams for a continuous beam passing through a prebuncher. Before
acceleration (a) and right after (b). A distance L downstream of the buncher cavity the phase space
distribution shows strong bunching (c). [Note: the beam moves from left to right]

Ekin D 0 as the reference phase and note that particles ahead of this reference
phase have been decelerated and particles behind the reference phase have been
accelerated. Following this modulated beam through the drift space we observe due
to the velocity modulation a bunching of the particle distribution which reaches a
maximum at some distance as shown in Fig. 18.12c. A significant beam intensity
has been concentrated close to the reference phase of the prebuncher.

The frequency used in the prebuncher depends on the desired bunch distribution.
For straight acceleration in a linear accelerator one would choose the same
frequency for both systems. Often, however, the linear accelerator is only an injector
into a bigger circular accelerator which generally operates at a lower frequency.
For optimum matching to the final circular accelerator the appropriate prebuncher
frequency would be the same as the cavity frequency in the circular accelerator
cavity.
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The effect of the prebuncher can be formulated analytically in the vicinity of the
reference phase. At the exit of the prebuncher, operating at a voltage V D V0 sin ';
the energy spread is

Ekin D eV0 sin ' D mc2ˇ�3ˇ ; (18.114)

which is related to a velocity spread ˇ. Perfect bunching occurs a time t later
when for sin ' � '

cˇt D '

2�
�rf ; (18.115)

where �rf is the rf-wavelength in the prebuncher cavity. Solving for t we get for
nonrelativistic particles with � D 1 and ˇ � 1

t D �rf

2�

mv

eV0
(18.116)

and optimum bunching occurs a distance L downstream from the cavity

L D v0t D 2Ekin

krfeV0
; (18.117)

where v0 is the velocity of the reference particle and krf D 2�=�rf. The minimum
bunch length in this case is then

ıL D ıEkin

krfeV0
; (18.118)

where ıEkin is the total energy spread in the beam before the prebuncher.
In this derivation, we have greatly idealized the field variation being linear instead

of sinusoidal. The real bunching is therefore less efficient than the above result and
shows some wings as is obvious from Fig. 18.12c. In a compromise between beam
intensity and bunch length one might let the bunching go somewhat beyond the
optimum and thereby pull in more of the particle intensity in the wings.

There are still particles between the bunches which could either be eliminated by
an rf-chopper or let go to be lost in the linear accelerator because they are mainly
distributed over the decelerating field period in the linac.

18.5.2 Beam Chopper

A conceptually simple way to produce a bunched beam is to pass a continuous
beam from the source through a chopper system, where the beam is deflected across
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Fig. 18.13 Principal functioning of a chopper system

a narrow slit resulting in a pulsed beam behind the slit. The principle components
of such a chopper system are shown in Fig. 18.13.

As was mentioned in the previous section this mode of bunching is rather
wasteful and therefore an rf-prebuncher which concentrates particles from a large
range of phases towards a particular phase is more efficient for particle bunching.
However, we still might want to add a beam chopper.

One such reason could be to eliminate most of the remaining particles between
the bunches from the prebuncher. Although these particles most likely get lost
during the acceleration process a significant fraction will still reach the end of the
linac with an energy spread between zero and maximum energy. Because of their
large energy deviation from the energy of the main bunches, such particles will be
lost in a subsequent beam transport system and therefore create unnecessary high
radiation levels. It is therefore prudent to eliminate such particles at low energies. A
suitable device for that is a chopper which consists of an rf-cavity excited similar to
the prebuncher cavity but with the beam port offset by a distance r from the cavity
axis. In this case the same rf-source as for the prebuncher or main accelerator can
be used and the deflection of particles is effected by the azimuthal magnetic field in
the cavity.

The prebuncher produces a string of bunches at the prebuncher frequency. For
many applications, however, a different bunch structure is desired. Specifically it
often occurs that only one single bunch is desired. To produce a single pulse, the
chopper system may consist of a permanent magnet and a fast pulsed magnet.
The permanent magnet deflects the beam into an absorber while the pulsed magnet
deflects the beam away from the absorber across a small slit. The distance between
the center of the pulsed magnet and the slit be D (Fig. 18.13), the slit aperture 
and the rate of change of the magnetic field PB. For an infinitely thin beam the pulse
length behind the slit is then

�b D 

D P' D


D

cp

e PB` ; (18.119)

where ' is the deflection angle, ` the effective magnetic length of the pulsed magnet
and cp the momentum of the particles. In order to clean the beam between bunches
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or to select a single bunch from a train of bunches the chopper parameters must be
chosen such that only the desired part of the beam passes through.

18.5.3 Buncher Section

A buncher section is similar to an ordinary electron linac section but dimensioned
for sub relativistic particle. Particles arriving from the source, prebuncher or chopper
may not be at relativistic energies and therefore cannot follow the rf-wave in an
ordinary linac section which have a phase velocity equal to the velocity of light.
To optimize the whole acceleration system a buncher section is inserted as the first
linac section. The length of each cell is shorter than in a normal linac structure
and changes from a length appropriate for the velocity of the incoming particles to
longer and longer cell lengths until the particle has reached the constant velocity of
light for which the normal linac structure is dimensioned. In this case the particle
would be accelerated from beginning at the desired phase. In case of an rf-gun the
electrons emerge relativistic and no buncher is necessary. In many cases, especially
at smaller facilities, the buncher section is omitted at some degradation of beam
performance.

Problems

18.1 (S). Determine within a factor of two or less the longest TE or TM-mode
wavelength that can propagate through a round tube of diameter 2R:

18.2 (S). Consider a pill box cavity made of copper and calculate the frequency
shift per 1 ıC temperature change. The linear expansion coefficient for copper is
�T D 16:6 � 10�6 m/.mıC/ : What is the temperature tolerance if the rf frequency
should not change by more than˙10�6:

18.3 (S). Determine the frequency scaling of cavity dimensions, transit time factor,
quality factor, shunt impedance, specific shunt impedance and cavity filling time.

18.4 (S). In electron linear accelerators operating at 3 GHz accelerating fields of
more than 50 MeV/m can be reached. Why can such high fields not be used in a
storage ring? Discuss quantitatively, while scaling linac parameters to the frequency
of your choice in the storage ring.

18.5 (S). Discuss the graph in Fig. 18.11. Specifically explain in words the particle
dynamics within random features. How come particles get accelerated even though
they enter the linac while the accelerating field is negative? (note: interpretation
of the graph for initial energies� 1MeV does not have enough resolution to be
reliable.)
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18.6 (S). Design a 500 MHz prebuncher system for a 3 GHz linear accelerator.
Particles in a continuous beam from the source have a kinetic energy of E0 D
100 keV with an energy spread of ˙0:02%. Specify the optimum prebuncher
voltage and drift length to compress the maximum intensity into a bunch with a
phase distribution of less than˙12ı at 3 GHz.

18.7 (S). Calculate for a SLAC type linac section the no-load energy gain and the
energy gain for a pulse current of ib D 20mA. The rf-power is P0 D 15MW per
section at a pulse length of 2.5�s. Compare the efficiency to the situation when only
one bunch of nb D 1010 electrons is accelerated. What is the linac efficiency for this
current and what is the energy gain in this case?

18.8. Consider a rectangular box cavity with copper walls and dimensioned for an
rf-wavelength of � D 10:5 cm. Calculate the wall losses due to the fundamental
field only and determine the shunt impedance per unit length rs and the quality
factor Q for this cavity. These losses are due to surface currents within a skin depth
generated by the rf-fields on the cavity surface. Compare these parameters with
those of (18.96). Is the shape of the cavity very important? Determine the resonance
width and temperature tolerance for the cavity.

18.9. Plot the electrical and magnetic field distribution for the three lowest order
modes in a rectangular and cylindrical cavity. Calculate the shunt impedance and
compare the results. Which type of cavity is more efficient?

18.10. Derive a general expression of the shunt impedance for general TM-modes
in a cylindrical cavity.

18.11. Derive expressions for the maximum electric field strength and the waveg-
uide losses per unit length for the TE10 mode in a rectangular waveguide. Use this
result to design a waveguide for 3 GHz. Calculate the cut-off frequency, the phase
and group velocities and the waveguide wavelength. What criteria did you use to
choose the dimensions a and b? Sketch the electrical and magnetic fields.

18.12. Consider a 8 GeV electron storage ring with a FODO lattice and a beam
current of 200 mA. Determine the equilibrium energy spread and specify rf-
parameters which will be sufficient to compensate for synchrotron radiation losses
and provide an energy acceptance for all particles in a Gaussian energy distribution
up to 7��=E. What is the synchrotron tune and the bunch length in your storage
ring?

18.13. Consider a pill box cavity with copper walls for a storage ring and choose
a rf-frequency of 750 MHz. Derive an expression for the wall losses due to the
fundamental field only and derive an expression for the shunt impedance of the
cavity defined by Rcy D V2

rf=Prf, where Vrf is the maximum rf-voltage and Prf

the cavity wall losses. What are the rf-losses if this cavity is used in the ring of
Problem 18.12? Assume that you can cool only about 150 kW/m of cavity length.
How many cavities would you need for your ring example?
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18.14. The electromagnetic field for a cylindrical waveguide have been derived
in Sect. 18.1.3. Derive in a similar way expressions for resonant field modes in a
rectangular waveguide.
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Chapter 19
Beam-Cavity Interaction*

The proper operation of the rf-system in a particle accelerator depends more than
any other component on the detailed interaction with the particle beam. This results
from the observation that a particle beam can induce fields in the accelerating
cavities of significant magnitude compared to the generator produced voltages and
we may therefore not neglect the presence of the particle beam. This phenomenon
is called beam loading and can place severe restrictions on the beam current that
can be accelerated. In this section, main features of such interaction and stability
conditions for most efficient and stable particle acceleration will be discussed.

19.1 Coupling Between rf-Field and Particles

In our discussions about particle acceleration we have tacitly assumed that particles
would gain energy from the fields in accelerating cavities merely by meeting the
synchronicity conditions. This is true for a weak particle beam which has no
significant effect on the fields within the cavity. As we try, however, to accelerate
an intense beam, the actual accelerating fields become modified by the presence
of considerable electrical particle beam currents. This beam loading can ultimately
limit the maximum beam intensity.

The phenomenon of beam loading will be defined and characterized in this
section leading to conditions and parameters to assure positive energy flow from
the rf-power source to the beam. Fundamental consideration to this discussion are
the principles of energy conservation and linear superposition of fields which allow
us to study field components from one source independent of fields generated by
other sources. Specifically, we may treat beam induced fields separately from fields
generated by rf-power sources.
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19.1.1 Network Modelling of an Accelerating Cavity

The electrical excitation of a rf-cavity can be accurately described by an oscillator
as discussed in Sect. 18.2.4 and we will use therefore characteristic parameters
and terminology of externally driven, damped oscillators in our further discussions
of rf-systems. Electrically, an accelerating cavity can be represented by a parallel
resonant circuit (Fig. 19.1) which is driven by an external rf-current source Ig from
a generator and the particle beam Ib.

The amount of rf-power available from the generator in the accelerating cavity
depends greatly on the relative impedance of cavity and generator. Both have to be
matched to assure optimum power transfer. To derive conditions for that we define
the internal impedance of the current source or rf-generator in terms of the cavity
shunt impedance Rs of an empty cavity as defined in (18.74)

Rg D Rs

ˇ
; (19.1)

where ˇ is the coupling coefficient still to be defined. This coefficient depends on
the actual hardware of the coupling arrangement for the rf-power from the generator
at the entrance to the cavity and quantifies the generator impedance as seen from the
cavity in units of the cavity shunt impedance Rs (Fig. 19.1). Since this coupling
coefficient depends on the hardware, we need to specify the desired operating
condition to determine the proper adjustment of the coupling during assembly. This
adjustment is done by either rotating a loop coupler with respect to the cavity axis
or adjustment of the aperture in case of capacitive coupling through a hole.

The inductance L and capacitance C form a parallel resonant circuit with the
resonant frequency

!r D 1p
LC

: (19.2)

The rf-power available at the cavity from the generator is

Pg D 1
2
YLV 2

g ; (19.3)

Fig. 19.1 Network model for
an rf generator and an
accelerating cavity

C IbRsLVg

Ig

Ig/2

Rs/b Vcy
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where YL is the loaded cavity admittance including energy transfer to the beam
and Vg is the generator voltage. Unless otherwise noted, the voltages, currents and
power used in this section are the amplitudes of otherwise oscillating quantities. At
resonance where all reactive power vanishes we use the generator current Ig and
network admittance Y D Yg C YL to replace the generator voltage

Vg D Ig

Y
D Ig

Yg C YL

and get after insertion into (19.3) the generator power in the form

Pg D 1

2

YL�
Yg C YL

�2 I2g : (19.4)

Noting that the generator power has a maximum, which can be determined from
@Pg=@YL D 0, we obtain the well-known result that the rf-power transfer from the
generator becomes a maximum if the load is matched to the internal impedance of
the generator by adjusting

Yg D YL or RL D Rs

ˇ
; (19.5)

replacing the admittances by the respective impedances. The maximum available
rf-power at the cavity is therefore with Yg D ˇ=Rs

Pg D 1

8

Rs

ˇ
I2g : (19.6)

To calculate the quality factor for a cavity, we note the stored energy is W D
1
2
CV2 and the energy loss rate Pcy D 1

2
V2=R: Using the definition (18.80) the

unloaded quality factor becomes with R D Rs at resonance

Q0 D !rCRs : (19.7)

The admittance for the total circuit as seen by the beam is that of cavity plus
generator or

1

Rb
D ˇ

Rs
C 1

Rs
D 1C ˇ

Rs
: (19.8)

From this and (19.7) we get the loaded quality factor

Q D !rCRb D Q0

1C ˇ : (19.9)
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Off resonance the generator voltage and current are no more in phase. The phase
difference can be derived from the complex impedance of the network, which is the
same seen from the generator as well as seen from the beam

1

Z
D 1

Rb
C i!CC 1

i!L
: (19.10)

The complex impedance becomes with (19.2), (19.9)

1

Z
D 1

Rb

�
1C iQ

!2 � !2r
! !r

�
(19.11)

and with Ig D Vg=Z the generator current is

Ig D Vg

Rb

�
1C iQ

!2 � !2r
! !r

�
D Vg

Rb
.1 � i tan�/ : (19.12)

Close to resonance the tuning angle � becomes from (19.12) with ! � !r

tan� � �Q
!2 � !2r
! !r

� �2Q
! � !r

!r
(19.13)

in agreement with (18.64) except for a phase shift of �90ı, which was introduced
here to be consistent with our definition of the synchronous phase  s. The variation
of the tuning angle is shown in Fig. 19.2 as a function of the generator frequency.
From (19.12), the generator voltage at the cavity is finally

Vg D IgRb

1 � i tan�
D IgRb cos� ei� : (19.14)

Fig. 19.2 Tuning angle  as a function of the generator frequency
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At frequencies below the resonance frequency the tuning angle is positive and
therefore the generator current lags the voltage by the phase � . This case is also
called inductive detuning since the impedance looks mainly inductive. Conversely,
the detuning is called capacitive detuning because the impedance looks mostly
capacitive for frequencies above resonance frequency.

A bunched particle beam passing through a cavity acts as a current just like the
generator current and therefore the same relationships with respect to beam induced
voltages exist. In case of capacitive detuning, for example, the beam induced voltage
Vb lags in phase behind the beam current Ib.

The effective accelerating voltage in the cavity is a composition of the generator
voltage, the induced voltage, and the phase relationships between themselves and
relative to the particle beam. To assure a stable beam, the resulting cavity voltage
must meet the requirements of particle acceleration to compensate, for example, lost
energy into synchrotron radiation. We determine the conditions for that by deriving
first the generator voltage Vgr at resonance and without beam loading while voltage
and current are in phase. From Fig. 19.1 we get

Vgr D Ig

Yg C YL
D Ig

1
Rs
C ˇ

Rs

D RsIg

1C ˇ (19.15)

and with (19.6) the generator voltage at resonance becomes

Vgr D 2
p
2ˇ

1C ˇ
p

RsPg : (19.16)

The generator voltage at the cavity is therefore with (19.6)

Vg D Vgr cos� ei� : (19.17)

This is the cavity voltage seen by a negligibly small beam and can be adjusted to
meet beam stability requirements by varying the tuning angle � and rf-power Pg.

19.2 Beam Loading and Rf-System

For more substantial beam currents the effect of beam loading must be included
to obtain the effective cavity voltage. Similar to the derivation of the generator
voltage in a cavity, we may derive the induced voltage from the beam current passing
through that cavity. Since there is no fundamental difference between generator and
beam current, the induced voltage is in analogy to (19.17)

Vb D �Vbr cos� ei� ; (19.18)
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where the negative sign indicates that the induced voltage is decelerating the beam.
The particle distribution in the beam occurs in bunches and the beam current
therefore can be expressed by a Fourier series. Here we are only interested in the
harmonic Ih of the beam current and find for bunches short compared to the rf-
wavelength

Ih D 2Ib (19.19)

where Ib is the average beam current and h the harmonic number. The approximation
for short bunches with `� �rf- holds as long as sin krf-` � krf-` with krf- D 2�=�rf-.
For longer bunches the factor 2 becomes a more complicated formfactor as can be
derived from an appropriate Fourier expansion. At the resonance frequency !r D
h!0; the beam induced voltage in the cavity is then with (19.8) from (19.15)

Vbr D RsIh

1C ˇ D
2RsIb

1C ˇ : (19.20)

The resulting cavity voltage is the superposition of both voltages, the generator
and the induced voltage. This superposition, including appropriate phase factors, is
often represented in a phasor diagram. In such a diagram a complex quantity Qz is
represented by a vector of length jQzj with the horizontal and vertical components
being the real and imaginary part of Qz, respectively. The phase of this vector
increases counter clockwise and is given by tan' DIm.Qz/ =Re.Qz/. In an application
to rf-parameters we represent voltages and currents by vectors with a length equal
to the magnitude of voltage or current and a counter clockwise rotation of the vector
by the phase angle '.

The particle beam current can be chosen as the reference being parallel to the
real axis and we obtain from the quantities derived so far the phasor diagram as
shown in Fig. 19.3. First we determine the relationships between individual vectors
and phases and then the correct adjustments of variable rf-parameters. In Fig. 19.3
the generator current is assumed to have the still to be determined phase # with
respect to the beam current while the generator voltage and beam induced voltage
lag by the phase � behind the beam current. The resulting cavity voltage QVcy is the
phasor addition of both voltages QVg C QVb as shown in Fig. 19.3.

The adjustment of the rf-system must now be performed in such a way as to
provide the desired gain in kinetic energy U0 D e OVcy sin s where OVcy is the
maximum value of the cavity voltage and  s the synchronous phase. To maximize
the energy flow from the generator to the cavity the load must be matched such that
it appears to the generator purely resistive. This is achieved by adjusting the phase
 g to get the cavity voltage Vcy and generator current Ig in phase which occurs for

 g D 1
2
� �  s (19.21)

as shown in Fig. 19.4. Obviously, this is only true for a specific value of the beam
current. General operation will deviate from this value and therefore we often match
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ψ

Ib

V b

V br

V cy

V gr Ig

V b

V g

U 0

ψ

ψ g

ψ s

ψ g-ψ

Fig. 19.3 Phasor diagram for an accelerating cavity and arbitrary tuning angle

Ib

Vb

Vbr

Vcy

Vgr

Ig

Vb

Vg

U0

ψg
ψs

ψg -ψ

ψm
ψm

Fig. 19.4 Phasor diagram with optimum tuning angle

to the maximum desired beam current. For lower currents, where the energy transfer
is not optimum anymore, some loss of efficiency is acceptable.

The tuning angle adjustment for optimum matching can be derived from Fig. 19.4
and applying the law of sines we have with (19.17)

Vb

Vcy
D Vbr cos�m

Vcy
D sin�m

sin g
D sin�m

cos s
: (19.22)

The optimum tuning angle is from (19.22)

tan�m D Vbr

Vcy
cos s : (19.23)

This tuning is effected by a shift in the resonant frequency of the cavity
with respect to the generator frequency by, for example, moving a tuner in or
out. From (19.13) we get with (19.9), (19.20), (19.23) for the frequency shift or
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frequency tuning

ı! D ! � !r D � !r

2Q0

Pb

Pcy
cot s ; (19.24)

where the cavity power is defined by

Pcy D
V2

cy

2Rs
(19.25)

and the beam power by

Pb D IbVcy sin s : (19.26)

To determine the required generator power the components of the cavity voltage
vector can be expressed by other quantities and we get from Fig. 19.4

Vcy sin s D Vgr cos�m cos
�
 g � �m

� � Vbr cos2 �m (19.27)

and

Vcy cos s D Vgr cos�m sin
�
 g � �m

�C Vbr cos�m sin�m : (19.28)

Combining both equations to eliminate the phase
�
 g � �m

�
; we get

V2
gr D

�
Vcy

sin s

cos�m
C Vbr cos�m

�2
C
�

Vcy
cos s

cos�m
� Vbr sin�m

�2
(19.29)

and with (19.16), (19.20) the required generator power for the condition of optimum
matching is

Pg D
V2

cy

2Rs

.1C ˇ/2
4ˇ

"�
sin s

cos�m
C 2RsIb

Vcy .1C ˇ/ cos�m

�2
(19.30)

C
�

cos s

cos�m
� 2RsIb

Vcy .1C ˇ/ sin�m

�2#
:

This expression can be greatly simplified with (19.23) to become

Pg,opt D .1C ˇ/2
8ˇRs

�
Vcy C 2RsIb

1C ˇ sin s

�2
: (19.31)

Equation (19.31) represents a combination of beam current through Ib; rf–
generator power Pg, coupling coefficient ˇ, and shunt impedance Rs to sustain
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a cavity voltage Vcy. Specifically, considering that the rf-power Pg and coupling
coefficientˇ is fixed by the hardware installed a maximum supportable beam current
can be derived as a function of the desired or required cavity voltage. Solving for
the cavity voltage, (19.31) becomes after some manipulation

Vcy D
p
2ˇRs

1C ˇ

 p
Pg,opt C

s
Pg,opt � 1C ˇ

ˇ
Pb

!
: (19.32)

This expression exhibits a limit for the beam current above which the second
square root becomes imaginary. The condition for real solutions requires that

Pb 
 ˇ

1C ˇPg,opt (19.33)

leading to a limit of the maximum sustainable beam current of

Ib 
 ˇ

1C ˇ
Pg

Vcy sin s
: (19.34)

Inspection of (19.31) shows that the required generator power can be further
minimized by adjusting for the optimum coupling coefficient ˇ. Optimum coupling
can be derived from @Pg=@̌ D 0 with the solution

ˇopt D 1C 2RsIb

Vcy
sin s D 1C Pb

Pcy
: (19.35)

The minimum generator power required to produce an accelerating voltage
Vcy sin s is therefore from (19.31) with (19.35)

Pg,min D
V2

cy

2Rs
ˇopt D ˇoptPcy (19.36)

and the optimum tuning angle from (19.23)

tan�opt D ˇopt � 1
ˇopt C 1 cot s : (19.37)

In this operating condition all rf-power from the generator is absorbed by the
beam loaded cavity and no power reflection occurs. The maximum beam power is
therefore Pb D Pg � Pcy and the maximum beam current

Ib 
 Pg

Vcy sin s
� Vcy

2Rs sin s
: (19.38)
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Conditions have been derived assuring most efficient power transfer to the beam
by proper adjustment of the cavity power input coupler to obtain the optimum
coupling coefficient. Of course this coupling coefficient is optimum only for a
specific beam current which in most cases is chosen to be the maximum desired
beam current.

We are now in a position to determine the total rf-power flow. From conservation
of energy we have

Pg D Pcy C Pb C Pr ; (19.39)

where Pr is the reflected power which vanishes for the case of optimum coupling.

19.3 Higher-Order Mode Losses in an Rf-Cavity

The importance of beam loading for accurate adjustments of the rf-system has been
discussed qualitatively but not yet quantitatively. In this paragraph, quantitative
expressions will be derived for beam loading. Accelerating cavities constitute an
impedance to a particle current and a bunch of particles with charge q passing
through a cavity induces electromagnetic fields into a broad frequency spectrum
limited at the high frequency end by the bunch length. The magnitude of the
excited frequencies in the cavity depends on the frequency dependence of the
cavity impedance, which is a function of the particular cavity design and need not
be known for this discussion. Fields induced within a cavity are called modes,
oscillating at different frequencies with the lowest mode being the fundamental
resonant frequency of the cavity. Although cavities are designed primarily for one
resonant frequency, many higher-order modes or HOM’scan be excited at higher
frequencies. Such modes occur above the fundamental frequency first at distinct
well-separated frequencies with increasing spectral densities at higher frequencies.

For a moment we consider here only the fundamental frequency and deal with
higher-order modes later. Fields induced by the total bunch charge act back on
individual particles modifying the overall accelerating voltage seen by the particle.
To quantify this we use the fundamental theorem of beam loading formulated by
Wilson [1] which states that each particle within a bunch sees one half of the induced
field while passing through the cavity.

We prove this theorem by conducting a Gedanken experiment proposed by
Wilson. Consider a bunch of particles with charge q passing through a lossless cavity
inducing a voltage Vi1 in the fundamental mode. This induced field is opposed to the
accelerating field since it describes a loss of energy. While the bunch passes through
the cavity this field increases from zero reaching a maximum value at the moment
the particle bunch leaves the cavity. Each particle will have interacted with this field
and the energy loss corresponds to a fraction f of the induced voltage Vi;h, where
the index h indicates that we consider only the fundamental mode. The total energy
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lost by the bunch of charge q is

E1 D �q1f Vi;h : (19.40)

This energy appears as field energy proportional to the square of the voltage

W1 D c1V
2

i;h ; (19.41)

where c1 is a constant.
Now consider another bunch with the same charge q2 D q1 D q following

behind the first bunch at a distance corresponding to half an oscillation period
at the fundamental cavity frequency. In addition to its own induced voltage this
second bunch will see the field from the first bunch, now being accelerating, and
will therefore gain an energy

E2 D q1Vi;h � q2f Vi;h D qVi;h .1 � f / : (19.42)

After passage of the second charge, the cavity returns to the original state before
the first charge arrived because the field from the first charge having changed sign
exactly cancels the induced field from the second charge. The cavity has been
assumed lossless and energy conservation requires therefore that E1 C E2 D 0

or �q f Vi;h C qVi;h .1 � f / D 0 from which we get

f D 1
2

(19.43)

proving the statement of the fundamental theorem of beam loading. The energy loss
of a bunch of charge q due to its own induced field is therefore

E1 D � 12qVi;h : (19.44)

This theorem will be used to determine the energy transfer from cavity fields to
a particle beam. To calculate the induced voltages in rf-cavities, or in arbitrarily
shaped vacuum chambers providing some impedance for the particle beam can
become very complicated. For cylindrically symmetric cavities the induced voltages
can be calculated numerically with programs like SUPERFISH [2], URMEL[3] or
MAFIA [3].

For a more practical approach Wilson [1] introduced a loss parameter k which can
be determined either by electronic measurements or by numerical calculations. This
loss parameter for the fundamental mode loss of a bunch with charge q is defined by

Eh D khq2 (19.45)

and together with (19.44) we get the induced voltage

Vi;h D �2khq (19.46)
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or after elimination of the charge

Eh D
V2

i;h

4kh
; (19.47)

where the index h indicates that the parameter should be taken at the fundamental
frequency. The loss parameter can be expressed in terms of cavity parameters. From
the definition of the cavity quality factor (18.80) and cavity losses from (18.77) we
get

2Rcy

Q
D V2

!W
; (19.48)

where ! is the frequency and W the stored field energy in the cavity. Applying
this to the induced field, we note that Eh is equal to the field energy Wh and
combining (19.47), (19.48) the loss parameter to the fundamental mode in a cavity
with shunt impedance Rh and quality factor Qh is

kh D !h

4

Rh

Qh
: (19.49)

The excitation of higher-order mode fields by the passing particle bunch leads
to additional energy losses which are conveniently expressed in units of the energy
loss to the fundamental mode

Ehom D .rhom � 1/Eh ; (19.50)

where rhom is the ratio of the total energy losses into all cavity modes to the loss into
the fundamental mode only. The induced higher order field energy in the cavity is
therefore

Whom D .rhom � 1/Wh : (19.51)

Again we may define a loss parameter kn for an arbitrary nth-mode and get
analogous to (19.49)

kn D !n

4

2Rn

Qn
; (19.52)

where Rn and Qn are the shunt impedance and quality factor for the nth-mode or
frequency !n, respectively. The total loss parameter due to all modes is by linear
superposition

k D
X

n

kn : (19.53)
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The task to determine the induced voltages has been reduced to the determination
of the loss parameters for individual modes or if this is not possible or desirable we
may use just the overall loss parameter k as may be determined experimentally. This
is particularly convenient for cases where it is difficult to calculate the mode losses
but much easier to measure the overall losses by electronic measurements.

The higher-order mode losses will become important for discussion of beam
stability since these fields will act back on subsequent particles and bunches thus
creating a coupling between different parts of one bunch or different bunches.

19.3.1 Efficiency of Energy Transfer from Cavity to Beam

Higher-order mode losses affect the efficiency by which energy is transferred to the
particle beam. Specifically, since the higher-order mode losses depend on the beam
current we must expect some limitation in the current capability of the accelerator.

With these preparations we have now all information to calculate the transfer
of energy from the cavity to the particle beam. Just before the arrival of a particle
bunch let the cavity voltage as generated by the rf-power source be

Vcy D �Vg ei�g ; (19.54)

where Vg is the generator voltage and �g the generator voltage phase with respect
to the particle beam. To combine the generator voltage with the induced voltage we
use phasor diagrams in the complex plane.

The generator voltage is shown in Fig. 19.5 as a vector rotated by the angle �g

from the real axis representing the cavity state just before the beam passes. The
beam induced voltage is parallel and opposite to the real axis. Both vectors add up
to the voltage V just after the beam has left the cavity.

The difference of the fundamental field energy before and after passage of the
particle bunch is equal to the energy transferred to the passing particle bunch minus

Fig. 19.5 Phasor diagram for
cavity voltages with beam
loading

V

Vb

ψg

Vcy

ψg
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the higher-order field energy and is from the phasor diagram

Ehom D ˛
�

V2
cy � V2

�
�Whom D ˛

�
2VcyVb cos�g � V2

b

� �Whom ; (19.55)

where ˛ is the proportionality factor between the energy gain E and the square of
the voltage defined by ˛ D E=V2: With (19.45), (19.46), we get from (19.55) the
net energy transfer to a particle bunch [4]

Ehom D ˛
�
2VcyVb cos�g � rhomV2

b

�
: (19.56)

The energy stored in the cavity before arrival of the beam is Wcy D ˛V2
cy and the

energy transfer efficiency to the beam becomes

� D Eh

Wcy
D 2 Vb

Vcy
cos�g � rhom

V2
b

V2
cy
: (19.57)

It is obvious from (19.57) that energy transfer is not guaranteed by the syn-
chronicity condition or the power of the generator alone. Specifically, the second
term in (19.57) becomes dominant for a large beam intensity and the efficiency may
even become negative indicating reversed energy transfer from the beam to cavity
fields. The energy transfer efficiency has a maximum for Vb D cos�g

rhom
Vcy and is

�max D cos2 �g

rhom
; (19.58)

a result first derived by Keil et al. [5] and is therefore frequently called the Keil-
Schnell-Zotter criterion. The maximum energy transfer efficiency is limited by the
phase of the generator voltage and the higher-order mode losses in the cavity.

19.4 Beam Loading

Only one passage of a bunch through a cavity has been considered in the previous
section. In circular accelerators, however, particle bunches pass periodically through
the accelerating cavities and we have to consider the cumulative build up of induced
fields. Whenever a particle bunch is traversing a cavity the induced voltage from this
passage is added to those still present from previous bunch traversals. For simplicity,
we assume a number of equidistant bunches along the circumference of the ring,
where adjacent bunches are separated by an integer number mb of the fundamental
rf-wavelength. The induced voltage decays exponentially by a factor e�	 between
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Fig. 19.6 Phasor diagram for
the superposition of induced
voltages in an accelerating
cavity

V i,2

V i,1

V i,4

V i

V i,3

two consecutive bunches with

	 D tb
td
; (19.59)

where tb is the time between bunches and td the cavity voltage decay time for the
fundamental mode. The phase of the induced voltage varies between the passage of
two consecutive bunches by

' D !htb � 2�mb : (19.60)

At the time a bunch passes through the cavity the total induced voltages are then
the superposition of all fields induced by previous bunches

Vi D Vi;h
�
1C e�	ei' C e�2	ei2' C � � � � (19.61)

shown in Fig. 19.6 as the superposition of all induced voltages in form of a phasor
diagram together with the resultant induced voltage Vi. The sum (19.61) can be
evaluated to be

Vi D Vi;h
1

1 � e�	ei'
; (19.62)

which is the total induced voltage in the cavity just after the last bunch passes;
however, the voltage seen by this last bunch is only half of the induced voltage and
the total voltage Vb acting back on the bunch is therefore

Vb D Vi;h

�
1

1 � e�	ei'
� 1
2

�
: (19.63)

The voltage Vi;h can be expressed in more practical units. Considering the
damping time (18.62) for fields in a cavity we note that two damping times exist,
one for the empty unloaded cavity td0 and a shorter damping time td when there is
also a beam present. For the unloaded damping time we have from (18.62)
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td0 D 2Q0h

!h
; (19.64)

where Q0h is the unloaded quality factor. From (19.45), (19.47) we get with q D I0tb,
where I0 is the average beam current,

Vi;h D !h

2Q0h
RhI0tb

and with (19.64)

Vi;h D RhI0
tb
td0
: (19.65)

Introducing the coupling coefficient ˇ; we get from (19.9), (19.64)

td0 D .1C ˇ/ tb : (19.66)

In analogy to (19.59) we define

	0 D 	

1C ˇ D
tb
td0

(19.67)

and (19.65) becomes

Vi;h D 	0RhI0 : (19.68)

We are finally in a position to calculate from (19.63), (19.68) the total beam
induced cavity voltage Vb in the fundamental mode for circular accelerators.

19.5 Phase Oscillation and Stability

In the course of discussing phase oscillations we found it necessary to select
carefully the synchronous phase depending on the particle energy being below or
above the transition energy. Particularly, we found that phase stability for particles
above transition energy requires the rf-voltage to decrease with increasing phase.
From the derivative of (19.27) with respect to  s we find with (19.21) and since
Vgr cos� > 0 the condition for phase stability sin. g � �m/ < 0 or

1
2
� <  s C �m <

3
2
� : (19.69)
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From (19.28) and (19.69) we get

�Vcy jcos sj � Vbr sin�m cos�m < 0

or with (19.23)

Vbr sin s < Vcy ; (19.70)

which is Robinson’s phase-stability criterion or the Robinson condition [6] for the
tuning angle of the accelerator cavity. The maximum current that can be accelerated
in a circular accelerator with stable phase oscillations is limited by the effective
cavity voltage. In terms of rf-power, (19.70) is with (19.20) equivalent to

Pb 
 .1C ˇ/Pcy (19.71)

and the stability condition for the coupling coefficient is from (19.35)

ˇ > ˇopt � 2 : (19.72)

The stability condition is always met for rf-cavities with optimum coupling ˇ D
ˇopt.

19.5.1 Robinson Damping

Correct tuning of the rf-system is a necessary but not a sufficient condition for
stable phase oscillations. In Chap. 12 we found the occurrence of damping or anti-
damping due to forces that depend on the energy of the particle. Such a case occurs
in the interaction of bunched particle beams with accelerating cavities or vacuum
chamber components which act like narrow band resonant cavities. The revolution
time of a particle bunch depends on the average energy of particles within a bunch
and the Fourier spectrum of the bunch current being made up of harmonics of the
revolution frequency is therefore energy dependent. On the other hand by virtue
of the frequency dependence of the cavity impedance, the energy loss of a bunch
in the cavity due to beam loading depends on the revolution frequency. We have
therefore an energy dependent loss mechanism which can lead to damping or worse
anti-damping of coherent phase oscillation and we will therefore investigate this
phenomenon in more detail. Robinson [6] studied first the dynamics of this effect
generally referred to as Robinson damping or Robinson instability.

Above transition energy the revolution frequency is lower for higher bunch
energies compared to the reference energy and vice versa. To obtain damping of
coherent phase oscillations, we would therefore tune the cavity such that the bunch
would loose more energy in the cavity while at higher energies (lower frequency)
during the course of coherent synchrotron oscillation and loose less energy at
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a) b)

Fig. 19.7 Cavity tuning for positive Robinson damping below and above transition energy. (a)
Below transition. (b) Above transition

lower energies (higher frequency). In this situation, the impedance of the cavity
should decrease with increasing frequency for damping to occur as demonstrated in
Fig. 19.7.

Here the resonance curve or impedance spectrum is shown for the case of a
resonant frequency above the beam frequency h!0 in Fig. 19.7a and below the beam
frequency in Fig 19.7b. Consistent with the arguments made above we would expect
damping in case of Fig. 19.7b for a beam above transition and anti-damping in case
of Fig. 19.7a. Adjusting the resonance frequency of the cavity to a value below
the beam frequency h!0where !0is the revolution frequency, is called capacitive
detuning. Conversely, we would tune the cavity resonance frequency above the beam
frequency (!r > h!0) or inductively detune the cavity for damping below transition
energy (Fig. 19.7a).

In a more formal way we fold the beam-current spectrum with the impedance
spectrum of the cavity and derive scaling laws for the damping as well as the
shift in synchrotron frequency. During phase oscillations the revolution frequency
is modulated and as a consequence the beam spectrum includes in addition to the
fundamental frequency two side bands or satellites. The beam-current spectrum is
composed of a series of harmonics of the revolution frequency up to frequencies
with wavelength of the order of the bunchlength

I.t/ D Ib C
X
n>0

In cos .n!0t � '/ ; (19.73)

where Ib is the average circulating beam current and ' a phase shift with respect
to the reference particle. The Fourier coefficient for bunches short compared to the
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wavelength of the harmonic is given by

In D 2Ib : (19.74)

Here we restrict the discussion to the interaction between beam and cavity at
the fundamental cavity frequency and the only harmonic of interest in the beam
spectrum is therefore the hth harmonic

Ih.t/ D 2Ib cos .h!0t � '/ : (19.75)

By virtue of coherent synchrotron oscillations the phase oscillates for each
particle in a bunch like

'.t/ D '0 sin˝st ; (19.76)

where '0 is the maximum amplitude and ˝s the synchrotron oscillation frequency
of the phase oscillation. We insert this into (19.75) and get after expanding the
trigonometric functions for small oscillation amplitudes '0 � 1

Ih.t/ D 2Ib cos .h!0t/� Ib'0 Œcos .h!0tC˝st/ � cos .h!0t �˝st/� : (19.77)

This expression exhibits clearly sidebands or satellites in the beam spectrum at
h!0 ˙ ˝s. Folding the expression for the beam current with the cavity impedance
defines the energy loss of the particle bunch while passing through the cavity. The
cavity impedance is a complex quantity which was derived in (19.11) and its real
part is shown together with the beam spectrum in Fig. 19.8. The induced voltage in
the cavity by a beam Ih.t/ D Ih cos h!0t is

Vh D �ZIh.t/ D �ZrIh cos .h!0t/� ZiIh sin .h!0t/ ; (19.78)

Fig. 19.8 Cavity impedance
and beam spectrum in the
vicinity of the fundamental rf
frequency !rf D h!0

frequency
wwres
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where we have split the impedance in its real and imaginary part and have expressed
the imaginary part of the induced voltage by a ��=2 phase shift. Applying (19.78)
to all components of the beam current (19.77) we get the induced voltage in the
cavity

Vh D �Z0r 2Ib cos h!0t � Z0i 2Ib sin h!0t (19.79)

C ZC
r Ib'0 cos h!0t cos˝st � ZC

r Ib'0 sin h!0t sin˝st

C ZC
i Ib'0 sin h!0t cos˝stC ZC

i Ib'0 cos h!0t sin˝st

� Z�
r Ib'0 cos h!0t cos˝st � Z�

r Ib'0 sin h!0t sin˝st

� Z�
i Ib'0 sin h!0t cos˝stC Z�

i Ib'0 cos h!0t sin˝st ;

where Z0;ZC and Z� are the real r and imaginary i cavity impedances at the
frequencies h!0; h!0 C˝s; h!0 �˝s respectively. We make use of the expression
for the phase oscillation (19.76) and its derivative

P'.t/ D '0˝s cos˝st; (19.80)

multiply the induced voltage spectrum (19.79) by the current spectrum (19.77) and
get after averaging over fast oscillating terms at frequency h!0

hVhIhi D �2I2b

�
Z0r �

�
Z0i � 1

2

�
ZC

i C Z�
i

�	
' � ZC

r � Z�
r

2˝s
P'


: (19.81)

This is the rate of energy loss of the particle bunch into the impedance of the
cavity. Dividing by the total circulating charge T0Ib we get the rate of relative energy
loss per unit charge

d"

dt
D �heVhIhi

T0IbE0
D C R'

ˇckh j�cj ; (19.82)

where T0 is the revolution time and Ib the average beam current.
We made use of the relation between the energy deviation from the ideal energy

and the rate of change of the phase (9.17) on the r.h.s. of the equation. From (19.81),
(19.82) and making use of the definition of the synchrotron frequency in (9.32)
˝2

s0 D ckhj�cj
E0T0

eVcy jcos sj ; we get a differential equation of the form

R' C 2˛R P' C˝2' D 0 (19.83)

with a Robinson damping decrement

˛R D � ˇ˝s0

2Vcy jcos sj
�
ZC

r � Z�
r

�
Ib ; (19.84)
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and a shift in synchrotron oscillation frequency

˝2 D � 2ˇ˝2
s0

Vcy jcos sj
�
Z0i � 1

2

�
ZC

i C Z�
i

�	
Ib : (19.85)

The unperturbed phase equation (9.26) is

R' C 2˛s0 P' C˝2
s0 ' D 0 (19.86)

and combining both, we derive a modification of both the damping and oscillation
frequency. The combined damping decrement is

˛s D ˛s0 � ˇ˝s0

Vcy jcos sj
�
ZC

r � Z�
r

�
Ib > 0 (19.87)

where ˛s0 is the radiation damping in electron accelerators. The total damping
decrement must be positive for beam stability. The interaction of the beam with
the accelerating cavity above transition is stable for all values of the beam current
if ZC

r < Z�
r or if the cavity resonant frequency is capacitively detuned. Due to

the imaginary part of the impedance the interaction of beam and cavity leads to
a synchrotron oscillation frequency shift given by

˝2
s D ˝2

s0 �
2ˇ˝2

s0

Vcy jcos sj
�
Z0

i � 1
2

�
ZC

i C Z�
i

�	
Ib: (19.88)

This frequency shift has two components, the incoherent frequency shift due
to the impedance Z0i at the fundamental beam frequency h!0 and a frequency
shift for coherent bunch-phase oscillations due to the imaginary part of the cavity
impedances. For small frequency shifts˝s D ˝s �˝s0; (19.88) can be linearized
for

˝s

˝s0
D � Ibˇ

Vcy jcos sj
�
Z0i � 1

2
.ZC

i C Z�
i /
	
: (19.89)

The cavity impedance is from (19.10)

Z D Rs

1 � iQ0
!2�!2r
!r!

1C Q2
0

�
!2�!2r
!r!

�2 : (19.90)

From the imaginary part of the cavity impedance and capacitive detuning we
conclude that above transition energy, the incoherent synchrotron tune shift is
positive

˝s;incoh > 0 (19.91)
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while the coherent synchrotron tune shift is negative

˝s;coh < 0: (19.92)

This conclusion may in special circumstances be significantly different due
to other passive cavities in the accelerator. The shift in the synchrotron tune is
proportional to the beam current and can be used as a diagnostic tool to determine
the cavity impedance or its deviation from the ideal model (19.90).

In the preceding discussion it was assumed that only resonant cavities contribute
to Robinson damping. This is correct to the extend that other cavity like structures
of the vacuum enclosure in a circular accelerator have a low quality factor Q for the
whole spectrum or at least at multiples of the revolution frequency and therefore do
not contribute significantly to this effect through a persistent energy loss over many
turns. Later we will see that such low-Q structures in the vacuum chamber may lead
to other types of beam instability.

19.5.2 Potential Well Distortion

The synchrotron frequency is determined by the slope of the rf-voltage at the
synchronous phase. In the last subsection the effect of beam loading at the cavity
fundamental frequency was discussed demonstrating the need to include the induced
voltages in the calculation of the synchrotron oscillation frequency. These induced
voltages cause a perturbation of the potential well and as a consequence a change
in the bunch length. In this subsection we will therefore also include higher-order
interaction of the beam with its environment.

It is not possible to derive a general expression for the impedance of all com-
ponents of a vacuum chamber in a circular accelerator. However, measurements [7]
have shown that the impedance spectrum of circular accelerator vacuum chambers,
while excluding accelerating cavities, has the form similar to that of the SPEAR
storage ring shown in Fig. 19.9.

Fig. 19.9 SPEAR impedance
spectrum [7]

43210

∝ ω-0.68

Zc
Z(ω)

f = ω/2π(GHz)

∝ ω
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Up to the transition frequency ft, which is determined by vacuum chamber dimen-
sions, the impedance is predominantly inductive and becomes capacitive above the
transition frequency. We are looking here only for fields with wavelength longer
than the bunch length which may distort the rf-voltage waveform such as to change
the slope for the whole bunch. Later we will consider shorter wavelength which
give rise to perturbations within the bunch. Because the bunch length is generally of
the order of vacuum chamber dimensions we only need to consider the impedance
spectrum below transition frequency which is predominantly inductive. To preserve
generality, however, we assume a more general but still purely imaginary impedance
defined by

Z.!/k D i!Zk: (19.93)

Studying the modification of a finite bunch length due to potential-well distor-
tions we use for mathematical simplicity a parabolic particle distribution [8] in phase
(Fig. 19.10) normalized to the bunch current

R '`
�'` I.'/ d' D Ib

I.'/ D 3Ib

4'`

�
1 � '

2

'2`

�
; (19.94)

where 2'` is the bunch length expressed in terms of a phase with respect to the
fundamental rf-wavelength. The combined induced voltage in the whole vacuum
chamber is

VZ D Zk
dI

dt
D h!0Zk

dI

d'
D hIm

�
Zk=n

� dI

d'
; (19.95)

where we have introduced the normalized impedance

Zk
n
D i!0Zk ; (19.96)

which is the longitudinal impedance divided by the frequency in units of the
revolution frequency or by the mode number n D !=!0: Inserting (19.94)

Fig. 19.10 Current
distribution for potential-well
distortion

3Ib/4jl

-jl jl0



664 19 Beam-Cavity Interaction*

into (19.95) we get the induced voltage

VZ D �3hIb Im
�
Zk=n

�
2'3`

' ; (19.97)

which must be added to the rf-voltage Vrf- D Vcy sin . s C '/. Forming an effective
voltage we get

Veff D Vcy cos s

 
1 � 3hIb Im

�
Zk=n

�
2'3`Vcy cos s

!
' C Vcy sin s : (19.98)

This modification of the effective cavity voltage leads to an incoherent shift of
the synchrotron oscillation frequency

˝2
s

˝2
s0

D 1 � 3�ceIb

4�'3`E
2s
Im
�
Zk=n

�
; (19.99)

where we used the definition of the synchrotron tune 
2s D �ceVcy cos s

2�hE .
Above transition energy �c cos s > 0 and therefore the frequency shift is

positive for Im.Zk=n/ < 0 and negative for ImfZk=ng > 0. We note specifically
that the shift depends strongly on the bunch length and increases with decreasing
bunch length, a phenomenon we observe in all higher-order mode interactions.

Note that this shift of the synchrotron oscillation frequency does not appear for
coherent oscillations since the induced voltage also moves with the bunch oscil-
lation. The bunch center actually sees always the unaltered rf-field and oscillates
according to the slope of the unperturbed rf-voltage. The coherent synchrotron
oscillation frequency therefore need not be the same as the incoherent frequency.
This has some ramification for the experimental determination of the synchrotron
oscillation frequency.

The shift in incoherent synchrotron oscillation frequency reflects also a change
in the equilibrium bunch length which is different for proton or ion beams compared
to an electron bunch. The energy spread of radiating electron beams is determined
only by quantum fluctuations due to the emission of synchrotron radiation and
is independent of rf-fields. The electron bunch length scales therefore inversely
proportional to the synchrotron oscillation frequency and we get with ˝s=˝s0 D
�`0=�` from (19.99) after solving for �`=�`0

�3`
�3`0
� �`

�`0
� 8�ceIb

9�2
p
2��3`0E


2
s

Im

�
Zk
n

�
D 0 ; (19.100)

where we replaced the parabolic current distribution by a Gaussian distribution with
equal total bunch current and equal intensity in the bunch center by setting '` D
3
p
2�=4h�`=R and where �`0 is the unperturbed bunch length.
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Non-radiating particles, in contrast, must obey Liouville’s theorem and the
longitudinal beam emittance `p will not change due to potential-well distortions.
For proton or ion bunches we employ the same derivation for the bunch lengthening
but note that the bunch length scales with the energy spread in such a way that the
product of bunch length ` and momentum spread p remains constant. Therefore
` / 1=p˝s and the perturbed bunch length is from (19.99) with ` D .R=h/ '`

`4

`40
� 3�ceIb

4�E 
2s

R
3

`30
Im

�
Zk
n

�
`

`0
� 1 D 0 : (19.101)

Of course, along with this perturbation of the proton or ion bunch length goes an
opposite perturbation of the energy spread.

Problems

19.1 (S). Consider an electron storage ring to be used as a damping ring for a linear
collider. The energy is E D 1:21GeV, circumference C D 35:27m, bending radius
	 D 2:037m, momentum compaction factor ˛c D 0:01841, rf harmonic number
h D 84, cavity shunt impedance of Rcy D 8:4 M�. An intense bunch of Ne D
5 � 1010 particles is injected in a single pulse and is stored for only a few msec
to damp to a small beam emittance. Specify and optimize a suitable rf-system and
calculate the required rf-cavity power, cavity voltage, coupling factor first while
ignoring beam loading and then with beam loading. Assume a quantum lifetime
of 1 h.

19.2 (S). Show that for bunches short compared to the rf-wavelength the harmonic
amplitudes are Ih D 2Ib:
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Part VII
Coupled Motion



Chapter 20
Dynamics of Coupled Motion*

In linear beam dynamics transverse motion of particles can be treated separately in
the horizontal and vertical plane. This can be achieved by proper selection, design
and alignment of beam transport magnets. Fabrication and alignment tolerances,
however, will introduce, for example, rotated quadrupole components where only
upright quadrupole fields were intended. In other cases like colliding beams for
high energy physics large solenoid detectors are installed at the collision points
to analyse secondary particles. Such solenoids cause coupling which must be
compensated. The perturbation caused creates a coupling of both the horizontal
and vertical oscillation and independent treatment is no longer accurate. Such linear
coupling can be compensated in principle by additional rotated or skew quadrupoles,
but the beam dynamics for coupling effects must be known to perform a proper
compensation.

Since coupling is caused by linear as well as nonlinear fields, we observe this
effect in virtually any accelerator. In order to be able to manipulate coupling in a
controlled and predictable way, we need to understand its dynamics in more detail.
In this chapter, we will derive first the equations of motion for the two most general
sources of coupling, the solenoid field and the field of a rotated quadrupole, solve
the equations of motion and formulate modifications to beam dynamics parameters
and functions of linear uncoupled motion.

20.1 Equations of Motion in Coupled Systems

The most generally used magnets that introduce coupling in beam transport systems
are rotated quadrupoles and solenoid magnets and we will restrict our discussion
of coupled beam dynamics to such magnets defining the realm of linear coupling.
Equations (6.95), (6.96) include all linear and nonlinear coupling terms up to third
order while longitudinal fields are treated in Sect. 6.6. The equations of motion in
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the presence of upright and rotated quadrupoles as well as solenoid fields are

x00 C kx D �k yC S y0 C 1
2
S0y ;

y00 � ky D �k x � S x0 � 1
2
S0x

(20.1)

where the solenoid field is expressed by

S.z/ D e

p
Bs.z/ : (20.2)

We use in this chapter the symbol S for the solenoid field not to be confused with
the sine-like solution. In the following subsections we will derive separately the
transformation through both rotated quadrupoles and solenoid magnets.

20.1.1 Coupled Beam Dynamics in Skew Quadrupoles

The distribution of rotated or skew quadrupoles and solenoid magnets is arbitrary
and therefore no analytic solution can be expected for the differential equa-
tions (20.1). Similar to other beam line elements, we discuss solutions for the
equations of motion within individual magnets only and assume that strength
parameters within hard-edge model magnets stay constant. We discuss first solutions
of particle motion in skew quadrupoles alone and ignore solenoid fields. The
equations of motion for skew quadrupoles are from (20.1)

x00 C k y D 0 ;
y00 C k x D 0 : (20.3)

These equations look very similar to the equations for ordinary upright
quadrupoles except that the restoring forces now depend on the particle amplitude
in the other plane. We know the solution of the equation of motion for an upright
focusing and defocusing quadrupole and will try to apply these solutions to (20.3).
Combining the observation that each quadrupole is focusing in one plane and
defocusing in the other with the apparent mixture of both planes for a skew
quadrupole, we will try an ansatz for (20.3) which is made up of four principal
solutions

x D a cos' C bp
k

sin ' C c cosh' C dp
k

sinh ' ;

y D A cos' C Bp
k

sin ' C C cosh' C Dp
k

sinh' ;
(20.4)

where ' D p
k z and the variable z varies between zero and the full length of the

quadrupole, 0 < z < `q. The coefficients a; b; c; : : :D must be determined to be
consistent with the initial parameters of the trajectories .x0; x0

0; y0; y0
0/. For z D 0 we



20.1 Equations of Motion in Coupled Systems 671

get

x0 D aC c ; y0 D AC C ;
x0

0 D bC d ; y0
0 D BC D :

(20.5)

Solutions (20.4) must be consistent with (20.3) from which we find

a D A ; c D �C ;
b D B ; d D �D :

(20.6)

From (20.5), (20.6) we get finally the coefficients consistent with the initial
conditions and the differential equations (20.3)

a D A D 1
2
.x0 C y0/ ; b D B D 1

2
.x0

0 C y0
0/ ;

c D �C D 1
2
.x0 � y0/ ; d D �D D 1

2
.x0

0 � y0
0/ :

(20.7)

With these definitions the transformation through a skew quadrupole is0BB@
x
x0
y
y0

1CCA DMsq

0BB@
x0
x0
0

y0
y0
0

1CCA ; (20.8)

where Msq is the transformation matrix for a skew quadrupole,

Msq.sj0/ D 1

2

0BBB@
CC 1p

k
SC C� 1p

k
S�

�pkS� CC �pkSC C�
C� 1p

k
S� CC .'/ 1p

k
SC

�pkSC C� �pkS� CC

1CCCA ; (20.9)

with C˙ D C˙.'/ D cos' ˙ cosh' and S˙ D S˙.'/ D sin ' ˙ sinh' and
' Dpkz.

This transformation matrix is quite elaborate and becomes useful only for
numerical calculations on computers. We employ again thin lens approximation
where the quadrupole length vanishes

�
`sq ! 0

�
in such a way as to preserve the

integrated magnet strength or the focal length f . The matrix (20.9) then reduces to
the simple form

Msq.0 j`sq / D

0BB@
1 `sq 0 0

0 1 �1=f 0

0 0 1 `sq

�1=f 0 0 1

1CCA ; (20.10)
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where the focal length is defined as f �1 D k `sq. Note, that we have not set
`sq D 0 but retained the linear terms in `sq, which is a more appropriate thin-lens
approximation for weak skew quadrupoles of finite length. Along the diagonal, the
transformation matrix looks like a drift space of length `sq while the off-diagonal
elements describe the coupling due to the thin skew quadrupole.

20.1.2 Particle Motion in a Solenoidal Field

The equations of motion in a solenoid can be derived from (6.92a), neglecting all
transverse beam deflection and electric fields

x00 � 1
2

x0
z02

dz02
dz D e

p z0.y0Bs � By/ ;

y00 � 1
2

y0
z02

dz02
dz D e

p z0.Bx � x0Bs/ ;
(20.11)

where the solenoid field component Bs, assumed to be colinear with the z-direction,
can be derived from (6.103)

B D �� 1
2
B0

s x;� 1
2
B0

s y;Bs
�
: (20.12)

Following the same derivation as in Sect. 6.5, the general equations of motion in a
solenoid field including up to third-order terms are

x00 D C e

p
Bs y0 C 1

2

e

p
B0

sy (20.13)

C 1
4

e

p
.2x02y0Bs C x02yB0

s C 2y03Bs C yy02B0
s/CO.4/ ;

y00D � e

p
Bs x0 � 1

2

e

p
B0

sx (20.14)

� 1
4

e

p
.2x0y02Bs C xy02B0

s C 2x03Bs C xx02B0
s/CO.4/ :

Considering only linear terms, the equations of motion in a solenoidal field simplify
to

x00 D C e
p Bs y0 C 1

2
e
p B0

sy ;

y00 D � e
p Bs x0 � 1

2
e
p B0

sx ;
(20.15)

exhibiting clearly coupling terms. In a uniform field, where B0
s D 0, the particle

trajectory assumes the form of a helix parallel to the axis of the solenoid field.
The equations of motion (20.15) have been derived under the assumption of

paraxial rays so that we can set v � vz. In a solenoid field this approximation is not
generally acceptable since we may, for example, be interested in using a solenoid
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to focus particles emerging from a target at large angles. We therefore replace all
derivatives with respect to z by derivatives with respect to the time, use the particle
velocity v, and replace d

dz ! 1
v

d
dt . In a uniform solenoid field the equations of

motion are then

Rx D C
�

e
p Bsv

�
Py D !L Py ;

Ry D �
�

e
p Bsv

�
Px D �!L Px ;

(20.16)

where the Larmor frequency !L is defined by

!L D
eBsv

p
D ec2

E
Bs ; (20.17)

and E is the total particle energy. Multiplying (20.16) by Px and Py, respectively, and
adding both equations we get d.Px2 C Py2/=dt D 0 or

Px2 C Py2 D v2t D const : (20.18)

The transverse particle velocity vt or total transverse momentum of the particle
cpt stays constant during the motion in a uniform solenoid field. For Px0 D 0 and
Py0 D vt, for example, the transverse velocities can be expressed by

Px D vt sin!L t ;
Py D vt cos!L t

(20.19)

and the solutions of the equations of motion are

x.t/ D x0 � vt
!L

cos!L t ;

y.t/ D y0 C vt
!L

sin!L t :
(20.20)

The amplitude of the oscillating term in (20.20) is equal to the radius of the helical
path

	h D pt

eBs
; (20.21)

where we have used the Larmor frequency (20.17) and set the transverse momentum
pt D �mvt: The longitudinal motion is unaffected for not too strong solenoid fields
and Pvz D 0 as can be derived from the Lorentz equation since all transverse field
components vanish and

z.t/ D z0 C vz t : (20.22)
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The time to complete one period of the helix is

T D 2�

!L

(20.23)

during which time the particle moves along the z-axis a distance

z D 2� pz

eBs
; (20.24)

where pz is the z-component of the particle momentum.
The solutions of the equations of motion for a solenoid magnet are more complex

since we must now include terms that depend on the slope of the particle trajectories
as well. Ignoring skew quadrupoles the differential equations of motion in a solenoid
magnet becomes from (20.15)

x00 � S.z/ y0 � 1
2
S0.z/ y D 0 ;

y00 C S.z/ x0 C 1
2
S0.z/ x D 0 : (20.25)

Coupling between both planes is obvious and the variation of coordinates in
one plane depends entirely on the coordinates in the other plane. We note a high
degree of symmetry in the equations in the sense that both coordinates change
similar as a function of the other coordinates. This suggests that a rotation of the
coordinate system may help simplify the solution of the differential equations. We
will therefore try such a coordinate rotation in complex notation by defining

R D .xC i y/ e�i�.z/ ; (20.26)

where the rotation angle � may be a function of the independent variable z. A single
differential equation can be formed from (20.25) in complex notation

.xC iy/00 C i S.z/ .xC i y/0 C i 1
2

S0.z/ .xC iy/ D 0: (20.27)

The rotation (20.26) can now be applied directly to (20.27) and with

.xC iy/0 D R0 ei� C i�0 R eCi�

and

.xC iy/00 D R00ei� C 2 i�0R0ei� C i�00R ei� � �02R ei�: (20.28)

After insertion into (20.26) and sorting of terms

R00 � ŒS.z/�0 C �02�RC i 2Œ�0 C 1
2
S.z/�R0 C i Œ�00 C 1

2
S0.z/�R D 0 : (20.29)
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At this point, the introduction of the coordinate rotation allows a great simplifica-
tion (20.28) by assuming a continuous rotation along the beam axis with a rotation
angle defined by

�.z/ D � 1
2

Z z

z0

S.�/ d� (20.30)

where the solenoid field starts at z0. We are able to eliminate two terms in the
differential equation (20.28). Since a positive solenoid field generates Lorentz forces
that deflect the particles onto counter clockwise spiraling trajectories, we have
included the negative sign in (20.30) to remain consistent with our sign convention.
From (20.30) it follows that �0 D � 1

2
S.z/ and �00 D � 1

2
S0.z/, which after insertion

into (20.28) results in the simple equation of motion

R00 C 1
4

S2.z/R D 0 : (20.31)

With R D v C iw, we finally get two uncoupled equations

v00 C 1
4
S2.z/ v D 0 ; (20.32)

w00 C 1
4
S2.z/w D 0 :

Introducing a coordinate rotation allow us to reduce the coupled differential
equations (20.25) to the form of uncoupled equations of motion exhibiting focusing
in both planes. At the entrance to the solenoid field � D 0 and therefore v0 D x0 and
w0 D y0. To determine the particle motion through the solenoid field of length Ls

we simply follow the particle coordinates .v;w/ through the solenoid as if it were
a quadrupole of strength ks D 1

4
S2.Ls/ followed by a rotation of the coordinate

system by the angle ��.Ls/ thus reverting to Cartesian coordinates .x; y/.

20.1.3 Transformation Matrix for a Solenoid Magnet

Similar to the transformation through quadrupoles and other beam transport mag-
nets, we may formulate a transformation matrix for a solenoid magnet. Instead of
uncoupled 2 � 2 transformation matrices, however, we must use 4 � 4 matrices to
include coupling effects. Each coordinate now depends on the initial values of all
coordinates, x.z/ D .x0; x0

0; y0; y0
0/, etc. The transformation through a solenoid is

performed in two steps in which the first is the solution of (20.32) in the form of the
matrix Ms, and the second is a coordinate rotation introduced through the matrix
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Mr. The total transformation is therefore0BB@
x
x0
y
y0

1CCADMr Ms

0BB@
x0
x0
0

y0
y0
0

1CCA : (20.33)

In analogy to the transformation through an upright quadrupole, we get
from (20.32) the transformation matrix Ms from the beginning of the solenoid field
at z0 to a point z inside the solenoid magnet. The strength parameter in this case is
1
4
S2 assumed to be constant along the length of the magnet and the transformation

matrix is

Ms.z0jz/ D

0BB@
cos� 2

S sin � 0 0

� S
2

sin� cos� 0 0

0 0 cos� 2
S sin �

0 0 � S
2

sin � cos�

1CCA ; (20.34)

where � D 1
2
Sz. The next step is to introduce the coordinate rotation Mr which we

derive from the vector equation

.xC i y/ D .vC i w/ e�i�.z/ ; (20.35)

where the vectors are defined like x D .x; x0/, etc. Note that the value of the rotation
angle � is proportional to the strength parameter and the sign of the solenoid field
defines the orientation of the coordinate rotation. Fortunately, we need not keep
track of the sign since the components of the focusing matrix Ms are even functions
of z and do not depend on the direction of the solenoid field.

By separating (20.35) into its real and imaginary part and applying Euler’s
identity e˛ D cos˛ C i sin ˛, we get for the rotation matrix at the point z within
the solenoid magnet

Mr D

0BB@
cos� 0 sin � 0

� S
2

sin � cos� S
2

cos� sin �
� sin� 0 cos� 0
S
2

cos� � sin � � S
2

sin� cos�

1CCA : (20.36)

The total transformation matrix for a solenoid magnet from z0 D 0 to z finally is
the product of (20.34) and (20.36)

Msol.0jz < L/ D

0BB@
cos2 � 1

S sin 2� 1
2

sin 2� 2
S sin2 �

� S
2

sin 2� cos 2� S
2

cos 2� sin 2�
� 1
2

sin 2� � 2S sin2 � cos2 � 1
S sin 2�

� S
2

cos 2� � sin 2� � S
2

sin 2� cos 2�

1CCA : (20.37)
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This transformation matrix is correct inside the solenoid magnet but caution must
be taken applying this transformation matrix for the whole solenoid by setting z D
Ls. The result would be inaccurate because of a discontinuity caused by the solenoid
fringe field. Only the focusing matrix Ms for the whole solenoid becomes a simple
extension of (20.34) to the end of the solenoid by setting �.Ls/ D ˚ D 1

2
SLs.

Due to the solenoid fringe field, which in hard-edge approximation adopted here
is a thin slice, the rotation matrix exhibits a discontinuity. For z D Ls C �, where
� ! 0 the phase is �.Ls/ D ˚ but the solenoid strength is now zero, S D 0.
Therefore, the rotation matrix (20.36) assumes the form

Mr D

0BB@
cos˚ 0 sin˚ 0

0 cos˚ 0 sin˚
� sin˚ 0 cos˚ 0

0 � sin˚ 0 cos˚

1CCA : (20.38)

Notice that this matrix at the solenoid entrance is just the unit matrix. This does
not mean that we ignored the entrance fringe field, it only indicates that this effect
is already included in (20.37). After multiplication of (20.34) with (20.38), the
transformation matrix for a complete solenoid magnet is finally

Msol.0jL/ D

0BB@
cos2 ˚ 1

S sin 2˚ 1
2

sin 2˚ 2
S sin2 ˚

� S
4

sin 2˚ cos2 ˚ � S
2

sin2 ˚ 1
2

sin 2˚
� 1
2

sin 2˚ � 2S sin2 ˚ cos2 ˚ 1
S sin 2˚

S
2

sin2 ˚ � 1
2

sin 2˚ � S
4

sin 2˚ cos2 ˚

1CCA : (20.39)

Comparing matrices (20.37), (20.39), we find no continuous transition between
both matrices since only one matrix includes the effect of the fringe field. In reality,
the fringe field is not a thin-lens and therefore a continuous transition between both
matrices could be derived. To stay consistent with the rest of this book, however, we
assume for our discussions hard-edge magnet models.

From the matrix (20.34) some special properties of particle trajectories in a
solenoid can be derived. For ˚ D 1

2
� a parallel beam becomes focused to a point at

the magnet axis. A trajectory entering a solenoid with the strength˚ D 1
2

SL D �=2
at say y0 will follow one quarter of a spiraling trajectory with a radius 	 D y0=2 and
exit the solenoid at x D y D 0. Similarly, a beam emerging from a point source
on axis and at the start of the solenoid field will have been focused to a parallel
beam at the end of the solenoid. Such a solenoid is used to focus, for example, a
divergent positron beam emerging from the target source and is called a �=4-lens or
quarter-wavelength solenoid for obvious reasons.

The focusing properties of the whole solenoid are most notable when the field
strength is weak and the focal length is long compared to the length of the solenoid.
In this case, the focal length can be taken immediately from the M21 and M43 element
of the transformation matrix as we did for quadrupoles and other focusing devices
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and is with � D 1
2
SLs

1

fx
D M21 D � 12 S sin � cos� ; (20.40)

1

fy
D M43 D � 12 S sin � cos�: (20.41)

In contrast to quadrupole magnets, the focal length of a solenoid magnet is the
same in both planes and is in thin-lens approximation, � D 1

2
SLs ! 0 while

S2Ls Dconst.

1

fsol
D 1

4
S2Ls D 1

4

�
e

p

�2
B2s Ls : (20.42)

The thin lens transformation matrix for a weak solenoid is thereby

Msol.0jL/ D

0BBB@
1 0 0 0

� 1
fsol
1 0 0

0 0 1 0

0 0 � 1
fsol
1

1CCCA : (20.43)

The focal length is always positive and a solenoid will therefore always be
focusing independent of the sign of the field or the sign of the particle charge.

Transformation matrices have been derived for the two most important coupling
magnets in beam transport systems, the skew quadrupole and the solenoid magnet,
which allows us now to employ linear beam dynamics in full generality including
linear coupling. Using .4 � 4/-transformation matrices any particle trajectory can
be described whether coupling magnets are included or not. Specifically, we may
use this formalism to incorporate compensating schemes when strongly coupling
magnets must be included in a particular beam transport line.

20.2 Betatron Functions for Coupled Motion

For the linear uncoupled motion of particles in electromagnetic fields we have
derived powerful mathematical methods to describe the dynamics of single particles
as well as that of a beam composed of a large number of particles. Specifically, the
concept of phase space to describe a beam at a particular location and the ability
to transform this phase space from one point of the beam transport line to another
allow us to design beam transport systems with predictable results. These theories
derived for particle motion in one degree of freedom can be expanded to describe
coupled motion in both the horizontal and vertical plane.
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20.3 Conjugate Trajectories

Lattice functions have been defined to express solutions to the equations of motion
for individual trajectories. Conversely, there must be a way to express these lattice
functions by the principal solutions of the equation of motion. This would enable
us to determine lattice functions for coupled particle motion by integrating the
equations of motion for two orthogonal trajectories. To do this, we start from the
differential equation of motion in normalized coordinates for which two linearly
independent principal solutions are given by

w1.'/ D cos .
'/ ;
w2.'/ D sin .
'/ :

(20.44)

For simplicity, we set the initial amplitudes equal to unity and get in regular
coordinates with u.z/ D w

p
ˇ.z/ the conjugate trajectories are

u1.z/ D
p
ˇ.z/ cos .z/;

u2.z/ D
p
ˇ.z/ sin .z/;

(20.45)

where u.z/ stands for x.z/ or y.z/; and their derivatives

u0
1.z/ D � ˛.z/p

ˇ.z/
cos .z/ � 1p

ˇ.z/
sin .z/ ;

u0
2.z/ D � ˛.z/p

ˇ.z/
sin .z/C 1p

ˇ.z/
cos .z/ :

(20.46)

Using (20.45), (20.46) all lattice functions can be expressed in terms of conjugate
trajectories like

ˇ.z/ D u21.z/C u22.z/ ;

˛.z/ D �u1.z/ u0
1.z/ � u2.z/ u0

2.z/ ; (20.47)

�.z/ D u02
1 .z/C u02

2 .z/ :

The betatron phase advance  D  �  0 between the point z D 0 and the
point z can be derived from

cos. �  0/ D cos cos 0 C sin sin 0 ;

where  0 D  .0/ and  D  .z/. With (20.45), (20.47) we get

cos .z/ D u1.z/p
ˇ.z/

D u1.z/q
u21.z/C u22.z/

(20.48)
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and similarly,

sin .z/ D u2.z/p
ˇ.z/

D u2.z/q
u21.z/C u22.z/

: (20.49)

The betatron phase advance then is given by

cos . �  0/ D u1u10 C u2u20q
u21 C u22

q
u210 C u220

(20.50)

where ui D ui.z/ and ui0 D ui.0/. Finally, we can express the elements of the
transformation matrix from z D 0 to z by

M.zj0/ D
�

M11 M12

M21 M22

�
D
�

u1 u0
20 � u2 u0

10 u10 u2 � u1 u20
u0
1 u0

10 � u0
2 u0

20 u10 u0
2 � u20 u0

1

�
: (20.51)

The two linearly independent solutions (20.45) also can be used to define and
characterize the phase space ellipse. At the start of a beam line we set z D 0 and
 .0/ D 0 and define an ellipse by the parametric vector equation

u.0/ D a Œu1.0/ cos� � u2.0/ sin �� ; (20.52)

where

u.0/ D
�

u0
u0
0

�
and ui.0/ D

�
ui0

u0
i0

�
: (20.53)

As � varies over a period of 2�; the vector follows the outline of an ellipse. To
parametrize this ellipse we calculate the area enclosed by the phase ellipse. The area
element is dA D u0du0, from (20.52) we get

du0 D a Œu10 sin � � u20 cos�� d� (20.54)

and the area enclosed by the ellipse is

A D 2 a2
Z �

0
.u0
10 cos� � u0

20 sin �/ .u10 sin � � u20 cos�/ d� (20.55)

D a2� .u10u0
20 � u0

10u20/ D a2� ;

since the expression in the brackets is the Wronskian, which we choose to normalize
to unity. The Wronskian is an invariant of the motion and therefore the area of the
phase ellipse along the beam transport line is preserved. The vector equation (20.52)
describes the phase ellipse enclosing a beam with the emittance a2 D �.
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The formalism of conjugate trajectories has not produced any new insight into
beam dynamics that we did not know before but it is an important tool for the
discussion of coupled particle motion and provides a simple way to trace individual
particles through complicated systems.

Ripken [1] developed a complete theory of coupled betatron oscillations and
of particle motion in four-dimensional phase space. In our discussion of coupled
betatron motion and phase space transformation we will closely follow his theory.
The basic idea hinges on the fact that the differential equations of motion provide
the required number of independent solutions, two for oscillations in one plane and
four for coupled motion in two planes, to define a two- or four-dimensional ellipsoid
which serves as the boundary in phase space for the beam enclosed by it. Since the
transformations in beam dynamics are symplectic, we can rely on invariants of the
motion which are the basis for the determination of beam characteristics at any point
along the beam transport line if we only know such parameters at one particular
point.

Before we discuss coupled motion in more detail it might be useful to recollect
some salient features of linear beam dynamics. The concept of conjugate trajectories
can be used to define a phase ellipse at z D 0 in parametric form. Due to the
symplecticity of the transformations we find the area of the phase ellipse to be a
constant of motion and we may describe the phase ellipse at any point z along the
beam line is given by (20.52). The Wronskian is a constant of motion normalized
to unity in which case the phase ellipse (20.52) has the area A D ��, where � is
the beam emittance for the beam enclosed by the ellipse. The solutions are of the
form (20.45) and forming the Wronskian we find the normalization

ˇ �0 D 1 (20.56)

as we would expect.
To describe coupled motion we try analogous to (20.52) the ansatz

v.z/ D p�I Œv1.z/ cos#I � v2.z/ sin#I � cos� (20.57)

Cp�II Œv3.z/ cos#II � v4.z/ sin#II � sin�:

As the independent variables �; #I and #II vary from 0 to 2� the vector v covers all
points on the surface of a four-dimensional ellipsoid while the shape of the ellipse
varies along the beam line consistent with the variation of the vector functions vi.
In this ansatz we chose two modes of oscillations indicated by the index I and II.
If the oscillations were uncoupled, we would identify mode-I with the horizontal
oscillation and mode-II with the vertical motion and (20.57) would still hold with
� D 0 having only horizontal nonvanishing components while v3;4 contain nonzero
components only in the vertical plane for � D �=2. For independent solutions vi of
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coupled motion, we try

x1.z/ D
p
ˇxI.z/ cos�xI.z/ ; y1.z/ D

p
ˇyI.z/ cos�yI.z/ ;

x2.z/ D
p
ˇxI.z/ sin �xI.z/ ; y2.z/ D

p
ˇyI.z/ sin �yI.z/ ;

x3.z/ D
p
ˇxII.z/ cos�xII.z/ ; y3.z/ D

p
ˇyII.z/ cos�yII.z/ ;

x4.z/ D
p
ˇxII.z/ sin �xII.z/ ; y4.z/ D

p
ˇyII.z/ sin �yII.z/ ;

(20.58)

which is consistent with the earlier definitions of conjugate trajectories. Earlier in
this section we defined conjugate trajectories to be independent solutions normal-
ized to the same phase ellipse and developed relationships between these trajectories
and betatron functions. These relationships can be expanded to coupled motion by
defining betatron functions for both modes of oscillations similar to (20.47)

ˇxI D x21 C x22 ; ˇxII D x23 C x24 ; (20.59)

ˇyI D y21 C y22 ; ˇyII D y23 C y24 : (20.60)

The phase functions can be defined like (20.48) by

cos�xI D
x1q

x21 C x22

; cos�xII D
x3q

x23 C x24

; (20.61)

cos�yI D
y1q

y21 C y22

; cos�yII D
y3q

y23 C y24

: (20.62)

All other lattice functions can be defined in a similar way. By following the
conjugate trajectories and utilizing the .4 � 4/-transformation matrices including
coupling effects we are able to determine the betatron functions at any point along
the coupled beam transport line. To correlate parameters of the four-dimensional
phase ellipse with quantities that can be measured, we write the solutions in the
form

x1.z/ D
p
ˇxI.z/ cos�xI.z/ ; x2.z/ D

p
ˇxI.z/ sin �xI.z/ ;

x0
1.z/ D

p
�xI.z/ cos xI.z/ ; x0

2.z/ D
p
�xI.z/ sin xI.z/ ;

(20.63)

and similar for all other solutions. Comparing the second equations in (20.63) with
the derivative of the first equations we find the definitions

�xI D
ˇ2xI
�02

xI
C ˛2xI

ˇxI

(20.64)

and

 xI D �xI � arctan
ˇxI�

0
xI

˛xI

: (20.65)
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The other parameters �xII , etc. are defined similarly and the phase ellipse (20.57)
can now be expressed by the four-dimensional vector

v.z/ D p�I

0BB@
p
ˇxI cos .�xI C #I/p
�xI cos . xI C #I/p
ˇyI cos

�
�yI C #I

�
p
�yI cos

�
 yI C #I

�
1CCA cos� (20.66)

Cp�II

0BB@
p
ˇxII cos .�xII C #II/p
�xII cos . xII C #II/p
ˇyII cos

�
�yII C #II

�
p
�yII cos

�
 yII C #II

�
1CCA sin�

This vector covers all points on the surface of the four-dimensional ellipsoid as
�; #I and #II vary independently from 0 to 2� . For one-dimensional oscillations we
know from the definition of the phase ellipse that the product

p
�u

p
ˇu is equal to

the beam size or beam envelope Eu and
p
�u
p
�u equal to the angular beam envelope

Au, where u D x or y. These definitions of beam envelopes can be generalized to
coupled motion but we find from (20.66) that the envelopes have two contributions.
Each point on the phase ellipse for an uncoupled beam appears now expanded into
an ellipse with an area ��II as shown in Fig. 20.1.

In a real beam transport line we are not able to observe experimentally the four-
dimensional phase ellipse. By methods of emittance measurements, however, we
may determine the area for the projection of the four-dimensional ellipsoid onto the
.x � x0/, the .y � y0/ or the .x � y/-plane.

To do that we note in (20.66) that the maximum amplitude of a particle in the u-
plane occurs for �uI;II D �#uI;II and a projection angle � given by sin2 � D �uII ˇuII

Eu
;

where the beam envelope for coupled motion is given by

Eu D
p
�uIˇuI C �uIIˇuII : (20.67)

Fig. 20.1 Phase space ellipse
for coupled motion
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Similarly, we get from the second component of (20.66) the angular envelope

Au D
p
�uI�uI C �uII�uII (20.68)

for  uI;II D � Q#uI;II and a projection angle given by

sin2 � D �uII ˇuII

Au
: (20.69)

To completely determine the phase ellipse we calculate also the slope x0 for the
particle at x D Ex which is the slope of the envelope E0. Taking the derivative
of (20.67) we get

E0
u D �

�uI˛uI C �uII˛uIIp
�uIˇuI C �uIIˇuII

: (20.70)

Expressing the equation of the phase ellipse in terms of these envelope definitions
we get

A2u u2 � 2E0
uEu uu0 C E2u u02 D �2u (20.71)

and inserting u D Eu and u0 D E0
u into (20.71) we get for the emittance of the

projection ellipse

�u D Eu

q
A2u � E0

u
2: (20.72)

The envelope functions can be measured noting that E2 D �11;A2 D �22
and EE0 D ��12 where the �ij are elements of the beam matrix. Because of
the deformation of the four-dimensional phase ellipse through transformations, we
cannot expect that the projection is a constant of motion and the projected emittance
is therefore of limited use.

A more important and obvious projection is that onto the .x; y/-plane which
shows the actual beam cross section under the influence of coupling. For this
projection we use the first and third equation in (20.66) and find an elliptical beam
cross section. The spatial envelopes Ex and Ey have been derived before in (20.67)
and become here

Ex D
p
�xIˇxI C �xIIˇxII ; (20.73)

Ey D
q
�yIˇyI C �yIIˇyII : (20.74)
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The y-coordinate for Ex, which we denote by Exy, can be derived from the third
equation in (20.66) noting that now #yI;II D ��xI;II , � is given by (20.69) and

Exy D �I

p
ˇxIˇyI cos�I C �II

p
ˇxIIˇyII cos�IIp

�xIˇxI C �xIIˇxII

; (20.75)

where �I;II D �xI;II � �yI;II . The beam cross section is tilted due to coupling
whenever Ex;y ¤ 0. The tilt angle  of the ellipse is determined by

tan 2 D 2Ex Exy

E2x � E2y
(20.76)

or more explicitly

tan 2 D 2�I

p
ˇxIˇyI cos�I C �II

p
ˇxIIˇyII cos�II

�xIˇI C �xIIˇII
(20.77)

The beam cross section of a coupled beam is tilted as can be directly observed,
for example, through a light monitor which images the beam cross section by
the emission of synchrotron light. This rotation vanishes as we would expect for
vanishing coupling when ˇxII ! 0 and ˇyI ! 0. The tilt angle is not a constant of
motion and therefore different tilt angles can be observed at different points along a
beam transport line.

We have discussed Ripken’s theory [1] of coupled betatron motion which allows
the formulation of beam dynamics for arbitrary strength of coupling. The concept
of conjugate trajectories and transformation matrices through skew quadrupoles
and solenoid magnets are the basic tools required to determine coupled betatron
functions and the tilt of the beam cross section.

20.4 Hamiltonian and Coupling

In practical beam transport systems particle motion is not completely contained in
one or the other plane although special care is being taken to avoid coupling effects
as much as possible. Coupling of the motion from one plane into the other plane can
be generated through the insertion of actual rotated magnets or in a more subtle
way by rotational misalignments of upright magnets. Since such misalignments
are unavoidable, it is customary to place weak rotated quadrupoles in a transport
system to provide the ability to counter what is known as linear coupling caused by
unintentional magnet misalignments. Whatever the source of coupling, we consider
such fields as small perturbations to the particle motion.

The Hamiltonian treatment of coupled motion follows that for motion in a single
plane in the sense that we try to find cyclic variables while transforming away
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those parts of the motion which are well known. For a single particle normalized
coordinates can be defined which eliminate the z-dependence of the unperturbed
part of the equations of motion. Such transformations cannot be applied in the case
of coupled motion since they involve the oscillation frequency or betatron phase
function which is different for both planes.

20.4.1 Linearly Coupled Motion

We will derive some properties of coupled motion for the case of linear coupling
introduced, for example, by a rotated quadrupole. Equations of linearly coupled
motion are with k D p.z/ of the form

x00 C k x D �p.z/ y ;
y00 � y x D �p.z/ x ;

(20.78)

which can be derived from the Hamiltonian for linearly coupled motion

H D 1
2

x0 2 C 1
2

y0 2 C 1
2
k x2 � 1

2
k y2 C p.z/ x y : (20.79)

This Hamiltonian is composed of an uncoupled Hamiltonian H0 and the pertur-
bation Hamiltonian for linear coupling

H1 D p.z/ x y : (20.80)

The solutions for the uncoupled equations with integration constants cu and � are of
the form

u.z/ D cu

p
ˇu cos Œ u.z/C �� ;

u0.z/ D � cup
ˇu
f˛u.z/ cos Œ u.z/C ��C sin Œ u.z/C ��g : (20.81)

Applying the method of variation of integration constants, we try the ansatz

u.z/ D p2au.z/
p
ˇu cos Œ u.z/C �.z/� ;

u0.z/ D �
q

2au.z/
ˇu
f˛u.z/ cos Œ u.z/C �.z/�C sin Œ u.z/C �.z/�g ; (20.82)

for the coupled motion. Now we use the integration constants .a; �/ as new variables
and to show that the new variables are canonical, we use the Hamiltonian equations
@H=@u0 Ddu=dz and @H=@u D �du0=dz and get

@H

@u0 D
@H0

@u0 C
@H1

@u0 D
du

dz
D @u

@z
C @u

@a

@a

@z
C @u

@�

@�

@z
: (20.83)
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A similar expression exists for the second Hamiltonian equation of motion

@H

@u
D @H0

@u
C @H1

@u
D �du0

dz
D �@u0

@z
� @u0

@a

@a

@z
� @u0

@�

@�

@z
: (20.84)

For uncoupled oscillators we know that a D const. and � D const. and therefore
@u=@z D @H0=@u0 and @u0=@z D �@H0=@u. With this we derive from (20.81)–
(20.84) the equations

@H1
@�
D @H1

@u
@u
@�
C @H1

@u0
@u0
@�
D � da

dz ;
@H1
@a D C @H1

@u
@u
@a C @H1

@u0
@u0
@a D d�

dz ;
(20.85)

demonstrating that the new variables .�; a/ are canonical variables and (20.82)
are canonical transformations. Applying (20.82) to the perturbation Hamilto-
nian (20.80) with appropriate indices to distinguish between horizontal and vertical
plane, the perturbation Hamiltonian becomes

H1 D 2 p.z/
q
ˇxˇy
p

axay cos . x C �x/ cos
�
 y C �y

�
; (20.86)

where z is still the independent variable. The dynamics of linearly coupled motion
becomes more evident after isolating the periodic terms in (20.86). For the
trigonometric functions we set

cos . u C �u/ D 1
2

h
ei. uC�u/ C e�i. uC�u/

i
(20.87)

and the Hamiltonian takes the form

H1 D 1
2
p.z/

q
ˇxˇy
p

axay

X
lx;ly

eiŒlx. xC�x/Cly. yC�y/�; (20.88)

where the non-zero integers lx and ly are integers defined by

lx; ly 9 .�1; 1/ : (20.89)

Similar to the one-dimensional case we try to separate constant or slowly varying
terms from the fast oscillating terms and expand the exponent in (20.88) like

lx x C ly y � lx
0x' � ly
0y'

C lx
0x' C ly
0y' C lx�x C ly�y ; (20.90)

where �u D 
0u'; 
0u are the tunes for the periodic lattice, ' D 2�z=L and L is
the length of the lattice period. The first four terms in (20.90) are periodic with the
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period ' .L/ D 2� C ' .0/. Inserting (20.90) into (20.88) we get with  u .L/ D
2�
0u C  u .0/

H1 D 1
2

X
lx;ly

p.z/
q
ˇxˇyeiŒlx xCly y�lx
0x'�ly
0y'�

�paxay

X
lx;ly

eiŒlx
0x'Cly
0y'Cly yCly�y� : (20.91)

In this form we recognize the periodic factor

A .'/ D p.z/
q
ˇxˇyeiŒlx xCly y�lx
0x'�ly
0y'� (20.92)

since betatron functions and perturbations p.z/ Dk.z/ are periodic. After expand-
ing (20.92) into a Fourier series

L

2�
A .'/ D

X
q

�q;lx;ly eiqN' (20.93)

coupling coefficients can be defined by

�q;lx;ly D
1

2�

Z 2�

0

L

2�
A .'/ e�iqN'd'

D 1

2�

Z L

0

k
q
ˇxˇyeiŒlx xCly y�.lx
0xCly
0y�qN / 2�L z� dz (20.94)

Since �q;1;1 D �q;�1;�1 and �q;1;�1 D �q;�1;1, we have with �1 
 l 
 C1

�q;l D 1

2�

Z L

0

k
q
ˇxˇyeiŒ xCl y�.
0xCl 
0y�qN / 2�L z� dz : (20.95)

The coupling coefficient is a complex quantity indicating that there are two
orthogonal and independent contributions which require also two orthogonally
independent corrections. Now that the coupling coefficients are defined in a
convenient form for numerical evaluation we replace the independent variable z by
the angle variable ' D 2�z=L and obtain the new Hamiltonian QH1 D 2�

L H1 or

QH D
X

q

�q;l
p

axay cos
�
�x C l�y Cq'

�
; (20.96)

where

q D 
0x C l 
0y � qN : (20.97)
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Most terms in (20.96) are fast oscillating and therefore cancel before any damage
can be done to particle stability. One term, however, is slowly varying for q D r
defining the resonance condition for coupled motion

�
q � 0

�
or

rN � 
0x C l 
0y : (20.98)

In this resonant case, the quantityr is the distance of the tunes from the coupling
resonance as defined by (20.97) with q D r. Neglecting all fast oscillating terms
we apply one more canonical transformation .�u; au/ !

� Q�u; Qau
�

to eliminate
the independent variable ' from the Hamiltonian. In essence, we thereby use a
coordinate system that follows with the unperturbed particle and exhibits only the
deviations from the ideal motion. From the generating function

G D Qax
�
�x C 1

2
r'

�C Qay
�
�y C l 1

2
r'

�
(20.99)

we get for the new variables

Q�x D @G
@Qax
D �x C 1

2
r ' ; Qax D @G

@�x
D ax ;

Q�y D @G
@Qay
D �y C l 1

2
r ' ; Qay D @G

@�y
D ay ;

(20.100)

and the new Hamiltonian for the rotating coordinate system is

QHr D QH C @G

@'
D QH C 1

2
r ax C l 1

2
r ay : (20.101)

For simplicity we drop the tilde on the amplitudes and use
�
ax; ay

�
: The resonant

Hamiltonian becomes after this transformation

QHr D 1
2
r
�
ax C lay

�C �r;l
p

axay cos
� Q�x C l Q�y

�
(20.102)

and the equations of motion are

@ax
@'
D � @ QHr

@ Q�x
D �r;l

p
axay sin

� Q�x C l Q�y
�
;

@ay

@'
D � @ QHr

@ Q�y
D l �r;l

p
axay sin

� Q�x C l Q�y
�
;

(20.103)

and

@ Q�x
@'
D @ QHr

@ax
D 1

2
r C 1

2
�r;l

q
ay

ax
cos

� Q�x C l Q�y
�
;

@ Q�y

@'
D @ QHr

@ay
D l 1

2
r C 1

2
�r;l

q
ax
ay

cos
� Q�x C l Q�y

� (20.104)

From these equations we can derive criteria for the stability or resonance
condition of coupled systems. Depending on the value of l we distinguish a sum
resonance if l D C1 or a difference resonance if l D �1.
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Linear Difference Resonance

In case of a difference resonance .l D �1/ we add both Eqs. (20.103) and get

d

d'

�
ax C ay

� D 0 : (20.105)

The coupled motion is stable because the sum of both amplitudes does not
change. Both amplitudes ax and ay will change such that one amplitude increases
at the expense of the other but the sum of both will not change and therefore
neither amplitude will grow indefinitely. Since ax and ay are proportional to the
beam emittance, we note that the sum of the horizontal and vertical emittance stays
constant as well,

�x C �y D const. (20.106)

The resonance condition (20.98) for a difference resonance becomes [2]


x � 
ymr D N : (20.107)

Our discussion of linear coupling resonances reveals the feature that a difference
resonances will cause an exchange of oscillation amplitudes between the horizontal
and vertical plane but will not lead to beam instability. This result is important
for lattice design. If emittance coupling is desired, one would choose tunes which
closely meet the resonance condition. Conversely, when coupling is to be avoided
or minimized, tunes are chosen at a save distance from the coupling resonance.

There exists a finite stop-band width also for the coupling resonance just as
for any other resonance and we have all the mathematical tools to calculate that
width. Since the beam is not lost at a difference coupling resonance, we are also
able to measure experimentally the stop-band width by moving the tunes through
the resonance. The procedure becomes obvious after linearizing the equations of
motion (20.103), (20.104). Following a suggestion by Guignard [3], we define new
variables similar in form to normalized coordinates

w D paxei Q�x ;

v D payei Q�y :
(20.108)

Taking derivatives of (20.108) with respect to ' and using (20.103), (20.104) we
get after some manipulation the linear equations

dw
d' D i 1

2
.�v Crw/ ;

dv
d' D i 1

2
.�w �rv/ ;

(20.109)

where we have set for simplicity �r;�1 D �.
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These equations can be solved analytically and will provide further insight into
the dynamics of coupled oscillations. We will look for characteristics of coupled
motion which do not depend on initial conditions but are general for all particles.
Expecting the solutions w and v to describe oscillations, we assume that the motion
in both planes depends on the initial conditions w0; v0 in both planes due to the
effect of coupling. For simplicity, however, we study the dynamics of a particle
which starts with a finite amplitudes w0 ¤ 0 in the horizontal plane only and set
v0 D 0. The ansatz for the oscillations be

w.'/ D w0
�
a ei
' C b e�i
'

�
;

v.'/ D w0
�
c ei
' C d e�i
'

�
;

(20.110)

where we define an as yet undefined frequency 
. Inserting (20.110) into (20.109)
the coefficients of the exponential functions vanish separately and we get from the
coefficients of ei
' the two equations

2
a D �cCra ;
2
c D �aCrc ;

(20.111)

from which we may eliminate the unknowns a and c to get the defining equation for
the oscillation frequency


 D 1
2

q
2

r C �2 : (20.112)

While determining the coefficients a; b; c; d; we note that due to the initial
conditions aC b D 1 and cC d D 0. Similar to (20.111) we derive another pair of
equations from the coefficients of e�i
'

2
b D �d �rb ;
2
d D �bCrd ;

(20.113)

which completes the set of four equations required to determine with (20.112) the
four unknown coefficients

a D 2
Cr
4


; b D 2
�r
4


;

c D �
4

; d D � �

4

;

(20.114)

With this, the solutions (20.110) become

w.'/ D w0 cos 
' C i w0
r
2


sin 
' ;
v.'/ D Ci w0 �2
 sin 
' ;

(20.115)
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and by multiplication with the complex conjugate and (20.108) we get expressions
for the coupled beam emittances .�u D 2au/

ax D ax0
1
4
2

�
2

r C �2 cos2 
'
�
;

ay D ax0
�2

4
2
sin2 
' :

(20.116)

The ratio of maximum values for beam emittances in both planes under the
influence of linear coupling is from (20.116)

�y

�x
D �2

2
r C �2

: (20.117)

The emittance coupling increases with the strength of the coupling coefficient
and is equal to unity at the coupling resonance or for large values of �. At the
coupling resonance we observe complete exchange of emittances at the frequency

. If on the other hand, the tunes differ and r ¤ 0; there will always be a finite
oscillation amplitude left in the horizontal plane because we started with a finite
amplitude in this plane. A completely symmetric result would be obtained only for
a particle starting with a finite vertical amplitude as well.

We may now collect all results and derive the particle motion as a function of
time or '. For example, the horizontal particle position is determined from (20.82)
where we set

p
ax D w e�i Q�x and further replace w by (20.110). Here, we are

only interested in the oscillation frequencies of the particle motion and note that
the oscillatory factor in (20.82) is Re

�
ei. xC�x/

	
. Together with other oscillatory

quantities e�i Q�x and w we get both in the horizontal and vertical plane terms with
oscillatory factors

Re
h
ei. uC�u� Q�u˙
'/

i
(20.118)

where the index u stands for either x or y. The phase  u D 
u' and from (20.100)
and l D �1 for the difference resonance Q�u D �u ˙ 1

2
r'. These expressions used

in (20.118) define two oscillation frequencies


I;II D 
x;y � 1
2
r ˙ 
 (20.119)

or with (20.112)


I;II D 
x;y � 1
2
r ˙ 1

2

q
2

r C �2 : (20.120)

We have again found the result that under coupling conditions the betatron
oscillations assume two modes. In a real accelerator only these mode frequencies
can be measured while close to the coupling resonance. For very weak coupling
.� � 0/ the mode frequencies are approximately equal to the uncoupled frequencies
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x;y, respectively. Even for large coupling this equality is preserved as long as the
tunes are far away from the coupling resonance or r � �.

The mode frequencies can be measured while adjusting quadrupoles such that the
beam is moved through the coupling resonance. During this adjustment the detuning
parameter r varies and changes sign as the coupling resonance is crossed. For
example, if we vary the vertical tune across a coupling resonance from below, we
note that the horizontal tune or 
I does not change appreciably until the resonance is
reached, because �r C

p
2

r C �2 � 0. Above the coupling resonance, however,
r has changed sign and 
I increase with r. The opposite occurs with the
vertical tune. Going through the coupling resonance the horizontal tune has been
transformed into the vertical tune and vice versa without ever getting equal.

Actual tune measurements [4] are shown in Fig. 20.2 as a function of the
excitation current of a vertically focusing quadrupole. The vertical tune change is
proportional to the quadrupole current and so is the parameterr. While increasing
the quadrupole current, the vertical tune is increased and the horizontal tune
stays practically constant. We note that the tunes actually do not cross the linear
coupling resonance during that procedure, rather the tune of one plane is gradually
transformed into the tune of the other plane and vice versa. Both tunes never become
equal and the closest distance is determined by the magnitude of the coupling
coefficient �.

The coupling coefficient may be nonzero for various reasons. In some cases
coupling may be caused because special beam characteristics are desired. In most
cases, however, coupling is not desired or planned for and a finite linear coupling of
the beam emittances is the result of rotational misalignments of upright quadrupoles.
Where this coupling is not desired and must be minimized, we may introduce
a pair or two sets of rotated quadrupoles into the lattice to cancel the coupling
due to misalignments. The coupling coefficient (20.95) is defined in the form of
a complex quantity. Both orthogonal components must therefore be compensated

Fig. 20.2 Measurements of mode frequencies as a function of detuning for linearly coupled
motion [4]
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by two orthogonally located skew quadrupoles and the proper adjustment of these
quadrupoles can be determined by measuring the width of the linear coupling
resonance.

Linear Sum Resonance

To complete the discussion, we will now set l D C1 and get from (20.98) the
resonance condition for a sum resonance


x C 
y D mrN : (20.121)

Taking the difference of both Eqs. (20.103), we get

d

d'

�
ax � ay

� D 0 ; (20.122)

which states only that the difference of the emittances remains constant. Coupled
motion in the vicinity of a sum resonance is therefore unstable allowing both
emittances to grow unlimited. To solve the equations of motion (20.103), (20.104),
we try the ansatz

u D paxei˚x C i
p

aye
i˚y : (20.123)

From the derivative du=d', we get with (20.103), (20.104)

du

d'
D i 1

2

�
r u � � u�� ; (20.124)

and for the complex conjugate

du�

d'
D �i 1

2

�
r u� C � u

�
: (20.125)

Solving these differential equations with the ansatz

u D a ei
' C b e�i
' ; (20.126)

and the complex conjugate

u� D a e�i
' C b ei
'; (20.127)

we get after insertion into (20.124), (20.125) analogous to (20.111) the oscillation
frequency


 D 1
2

q
2

r � �2 : (20.128)
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This result shows that motion in the vicinity of a linear sum resonance becomes
unstable as soon as the detuning is less than the coupling coefficient. The condition
for stability is therefore

r > � : (20.129)

By a careful choice of the tune difference to avoid a sum resonance and careful
alignment of quadrupoles, it is possible in real circular accelerators to reduce
the coupling coefficient to very small values. Perfect compensation of the linear
coupling coefficient eliminates the linear emittance coupling altogether. However,
nonlinear coupling effects become then dominant which we cannot compensate for.

20.4.2 Higher-Order Coupling Resonances

So far all discussions on coupled motions and resonances have been based on linear
coupling effects caused by rotated quadrupole fields. For higher-order coupling the
mathematical treatment of the beam dynamics is similar although more elaborate.
The general form of the nth-order resonance condition (20.98) is

lx
x C ly
y D mrN with jlxj C
ˇ̌
ly
ˇ̌ 
 n : (20.130)

The factors lx and ly are integers and the sum jlxj C
ˇ̌
ly
ˇ̌

is called the order of the
resonance. In most cases it is sufficient to choose a location in the resonance diagram
which avoids such resonances since circular accelerators are generally designed for
minimum coupling. In special cases, however, where strong sextupoles are used
to correct chromaticities, coupling resonances can be excited in higher order. For
example, the difference resonance 2
x � 2
y has been observed at the 400 GeV
proton synchrotron at the Fermi National Laboratory [5].

20.4.3 Multiple Resonances

We have only discussed isolated resonances. In general, however, nonlinear fields
of different orders do exist, each contributing to the stop-band of resonances. A
particularly strong source of nonlinearities occurs due to the beam-beam effect in
colliding-beam facilities where strong and highly nonlinear fields generated by one
beam cause significant perturbations to particles in the other beam. The resonance
patterns from different resonances are superimposed creating new features of
particle instability which were not present in any of the resonances while treated
as isolated resonances. Of course, if one of these resonances is unstable for any
oscillation amplitude the addition of other weaker resonances will not change this
situation.
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Combining the effects of several resonances should cause little change for small
amplitude oscillations since the trajectory in phase space is close to a circle for
resonances of any order provided there is stability at all. Most of the perturbations
of resonance patterns will occur in the vicinity of the island structures. When island
structures from different resonances start to overlap, chaotic motion can occur and
may lead to stochastic instability. The onset of island overlap is often called the
Chirikov criterion after Chirikov [6], who has studied extensively particle motion in
such situations.

It is beyond the scope of this text to evaluate the mathematical criteria of multi
resonance beam dynamics. For further insight and references the interested reader
may consult articles in [7–10]. A general overview and extensive references can also
be found in [11].

Problems

20.1 (S). Consider a lattice made of 61 FODO cells with 90ı per cell in both planes.
The half cell length be L D 5m and the full quadrupole length ` D 0:2m. Introduce
a Gaussian distribution of rotational quadrupole misalignments. Calculate and plot
the coupling coefficient for the ring and the emittance ratio as a function of the
rms misalignment. If the emittance coupling is to be held below 1 % how must the
lattice be retuned and how well must the quadrupoles be aligned? Insert two rotated
quadrupoles into the lattice such that they can be used to compensate the coupling
due to misalignments. Calculate the required quadrupole strength.

20.2 (S). Use the measurement in Fig. 20.2 and determine the coupling coefficient
�:

20.3. Can we rotate a horizontally flat 10 GeV beam by 90ı with a solenoid? If yes,
what is the strength of the solenoid and where along the z-axis do we have a flat
vertical beam?

20.4. In circular accelerators rotated quadrupoles may be inserted to compensate
for coupling due to misalignments. Assume a statistical distribution of rotational
quadrupole errors which need to be compensated by special rotated quadrupoles.
How many such quadrupoles are required and what criteria would you use for
optimum placement in the ring?

20.5. Consider a point source of particles (e.g. a positron conversion target) on the
axis of a solenoidal field. Determine the solenoid parameters for which the particles
would exit the solenoid as a parallel beam. Such a solenoid is also called a �=4-lens,
why? Let the positron momentum be 10 MeV/c. What is the maximum solid angle
accepted from the target that can be focused to a beam of radius r D 1 cm? What
is the exit angle of a particle which emerges from the target at a radius of 1 mm?
Express the transformation of this �=4-lens in matrix formulation.
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20.6. Choose a FODO lattice for a circular accelerator and insert at a symmetry
point a thin rotated quadrupole. Calculate the tilt of the beam cross section at this
point as a function of the strength of the rotated quadrupole. Place the same skew
quadrupole in the middle of a FODO half cell and determine if the rotation of
the beam aspect ratio at the symmetry point requires a stronger or a weaker field.
Explain why.

20.7. Assume two cells of a symmetric FODO lattice and determine the betatron
functions for a phase advance of 90ı per cell. Now introduce a rotational mis-
alignment of the first quadrupole by an angle ˛ which generates coupling of the
horizontal and vertical betatron oscillations: a.) Calculate and plot the perturbed
betatron functions ˇI and ˇII and compare with the unperturbed solution. b.) If the
beam emittances are �I D �II mm-mrad, what is the beam aspect ratio and beam
rotation at the end of cell one and two with and without the rotation of the first
quadrupole?

20.8. Use the Fokker-Planck equation and derive an expression for the equilibrium
beam emittance of a coupled beam
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Chapter 21
Statistical and Collective Effects*

Transverse and longitudinal beam dynamics as discussed in earlier chapters is
governed by purely single-particle effects where the results do not depend on the
presence of other particles or any interactive environment. Space-charge effects
were specifically excluded. This restriction is sometimes too extreme and collective
effects must be taken into account where significant beam intensities are desired. In
most applications high beam intensities are desired and it is therefore prudent to test
for the appearance of space charge and other intensity effects.

Collective effects can be divided into two distinct groups according to the
physics involved. The compression of a large number of charged particles into a
small volume increases the probability for collisions of particles within the same
beam. Because particles perform synchrotron and betatron oscillations, statistical
collisions occur in longitudinal, as well as transverse phase space often causing a
mixing of phase space coordinates. The other group of collective effects includes
effects which are associated with electromagnetic fields generated by the collection
of all particles in a beam.

The study and detailed understanding of the cause and nature of collective effects
or collective instabilities with corrective measures is important for a successful
design of the accelerator. Most accelerator design and developments are conducted
to eliminate collective effects as much as possible through self-imposed limitation
on the performance or installation of feedback systems and other stabilizing control
mechanisms. Beyond that, we also must accept limitations in beam performance
imposed by nature or lack of understanding and technological limits. Pursuit of
accelerator physics is the attempt to explore and push such limits as far as nature
and general understanding of the subject allows.

701

This chapter has been made Open Access under a CC BY 4.0 license. For details on rights

https://doi.org/10.1007/978-3-319-18317-6_21

© The Author(s) 2015  

and licenses please read the Correction https://doi.org/10.1007/978-3-319-18317-6_28

H. Wiedemann, Particle Accelerator Physics, Graduate Text in Physics,



702 21 Statistical and Collective Effects*

21.1 Statistical Effects

Coupling of individual particles to the presence of other particles may occur through
very short range forces in collisions with each other. In this section, we will
discuss statistical effects related to the finite number of particles and from collision
processes within a particle bunch.

21.1.1 Schottky Noise

Electrical current is established by moving charged particles. The finite electrical
charge and finite number of particles gives rise to statistical variations of the
electrical current. This phenomenon has been observed and analyzed by Schottky
[1] and we will discuss this Schottky noise in the realm of particle dynamics
in circular accelerators. The information included in the Schottky noise is of
great diagnostic importance for the nondestructive determination of particle beam
parameters, a technique which has been developed at the CERN Intersecting Storage
Ring (ISR) [2] and has become a standard tool of beam diagnostics.

We consider a particle k with charge q orbiting in an accelerator with the angular
revolution frequency !k and define a particle line density by 2�R�.t/ D 1 where
2�R is the circumference of the ring. On the other hand, we may describe the
orbiting particle by delta functions

q D q
Z 2�

0

C1X
mD�1

ı.!ktC �k � 2�m/ d� ;

where!k is the angular revolution frequency of the particle k and �k its phase at time
t D 0. The delta function can be expressed by a Fourier series and the line-charge
density at time t becomes

q�k.t/ D q

2�R

"
1C 2

1X
nD0

cos.n!ktC n�k/

#
: (21.1)

From a pick up electrode close to the circulating particle, we would obtain a
signal with a frequency line spectrum ! D n!k where n is an integer. In a real
particle beam there are many particles with a finite spread of revolution frequencies
!k and therefore the harmonic lines n!k spread out proportionally to n. For not too
high harmonic numbers the frequency spreads do not yet overlap and we are able to
measure the distribution of revolution frequencies. Tuning the spectrum analyzer to
!, we observe a signal with an amplitude proportional to N.!=n/ ı!n where N.!=n/
is the particle distribution in frequency space and ı! the frequency resolution of
the spectrum analyzer. The signal from the pick up electrode is proportional to the
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line-charge density which is at the frequency ! from (21.1)

q�rms.!/ D
p
2 q

2�R

r
N.!=n/

ı!

n
(21.2)

and has been derived first by Schottky for a variety of current sources [1]. The
spread in the revolution frequency originates from a momentum spread in the beam
and measuring the Schottky spectrum allows its nondestructive determination.

Individual particles orbiting in an accelerator perform transverse betatron oscil-
lations which we describe, for example, in the vertical plane by

yk.t/ D ak cos.
k!ktC  k/ ; (21.3)

where ak is the amplitude and k the phase of the betatron oscillation for the particle
k at time t D 0. The difference signal from two pick up electrodes above and below
the particle beam is, in linear approximation, proportional to the product of the
betatron amplitude (21.3) and the line-charge density (21.1) and of the form

Dk.t/D Ak

1X
nD0

cosŒ.n � 
k/.!ktC �k/� (21.4)

CAk

1X
nD0

cosŒ.nC 
k/.!ktC 'k/� ;

where we have ignored terms at frequencies n!k. The transverse Schottky signal is
composed of two side bands for each harmonic at frequencies

! D .n˙ 
k/ !k : (21.5)

which are also called the fast wave for ! D .n C 
k/!k and the slow wave for
! D .n � 
k/!k.

The longitudinal Schottky noise depends on the rms contribution of all particles
which are spread over a range of revolution frequencies due to a momentum spread
and over betatron frequencies by virtue of the chromaticity. For !rms D �c!0ırms

and
rms D �yırms where!0 is the revolution frequency of the bunch center, ırms D
prms=p0 the rms relative momentum error, �c the momentum compaction and �y

the vertical chromaticity, the frequency distribution of the signal from the pick up is

! D Œn˙ .
y0 C �yık/� .!0 C �c!0ık/ (21.6)

D .n˙ 
y0/ !0 C Œ.n˙ 
y0/ �c ˙ �y� !0 ık C O.ı2/ :

The momentum spread ık causes a frequency spread which is different for the
slow and fast wave. For example, for positive chromaticity above transition, �c < 0

and the frequency spreads add up for the slow wave and cancel partially for the fast
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wave. This has been verified experimentally for a coasting proton beam in the ISR
[2].

A transverse Schottky scan may exhibit the existence of weak resonances which
may dilute the particle density, specifically in a coasting proton or ion beam. To
control coasting beam instabilities, it is desirable to make use of Landau damping
by introducing a large momentum and tune spread. This tune spread, however, can
be sufficiently large to spread over higher order resonances and blow up that part
of the beam which oscillates at those resonance frequencies. A Schottky scan can
clearly identify such a situation as reported in [2].

In this text we are able to touch only the very basics of Schottky noise and the
interested reader is referred to references [3–6] for more detailed discussions on the
theory and experimental techniques to obtain Schottky scans and how to interpret
the signals.

21.1.2 Stochastic Cooling

The “noise” signal from a circulating particle beam includes information which can
be used to drive a feedback system in such a way as to reduce the beam emittance,
longitudinal as well as transverse. Due to the finite number of particles in a realistic
particle beam, the instantaneous center of a beam at the location of a pick up
electrode exhibits statistical variations. This statistical displacement of a slice of
beam converts to a statistical slope a quarter betatron wavelength downstream. The
signal from the small statistical displacement of the beam at the pick up electrode
can be amplified and fed back to the beam through a kicker magnet located an odd
number of quarter wavelength downstream, assuming that the statistical variations
do not smear out between pick up electrode and kicker. Van der Meer [7] proposed
this approach to reduce the transverse proton beam emittance in ISR for increased
luminosity and the process is now known as stochastic cooling.

This process of correction is not a statistical process and we must ask ourselves
if this is an attempt to circumvent Liouville’s theorem. It is not. Due to the finite
number of particles in the beam, the phase space is not uniformly covered by
particles but rather exhibits many holes. The method of stochastic cooling detects
the moment one of these holes appears on one or the other side of the beam in phase
space. At the same moment, the whole emittance is slightly shifted with respect
to the center of the phase space and this shift can be both detected and corrected.
The whole process of stochastic cooling therefore only squeezes the “air” out of the
particle distribution in phase space. The most prominent application of this method
occurs in the cooling of an antiproton beam to reach a manageable beam emittance
for injection into high energy proton antiproton colliders. To discuss this process in
more detail, theoretically as well as technically, would exceed the scope of this text
and the interested reader is referred to a series of articles published in [8].
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21.1.3 Touschek Effect

The concentration of many particles into small bunches increases the probability for
elastic collisions between particles. This probability is further enhanced considering
that particles perform transverse betatron as well as longitudinal synchrotron
oscillations. In each degree of freedom, we have acceptance limits and if a particle’s
oscillation amplitude exceeds such limits due, for example, to a collision with
another particle one or both particles can get lost. In this section, we discuss the
process of single collisions where the momentum transfer is large enough to lead
to the loss of both particles involved in the collision and postpone the discussion of
multiple collisions with small momentum transfer to the next section.

We may consider two collision processes which could lead to beam loss. First,
we observe two particles performing synchrotron oscillations and colliding head-
on in such a way that they transfer their longitudinal momentum into transverse
momentum. This collision process is insignificant in particle accelerators because
the longitudinal motion includes not enough momentum to increase the betatron
oscillation amplitude enough for particle loss. On the other hand, transverse
oscillations of particles represent large momenta and a transfer into longitudinal
momenta can lead to the loss of both particles. This effect was discovered on the
first electron storage ring ever constructed [9, 10] and we therefore call this the
Touschek effect.

In this text, we will not pursue a detailed derivation of the collision process
and refer the interested reader to references [11–13]. Of particular interest is the
expression for the beam lifetime as a result of particle losses due to a momentum
transfer into the longitudinal phase space exceeding the rf-bucket acceptance of
p=p0jrf. Whenever such a transfer occurs both particles involved in the collision
are lost. The beam decay rate is proportional to the number of particles in the
bunch and the beam current therefore decays exponentially. Last, but not least, a
loss occurs only if there is sufficient momentum in the transverse motion to exceed
the rf-momentum acceptance. We assume the momentum acceptance to be limited
by the rf-voltage and combining these parameters in a collision theory results in a
beam lifetime for a Gaussian particle distribution given by

1

�
D � 1

Nb

dNb

dt
D r2c c Nb

8� �x �y �`

�3

�2
D.�/; (21.7)

where rc is the classical particle radius, �x; �y; �` are the standard values of the
Gaussian bunch width, height and length, respectively, and ��1 D p=p0jrf the
momentum acceptance parameter. The function D.�/ (Fig. 21.1) is defined by [13]

D.�/D p�
�
� 3
2
e�� C �

2

Z 1

�

ln u

u
e�u du (21.8)

C 1
2
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�
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�
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Fig. 21.1 Touschek lifetime function D .�/

where the argument is

� D
�
prf

� �p

�2
with �p D mc� �x

ˇx
: (21.9)

Particle losses due to the Touschek effect is particularly effective at low energies
and where the rf-acceptance is small. For high particle densities Nb=.�x �y �`/ the
rf-acceptance should therefore be maximized. This seems to be the wrong thing to
do because the bunch length is reduced at the same time and the particle density
becomes even higher but a closer look at (21.7) shows us that the Touschek lifetime
increases faster with rf-acceptance than it decreases with bunch length.

21.1.4 Intra-Beam Scattering

The Touschek effect describes collision processes which lead to immediate loss
of both colliding particles. In reality, however, there are many other collisions
with only small exchanges of momentum. While these collisions do not lead to
immediate particle loss, there might be sufficiently many during a damping time
in electron storage rings or during the storage time for proton and ion beams to
cause a significant increase in the bunch volume, or in the case of a coasting beam
an increase in beam cross section. During the discussion of the Touschek effect
we neglected the transfer from the longitudinal momentum space into transverse
momentum space because the transverse momentum acceptance is larger than the
longitudinal acceptance and particles are generally not lost during such an exchange.
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This is not appropriate any more for the multiple Touschek effect or intra-beam
scattering where we are interested in all collisions.

The multiple Touschek effect was observed in the first ever constructed storage
ring, AdA (Anello di Accumulatione) in Frascati, Italy. The Touschek effect had
been expected and analyzed before but did give too pessimistic beam lifetimes
compared to those observed in AdA. A longer beam lifetime had been obtained
because of multiple elastic scattering between particles increasing the bunch volume
and thereby reducing the Touschek effect [10].

During the exchange of momentum as a consequence of collisions between
particles within the same bunch or beam, each degree of freedom can increase its
energy or temperature because the beam is able to absorb any amount of energy
from the rf- system. We are particularly interested in the growth times of transverse
and longitudinal emittances to asses the long-term integrity of the particle beam.
The multiple Touschek effect or intra-beam scattering has been studied extensively
[14, 15] and we will not repeat here the derivations but merely recount the results.

The growth time of the beam emittances for Gaussian particle distributions are
for the longitudinal phase space or momentum and bunch distribution [14, 15]

��1
p D

1

2�2p

d�2p
dt
D A

�2h
�2p

f .a; b; c/ ; (21.10)

where the particle bunch density is expressed by

A D r2c cNb

64�2�z �p �x �y �x0 �y0 ˇ3 �4
(21.11)

with the standard dimensions of a Gaussian distribution for the bunch length �z, the
relative momentum spread �p, horizontal and vertical betatron amplitudes

�
�x; �y

�
and divergences

�
�x0 ; �y0

�
and number of particles per bunch Nb. The constants rc

and ˇ D v=c, finally, are the classical particle radius and velocity in units of the
velocity of light.

The function

f .a; b; c/ D 8�
Z 1
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�
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��
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1 � 3x2p

pq
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where

p D a2 C x2.1� a2/ ; q D b2 C x2.1 � b2/ ;
a D �h

��x0 ; b D �h
��y0 ;

�2h D �2p �
2
x

�2x C�2 �2p ; c2 D ˇ2�2h
p
2��y
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:
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The transverse emittance growth times are similarly given by

��1
x D

1

2�2x

d�2x
dt
D A

"
f

�
1

a
;

b

a
;

c

a

�
C �2�2p

�x
f .a; b; c/

#
; (21.13)

and

��1
y D

1

2�2y

d�2y
dt
D A f

�
1

b
;

a

b
;

c

b

�
: (21.14)

These expressions allow the calculations of the emittance growth rate, which
for most electron accelerators is small compared to radiation damping but become
significant in proton and ion storage rings where high particle densities and long
storage times are desired. Progress in the design of modern synchrotron radiation
facilities allow ever smaller emittances which have reached a level where intra-
beam scattering is significant again. From the density factor A it is apparent that high
particle density in six-dimensional phase space increases the growth rates while this
effect is greatly reduced at higher beam energies.

21.2 Collective Self Fields

The electric charges of a particle beam can become a major contribution to the
forces encountered by individual particles while travelling along a beam transport
line or orbiting in a circular accelerator. These forces may act directly from beam
to particle or may originate from electromagnetic fields being excited by the beam
interaction with its surrounding vacuum chamber. In this section, we will derive
expressions for the fields from a collection of particles and determine the force due
to these fields on an individual test particle. We use the particle charge q rather than
the elementary charge e to cover particles with multiple charges like ions for which
q D eZ. For all cases to be correct, we should distinguish between the electrical
charge of particles in the beam and that of the individual test particle. This, however,
would significantly complicate the expressions and we use therefore the same charge
for both the beam and test particle. In a particular situation whenever particles of
different charges are considered, the sign and value of the charge factors in the
formulas must be reconsidered.

Individual particles in an intense beam are under the influence of strong repelling
electrostatic forces creating the possibility of severe stability problems. Particle
beam transport over long distances could be greatly restricted unless these space-
charge forces can be kept under control. First, it is interesting to calculate the
magnitude of the problem.

If all particles would be at rest within a small volume, we would clearly expect
the particles to quickly diverge from the center of charge under the influence of the
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repelling forces from the other particles. This situation may be significantly different
in a particle beam where all particles propagate in the same direction.

In Sect. 1.5.10 we obtained the encouraging result that at least relativistic particle
beams become stable under the influence of their own fields. For lower particle
energies, however, significant diverging forces must be expected and adequate
focusing measures must be applied. The physics of such space charge dominated
beams is beyond the scope of this book and is treated elsewhere, for example in
considerable detail in [16].

21.2.1 Self Field for Elliptical Particle Beams

The self fields of a beam depend on beam parameters like particle type, particle
distribution, bunching, and energy of the particle. Here, we will derive the nature
and effect of these self fields in a more restricted way for common particle beam
cases in accelerators.

To determine self fields, we consider a continuous beam of particles with a line
charge �, or a volume charge 	.x; y/. The electric fields within a beam are derived
from a potential V defined by

4V D � 1
�0
	.x; y/ ; (21.15)

where 	, being the electric charge density in the beam, is finite within and zero
outside the beam. Similarly, the magnetic vector potential is defined by

�A D � 1
�0

v	.x; y/ : (21.16)

For a particle beam, we may set v � .0; 0; v/ and the vector potential therefore
contains only a longitudinal component A D .0; 0;Az/.

In Sect. 1.5.10 we discussed the self fields of a round beam. Generally, however,
particle beams have an elliptical cross section and the solution to (21.15) for such
a beam with constant charge density .	 D const/ has been derived by Teng [17,
18]. Within the elliptical beam cross section, where x 
 a and y 
 b, the electric
potential is

V.x; y/ D � 1

2�0
	

ab

aC b

�
x2

a
C y2

b

�
(21.17)

and a; b are the horizontal and vertical half axis respectively. The vector potential
for the magnetic field is from the discussions above

Az.x; y/ D � 1

2�0
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aC b
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a
C y2

b

�
(21.18)
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and both the electric and magnetic field can be derived by simple differentiations

E D �rV and B D r � A (21.19)

for

Ex D 1

4��0

4q�

a.aC b/
x ; Ey D 1

4��0

4q�

b.aC b/
y ; (21.20)

and

Bx D �c�0
4�

4q�ˇ

b.aC b/
y ; By D c�0

4�

4q�ˇ

a.aC b/
x ; (21.21)

where ˇ D v=c and the linear charge density � is defined by

� D �ab 	.x; y/ : (21.22)

Comparing (21.20) and (21.21) reveals the relationship between electric and
magnetic self fields of the beam to be (21.22)

cBx D �ˇEy ; cBy D CˇEx : (21.23)

The electric as well as the magnetic field scales linearly with distance from the beam
center and therefore both cause focusing and a tune shift in a circular accelerator.

In many applications it is not acceptable to assume a uniform transverse charge
distribution. Most particle beams either have a bell shaped particle distribution or a
Gaussian distribution as is specially the case for electrons in circular accelerators.
We therefore use in the transverse plane a Gaussian charge distribution given by

	.x; y/ D �

2��x�y
exp

"
� x2

2�2x
� y2

2�2y

#
; (21.24)

which also well describes a beam with bell shaped distribution. Although many
particle beams, but specifically electron beams, come in bunches with a Gaussian
distribution in all degrees of freedom, we will only introduce a bunching factor for
the longitudinal particle distribution and refer the interested reader for the study of
a fully six dimensional Gaussian charge distribution to reference [19].

The potential for a transverse bi-Gaussian charge distribution (21.24) can be
expressed by [18]

V.x; y/ D � e

4��0
�

1Z
0

1 � exp
h
� x2

2.�2x Ct/
� y2

2.�2y Ct/

i
q
.�2x C t/.�2y C t/

dt (21.25)
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Equation (21.25) can be verified by back insertion into (21.15). From this potential
we obtain for example the vertical electric field component by differentiation

Ey D �@V.x; y/

@y
D e

4��0
� y

1Z
0

exp
h
� x2

2.�2x Ct/
� y2

2.�2y Ct/

i
.�2y C t/

q
.�2x C t/.�2y C t/

dt : (21.26)

No closed analytical expression exists for these integrals unless we restrict
ourselves to a symmetry plane with x D 0 or y D 0 and small amplitudes y � �y

or x � �x respectively. These assumptions are appropriate for most space-charge
effects and the potential in the vertical midplane becomes

V.x D 0; y� �y/ D � 1

4��0

�

�y.�x C �y/
y2 : (21.27)

For reasons of symmetry a similar expression can be derived for the horizontal
mid plane by merely interchanging x and y in (21.27). The associated electric fields
are for x D 0 and y� �y

Ex D 1

4��0

2�

�x.�x C �y/
x; Ey D 1

4��0

2�

�y.�x C �y/
y; (21.28)

and the magnetic fields according to (21.23) are from (21.28)

Bx D �c�0
4�

2�ˇ

�y.�x C �y/
y; By D Cc�0

4�

2�ˇ

�x.�x C �y/
x: (21.29)

All fields increase linearly with amplitude and we note that the field components
in the horizontal midplane are generally much smaller compared to those in the
vertical midplane because most particle beams in circular accelerators are flat and
�y � �x.

Forces from Space-Charge Fields

The electromagnetic self fields generated by the collection of all particles within a
beam exert forces on individual particles of the same beam or of another beam. The
Lorentz force due to these fields can be expressed by

F D eEfe C eŒv � B� fefv ; (21.30)

where we have added to the usual expression for the Lorentz force the factors fe
and fv. Because the fields act differently depending on the relative directions and
charge of beam and individual particle distinct combinations occur. We set fe D 1 if
both the beam particles and the test particle have the same sign of their charge and
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Table 21.1 Self field force
factors

CC "" C� "" CC "# C� "#
�� "" �C "" �� "# �C "#

C �
1� ˇ2

� � �
1� ˇ2

� C �
1C ˇ2

� � �
1C ˇ2

�

fe D �1 if their charges are of opposite sign. Similarly we set fv D 1 or fv D �1
depending on whether the beam and test particle have the same or opposite direction
of movement with respect to each other.

The vertical force from the self field, for example, of a proton beam on
an individual proton within the same beam moving with the same velocity is
from (21.30)

Fy."";CC/ D Ce.1 � ˇ2/Ey : (21.31)

An antiproton moving in the opposite direction through a proton beam would feel
the vertical force

Fy."#;C�/ D �e.1C ˇ2/Ey : (21.32)

Expansion to other combinations of particles and directions of velocities are
straightforward. For ions the charge multiplicity Z must be added to the fields or
the individual particle or both depending on the case. The possible combinations of
the force factors˙.1˙ ˇ2/ are summarized in Table 21.1.

The ˙-signs in Table 21.1 indicate the charge polarity of beam and test particle
and the arrows the relative direction. We note a great difference between the case,
where particles move in the same direction, and the case of beams colliding head
on.

21.2.2 Beam–Beam Effect

In colliding beam facilities two counter rotating beams within one storage ring or
counter rotating beams from two intersecting storage rings are brought into collision
to create a high center of mass energy at the collision point which transforms into
known or unknown particles to be studied by high energy experimentalists. The
event rate is given by the product of the cross section for the particular event and the
luminosity which is determined by storage ring operating conditions. By definition,
the luminosity is the density of collision centers in the target multiplied by the
number of particles colliding with this target per unit time. In the case of a colliding
beam facility a bunch of one beam is the target for the other beam. For simplicity
we assume here that both beams have the same cross section. We also assume that
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each beam consists of nb bunches. In this case the luminosity is

L D N1
nb A

N2
rev ; (21.33)

where N1 and N2 are the total number of particles in each beam, A the cross section
of the beams, and 
rev the revolution frequency in the storage ring. In most storage
rings the transverse particle distribution is Gaussian or bell shaped and since only the
core of the beam contributes significantly to the luminosity we may define standard
beam sizes for all kinds of particles. For a Gaussian particle distribution the effective
beam cross section is

Ag D 4��x�y (21.34)

and the luminosity

L D N1
4��x�y B

N2
rev : (21.35)

The recipe for high luminosity is clearly to maximize the beam intensity and
to minimize the beam cross section. This approach, however, fails because of
the beam-beam effect which, due to electromagnetic fields created by the beams
themselves, causes a tune shift and therefore limits the amount of beam that can
be brought into collision in a storage ring. The beam-beam effect has first been
recognized and analyzed by Amman and Ritson [20].

In case of counter rotating beams colliding at particular interaction points in a
colliding-beam facility, we always have fv D �1 but the colliding particles still may
be of equal or opposite charge. In addition, there is no contribution from magnetic
image fields since collisions do not occur within magnets. Even image fields from
vacuum chambers are neglected because the beam-beam interaction happens only
over a very short distance. A particle in one beam will feel the field from the
other beam only during the time it travels through the other beam which is equal
to the time it takes the particle to travel half the effective length of the oncoming
bunch. With these considerations in mind, we obtain for the beam-beam tune shift
in the vertical plane from (21.63) with fcorr D 1 and assuming head on collisions of
particle-antiparticle beams (fe D �1)


y;bb D rc Ntot

2�B�

ˇ�
y

��
y .�

�
x C ��

y /
(21.36)

and in the horizontal plane


x;bb D rc Ntot

2�B�

ˇ�
x

��
x .�

�
x C ��

y /
; (21.37)
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where � indicates that the quantities be taken at the interaction point. In cases
where other particle combinations are brought into collision or when both beams
cross under an angle these equations must be appropriately modified to accurately
describe the actual situation.

From (21.32) and (21.28)we find for two counter rotating beams of particle and
antiparticle a vertical beam-beam force of

Fy D � 1

4��0

e.1C ˇ2/2�
�y.�x C �y/

y : (21.38)

This force is attractive and therefore focusing, equivalent to that of a quadrupole of
strength

k D � Fy=y

c2ˇ2�m
(21.39)

causing a vertical tune shift of

ı
y D 1

4�

Z
coll

ˇy k dz : (21.40)

Integrating over the collision length which is equal to half the bunch length `
because colliding beams move in opposite directions, we note that the linear charge
density is � D eN= .B`/, where N is the total number of particles per beam and
B the number of bunches per beam. With these replacements the beam tune shift
becomes finally

ı
y D rcNˇy

2�B��y.�x C �y/
; (21.41)

where rc is the classical particle radius of the particle which is being disturbed.
Obviously, the tune shift scales linear with particle intensity or particle beam current
and inversely with the beam cross section. Upon discovery of this effect it was
thought that the particle beam intensity is limited when the tune shift is of the order
of� 0:15 – 0:2 which is the typical distance to the next resonance. Experimentally,
however, it was found that the limit is much more restrictive with maximum tune
shift values of� 0:04 – 0:06 for electrons [20–23] and less for proton beams [24].

A definitive quantitative description of the actual beam-beam effect has not
been possible yet due to its highly nonlinear nature. Only particles with very
small betatron oscillation amplitudes will experience the linear tune shift derived
above. For betatron oscillations larger than one � , however, the field becomes very
nonlinear turning over to the well known 1=r-law at large distances from the beam
center.
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In spite of the inability to quantitatively describe the beam-beam effect by the
linear tune shift it is generally accepted practice to quantify the beam-beam limit
by the value of the linear tune shift. This is justified since the nonlinear fields of a
particle beam are strictly proportional to the linear field and therefore the linear tune
shift is a good measure for the amount of nonlinear fields involved.

21.2.3 Transverse Self Fields

Expressions for space-charge fields originating from a beam of charged particles
have been derived earlier and we obtained for a Gaussian transverse distribution
of particles with charge q the electric fields in (21.28) and the magnetic fields
in (21.29).

The local linear particle density � is defined by

�.z/ D
Z Z

	.x; y; z/dx dy ; (21.42)

where 	.x; y; z/ is the local particle density normalized to the total number of
particles in the beam

R1
�1 �.z/dz D Np. With these fields and the Lorentz equation,

we formulate the transverse force acting on a single particle within the same particle
beam. Since both expressions for the electrical and magnetic field differ only by the
factor ˇ we may, for example, derive from the Lorentz equation the vertical force
on a particle with charge q

Fy D q.1 � ˇ2/Ey D 1

4��0

2q�

�2�y.�x C �y/
y : (21.43)

The space-charge force appears at its strongest for nonrelativistic particles
and diminishes quickly like 1=�2 for relativistic particles. In accelerator physics,
however, particle beams are carried from low to high energies and therefore space-
charge effects may become important during some or all phases of acceleration. This
is specifically true for heavy particles like protons and ions for which the relativistic
parameter � is rather low for most any practically achievable particle energies.

21.2.4 Fields from Image Charges

Discussing space charges, we ignored so far the effect of metallic and magnetic
surfaces close to the beam. The electromagnetic self fields of the beam circulating
in a metallic vacuum chamber and between ferromagnetic poles of magnets must
meet certain boundary conditions on such surfaces. Laslett [25] derived appropriate
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corrections to free space electromagnetic fields by adding the electromagnetic fields
from all image charges to the fields of the particle beam itself.

Following his reasoning, we consider a particle beam with metallic and ferromag-
netic boundaries as shown in Fig. 21.2. For full generality, let the elliptical particle
beam be displaced in the vertical plane by Ny from the midplane, the metallic vacuum
chamber and magnet pole are simulated as pairs of infinitely wide parallel surfaces
at˙b and˙g, respectively, and the observation point of the fields be at y. The linear
particle density is

� D Ntot

nb `b
D Ntot

nb

p
2��`

; (21.44)

where Ntot is the total number of particle in the circulating beam, nb the number of
bunches, `b D

p
2��` the effective bunch length and �` the standard bunch length

for a Gaussian distribution.
The locations and strength of the electrical images of a line current in the

configuration of Fig. 21.2 are shown in Fig. 21.3. The boundary condition for
electric fields is Ez.b/ D 0 on the surface of the metallic vacuum chamber and
is satisfied if the image charges change sign from image to image. To calculate the

Fig. 21.2 Particle beam with
metallic and ferromagnetic
boundaries

beam

y
2b 2g

magnet pole

vacuum chamber
reference
path

y

x
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Fig. 21.3 Location and
source of image fields
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electrical field Ey.y/, with (21.28) we add the contributions from all image fields in
the infinite series

Ey;image.y/ D 1

4��0
2� (21.45)

�
�

1

2b� Ny � y
� 1

2bC NyC y
� 1

4bC Ny � y
C 1

4b� NyC y

C 1

6b � Ny � y
� 1

6bC NyC y
� 1

8bC Ny � y
C 1

8b � NyC y

C 1

10b � Ny � y
� 1

10bC NyC y
� : : :

�
:

These image fields must be added to the direct field of the line charge to meet
the boundary condition that the electric field enter metallic surfaces perpendicular.
Equation (21.45) can be split into two series with factors .NyC y/ and .Ny � y/ in the
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numerator. We get after some manipulations with NyC y� b and Ny � y� b

Ey;image.y/ D 1

4��0

�

b2

" 1X
mD1

NyC y

.2m � 1/2 C
1X

mD1

Ny � y

4m2

#
; (21.46)

D 1

4��0

�

b2

�
.NyC y/

�2

8
C .Ny � y/

�2

24

�
;

D 1

4��0

�

b2
�2

12
.2NyC y/ D 1

4��0

4q�

b2
�1.2NyC y/:

The electric image fields depend linearly on the deviations Ny and y from the axis
of bunch center and test particle, respectively, and act therefore like a quadrupole
causing a tune shift.

A similar derivation is used to get the magnetic image fields due to ferromagnetic
surfaces at ˙g above and below the midplane. The magnetic field lines must enter
the magnetic pole faces perpendicular and the image currents therefore flow in the
same direction as the line current causing a magnetic force on the test particle which
is opposed to that by the magnetic field of the beam itself.

Bunched beams generate high frequency electromagnetic fields which do not
reach ferromagnetic surfaces because of eddy current shielding by the metallic
vacuum chamber. For magnetic image fields we distinguish therefore between dc
and ac image fields. The dc Fourier component of a bunched beam current is equal
to twice the average beam current cˇ�B, where the Laslett bunching factor B is the
bunch occupation along the ring circumference defined by

B D �

�
D nb`b

2�R
: (21.47)

The dc magnetic image fields are derived similar to electric image fields with
B' D �2�ˇ=r from (21.29) and are with (21.47)

Bx;image;dc.y/ D c�0
4�

2�ˇ

g2
B

" 1X
mD1

NyC y

.2m � 1/2 C
1X

mD1

Ny � y

4m2

#
(21.48)

D c�0
4�

�ˇ

g2
B

�
.NyC y/

�2

8
C .Ny � y/

�2

24

�
D c�0
4�

4�ˇ

g2
B�2.2NyC y/:

The magnetic image fields must penetrate the metallic vacuum chamber to reach
ferromagnetic poles. This is no problem for dc or low frequency field components
but in case of bunched beams relevant frequencies are rather high and eddy current
shielding of the vacuum chamber for ac magnetic fields must be taken into account.
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In most cases we may assume that they do not penetrate the thick metallic vacuum
chamber. Consequently, we ignore here the effect of ferromagnetic poles and
consider only the contribution of magnetic ac image fields due to eddy currents in
vacuum chamber walls. Similar to electric image fields, the magnetic image fields
are in analogy to (21.46)

Bx;image;ac.y/ D �c�0
4�

�ˇ

b2
.1 � B/

�2

12
.2NyC y/;

D �c�0
4�

4�ˇ

b2
.1 � B/�1.2NyC y/; (21.49)

where the factor .1 � B/ accounts for the subtraction of the dc component ˇ�B.
Similar to the electric image fields, the magnetic image fields must be added to the
direct magnet fields (21.29) from the beam current to meet the boundary condition
of normal field components at ferromagnetic surfaces. The coefficients �1 and �2 are
the Laslett form factors which are for infinite parallel plate vacuum chambers and
magnetic poles

�1 D �2

48
and �2 D �2

24
: (21.50)

The vacuum chamber and ferromagnetic poles are similar to infinitely wide surfaces.
While this is a sufficiently accurate approximation for the magnet poles, corrections
must be applied for circular or elliptical vacuum chambers. Laslett [25] has derived
what we call now Laslett form factors for vacuum chambers with elliptical cross
sections and variable aspect ratios which are compiled in Table 21.2.

All relevant field components have been identified and we collect these fields first
for Ny D 0 and obtain from (21.28), (21.46) for the electric field in the vertical mid
plane

Ey.y/ D c2�0
4�

2�

�y.�x C �y/

�
1C 2�y.�x C �y/

b2
�1

�
y : (21.51)

From (21.29), (21.48) the dc magnetic field is

Bx;dc D �c�0
4�

2�ˇB

�y .�x C �y/

�
1 � 2�y.�x C �y/

g2
�2

�
y (21.52)

Table 21.2 Laslett
incoherent tune shift form
factors for elliptical vacuum
chambers

a=b Wa 1 5/4 4/3 3/2 2/1 1
�1 W 0 0.090 0.107 0.134 0.172 0.206

aa is the horizontal and b the vertical half-axis of an
elliptical vacuum chamber
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and from (21.49) the ac magnetic field

Bx;ac D �c�0
4�

2 �ˇ

�y.�x C �y/

�
1C 2�y.�x C �y

b2
�1

�
.1 � B/ y: (21.53)

Tacitly, we have assumed that the transverse particle distribution is Gaussian which
is a true representation of an electron beam but may not be correct for proton or ion
beams. The standard deviations � of a Gaussian distribution are very well defined
and can therefore be replaced by other quantities like the full-width half maximum
or as the particle distribution may require.

The electromagnetic force due to space charge on individual particles in a beam
has been derived and it became obvious that image field effects can play a significant
role in the perturbation of the beam. The fields scale linear with amplitude for very
small amplitudes and act therefore like focusing quadrupoles. At larger amplitudes,
however, the fields reach a maximum and then evanesce like 1=r. Consequently, the
field gradient is negative decaying quickly with amplitude.

A complete set of direct and image fields have been derived which must be
considered to account for space-charge effects. Similar derivations lead to other
field components necessary to determine horizontal space-charge forces. In most
accelerators, however, the beam cross section is flat and so is the vacuum chamber
and the magnet pole aperture. As a consequence, we expect the space-charge forces
to be larger in the vertical plane than in the horizontal plane.

21.2.5 Space-Charge Effects

The Lorentz force on individual particles can be calculated from the space-charge
fields and we get

Fy D 1

4��0

2 fp�.1 � ˇ2fv/
�y.�x C �y/

fcorr y D qFy; (21.54)

where the correction factor due to image fields is with ˇ2�2 D �2 � 1;

fcorr D 1C 2�y.�x C �y/

b2
�1Œ1C .�2 � 1/B�C �2.�2 � 1/b2

g2
B (21.55)

and

F D 1

4��0

2 fp� .1 � ˇ2fv/
�y.�x C �y/

fcorr ; (21.56)

The factors fp and fv determine signs depending on the kind of particles interacting
and the direction of travel with respect to each other. Specifically, fp D sign.q qb/
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where q is the charge of a test particle and qb the charge of the field creating particles,
e.g. the charge of a bunch. Similarly, fv D sign.vvb/ where v is the direction of
travel for the test particle and vb the direction of travel of the bunch. To calculate the
space-charge force of head-on colliding proton and antiproton beams, for example,
we would set fp D �1 and fv D �1.

There is a significant cancellation of two strong terms, the repulsive electrical
field and the focusing magnetic field, expressed by the factor 1 � ˇ2 for space-
charge forces within a highly relativistic beam. This cancellation can be greatly
upset if particle beams become partially neutralized by collecting other particles of
opposite charge within the beams potential well. For example, proton beams can
trap electrons in the positive potential well as can electron beams trap positive ions
in the negative potential well. To avoid such partial neutralization and appearance
of unnecessarily strong space-charge effects, clearing electrodes must be installed
over much of the ring circumference to extract with electrostatic fields low energy
electrons or ions from the particle beam.

The electromagnetic space-charge force on an individual particle within a particle
beam increases linearly with its distance from the axis. A similar force occurs for
the horizontal plane and both fields therefore act like a quadrupole causing a tune
shift. This has been recognized and analyzed early by Kerst [26] and Blewett [27].
A complete treatment of space charge dominated beams can be found in [16]. The
equation of motion under the influence of space charge forces can be written in the
form

m� RuC Du D @Fu

@u
u with u D .x; y/ : (21.57)

We get the regular form u00C .k0Ck/ u D 0 with Ru D u00 .cˇ/2 and fv D 1, where
k0 describes the quadrupole strength and the space-charge strength is expressed by

k D 1

mc2�ˇ2
@Fu

@u
D � 2 rc

ˇ2�3
�

�y.�x C �y/
fcorr (21.58)

where rc is the classical particle radius. For ions with charge multiplicity Z and
atomic number A the classical particle radius is rion D rp Z2=A.

Space Charge Dominated Beams

So far, space-charge effects or space-charge focusing has been consistently
neglected in the discussions on transverse beam dynamics. In cases of low beam
energy and high particle densities, it might become necessary to include space-
charge effects. They are defocusing in both planes and compensation therefore
requires additional focusing in both planes. However, it should be noted that
particles closer to the beam surface will not experience the same linear space-charge
defocusing as those near the axis and therefore a compensation of space-charge
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focusing works only for part of the beam. Here, we will not get involved with the
dynamics of heavily space charge dominated particle beams but try to derive a
criterion by which we can decide whether or not space-charge forces are significant
in transverse particle beam optics.

This distinction becomes obvious from the equation of motion including space
charges. From (21.57), (21.58) we get the equation of motion

u00 C
�

k0 � 2rc

ˇ2�3
�

�y.�x C �y/
fcorr

�
u D 0; (21.59)

where we ignored the image current corrections. Space-charge forces can be
neglected if the integral of the space-charge force over a length L which is
characteristic for the average distance between quadrupoles in the beam line is small
compared to the typical integrated quadrupole length k0`qor if

2rc

ˇ2�3

Z
L

� fcorr

�y.�x C �y/
dz� k0`q : (21.60)

The effect of space-charge focusing is most severe where the beam cross section
is smallest and (21.60) should therefore be applied specifically to such sections of
the beam transport line. Obviously, the application of this formula requires some
subjective judgement as to how much smaller space-charge effects should be. To
aid this judgement, one might also calculate the average betatron phase shift caused
by space-charge forces and compare it with the total phase advance along the beam
line under investigation. In this case we look for

2rc

ˇ2�3

Z
L

ˇu� fcorr

�y.�x C �y/
dz�  0.L/ (21.61)

to determine the severity of space-charge effects. The nominal phase advance
 0;u.L/ is defined such that  0;u.0/ D 0 at the beginning of the beam line.

Space-Charge Tune Shift

Space-charge focusing may not significantly perturb the lattice functions but may
cause a big enough tune shift in a circular accelerator moving the beam onto a
resonance. The beam current is therefore limited by the maximum allowable tune
shift in the accelerator which is for a linear focusing force F.z/ given by


u D � 1

4�

rc

ˇ2�

Z Lint

0

F.z/ˇu dz : (21.62)

The integration in (21.62) is taken over that part of the path in each revolution where
the force is effective. For the effect on particles within the same beam this is the
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circumference and for the beam-beam effect it is the total length of all head on
collisions per turn.

The tune shifts are not the same for all particles due to the nonuniform charge
distribution within a beam. Only particles close to the beam center suffer the
maximum tune shift while particles with increasing betatron oscillation amplitudes
are less affected. The effect of space charge therefore introduces a tune spread rather
than a specific tune shift and we refer to this effect as the incoherent space-charge
tune shift.

As a particular case, consider the space-charge tune shift of a particle within a
beam of equal species particles. Applying the Lorentz force (21.54) with (21.56) the
space-charge tune shift becomes from (21.62)


u;sc D � rc�

2�

fp.1 � ˇ2fv/
ˇ2�

Z
ˇu

�u.�x C �y/
fcorr dz ; (21.63)

where the local linear particle density � is defined by (21.44).
The maximum incoherent space-charge tune shift is from (21.63) with fp D 1,

fv D 1; .1 � ˇ2/ D 1=�2 and (21.56)


u;sc;incoh D � rc �

2�ˇ2�3

"Z 2� NR

0

ˇu

�u.�x C �y/
dz (21.64)

C2.1C ˇ2�2B/
Z Lvac

0

ˇu�1

b2
dzC 2ˇ2�2B

Z Lmag

0

ˇu �2

g2
dz

�
;

where the integration length Lvac is equal to the total length of the vacuum chamber
and Lmag is the total length of magnets along the ring circumference. Note, however,
that this last term appears only at low frequencies because of eddy-current shielding
in the vacuum chamber at high frequencies. Observing the tune on a betatron side
band at a high harmonic of the revolution frequency may not exhibit a tune shift due
to this term while one might have a contribution at low frequencies.

A coherent space-charge tune shift can be identified by setting y D Ny in the field
expressions (21.46), (21.48), (21.49) to determine the fields at the bunch center. The
calculation is similar to that for the incoherent space-charge tune shift except that
we define new Laslett form factors for this case

�2 D �2

16
(21.65)

for the image fields from the magnetic pole and form factors �1 which depend on
the aspect ratio of an elliptical vacuum chamber (Table 21.3).

(21.66)
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Table 21.3 Laslett coherent
tune shift form factors for
elliptical vacuum chambers

a=b Wa 1 5/4 4/3 3/2 2/1 1
�1 W 0 0.090 0.107 0.134 0.172 0.206

aa is the horizontal and b the vertical half-axis of an
elliptical vacuum chamber

The coherent space-charge tune shift is analogous to (21.64)


u;sc;coh D � rc �

2� ˇ2 �3

"Z 2� NR

0

ˇu

�u.�x C �y/
dz (21.67)

C2.1C ˇ2�2B/
Z Lvac

0

ˇu �1
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dzC 2ˇ2�2B
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0

ˇub2�2
g2

dz

�
:

In both cases, we may simplify the expressions significantly for an approximate
calculation by applying smooth approximationˇu � R=
0u and assuming a uniform
vacuum chamber and magnet pole gaps. With these approximations, (21.63)
becomes


u;sc D � rc Ntot R

2�
0u B

fp .1 � ˇ2fv/
ˇ2�

h fcorri
N�u. N�x C N�y/

; (21.68)

where

hfcorri D 1C N�u . N�x C N�y/

Nb2
�
�1.1C ˇ2�2B/C �2ˇ2�2

Nb2
Ng2B

�
: (21.69)

Symbols with an overbar are the values of quantities averaged over the circumfer-
ence of the ring and 
0u is the unperturbed tune in the plane .x; y/. The incoherent
tune shift (21.64) becomes then


u;sc; incoh�� rc Ntot R

2� 
0u Bˇ2�3

�
1

N�u. N�x C N�y/
(21.70)

C2 .1C ˇ2�2B/ �1Nb2 C 2 ˇ
2�2B

�2

Ng2 �b

�
;

where �b D Lmag=.2� NR/ is the magnet fill factor and the coherent tune shift (21.67)
becomes


u;sc; coh�� rc Ntot R

2�
0uBˇ2�3

�
1

N�u . N�x C N�y/
(21.71)

C2.1C ˇ
2�2B/
Nb2 �1 C 2ˇ2�2B

Ng2 �2�b

�
:
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The tune shift diminishes proportional to the third power of the particle energy. As
a matter of fact in electron machines of the order of 1 GeV or more, space-charge
tune shifts are generally negligible. For low energy protons and ions, however, this
tune shift is of great importance and must be closely controlled to avoid beam loss
due to nearby resonances. While a maximum allowable tune shift of 0.15–0.25
seems reasonable to avoid crossing a strong third order or half-integer resonance,
practically realized tune shifts can be significantly larger of the order 0.5–0.6 [28–
30]. Independent of the maximum tune shift actually achieved in a particular ring,
space charge forces ultimately lead to a limitation of the beam current.

21.2.6 Longitudinal Space-Charge Field

Within a continuous particle beam travelling along a uniform vacuum chamber
we do not expect longitudinal fields to arise. We must, however, consider what
happens if the longitudinal charge density is not uniform since this is a more realistic
assumption. For the case of a round beam of radius r0 in a circular vacuum tube of
radius rw (Fig. 21.4), the fields can be derived by integrating Maxwell’s equation
r � E D � @B

@t and with Stoke’s lawI
E ds D � @

@t

Z
B dA ; (21.72)

where dA is an element of the area enclosed by the integration path s. The integration
path shown in Fig. 21.4 leads to the determination of the electrical field Ez0 in the
center of the beam.

Er

Δz

beam

rw

vacuum chamber

integration path

Ez0

Ew0

Er

Fig. 21.4 Space-charge fields due to a particle beam travelling inside a circular metallic vacuum
chamber
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Integrating the l.h.s. of (21.72) along the integration path we get with (21.28) for a
round beam .r D �/

Ez0zC
Z rw

0

Er.zCz/dr � Ezwz �
Z rw

0

Er.z/dr (21.73)

D .Ez0 � Ezw/zC q
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�
1C 2 ln
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�
@�

@z
z ;

where a Taylor’s expansion was applied to the linear particle density �.zCz/ and
only linear terms were retained. Ezw is the longitudinal electrical field on the vacuum
chamber wall.

For the r.h.s. of (21.72) we use the expressions for the magnetic field (21.29) and
get with

R
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� ˇ
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�
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z (21.74)

while using the continuity equation

@�

@t
C ˇc

@�

@z
D 0 : (21.75)

The longitudinal space-charge field is therefore

Ez0 D Ezw � q

4��0

1

�2

�
1C 2 ln

rw

r0

�
@�

@z
(21.76)

and vanishes indeed for a uniform charge distribution because Ezw D 0 for a dc
current. However, variations in the charge distribution cause a longitudinal field
which together with the associated ac field in the vacuum chamber wall, acts on
individual particles.

The perturbation of a uniform particle distribution in a circular accelerator is
periodic with the circumference of the ring and we may set for the longitudinal
particle distribution keeping only the nth harmonic for simplicity

� D �0 C �n ei.n��!nt/ ; (21.77)

where !n is the nth harmonic of the perturbation .!n D n!0/. Of course a real beam
may have many modes and we need therefore to sum over all modes n. In case of
instability, it is clear that the whole beam is unstable if one mode is unstable.

With the derivative d�=dz; smooth approximation and � D z= NR with NR the
average ring radius an integration of (21.76) around the circular accelerator gives
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the total induced voltage due to space-charge fields

Vz0 D 2� NR Ezw � i
In

4��0

2�n

ˇc�2

�
1C 2 ln

rw

r0

�
ei.n��!nt/ : (21.78)

In this expression we have also introduced the nth harmonic of the beam-current
perturbation In D ˇc q�n. Equation (21.78) exhibits a relation of the induced
voltage to the beam current. Borrowing from the theory of electrical currents, it
is customary to introduce here the concept of a frequency dependent impedance
which will become a powerful tool to describe the otherwise complicated coupling
between beam current and induced voltage. We will return to this point in Chap. 22.

21.3 Beam-Current Spectrum

In the last section a beam stability issue appeared based on instantaneous current
variations. This is particularly true in circular accelerators where the particle
distribution is periodic with the circumference of the ring. On one hand, we have
an orbiting particle beam which constitutes a harmonic oscillator with many eigen-
frequencies and harmonics thereof and on the other hand, there is an environment
with a frequency dependent response to electromagnetic excitation. Depending on
the coupling of the beam to its environment at a particular frequency, periodic
excitations occur which can create perturbations of particle and beam dynamics.
This interaction is the subject of this discussion. In this text, we will concentrate in
Chap. 22 on the discussion of basic phenomena of beam-environment interactions
or beam instabilities. For a more detailed introduction into the field of beam
instabilities, the interested reader is referred to the general references for this
chapter. In this discussion, we will follow mainly the theories as formulated by
Chao [31], Laclare [32], Sacherer [33] and Zotter [34].

Since the coupling of the beam to its environment depends greatly on the
frequency involved, it seems appropriate to discuss first the frequency spectrum of
a circulating particle beam.

21.3.1 Longitudinal Beam Spectrum

In case of a single circulating particle of charge q in each of nb equidistant bunches,
a pick up electrode located at azimuth ' would produce a signal proportional to the
single-particle beam current which is composed of a series of delta function signals

ik.t; '/ D q

T0

C1X
kD�1

ı.t � '

2�
T0 � k

T0
nb
� �/ ; (21.79)
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where � is the longitudinal offset of the particle from the reference point, nb the num-
ber of equidistant bunches and T0 the revolution time (Fig. 21.4). With the revolution
frequency!0 D 2�=T0, we use the mathematical relations 2�

PC1
kD�1 ı.y�2�k/ DPC1

pD�1 eipy and jcj ı.cy/ D ı.y/ for

C1X
kD�1

ı

�
x � 2�k

nb!0

�
D nb!0

2�

C1X
pD�1

eipnb!0 x; (21.80)

where x D t� '

!0
��; to replace the delta functions. We also replace the exponential

function

eiy sin D
C1X

nD�1
Jn.y/ ein (21.81)

and replace � by the synchrotron oscillation � D O� cosŒ.mC
s/!0tC �i� where 
s is
the synchrotron oscillation tune. The term m!0t reflects the mode of the longitudinal
particle distribution in all buckets. This distribution is periodic with the periodicity
of the circumference and the modes are the harmonics of the distribution in terms
of the revolution frequency (Fig. 21.5).

Inserting (21.80) on the r.h.s. of (21.79) and replacing the term e�ipnb!0�

with (21.81) one gets

ik.t; '/ D qnb!0

2�

C1X
pD�1

C1X
nD�1

i�nJn.qnb!0 O�/ (21.82)

� eiŒ.pnbCnmCn
s/!0t�pnb'Cn�i�;

Fig. 21.5 Particle
distribution along the
circumference of a circular
accelerator and definition of
parameters
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Fig. 21.6 Current spectrum of a single particle orbiting in a circular accelerator and executing
synchrotron oscillations

Performing a Fourier transform

ik.!; '/ D 1

2�

C1Z
�1

i.t; '/ e�i!t dt (21.83)

we get instead of (21.82) the single particle longitudinal current spectrum

ik.!; '/ D qnb!0

2�

C1X
pD�1

C1X
nD�1

i�nJn.pnb!0 O�/ e�i.pnb'�n�i/ ı.˝/ ; (21.84)

where ˝ D ! � .pnb C nmC n
s/!0 and making use of the identity
R

e�i!t dt D
2�ı.!/. This spectrum is a line spectrum with harmonics of the revolution
frequency separated by nb!0. Each of these main harmonics is accompanied on
both sides with satellites separated by ˝s D 
s!0. Schematically, some of the more
important lines of this spectrum are shown in Fig. 21.6 for a single particle.

In the approximation of small synchrotron oscillation amplitudes, one may
neglect all terms with jnj > 1 and the particle beam includes only the frequencies
! D Œp nb ˙ .mC 
s/�!0. In Sect. 19.5.1 the interaction of this spectrum for p D h
with the narrow-band impedance of a resonant cavity was discussed in connection
with Robinson damping.

A real particle beam consists of many particles which are distributed in initial
phase �i as well as in oscillation amplitudes O� . Assuming the simple case of equal
and equidistant bunches with uniform particle distributions in synchrotron phase �i

we may set n D 0. The time independent particle distribution is then ˚0.t; O�/ D
�0. O�/ which is normalized to unity and the total beam-current spectrum is given by

Ik.!; '/ D Ib

C1X
pD�1

ı.! �˝0/ e�ip'
Z C1

�1
J0.pnb!0 O�/ �0. O�/ d O� ; (21.85)
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a. b.

Fig. 21.7 Dipole mode oscillation (a) and quadrupole bunch shape oscillations (b)

where Ib D q=T0 is the bunch current and ˝0 D pnb!0. All synchrotron
satellites vanished because of the uniform distribution of synchrotron phases and
lack of coherent bunch oscillations. Observation of synchrotron satellites, therefore,
indicates a perturbation from this condition either by coherent oscillations of one
or more bunches (n ¤ 0; O� ¤ 0) or coherent density oscillations within a bunch
˚0.t; O�/ D f .�i/.

The infinite sum over p represents the periodic bunch distribution along the
circumference over many revolutions whether it be single or multiple bunches. The
beam-current spectrum is expected to interact with the impedance spectrum of the
environment and this interaction may result in a significant alteration of the particle
distribution ˚.t; O�/. As an example for what could happen, the two lowest order
modes of bunch oscillations are shown in Fig. 21.7.

In lowest order a collection of particles contained in a bunch may perform dipole
mode oscillations where all particles and the bunch center oscillate coherently
(Fig. 21.7a). In the next higher mode, the bunch center does not move but particles at
the head or tail of the bunch oscillate 180ı out of phase. This bunch shape oscillation
is in its lowest order a quadrupole mode oscillation as shown in Fig. 21.7b. Similarly,
higher order mode bunch shape oscillations can be defined.

21.3.2 Transverse Beam Spectrum

Single particles and a collection of particles in a bunch may also perform transverse
betatron oscillations constituting a transverse beam current which can interact with
its environment. Again, we observe first only a single particle performing betatron
oscillations

u D Ou cos .t/ ; (21.86)

where u D x or y,  .t/ is the betatron phase, and the transverse current is

i?.t; '/ D ik.t; '/ Ou cos .t/ : (21.87)

Note that the transverse current has the dimension of a current moment represented
by the same spectrum as the longitudinal current plus additional spectral lines due
to betatron oscillations. The betatron phase is a function of time and depends on the
revolution frequency and the chromaticity, which both depend on the momentum
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of the particle. From the definition of the momentum compaction d!=!0 D �c ı,
chromaticity �u D d
=ı and relative momentum deviation ı D dp=p0, the variation
of the betatron phase with time is

P .t/ D !u D 
0
�
1C �u


0
ı

�
!0 .1C �c ı/ ; (21.88)

� 
0!0 C
�

0 C �u

�c

�
!0 P� ;

where we have kept only linear terms in ı and used P� D ��cı. Equation (21.88) can
be integrated for

 .t/ D 
0!0.t � �/ � !0 �u

�c
� C  0 (21.89)

and (21.87) becomes with (21.74), (21.81), (21.84)

i?.t; '/ D ik.t; '/Ou cos .t/ (21.90)
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Following the derivation for the longitudinal current and performing a Fourier
transform we get the transverse beam spectrum
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(21.91)

� e�i.p'�n�i/ ı.˝u/ ;

where ˝u D ! � .pC 
0/nb!0 C n˝s defines the line spectrum of the transverse
single particle current (Fig. 21.8).

We note that the betatron harmonics .pC
0/nb!0 are surrounded by synchrotron
oscillation satellites, however, in such a way that the maximum amplitude is shifted
in frequency by !0�u=�c. It is interesting to note at this point that the integer part of
the tune 
0 cannot be distinguished from the integer p of the same value. This is the
reason why a spectrum analyzer shows only the fractional tune 
 !0.

The transverse current spectrum is now just the sum of all contributions from
each individual particles. If we assume a uniform distribution ˚.t; O� ; Ou/ in betatron
phase, we get no transverse coherent signal because hei 0i D 0, although the
incoherent space-charge tune shift is effective. Additional coherent signals appear
as a result of perturbations of a uniform transverse particle distribution.



732 21 Statistical and Collective Effects*

νs νx

1−2νx 2νx 1−νx

0.0 0.25 0.5 1.0MHz
4νx

2νs

0.75

1−3νx

Fig. 21.8 Oscillation spectrum of a single particle orbiting in a circular accelerator and executing
betatron and synchrotron oscillations

Problems

21.1 (S). The linear focusing of the beam-beam effect changes also the betatron
function. Derive an expression that relates the change in the value of the betatron
function ˇ�

y at the collision point to the beam-beam tune shift ı
:

21.2. Verify that (21.17) and (21.25) are indeed solutions of the respective Poisson
equation.

21.3. Prove that (21.27) is indeed the potential for small vertical amplitudes and
x D 0.

21.4. Calculate the linear beam-beam tune shift for each beam under the following
head on colliding beam conditions:

a) A 250 GeV proton beam colliding with a fully ionized 30 GeV/u Au ion beam.
(proton emittance �x;y D 20 mm-mrad, gold ion emittance �x;y D 33mm-mrad,
ˇ�

x;y D 2:0m, proton intensity 1011 p/bunch, a total of 60 bunches per beam, gold
ion intensity 109 Au ions/bunch).

b) A 250 GeV proton beam colliding with a fully ionized 100 GeV/u Au ion beam
(parameters same as in a) but gold ion emittance �x;y D 10 mm-mrad).

c) A 30 GeV electron beam colliding with a 820 GeV proton beam. The circumfer-
ence of the rings is 6336 m, there are 2:1� 1013 protons and 0:8� 1013 electrons
in 210 bunches and the horizontal and vertical beam sizes at the collision point
are �x=y D 0:29=0:07mm for the proton beam and 0:26=0:02mm for the electron
beam, respectively.

d) A 1.5 GeV electron beam colliding with a 1.5 GeV positron beam at a collision
point with �x D 0:67mm-mrad, emittance coupling 27.7 %, ˇ�

x D 1:3m, ˇ�
y D

0:1m and a beam current of 66 mA [35].

21.5. Estimate the strength of the octupole field component of the proton beam
in RHIC at the collision point. Would an octupole be technically feasible to
compensate for the beam-beam octupole term?
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21.6. At the Stanford Linear Collider, SLC, an electron beam collides with a
positron beam at up to 50 GeV per beam. Each bunch contains 5�1011 particles and
is focused to a beam diameter of 2:0 �m at the collision point where the betatron
functions in both planes are ˇ� D 0:005m. Calculate the beam-beam tune shift and
the focal length of the beam lens for a bunch length of ` D 1 mm. Compare with
beam-beam limits in storage rings. Why can we tolerate a much greater beam-beam
tune shift in a linear collider compared with a storage ring?

21.7. Show that the horizontal damping partition number is negative in a fully
combined function FODO lattice as employed in older synchrotron accelerators.
Why, if there is horizontal antidamping in such synchrotrons, is it possible to retain
beam stability during acceleration? What happens if we accelerate a beam and keep
it orbiting in the synchrotron at some higher energy?

21.8. Future colliding beam facilities for high-energy physics experimentation are
based on two linear accelerators aimed at each other and producing beams of very
high energy for collision. In this arrangement synchrotron radiation is avoided
compared to a storage ring. We assume that such beams can be directed to different
detectors. Design an S-shaped beam transport system based on a FODO lattice,
which would allow the beams to be directed into a detector being displaced by the
distance D normal to the linac axis. The beams have an energy of E0 D 1;000GeV
and a beam emittance of � D 1:0�10�12 m which should not be diluted in this beam
transport system by more than 10%. Determine quadrupole and bending magnet
parameters.

21.9. Strong focusing is required along a 500 GeV linear accelerator. Misalign-
ments and path correction introduce dipole fields which are the source of syn-
chrotron radiation and quantum excitation. Assume a normalized emittance of
�� D 10�6 m and an initial beam energy of 1 GeV at the entrance to the linac.
The high-energy linac has a circular aperture of 3 mm diameter. Design a FODO
cell with sufficient focusing to contain this beam within a radius of 0.5 mm leaving
the rest for path distortions. The distance between quadrupoles increases linearly
with energy. Determine with statistical methods the number and strength of the
quadrupoles for an acceleration of 100 MeV/m. Determine the alignment tolerances
for these quadrupoles to keep the emittance increase due to quantum excitation in
the dipole field from misaligned quadrupoles and due to correctors to 10%.

21.10. Consider the FODO lattice along the linear accelerator in Problem 21.9 and
estimate the increase in beam energy spread due to synchrotron radiation from the
finite beam size in quadrupoles.

21.11. Consider an electron beam in a 6 GeV storage ring with a bending radius
of 	 D 20m in the bending magnets. Calculate the rms energy spread ��=E0 and
the damping time � . What is the probability for a particle to emit a photon with
an energy of �� and 2��. How likely is it that this particle emits another such
photon within a damping time? In evaluating the particle distribution, do we need to
consider multiple photon emissions?



734 21 Statistical and Collective Effects*

21.12. Consider one of the storage rings in Table 10.1 and calculate the equilibrium
beam emittance and energy spread. To manipulate the beam emittance we vary the
rf-frequency. Determine the maximum variation possible with this method.

21.13. A large hadron collider LHC operates in the LEP tunnel of 28 km circum-
ference at CERN in Geneva. The maximum proton energy is 15 TeV. Determine
the magnetic bending field required if 80 % of the circumference can be used for
bending magnets. Calculate the synchrotron radiation power for a circulating proton
current of 200 mA, damping times, equilibrium beam emittance and energy spread.

21.14. Determine basic FODO lattice parameters for a 2 GeV eC=e�-colliding
beam storage ring with two collision points to reach a design luminosity of
Le D 1031 cm�2s�1. The betatron functions at the collision point be ˇ�

y D 5

cm and ˇ�
x D 1:3m and the emittance coupling 10 %. Calculate beam sizes

in the arc, aperture requirements, circumference and beam current. What is the
total synchrotron radiation power? Adjust, if necessary, your design to keep the
maximum synchrotron radiation power at the vacuum chamber wall below a
practical limit of 5 kW/m.
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Chapter 22
Wake Fields and Instabilities*

While discussing self fields of a charged particle bunch, we noticed a significant
effect from nearby metallic surfaces. The dynamics of individual particles as well
as collective dynamics of the whole bunch depends greatly on the electromagnetic
interaction with the environment. Such interactions must be discussed in more detail
to establish stability criteria for particle beams.

The electric field from a charge in its rest frame extends isotropic from the
charge into all directions. In the laboratory frame, this field is Lorentz contracted
and assumes for a charge in a uniform beam pipe the form shown in Fig. 22.1a.
The contracted field lines spread out longitudinally only within an angle ˙1=� .
This angle is very small for most high energy electron beams and we may describe
the single-particle current as well as its image current by a delta function. Some
correction must be made to this assumption for lower energy protons and specifically
ions for which the angle 1=� may still be significant. In the following discussions,
however, we will assume that the particle energy is sufficiently large and � � 1.

Electron storage rings are being planned, designed, constructed, and operated for
a variety of applications. While in the past such storage rings were optimized mostly
as colliding beam facilities for high energy physics, in the future most applications
for storage rings seem to be connected with the production of synchrotron radiation.
Some of these radiation sources will be designed for higher energy particle beams
.few GeV/ to produce hard X-rays while others have moderate to low beam energies
.& 100 MeV/ to, for example, produce VUV and soft X-rays or to drive free
electron lasers.

The beam in an electron storage ring is composed of bunches which are typically
a few centimeters long and are separated by a distance equal to one or more rf-
wavelengths. The total number of bunches in a storage ring can range from one
bunch to a maximum of h bunches, where h is the harmonic number for the storage
ring system. The particle beam covers therefore a wide frequency spectrum from the
kHz regime of the order of the revolution frequency up to many GHz limited only
by the bunch length or size of the vacuum chamber. On the other hand, the vacuum
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Fig. 22.1 Coupling of a charged particle beam to the environment; uniform chamber cross section
(a), and obstacle on vacuum chamber surface (b)

chamber environment constitutes an impedance which can become significant in the
same frequency regime and efficient coupling can occur leading to collective effects.
The most important impedance in an accelerator is that of the accelerating cavity at
the cavity fundamental frequency. Since the particle beam is bunched at the same
frequency, we observe a very strong coupling which has been extensively discussed
in Sect. 19.4 in connection with beam loading. In this section, we will therefore
ignore beam loading effects in resonant cavities at the fundamental frequency and
concentrate only on higher-order mode losses and interaction with the general
vacuum chamber environment.

Depending on the particular application and experiment conducted, it may be
desirable to store only a single bunch with the highest intensity possible. In other
cases the maximum total achievable intensity is desired in as many bunches as
possible and the particular bunch distribution around the ring does not matter. In
either case the ultimate electron beam intensity will most probably be limited by
instabilities caused by electromagnetic interaction of the beam current with the
environment of the vacuum chamber. We ignore here technical limitations due to,
for example, insufficient available rf-power or inability to cool the radiation heating
of the vacuum chamber.

Since the radiation intensity produced is directly proportional to the stored
electron beam current, it is obvious that the usefulness of such a radiation source
depends among other parameters on the maximum electron beam current that can
be stored in each bunch or in the storage ring.

22.1 Definitions of Wake Field and Impedance

The image currents of a charge q travelling along the axis of a uniform and perfectly
conducting tube move with the charge without losses and no forces are generated
that would act back on the particle. This is different for a resistive wall where the
image fields drag a significant distances behind the charge or in case of an obstacle
extending into the tube or any other sudden variation of the tube cross section
(Fig. 22.1b).
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In any of these cases, wake fields are created which have the ability to pull or
push the charge q or test particles following that charge. Because of causality, no
such fields exist ahead of a relativistically moving charge.

Energy losses and gains of a single or collection of particles can cause significant
modifications in the dynamics of particle motion. Specifically, we are concerned
that such forces may lead to particle or beam instability which must be understood
in detail to determine limitations or corrective measures in a particular accelerator
design. The interaction of a charged particle beam with its environment can be
described in time domain or frequency domain where both have their advantages
and disadvantages when it comes to evaluate their effect on particle dynamics.

22.1.1 Parasitic Mode Losses and Impedances

In time domain, the interaction is described by wake fields which then act on
charges. In frequency domain, vacuum chamber components can be represented
as a frequency dependent impedance. We used this picture before while discussing
properties of accelerating cavities. Many vacuum chamber components or sudden
changes in cross section behave like cavities and represent therefore frequency
dependent impedances. Together with the frequency spectrum of the beam, we
find strong coupling to the vacuum chamber if the impedance and particle beam
have a significant component at the same frequency. The induced voltage V.!/
from this interaction is proportional to the collective particle current I.!/ and the
impedance Z.!/ acting as the proportionality factor, describes the actual coupling
from the particle beam via the vacuum chamber environment to the test particle.
Mathematically, we set

V.!/ D � Z.!/ I.!/ (22.1)

indicating by the minus sign that the induced voltage leads to an energy loss for
beam particles. The impedance is in general complex and depends for each piece of
vacuum chamber including accelerating cavities or accidental cavities, on its shape,
material and on the frequency under consideration. The coupling impedance for a
particular vacuum chamber component or system may be narrow band with a quality
factor Q� 1 like that in an accelerating cavity or broad band with Q � 1 due to a
sudden change in the vacuum chamber cross section.

Fields induced by the beam in a high Q structure are restricted to a narrow
frequency width and persist for a long time and can act back on subsequent
particle bunches or even on the same particles after one or more revolutions. Such
narrow-band impedances can be the cause for multi-bunch instabilities but rarely
affect single bunch limits. The main source for a narrow-band impedance in a
well-designed accelerator comes from accelerating cavities at the fundamental as
well as higher-order mode frequencies. There is little we can or want do about
the impedance at the fundamental frequency which is made large by design for
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efficiency. The design of modern accelerator cavities exhibit significantly reduced
impedances for higher-order modesor HOMs.

The source for broad-band impedances are discontinuities in cross section or
material along the vacuum chamber including accelerating cavities, flanges, kicker
magnets with ferrite materials, exit chambers electrostatic plates, beam position
monitors, etc. Many higher order modes over a wide frequency range can be excited
in such discontinuities by a passing short particle bunch, but all modes decoher very
fast. Only for a very short time are these mode fields in phase, adding up to a high
field intensity but at the time of arrival of the next particle bunch or the same bunch
after one or more revolutions these fields have essentially vanished. Broad-band
wake fields are therefore mainly responsible for the appearance of single-bunch
beam instabilities.

Due to tight particle bunching by the rf-system to about 5% of the rf-wavelength,
we have large instantaneous currents with significant amplitudes of Fourier compo-
nents at harmonics of the revolution frequency up to about 20 times the rf-frequency
or down to wavelength of a few centimeters. Strong electromagnetic interaction
between electron bunches and cavity like structures as part of the vacuum enclosure
must therefore be expected. Any but the smallest steps in the cross section of
the vacuum chamber constitute cavity like structures. A bunch passing by such
a structure deposits electromagnetic energy which in turn causes heating of the
structure and can act back on particles in a later segment of the same bunch or
in a subsequent bunch. Schematically such fields, also called wake fields, are shown
in Fig. 22.1 where the beam passes by a variation in the cross section of the vacuum
chamber. We will discuss the nature and the frequency spectrum of these wake fields
to determine the effect on the stability of the beam and to develop counter measures
to minimize the strength and occurrence of these wake fields.

We distinguish broad band parasitic losses where the quality factor Q is of the
order of unity from narrow band losses with higher Q values. Fields from broad
band losses last only a very short time of the order of one period and are mainly
responsible for single bunch instabilities, where the fields generated by electrical
charges in the head of the bunch act back on the particles in the tail of the same
bunch. Due to the low value of the quality factor .Q � 1/ these broad band wake
fields decay before the next bunch arrives.

Wake fields can appear as longitudinal or transverse modes and cause corre-
spondingly longitudinal or transverse instabilities. Obviously, a perfect vacuum
chamber would have a superconducting surface and be completely uniform around
the ring. This is not possible in real accelerators because we need rf-systems which
by their nature are not smooth, injection/ejection components, synchrotron light
ports, bellows, and beam position monitors. While we cannot avoid such lossy
components we are able by proper design to minimize the detrimental effects of
less than ideal components.

The loss characteristics of a particular piece of the vacuum chamber for the whole
ring is generally expressed in terms of an impedance Z or in terms of a loss factor
k. To illustrate the different nature of wake fields we assume a cavity like change in
the cross section of the vacuum chamber as shown in Fig. 22.2.
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Fig. 22.2 Longitudinal parasitic mode
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Fig. 22.3 Transverse parasitic mode

A bunch passing through such a structure on axis excites in lowest order a
longitudinal electrical field and a transverse magnetic field as shown. Such a field
pattern will not cause a transverse deflection of the whole beam since the electrical
field is strictly longitudinal and the transverse magnetic field is zero on axis and out
of phase. For this situation we define a longitudinal impedance Zk by

Zk.!/ D �
R

E.!/ dz
I.!/

; (22.2)

where E.!/ is the electric field at the frequency ! and I.!/ the Fourier transform
of the bunched beam current. The r.h.s. of (22.2) is the energy gained per unit
charge and is equivalent to an accelerating voltage divided by the current, where
the actual frequency dependence as determined by the specific physical shape of the
“resonating” structure.

In a similar way we can define a transverse impedance. A beam passing off axis
through a “cavity” excites asymmetric fields, as shown in Fig. 22.3, proportional to
the moment of the beam current I.!/x, wherex is the displacement of the beam
from the axis.

Such an electrical field is connected through Maxwell’s equation with a finite
transverse magnetic field on axis, as shown in Fig. 22.3, which causes a transverse
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deflection of the beam. Consistent with the definition of the longitudinal impedance
we define a transverse impedance by

Z?.!/ D i

R
.E.!/C Œv � B.!/�/j?dz

I.!/x
; (22.3)

where v is the velocity of the particle and B.!/ the magnetic field component of the
electromagnetic field at frequency !. In general the impedances are complex

Z.!/ D ZRe.!/C i ZIm.!/ : (22.4)

The resistive part of the impedance can lead to a shift in the betatron oscillation
frequency of the particles while the reactive or imaginary part may cause damping
or antidamping.

The impedance is a function of the frequency and its spectrum depends on
the specific design of the vacuum chambers in a storage ring. The longitudinal
impedance of vacuum chambers has been measured in SPEAR and in other existing
storage rings and has been found to follow a general spectrum as a consequence
of similar design concepts of storage ring components. SPEAR measurements, as
shown in Fig. 19.9, demonstrate the general form of the frequency spectrum of the
vacuum chamber impedance [1].

Characteristic for the spectrum is the cutoff frequency fc at which the linear
impedance function reaches a maximum and above which the fields are able to
propagate in the vacuum chamber. This cutoff frequency obviously is determined
by the aperture of the vacuum chamber and therefore occurs at different frequencies
for different rings with different vacuum chamber apertures. For the longitudinal
broad band impedance at high frequencies above the cutoff frequency fc we have
the simple power law

Zk.!/ D Zc!
�0:68; .! > !c/ : (22.5)

To simplify comparisons between different storage rings we define a normalized
impedance Z=n as the impedance at the cut off frequency divided by the mode
number n which is the ratio of the cutoff frequency fc to the revolution frequency
frev ˇ̌̌̌

Z

n

ˇ̌̌̌
c

D
ˇ̌̌̌

Zc

fc=frev

ˇ̌̌̌
: (22.6)

This definition of the normalized impedance can be generalized to all frequencies
and together with (22.5) the impedance spectrum becomesˇ̌̌̌

Zk
n

ˇ̌̌̌
eff
D
ˇ̌̌̌
Zk
n

ˇ̌̌̌
c

�
!

!c

��1:68
: (22.7)
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Where only one is known, we can make an estimate of the other one through the
approximate relation which is correct only for cylindrically symmetric structures
[2, 3]

Z? D 2R

b2
Zk
n
; (22.8)

where 2�R is the ring circumference and b the typical vacuum chamber radius.
The longitudinal impedance of the whole storage ring vacuum system including
rf-cavities can be determined by measuring the energy loss of particles in a high
intensity bunch compared to the energy loss for particles in a low intensity bunch.
Such loss measurements are performed by observing the shift in synchronous phase
for the low and high intensity beam. The parasitic losses of rf-cavities can be
calculated very accurately with computer programs or are known from laboratory
measurements. From the separate knowledge of cavity and total ring losses we
derive the vacuum chamber losses by simple subtraction.

A bunched particle beam of high intensity represents a source of electromagnetic
fields, called wake fields [4] in a wide range of wavelengths down to the order of the
bunch length. The same is true for a realistic coasting beam where fluctuations in
beam current simulate short particle bunches on top of an otherwise uniform beam.

Introducing wake fields and higher-order mode losses, we distinguish two
groups, the longitudinal and the transverse wake fields. The longitudinal wake fields
being in phase with the beam current cause energy losses to the beam particles,
while transverse wakes deflect particle trajectories. There is no field ahead of
relativistically moving charge due to causality. From the knowledge of such wake
fields in a particular environment we may determine the effect on a test charge
moving behind a charge q.

The character of local wake fields depends greatly on the actual geometry and
material of the vacuum chamber and we may expect a significant complication in
the determination of wake field distributions along a vacuum enclosure of an actual
accelerator. It is not practical to evaluate these fields in detail along the beam path
and fortunately we do not need to. Since the effects of localized fields are small
compared to the energy of the particles, we may integrate the wake fields over a
full circumference. As we will see, this integral of the field can be experimentally
determined.

22.1.2 Longitudinal Wake Fields

One may wonder how the existence of an obstacle in the vacuum chamber, like a
disk which is relatively far away from the charge q, can influence a test particle
following closely behind the charge q. To illustrate this, we consider the situation
shown in Fig. 22.4.
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Fig. 22.4 Catch up of wake
fields with test particle
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Long before the charge reaches the obstruction, fields start to diverge from the
charge toward the obstruction to get scattered there. Some of the scattered fields
move again toward the charge and catch up with it due to its slightly faster speed.

The details of this catch up process are, however, of little interest compared to
the integrated effect of wake fields on the test particle. Each charge at the position z
creates a wake field for a particle at location Qz < z and this wake field persists during
the whole travel time along an accelerator segment L assuming that the distance
� D z � Qz does not change appreciably along L. We define now a longitudinal wake
function by integrating the longitudinal wake fields Ek along the interaction length
L, which might be the length of a vacuum chamber component, a linear accelerator
or the circumference of a circular accelerator, and normalize it to a unit charge. By
integrating, which is the same as averaging over the length L, we eliminate the need
to calculate everywhere the complicated fields along the vacuum chambers. The
wake field at the location of a test particle at Qz from a charge q at location z is then
(Fig. 22.4)

Wk.�/ D 1

q

Z
L

Ek.z; t � �=ˇc/ dz ; (22.9)

where � D z � Qz > 0. The wake function is measured in V/Cb using practical units
and is independent of the sign of the charge. To get the full wake field for a test
particle, one would integrate the wake function over all particles ahead of the test
particle.

The longitudinal wake function allows us to calculate the total energy loss of
the whole bunch by integrating over all particles. We consider a test particle with
charge e at position Qz and calculate the energy loss of this particle due to wake fields
from charges further ahead at z  Qz. The total induced voltage from a collection of
particles with distribution �.z/ on the test charge at Qz is then determined by the wake
potential1

VHOM.Qz/ D �e
Z 1

Qz
�.z/Wk.z� Qz/ dz ; (22.10)

1Expression (22.9) is sometimes called the wake potential. We do not follow this nomenclature
because the expression (22.9) does not have the dimension of a potential but (22.10) does.
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where a negative sign was added to indicate that the wake fields are decelerating.
Integrating over all slices dQz, the total energy loss of the bunch into HOM fields is

UHOM D �
Z 1

�1
e�.Qz/ dQz

Z 1

Qz
e�.z/Wk.z � Qz/ dz„ ƒ‚ …
wake potential at Qz

: (22.11)

The linear distribution �.z/ of particles with charge e is normalized to the total
number of particles Nb in the bunch

R
�.z/ dz D Nb. It is interesting to perform the

integrations in (22.11) for a very short bunch such that the wake function seen by
particles in this bunch is approximately constant and equal to W0. In this case, we
define the function w.Qz/ D R1

Qz e�.z/ dz and the double integral assumes the form
� R1

�1 w dw D 1
2
.eNb/

2 where we have used the normalization w.�1/ D eNb.
Particles in a bunch see therefore only 50 % of the wake fields produced by the
same bunch consistent with our earlier formulation of the fundamental theorem of
wake fields discussed in Sect. 19.3 in connection with wake fields in rf-cavities. By
the same argument, each particle sees only half of its own wake field.

Wake functions describe higher-order mode losses in the time domain. For
further discussions, we determine the relationship to the concept of impedance
in the frequency domain and replace in (22.10)the charge distribution with the
instantaneous current passing by Qz

I.Qz; t/ D OI0 ei.kQz�!t/ : (22.12)

The beam current generally includes more than one mode k but for simplicity we
consider only one in this discussion. Integrating over all parts of the beam which
have passed the location Qz before, the wake potential (22.10) becomes

VHOM.Qz; t/ D �
1

cˇ

Z 1

Qz
I

�
Qz; tC z� Qz

cˇ

�
Wk.z � Qz/ dz : (22.13)

Consistent with a time dependent beam current, the induced voltage depends on
location Qz and time as well. The wake function vanishes due to causality for z�Qz < 0
and the integration can therefore be extended over all values of z. With (22.12),
� D z � Qz and applying a Fourier transform (22.13) becomes

VHOM.t; !/ D �I.t; !/
1

cˇ

Z 1

�1
e�i!�=cˇWk.�/ d� : (22.14)

From (22.14) we define the longitudinal coupling impedance in the frequency
domain

Zk.!/ D 1

cˇ

Z 1

�1
e�i!�=cˇWk.�/ d� (22.15)
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which has in practical units the dimension Ohm. The impedance of the environment
is the Fourier transform of the wake fields left behind by the beam in this
environment. Because the wake function has been defined in (22.9) for the length
L of the accelerator under consideration, the impedance is an integral parameter of
the accelerator section L as well. Conversely, we may express the wake function in
terms of the impedance spectrum

Wk.z/ D 1

2�

Z 1

�1
Zk.!/ ei!z=cˇ d! : (22.16)

The interrelations between wake functions and impedances allows us to use
the most appropriate quantity for the problem at hand. Generally, it depends on
whether one wants to work in the frequency or the time domain. For theoretical
discussions, the well defined impedance concept allows quantitative predictions for
beam stability or instability to be made. In most practical applications, however,
the impedance is not quite convenient to use because it is not well known for
complicated shapes of the vacuum chamber. In a linear accelerator, for example,
we need to observe the stability of particles in the time domain to determine the
head-tail interaction. The most convenient quantity depends greatly on the problem
to be solved, theoretically or experimentally.

Loss Parameter

In a real accelerator, the beam integrates over many different vacuum chamber
pieces with widely varying impedances. The interaction of the beam with the
vacuum chamber impedance leads to an energy loss which has to be compensated
by the rf-system. We are therefore not able to experimentally determine the
impedance or wake function of a particular vacuum chamber element. Only the
integrated impedance for the whole accelerator can sometimes be probed at specific
frequencies by observing specific instabilities as we will discuss later. The most
accurate quantity to measure the total resistive impedance for the whole accelerator
integrated over all frequencies is the loss factor or loss parameter.

We characterize this loss through the loss factor k defined by

k D U

q2
; (22.17)

where U is the total energy deposited by the passing bunch and q is the total
electrical charge in this bunch. This definition is a generalization of the energy loss
of a single particle passing once through a resonator where k D �.!=4/.Rs=Q/ and
Rs is the shunt impedance of this resonator. The loss factor is related to the real part
of the impedance by

k D 2

q2

Z 1

o
ReŒZ.!/� I2.!/ d!
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Fig. 22.5 Dependence of the
overall loss factor k in the
storage ring SPEAR on the
bunch length [5]
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and depends strongly on the bunch length as can be seen from measurements of the
loss factor in SPEAR [5] shown in Fig. 22.5. Specifically, we find the loss factor to
scale with the bunch length like

k.�`/ 	 ��1:21
` : (22.18)

Similar to the definitions of impedances, we also distinguish a longitudinal and
a transverse loss factor. The loss factor can be related to the wake function and we
get from comparison with (22.11) the relation

kkHOM
D 1

N2
b

Z 1

�1
�.Qz/ dQz

Z 1

Qz
�.z/Wk.z � Qz/ dz : (22.19)

The loss parameter can be defined for the complete circular accelerator or for
a specific vacuum chamber component installed in a beam line or accelerator.
Knowledge of this loss factor is important to determine possible heating effects
which can become significant since the total higher-order mode losses are deposited
in the form of heat in the vacuum chamber component. In a circular accelerator, the
energy loss rate or heating power of a beam circulating with revolution frequency
f0 is

PHOM D kHOM

I20
f0 nb

; (22.20)

where nb is the number of bunches in the beam and Io D nb qNb f0 is the average
circulating beam current in the accelerator. As an example, we consider a circulating
beam of 1mA in one bunch of the LEP storage ring where the revolution frequency is
about f0 D 10 kHz. The heating losses in a component with loss factor kHOM D 0:1

V/pCb would be 10 Watts. This might not seem much if the component is large
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and an external cooling fan might be sufficient. On the other hand, if the vacuum
component is small and not accessible like a bellows this heating power might
be significant and must be prevented by design. The higher-order heating losses
scale like the average current, the bunch current and inversely proportional with
the revolution frequency. For a given circulating beam current, the losses depend
therefore greatly on the number of bunches and the size of the circular accelerator.
As the bunch length becomes smaller, higher and higher modes can be excited as
demonstrated by the steep increase in loss parameter with decreasing bunch length
(Fig. 22.5). Although we try to apply a careful design to all accelerator components
to minimize the impedance it is prudent to be aware of this heating effect while
developing accelerators that involve significantly reduced bunch length like those in
quasi-isochronous storage rings or beams accelerated by laser beams.

The loss parameter can be measured by observing the shift in the synchronous
phase. A bunch of particles circulating in an accelerator looses energy due to
the resistive impedance of the vacuum chamber. This additional energy loss is
compensated by an appropriate shift in the synchronous phase which is given by

UHOM D eNbVrfj sin .�s � �s0/ j ; (22.21)

where �s0 is the synchronous phase for a very small beam current and Vrf the peak
rf-voltage. The loss factor is then with the number of particles per bunch Nb

kHOM D
UHOM

e2N2
b

: (22.22)

Performing this measurement as a function of rf-voltage one can establish a curve
similar to that shown in Fig. 22.5 for the storage ring SPEAR and the dependence of
the loss parameter on the bunch length can be used to determine the total resistive
impedance of the accelerator as a function of frequency. To do that, we write (22.19)
in terms of Fourier transforms

kkHOM
D �

e2N2
b

Z 1

�1
Zres.!/ jI.!/j2 d! (22.23)

and recall that the bunch or current distribution in a storage ring is Gaussian

I.�/ D I0p
2���

e��2=2�2� : (22.24)

The Fourier transform of a Gaussian distribution is

I.!/ D I0 e� 1
2 !

2�2� ; (22.25)
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where I0 is the total bunch current and inserting (22.25) into (22.23), we get

kkHOM
D �I0

e2N2
b

Z 1

�1
Zres.!/ e�!2�2� d! : (22.26)

With (22.26) and the measurement kkHOM
.�`/, where �` D c�� , one may solve for

Zres.!/ and determine the resistive-impedance spectrum of the ring.
Unfortunately, it is not possible to attach a resistance meter to an accelerator to

determine its impedance and we will have to apply a variety of wake field effects on
the particle beams to determine the complex impedance as a function of frequency.
No single effect, however, will allow us to measure the whole frequency spectrum
of the impedance.

22.1.3 Transverse Wake Fields

Similar to the longitudinal case we also observe transverse wake fields with
associated impedances. Such fields exert a transverse force on particles generated
by either transverse electrical or magnetic wake fields. Generally such fields appear
when a charged particle beam passes off center through a nonuniform but cylindrical
or through an asymmetric vacuum chamber. Transverse wake fields can be induced
only on structures which also exhibit a longitudinal impedance. A beam travelling
off center through a round pipe with perfectly conducting walls will not create
longitudinal and therefore also no transverse wake fields.

We consider a charge q passing through a vacuum chamber structure with an
offset u D .x; y/ in the horizontal or vertical plane as shown in Fig. 22.3.

In analogy to the definition of the longitudinal wake function (22.9), we define a
transverse wake function per unit transverse offset by

W?.�; t/ D C
R

L fE.t � �=ˇc/C cŒˇ � B.t � �=ˇc/�g? dz

qu
(22.27)

which is measured in units of V/Cb/m. Consistent with the definition (22.15) of the
longitudinal impedance, the transverse coupling impedance is the Fourier transform
of the transverse wake functions defined by

Z?.!/ D i
1

cˇ

Z 1

�1
e�i!�=cˇ W?.�/ d� (22.28)

adding the factor i to indicate that the action of the transverse force is a mere
deflection while the particle energy stays constant. This transverse impedance is
measured in Ohm/m. The inverse relation is similar to the longitudinal case

W?.z/ D i
1

2�

Z 1

�1
Z?.!/ ei!z=cˇ d! : (22.29)
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22.1.4 Panofsky-Wenzel Theorem

The general relationship between longitudinal and transverse wake fields is
expressed by the Panofsky-Wenzel theorem [6]. Panofsky and Wenzel studied
the effect of transverse electromagnetic fields on a particle trajectory and applied
general relations of electromagnetic theory to derive a relationship between
longitudinal and transverse electromagnetic forces. We will derive the same result
in the realm of wake fields. The Lorentz force on a test particle at Qz due to transverse
wake fields from charges at location z > Qz causes a deflection of the particle
trajectory and the change in transverse momentum of the test particle is after
integration over all charges at locations z < Qz

cp? D
e

ˇ

Z 1

�1
ŒEC .v � B/�? dz : (22.30)

Note that the wake fields vanish because of causality for � < 0. The fields can be
expressed by the vector potential E? D �@A?=@t and B? D .r�A/?. The particle
velocity has only one nonvanishing component vD .0; 0; v/ and (22.30) becomes
with @z=@t D v

cp? D �ce
Z d

0

Dd=dz‚ …„ ƒ�
@

@t

@t

@z
C @

@z

�
A? dz„ ƒ‚ …

D0

C cer?
Z d

0

Ak dz ; (22.31)

where we made use of the vector relation for v � .r � A/CA � .r � v/„ ƒ‚ …
D0

which is

equal to r?.vA/ � .vr/A?�.Ar/ v„ ƒ‚ …
D0

noting that the particle velocity is a constant.

The integrand in the first integral of (22.31) is equal to the total derivative
dA?=dz and the integral vanishes because the fields vanish for � D ˙1. After
differentiation with respect to the time t (22.31) becomes

dp?
dt
D � er?

Z 1

�1
Ek dz (22.32)

which is in terms of forces

@

@z
F? D �r?Fk : (22.33)

The longitudinal gradient of the transverse force or electromagnetic field is propor-
tional to the transverse gradient of the longitudinal force or electromagnetic field
and knowledge of one allows us to calculate the other.
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22.2 Impedances in an Accelerator Environment

The vacuum chamber of an accelerator is too complicated in geometry to allow an
analytical expression for its impedance. In principle each section of the chamber
must be treated individually. By employing two or three-dimensional numerical
codes it may be possible to determine the impedance for a particular component
and during a careful design process for a new accelerator, this should be done
to avoid later surprises. In [7] expressions for many geometries are compiled.
Yet, every accelerator is somewhat different from another and will have its own
particular overall impedance characteristics. For this reason, we focus in these
discussions specifically on such instabilities which can be studied experimentally
revealing impedance characteristics of the ring. However, depending on the fre-
quency involved, there are a few classes of impedances which are common to
all accelerators and may help understand the appearance and strength of certain
instabilities. In this section, we will discuss such impedances to be used in later
discussions on stability conditions and growth rate of instabilities.

Consistent with (21.88), (22.10) the longitudinal impedance for a circular
accelerator is defined as the ratio of the induced voltage at frequency! to the Fourier
transform of the beam current at the same frequency

Zk.!/ D �
R

Ek.!/ dz

I.!/
(22.34)

D 1

4��0

1

eNb

Z
L

Ek.z; t � �=ˇc/ e�i!�=ˇc dz :

Similarly the transverse impedance is from (22.27), (22.28) the ratio of induced
transverse voltage to the transverse moment of the beam current

Z?.!/ D �i

R
.E? C Œv � B�?/j.z;t��=ˇc/e�i!�=ˇc dz

I.!/u
; (22.35)

whereu is the horizontal or vertical offset of the beam from the axis.

22.2.1 Space-Charge Impedance

In (21.78) we found an induced voltage leading to an energy gain or loss due
to a collection of charged particles. It is customary to express (21.78) in a form
exhibiting the impedance of the vacuum chamber. In case of a perfectly conducting
vacuum chamber Ezw D 0 and (21.78) becomes

Vz D �Zksc In ei.n��!nt/ ; (22.36)
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where the longitudinal space-charge impedance Zksc is defined by [8, Sect. 2.4.5].2

Zksc.!/

n
D � i

�0c

1

2ˇ�2

�
1C 2 ln

rw

r0

�
; (22.37)

where n D !=!0 and !0 is the revolution frequency. This expression is correct for
long wavelength below cut off of the vacuum chamber or for ! < c=rw. The space-
charge impedance is purely reactive and, as we will see, capacitive. For a round
beam of radius r0 and offset from the axis of a round beam pipe with diameter 2rw

a transverse space-charge impedance can be derived [7]

Z?sc.!/ D � i

�0c

R

ˇ2�2

�
1

r20
� 1

r2w

�
; (22.38)

where R is the average ring radius. The transverse space-charge impedance is
inversely proportional to ˇ2 and is therefore especially strong for low energy particle
beams.

22.2.2 Resistive-Wall Impedance

The particle beam induces an image current in the vacuum chamber wall in a thin
layer with a depth equal to the skin depth. For less than perfect conductivity of the
wall material, we observe resistive losses which exert a pull or decelerating field
on the particles. This pull is proportional to the beam current and integrating the
fields around a full circumference 2�R of the accelerator we get the longitudinal
resistive wall impedance in a uniform tube of radius rw at frequency !n for lowest
order monopole oscillations [9]

Zk.!/
ˇ̌
resD .1 � i/

R

rw� ıskin
; (22.39)

where the skin depth is defined by [10] ıskin.!n/ D
q

2
�0�r !n �

: The longitudinal

resistive wall impedance decays with increasing frequency and therefore plays an
important role only for lower frequencies up to tens of GHz[9]. The transverse
resistive wall impedance for a round beam pipe is from the Panofsky-Wenzel
theorem [6]

Z?.!/res D 2c

! r2w
Zk.!/

ˇ̌
res (22.40)

2Note: the factor 1= .�0c/ D p
�0=�0 D Z0 D 376:73˝ is often called the free space impedance.

We will not use it because it is not a physical quantity but only a convenient unit scaling factor. A
current passing through vacuum will not loose energy into this impedance.
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22.2.3 Cavity-Like Structure Impedance

The impedance of accelerating cavities or cavity like objects of the vacuum chamber
can be described by the equivalent of a parallel resonant circuit for which the
impedance is from (19.11)

1

Zk.!/

ˇ̌̌̌
cy

D 1

Rs

�
1C iQ

!2 � !2r
!r !

�
; (22.41)

where Q is the quality factor and Rs the cavity impedance at the resonance frequency
!r or cavity shunt impedance. Taking the inverse, we get for the normalized
impedance
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2

; (22.42)

where
ˇ̌

Z
n

ˇ̌
0
D Rs is purely resistive and n D !=!0.

Vacuum chamber impedances occur, for example, due to sudden changes of cross
section, flanges, beam position monitors, etc., and are collectively described by a
cavity like impedance with a quality factor Q � 1. This is justified because fields
are induced in these impedances at any frequency. From (22.42) the longitudinal
broad-band impedance is therefore
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ˇ̌̌̌
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!2r !

2

: (22.43)

This broad-band impedance spectrum is shown in Fig. 22.6 and we note that the
resistive and reactive part exhibit different spectra.

The resistive broad-band impedance has a symmetric spectrum and scales like
!2 for low frequencies decaying again for very high frequencies like 1=!2. At low
frequencies, the broad-band impedance (22.43) is almost purely inductive scaling
linear with frequency

Zk.!/
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0
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for ! � !r : (22.44)

At high frequencies the impedance becomes capacitive
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Fig. 22.6 Resistive and
reactive broad-band
impedance spectrum
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and decaying slower with frequency than the resistive impedance. We note, however,
that the reactive broad-band impedance spectrum changes sign and beam stability or
instability depend therefore greatly on the actual coupling frequency. At resonance,
the broad-band impedance is purely resistive as would be expected.

Sometimes it is convenient to have a simple approximate correlation between
longitudinal and transverse impedance in a circular accelerator as shown in (22.40).
Although this correlation is valid only for the resistive wall impedance in a round
beam pipe, it is often used for approximate estimates utilizing the broad-band
impedance.

22.2.4 Overall Accelerator Impedance

At this point, we have identified all significant types of impedances we generally
encounter in an accelerator which are the space charge, resistive wall, narrow-band
impedances in high Q cavities, and broad-band impedance. In Fig. 22.7 we show
qualitatively these resistive as well as reactive impedance components as a function
of frequency.

At low frequency the reactive as well as the resistive component of the resistive
wall impedance dominates while the space charge impedance is independent of
frequency. The narrow-band cavity spectrum includes the high impedances at the
fundamental and higher mode frequencies.

Generally, it is not possible to use a uniform vacuum chamber in circular
accelerators. Deviations from a uniform chamber occur at flanges, bellows, rf-
cavities, injection/ejection elements, electrostatic plates, etc. It is not convenient
to consider the special impedance characteristics of every vacuum chamber piece
and we may therefore look for an average impedance as seen by the beam. The
broad-band impedance spectrum created by chamber components in a ring reaches
a maximum at some frequency and then diminishes again like 1=!. This turn over
of the broad-band impedance function depends on the general dimensions of all
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Fig. 22.7 Qualitative spectra of resistive and reactive coupling impedances in a circular accelera-
tor

vacuum chamber components of a circular accelerator and has to do with the cut off
frequency for travelling waves in tubes.

In Fig. 19.9 the measured impedance spectrum of a storage ring was shown and is
typical for complex storage ring vacuum chambers which are generally composed of
similar components exhibiting at low frequencies an inductive impedance increasing
linearly with frequency and diminishing again at high frequencies. This is also
the characteristics of broad-band cavity impedance and therefore expressions for
broad-band impedance are useful tools in developing theories for beam instabilities
and predicting conditions for beam stability. The induced voltage for the total ring
circumference scales like Lw PIw where Lw is the wall inductance and PIw the time
derivative of the image current in the wall. The induced voltage is

Vz0 D �Lw
dI

dt
D i!Lw.!/In ei.n��!nt/ (22.46)

where the inductive impedance is defined by

Zkind.!/ D �i!Lw.!/: (22.47)

The total induced voltage due to space charge, resistive and inductive wall
impedance is finally

Vzw D �ZkIn ei.n��!nt/; (22.48)

where the total longitudinal normalized impedance at frequency !n is from (22.37),
(22.39), (22.47)
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(22.49)
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From the frequency dependence we note that space charge and inductive wall
impedance becomes more important at high frequencies while the resistive wall
impedance is dominant at low frequencies. The inductive wall impedance derives
mostly from vacuum chamber discontinuities like sudden change in the vacuum
chamber cross section, bellows, electrostatic plates, cavities, etc. In older acceler-
ators, little effort was made to minimize the impedance and total ring impedances
of jZk=nj � 20 to 30˝ were not uncommon. Modern vacuum design have been
developed to greatly reduce the impedance mostly by avoiding changes of vacuum
chamber cross section or by introducing gentle transitions and impedances of the
order of jZk=nj . 1 ˝ can be achieved whereby most of this remaining impedance
comes from accelerating rf-cavities.

From (22.49), we note that the space-charge impedance has the opposite sign
of the inductive impedance and is therefore capacitive in nature. In general, we
encounter in a realistic vacuum chamber resistive as well as reactive impedances
causing both real frequency shifts or imaginary shifts manifesting themselves in the
form of damping or instability. In subsequent sections, we will discuss a variety of
such phenomena and derive stability criteria, beam-current limits or rise times for
instability. At this point, it is noteworthy to mention that we have not made any
assumption as to the nature of the particles involved and we may therefore apply the
results of this discussion to electron as well as proton and ion beams.

22.2.5 Broad-Band Wake Fields in a Linear Accelerator

The structure of a linear accelerator constitutes a large impedance for a charged
particle beam, specifically, since particle bunches are very short compared to the
periodicity of the accelerator lattice. Every single cell resembles a big sudden
change of the vacuum chamber cross section and we expect therefore a large
accumulation of wake fields or impedance along the accelerator. The wake fields
can be calculated numerically [4] and results for both the longitudinal and transverse
wakes from a point charge are shown in Fig. 22.8 as a function of the distance behind
this point charge.

Broad-band wake fields for other structures look basically similar to those shown
in Fig. 22.8. Specifically, we note the longitudinal wake to be strongest just behind
the head of the bunch while the transverse wake builds up over some distance. For
an arbitrary particle distribution, one would fold the particle distribution with these
wake functions to obtain the wake potential at the location of the test particle.

22.3 Coasting-Beam Instabilities

The space-charge impedance as well as resistive and reactive wall impedances
extract energy from a circulating particle beam. As long as the particle distribution
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Fig. 22.8 Time dependence of transverse (left) and longitudinal (right) wake fields from a point
charge moving through one 3.3 cm long cell of a SLAC type 3 GHz linear accelerator structure [4]

is uniform, this energy loss is the same for all particles and requires simple
replacement in acceleration cavities. In reality, however, some modulation of the
longitudinal particle distribution cannot be avoided and we encounter therefore
an uneven energy loss along the coasting particle beam. This can have serious
consequences on beam stability and we therefore need to discuss stability criteria
for coasting beams.

22.3.1 Negative-Mass Instability

Consider a beam in a ring below transition energy. The repulsive electrostatic
field from a lump in the charge distribution causes particles ahead of the lump to
be accelerated and particles behind the lump to be decelerated. Since accelerated
particles will circulate faster and decelerated particles circulate slower, we observe
a stabilizing situation and the lumpy particle density becomes smoothed out. Nature
demonstrates this in the stability of Saturn’s rings.which is equi8valent to this case
below transition energy.

At energies above transition energy the situation changes drastically. Now the
acceleration of a particle ahead of a lump leads to a slower revolution frequency and
it will actually move closer to the lump with every turn. Similarly a particle behind
the lump becomes decelerated and circulates therefore faster, again catching up with
the lump. We observe an instability leading to a growing concentration of particles
wherever a small perturbation started to occur. We call this instability the negative-
mass instability [11] because acceleration causes particles to circulate slower similar
to the acceleration of a negative mass. The same mechanism can lead to stabilization
of oscillations if the forces are attractive rather than repulsive.

We will derive conditions of stability for this effect in a more quantitative
way. The stability condition depends on the variation of the revolution frequency
for particles close to the small perturbation of an otherwise uniform longitudinal
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particle distribution and we therefore investigate the time derivative of the revolution
frequency

d!

dt
D @!

@t
C @!

@�

@�

@t
(22.50)

which can also be expressed in the form

d!

dt
D d!

dE

dE

dt
D �c!0

ˇ2E0

dE

dt
; (22.51)

where �c is the momentum compaction. The energy change per unit time is for a
longitudinal impedance Zz and nth harmonic of the beam current

dE

dt
D q Vz0

!0

2�
D �qZz Inei.n��!t/ !0

2�
; (22.52)

where q D eZ > 0 is the electrical charge of the particle and Z the charge
multiplicity. Collecting all terms for (22.51) we get with

! D !0 C !nei.n��˝t/ (22.53)

the relation
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This can be further simplified with the continuity equation
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and we get with (21.77), (22.53)

.˝ � n!0/In D !nnI0 : (22.55)

Replacing !n in (22.54) by the expression (22.55,) we finally get for the
perturbation frequency˝ with I0 D ˇc�0

˝2 D .˝ � n!0/
2 D �i

nq�c!
2
0 I0

2�ˇ2E0
Zk : (22.56)

Equation (22.56) determines the evolution of the charge or current perturbation
�n or In respectively. With ˝ D ˝r C i˝i, the current perturbation is

In ei.n��n!0t�˝rt�i˝it/ D In e˝it ei.n��n!0t�˝rt/ (22.57)
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exhibiting an exponential factor which can cause instability or damping since
there is a positive as well as negative solution from (22.56) for the frequency
shift ˝i. The situation in a particular case will depend on initial conditions
describing the actual perturbation of the density distribution, however, different
initial perturbations must be expected to be present along a real particle distribution
including at least one leading to instability.

Beam stability occurs only if the imaginary part of the frequency shift vanishes.
This is never the case if the impedance has a resistive component causing a resistive-
wall instability [12]. From (22.56) and the resistive wall impedance (22.39) we may
derive a growth rate for the instability

1

� res:wall
D Imf˝g D

p
2 � 1p
2

n2q�c!
2
0 I0R

2�cˇ2E0rw

r
2�!0�

n�
: (22.58)

This result requires some more discussion since we know that circular accelera-
tors exist, work, and have metallic vacuum chambers with a resistive surface. The
apparent discrepancy is due to the fact that we have assumed a monochromatic beam
which indeed is unstable but also unrealistic. In the following sections, we include a
finite momentum spread, find a stabilizing mechanism called Landau damping and
derive new stability criteria.

Below transition energy, �c > 0 will assure stability of a coasting beam as
long as we consider only a purely capacitive impedance like the space-charge
impedance (22.37) in which case ˝i D 0. Above transition energy �c < 0 and the
negative-mass instability appears as long as the impedance is capacitive or Zi > 0.
For an inductive impedance, the stability conditions are exchanged below and above
transition energy. In summary, we have the following longitudinal coasting beam
stability conditions:

if Zr ¤ 0! !i ¤ 0!
�

always stable
resistive-wall instability

(22.59)

if Zr D 0
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(22.60)

It is customary to plot the stability condition (22.56) in a .Zr;Zi/-diagram with
˝i as a parameter. We solve (22.56) for the imaginary impedance Zi and get

Zi D sgn.�c/a

"�
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2˝i
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�
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�2#
; (22.61)
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Fig. 22.9 Stability diagram
for a coasting monochromatic
particle beam
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(22.62)

and plot the result in Fig. 22.9. Only the case �c > 0 is shown in Fig. 22.9 noting
that the case �c < 0 is obtained by a 180ı rotation of Fig. 22.9 about the Zr-axis.
Figure 22.9 demonstrates that beam stability occurs only if Zr D 0 and Zi > 0.
Knowing the complex impedance for a particular accelerator, Fig. 22.9 can be used
to determine the rise time 1=� D ˝i of the instability.

The rise time or growth rate of the negative-mass instability above transition is
for a beam circulating within a perfectly conducting vacuum chamber from (22.37)
and (22.56)

1

� neg:mass
D n!0
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vuutqj�cjcI0
�
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r0

�
ˇE0

: (22.63)

In this section, it was implicitly assumed that all particles have the same
momentum and therefore, the same revolution frequency !0 allowing a change
of the revolution frequency only for those particles close to a particle density
perturbation. This restriction to a monochromatic beam is not realistic and provides
little beam stability for particle beams in a circular accelerator. In the following
section, we will discuss the more general case of a beam with a finite momentum
spread and review beam stability conditions under more realistic beam parameters.

22.3.2 Dispersion Relation

In the previous section, conditions for beam stability were derived based on a
monochromatic particle beam. The rise time of the instability depends critically
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on the revolution frequency and we may assume that the conditions for beam
stability may change if we introduce the more realistic case of a beam with a
finite momentum spread and therefore a finite spread of revolution frequencies. In
Chap. 15, we discussed the mathematical tool of the Vlasov equation to describe
collectively the dynamics of a distribution of particles in phase space. We will apply
this tool to the collective interaction of a particle beam with its environment.

The canonical variables describing longitudinal motion of particles are the
azimuth � and relative momentum error ı D p=p0. Neglecting radiation damping,
the Vlasov equation is

@�

@t
C P� @�

@�
C Pı @�

@ı
D 0 ; (22.64)

where �.ı; �; t/ is the particle distribution. For a coasting beam with a small
perturbation

� D �0 C �n ei.n��!nt/ (22.65)

we get after insertion in (22.64) and sorting terms the relation
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Making use of the correlation between particle momentum and revolution
frequency, we get from (22.66) with @�0
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Integrating the l.h.s. of (22.67) over all momenta, we get for the perturbation current

q
ˇc
NR
Z 1

�1
�n.ı/ dı D In :

At this point, it is convenient to transform from the variable ı to the frequency !
and obtain the particle distribution in these new variables

�.ı; �/ D �c!0˚.!; �/: (22.68)

Performing the same integration on the r.h.s. of (22.67), we get with (22.52) and
Pı D .dE=dt/=.ˇ2E0/ the dispersion relation [13]

1 D � i
q2!30�cZz

2�ˇ2E0

Z
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!n � n!
d! : (22.69)
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The integration is to be taken over the upper or lower complex plane where we
assume that the distribution function˚ vanishes sufficiently fast at infinity. Trying to
establish beam stability for a particular particle distribution, we solve the dispersion
relation for the frequency !n or frequency shift!n D !n � n! which is in general
complex. The real part causes a shift in the frequency while the imaginary part
determines the state of stability or instability for the collective motion.

For example, it is interesting to apply this result to the case of a coasting beam
of monochromatic particles as discussed in the previous section. Let the particle
distribution be uniform in � and a delta function in energy. In the dispersion relation,
we need to take the derivative with respect to the revolution frequency and set
therefore
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ı.! � !0/: (22.70)

Insertion into (22.69) and integration by parts results inZ 1

�1
@˚0=@!

!n � n!
d! D Nb

2�

n

.!n � n!0/2
(22.71)

which is identical to the earlier result (22.56) in the previous section. Application
of the Vlasov equation therefore gives the same result as the direct derivation of the
negative-mass instability conditions as it should be.

We may now apply this formalism to a beam with finite momentum spread. In
preparation to do that, we note that the integrand in (22.69) has a singularity at
! D !n=n which we take care of by applying Cauchy’s residue theorem forZ
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The dispersion relation (22.69) then assumes the form
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where P.V. indicates that only the principal value of the integral be taken.
The solutions of the dispersion function depend greatly on the particle distri-

bution in momentum or revolution-frequency space. To simplify the expressions,
we replace the revolution frequency by its deviation from the reference value [14].
With 2S being the full-width half maximum of the particle momentum distribution
(Fig. 22.10), we define the new variables

x D ! � !0
S

; and x1 D !n

nS
D ˝ � n!0

nS
: (22.74)
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Fig. 22.10 Particle
distribution f .x/
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In these variables the particle distribution becomes

f .x/ D 2�S

Nb
˚.!/ (22.75)

which is normalized to f .˙1/ D 1
2

f .0/ and
R

f .x/dx D 1. The full momentum
spread at half maximum intensity is
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and (22.73) becomes with this
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It is customary to define parameters U;V by
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and the dispersion relation becomes finally with this

1 D �.V C i U/I; (22.79)

where the integral
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For a particular accelerator all parameters in (22.79) are known, at least in prin-
ciple, and we may determine the status of stability or instability for a desired beam
current I0 by solving for the generally complex frequency shift !. The specific
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Fig. 22.11 Particle
distribution in momentum
space
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boundary of stability depends on the actual particle distribution in momentum.
Unfortunately, (22.79) cannot be solved analytically for an arbitrary momentum
distribution and we will have to either restrict our analytical discussion to simple
solvable distributions or to numerical evaluation.

For reasonable representations of real particle distributions in an accelerator a
central region of stability can be identified for small complex impedances and finite
spread in momentum. Regions of stability have been determined for a number
of particle distributions and the interested reader is referred for more detailed
information on such calculations to references [15–19].

As an example, we use a simple particle distribution (Fig. 22.11)

f .x/ D 1

�

1

1C x2
(22.81)

and evaluate the dispersion relation (22.79). The integral in (22.80) becomes now
after integration by parts

I D P:V:
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dx (22.82)

exhibiting a new singularity at x D i while the integration path still excludes the
other singularity at x D x1. Applying the residue theoremZ
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we get
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The second term in (22.80) is
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and the dispersion relation (22.79) becomes
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We solve this for .x1 � i/2 and get

x1 D i˙
s
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�
: (22.87)

For a small beam current i0, we get x1 � i and the second term in the square
bracket becomes approximately 1=2. Recalling the definition (22.74) for x1, we get
from (22.87)

˝ D i nS˙
q

3
2
n2S2.U � i V/; (22.88)

where from (22.76) S D 1
2
j�cj!0p=p0. The significant result in (22.88) is the fact

that the first term on the right-hand side has a definite positive sign and provides
therefore damping which is called Landau damping [20].

Recalling the conditions for the negative-mass instability of a monochromatic
beam, we did not obtain beam stability for any beam current if Zr / V D 0 and
the reactive impedance was inductive or Zi / U < 0. Now with a finite momentum
spread in the beam we get in the same case

˝neg:mass D i nS˙ i
q

3
2
n2S2jUj; (22.89)

where S2jUj is independent of the momentum spread. We note that it takes a
finite beam current .U / I0/ to overcome Landau damping and cause instability.
Of course Landau damping is proportional to the momentum spread S and does not
occur for a monochromatic beam. Equation (22.88) serves as a stability criterion
for longitudinal coasting-beam instabilities and we will try to derive a general
expression by writing (22.88) in the form

˝ D i n S˙pa � ib (22.90)

and get after evaluating the square root
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where r D pa2 C b2. Beam stability occurs for Imf˝g > 0 or

n2S2 D r � a

2
(22.92)
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Fig. 22.12 Stability diagram
for the particle
distribution (22.93)
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We may solve (22.93) for the impedance and get an equation of the form

Zi D AZ2r �
1

4A
(22.94)

which is shown in Fig. 22.12.
Any combination of actual resistive and reactive impedances below this curve

cause beam instability for the particle distribution (22.81). We note the significant
difference to Fig. 22.9 where the impedance had to be purely positive and reactive
to obtain beam stability.

Other momentum distributions like f .x/ / .1 � x2/m lead to similar results
[15] although the stability curves allow less resistive impedance than the distribu-
tion (22.81). As a safe stability criterion which is true for many such distributions
including a Gaussian distribution we define the area of stability by a circle with a
radius R D ZijZrD0 D 1=.4A/. With this assumption, the stability criterion for the
longitudinal microwave instability is

jZzj
n

 F

ˇ2E0j�cj
qI0

�
p

p0

�2
; (22.95)
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where the form factor F D �=3 for the distribution (22.81) and is generally of
the order of unity for other bell shaped distributions. The criterion (22.95) has been
derived by Keil and Schnell [21] and is known as the Keil-Schnell stability criterion.
For a desired beam current and an allowable momentum spread an upper limit for
the normalized impedance can be derived.

The impedance seen by the particle beam obviously should be minimized
to achieve the highest beam-beam currents. A large value of the momentum
compaction is desirable here to increase the mixing of the revolution frequencies as
well as a large momentum spread to achieve high beam currents. A finite momentum
spread increases beam stability where there was none for a monochromatic coasting
beam as discussed earlier. This stabilization effect of a finite momentum spread is
called Landau damping.

22.3.3 Landau Damping

In previous sections, we repeatedly encountered a damping phenomenon associated
with the effect of collective fields on individual particle stability. Common to the
situations encountered is the existence of a set of oscillators or particles, under the
influence of an external driving force. Particularly, we are interested in the dynamics
when the external excitation is caused by the beam itself. Landau [20] studied this
effect first and later Hereward [22] formulated the theory for application to particle
accelerators.

We consider a bunch of particles where each particle oscillates at a different
frequency˝ , albeit within a small range of frequencies. The equation of motion for
each oscillator under the influence of the force F e�i!t is

RuC˝2 u D F e�i!t (22.96)

and the solution

u D F
e�i!t

2!

�
1

˝ � ! �
1

˝ C !
�
: (22.97)

Folding this solution with the distribution function of particles in frequency space

 .!/ D 1

Nb

dNb

d˝
(22.98)

one obtains the center of mass amplitude of the bunch

Nu D F
e�i!t

2!

Z 1

�1

�
 .˝/

˝ � ! �
 .˝/

˝ C !
�

d˝ (22.99)
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or with  .˝/ D  .�˝/ and
R1

�1
 .˝/

˝�! d˝ D � R1
�1

 .˝/

˝C! d˝

Nu D F
e�i!t

!

Z 1

�1
 .˝/

˝ � ! d˝ : (22.100)

Here we apply again Cauchy’s residue theorem and get

Nu D F
e�i!t

!

�
Ci� .!/C P:V:

Z 1

�1
 .˝/

˝ � ! d˝

�
: (22.101)

The derivation up to here appears quite abstract and we pause a moment to reflect
on the physics involved here. We know that driving an oscillator at resonance leads
to infinitely large amplitudes and that is what the mathematical formulation above
expresses. However, we also know that infinite amplitudes take an infinite time to
build up and the solutions gained above describe only the state after a long time.
The same result can be obtained in a physical more realistic way if we apply the
excitation at time t D 0 and look for the solution at t ! 1 as has been shown
by Hofmann [23]. As an added result of this time evolution derivation, we obtain
the correct sign for the residue which we have tacitly assumed to be negative, but
mathematically could be of either sign.

To understand the damping effect, we calculate the velocity NPu and get
from (22.101)

NPu D �i! Nu

D F e�i!t

�
C� .!/ � i P:V:

Z 1

�1
 .˝/

˝ � ! d˝

�
: (22.102)

The bunch velocity is in phase with the external force for the residue term
allowing extraction of energy from the external force. The principal value term,
on the other hand, is out of phase and no work is done. If, for example, the external
force is due to a transverse wake field generated by a bunch performing coherent
betatron oscillations, the described mechanism would extract energy from the wake
field thus damping the coherent betatron oscillation. The question is where does the
energy go?

For this, we study the time evolution of the solution for the inhomogeneous
differential equation (22.96) in the form

u D a sin˝tC F

˝2 � !2 sin!t : (22.103)

At time t D 0 we require that the amplitude and velocity of the bunch motion be
zero u.t D 0/ D 0 and Pu.t D 0/ D 0. The oscillation amplitude

a D � !
˝

F

˝2 � !2 (22.104)
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and the final expression for the solution to (22.96) is for ˝ ¤ !

u˝¤!.t/ D F

˝2 � !2
�

sin!t � !

˝
sin˝t

�
: (22.105)

Close to or at resonance˝ D ! C and (22.105) becomes

u˝�!.t/ D � F

2!

�
t cos!t � sin!t

!

�
: (22.106)

The oscillation amplitude of particles at resonance grows continuously with time
while the width of the resonance shrinks like 1=t thus absorbing energy linear
in time. This Landau damping depends critically on the resistive interaction with
the wake fields or external forces and is mathematically expressed by the residue
term. This residue term, however, depends on the particle density at the excitation
frequency ! and is zero if the particle distribution in frequency space does not
overlap with the frequency !. For effective Landau damping to occur such an
overlap is essential.

22.3.4 Transverse Coasting-Beam Instability

Particle beams travelling off center through vacuum chamber sections can induce
transverse fields which act back on the beam. We express the strength of this
interaction by the transverse coupling impedance. In terms of the transverse
coupling impedance, the force is

F? D i
qZ?I0 u

2�R
; (22.107)

where I0 is the beam current, u the transverse beam displacement, Z?=.2�R/
the average transverse coupling impedance and 2� NR the ring circumference. The
equation of motion is then

RuC 
20!20 u D �i
qZ?I0
2�Rm�

.uC Nu/ (22.108)

with u the betatron oscillation amplitude of an individual particle and Nu the
amplitude of the coherent bunch oscillation. Since the perturbation is linear in the
amplitudes, we expect tune shifts from the perturbations. The incoherent tune shift
due to individual particle motion will be incorporated on the l.h.s. as a small tune
shift

ı
0 D i
cqZ?I0
4�
0!0E0

: (22.109)
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The transverse impedance is generally complex and we get therefore from the
real part of the coupling impedance a real tune shift while the imaginary part leads
to damping or antidamping depending on the sign of the impedance. The imaginary
frequency shift is equal to the growth rate of the instability and is given by

1

�
D Imf!g D q RefZ?g I0

4�Rm�!ˇ0
: (22.110)

For a resistive transverse impedance, we observe therefore always instability
known as the transverse resistive-wall instability.

Similar to the case of a longitudinal coasting beam, we find instability for any
finite beam current just due to the reactive space-charge impedance alone, and
again we have to rely on Landau damping to obtain beam stability for a finite
beam intensity. To derive transverse stability criteria including Landau damping,
we consider the coherent tune shift caused by the coherent motion of the whole
bunch for which the equation of motion is

RuC !2ˇ0 u D 2
0!0ŒU C .1C i/V �Nu ; (22.111)

where

U C .1C i/V D �i
cqZ?I0
4�
0E0

; (22.112)

The coherent beam oscillation must be periodic with the circumference of the
ring and is of the form Nu D Ou ei.n��!t/. As can be verified by back insertion the
solution of (22.111) is

y D ŒU C .1C i/V �
2
0!0


21!
2
0 � .n!0 � !/2

Nu : (22.113)

Now we must fold (22.113) with the distribution in the spread of the betatron
oscillation frequency. This spread is mainly related to a momentum spread via
the chromaticity and the momentum compaction. The distribution  .ı/ where
ı D p=p0, is normalized to unity

R
 .ı/dı D 1 and the average particle position

is Nu D R u .ı/dı. The dispersion relation is then with this from (22.113)

1 D ŒU C .1C i/V�
Z 1

�1
2
0!0 .ı/dı


21!
2
0 � .n!0 � !/2

: (22.114)

or simplified by setting 
1 � 
0 and ignoring the fast wave .nC 
/!0 [24]

1 D ŒU C .1C i/V�
Z 1

�1
 .ı/dı

! � .n � 
0/!0 : (22.115)
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This is the dispersion relation for transverse motion and can be evaluated for
stability based on a particular particle distribution in momentum. As mentioned
before, the momentum spread transforms to a betatron oscillation frequency spread
by virtue of the momentum compaction


ˇ D 
ˇ0!0 D 
ˇ0�cı!0 (22.116)

and by virtue of the chromaticity


ˇ D �uı : (22.117)

Landau damping provides again beam stability for a finite beam current and
finite coupling impedances, and the region of stability depends on the actual particle
distribution in momentum.

22.4 Longitudinal Single-Bunch Effects

The dynamics in bunched particle beams is similar to that of a coasting beam with
the addition of synchrotron oscillations. The frequency spectrum of the circulating
beam current contains now many harmonics of the revolution frequency with
sidebands due to betatron and synchrotron oscillations. The bunch length depends
greatly on the interaction with the rf-field in the accelerating cavities but also with
any other field encountered within the ring. It is therefore reasonable to expect that
wake fields may have an influence on the bunch length which is know as potential
well distortion.

22.4.1 Potential-Well Distortion

From the discussions on longitudinal phase space motion in circular accelerators, it
is known that the particle distribution or bunch length depends on the variation in
time of the rf-field interacting with the beam in the accelerating cavities. Analogous,
we would expect that wake fields may have an impact on the longitudinal particle
distribution. Pellegrini and Sessler [25] For a particular wake field, we have studied
this effect in Chap. 15 recognizing that a bunch passing through an rf-cavity causes
beam loading by exciting fields at the fundamental frequency in the cavity. These
fields then cause a modification of the bunch length. In this section, we will expand
on this thought and study the effect due to higher-order mode wake fields.

To study this in more detail, we ignore the transverse particle distribution. The
rate of change in the particle momentum can be derived from the integral of all
longitudinal forces encountered along the circumference and we set with ı D dp=p0

dı

dt
D qF.�/

ˇ2E0T0
; (22.118)
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where qF.�/ is the sum total of all acceleration and energy losses of a particle at a
position z D ˇc� from the bunch center or reference point over the course of one
revolution and T0 is the revolution time. The change of � per unit time depends on
the momentum compaction of the lattice and the momentum deviation

d�

dt
D ��cı : (22.119)

Both equations can be derived from the Hamiltonian

H D � 1
2
�cı

2 �
Z �

0

qF. N�/
ˇ2E0T0

d N� : (22.120)

For an electron ring and small oscillation amplitudes, we have

qF.�/ D qVrf.�s C �/� U.E/C qVw.�/ D q
@Vrf

@�

ˇ̌̌̌
�s

� C qVw.�/ ; (22.121)

where we ignored radiation damping and where Vw.�/ describes the wake field. In
the last form, the equation is also true for protons and ions if we set the synchronous
time �s D 0. Inserting (22.121) into (22.120) and using the definition of the
synchrotron oscillation frequency (9.35) we get the new Hamiltonian

H D � 1
2
�cı

2 � 1
2

˝2
s0

�c
�2 �

Z �

0

qVw. N�/
ˇ2E0T0

d N� : (22.122)

Synchrotron Oscillation Tune Shift

First we use the Hamiltonian to formulate the equation of motion and determine the
effect of wake fields on the dynamics of the synchrotron motion. The equation of
motion is from (22.122)

R� C˝2
s0 � D sign.�c/

2�˝2
s0Vw

!0hVrfj cos s0j ; (22.123)

where we have made use of the definition of the unperturbed synchrotron oscillation
frequency˝s0. We express the wake field in terms of impedance and beam spectrum

Vw.t/ D �
Z 1

�1
Zk.!/ I.t; !/ ei!t d! ; (22.124)

and use (21.85) for

Vw.t/ D � Ib

1X
pD�1

Zk. p/ �. p/ e�ip!0� ; (22.125)
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where Ib is the bunch current and

�. p/ D
Z C1

�1
J0. p!0 O�/˚.t; O�/ d O� :

The maximum excursion O� during phase oscillation is much smaller than the
revolution time and the exponential factor

eip!0� � 1C ip!0� � 1
2
p2!20�

2 CO.3/ (22.126)

can be expanded. After insertion of (22.120), (22.121) into (22.123) the equation of
motion is

R� C˝2
s0 � � (22.127)

�sign.�c/
2�Ib˝

2
s0

!0hVrfj cos s0j
1X

pD�1
Zk. p/�. p/

�
1 � ip!0� � 1

2
p2!20�

2
�
:

The first term in the factor
�
1 � ip!0� � 1

2
p2!20�

2
�

is independent of � and causes a
synchronous phase shift due to resistive losses

 s D sgn.�c/
2� Ib

Vrfj cos s0j
1X

pD�1
RefZk. p/g�. p/ : (22.128)

For a resistive positive impedance, for example, the phase shift is negative above
transition indicating that the beam requires more energy from the rf-cavity. By
measuring the shift in the synchronous phase of a circulating bunch as a function
of bunch current, it is possible to determine the resistive part of the longitudinal
impedance of the accelerator. To do this one may fill a small amount of beam in the
bucket upstream from the high intensity bunch and use the signal from the small
bunch as the time reference against which the big bunch will shift with increasing
current.

The second term in (22.127) is proportional to � and therefore acts like a focusing
force shifting the incoherent synchrotron oscillation frequency by

˝s D � sign.�c/
� Ib˝s0

h Vrfj cos s0j
1X

pD�1
ImfZk. p/g p�. p/: (22.129)

The real part of the impedance is symmetric in p and therefore cancels in
the summation over p which leaves only the imaginary part consistent with the
expectation that the tune shift be real. At this point, it becomes necessary to
introduce a particular particle distribution and an assumption for the impedance
spectrum. For long bunches, the frequencies involved are low and one might use for
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the impedance the space charge and broad-band impedance which both are constant
for low frequencies. In this case, the impedance can be extracted from the sum
in (22.129) and the remaining arguments in the sum depend only on the particle
distribution.

For a parabolic particle distribution, for example, (22.129) reduces to [26]

˝s D � sgn.�c/
16 Ib

�3B3h Vrfj cos 0j Im

�
Zk. p/

p



; (22.130)

where B is the bunching factor B D `=.2� NR/ with ` the effective bunch length.
A measurement of the incoherent synchrotron tune shift as a function of bunch

current allows the determination of the reactive impedance of the accelerator for
a given particle distribution. This tune shift is derived from a measurement of the
unperturbed synchrotron frequency ˝s0 for a very small beam current combined
with the observation of the quadrupole mode frequency˝2s as a function of bunch
current. The incoherent tune shift is then

˝s;incoh D � .˝2s � 2˝s0/ ; (22.131)

where� is a distribution dependent form factor of order 2 for a parabolic distribution
[27].

The third and subsequent terms in (22.127) contribute nonlinear effects making
the synchrotron oscillation frequency amplitude dependent similar to the effects of
nonlinear fields in transverse beam dynamics.

Bunch Lengthening

A synchrotron frequency shift is the consequence of a change in the longitudinal
focusing and one might expect therefore also a change in the bunch length. In first
approximation, one could derive expressions for the new bunch length by scaling
with the synchrotron tune shift. Keeping the phase space area constant in the proton
and ion case or keeping only the energy spread constant in the electron case, a rough
estimate for bunch lengthening can be obtained for a specific particle distribution.
Since the electron bunch length scales inversely proportional to the synchrotron
frequency, we have

�`

�`0
D ˝s

˝s0
D 1C ˝s

˝s0
: (22.132)

From (22.132), one can determine for an electron beam the potential-well bunch
lengthening or shortening, depending on the sign of the reactive impedance. For a
proton or ion beam, the scaling is somewhat different because of the preservation of
phase space.
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This approach to understanding potential-well bunch lengthening assumes that
the particle distribution does not change which is an approximate but not correct
assumption. The deformation of the potential well is nonlinear and can create
significant variations of the particle distribution specifically, for large amplitudes.

In this discussion, we determine the stationary particle distribution .�; ı/ under
the influence of wake fields by solving the Vlasov equation

@ 

@t
C P� @ 

@�
C Pı @ 

@ı
D 0 : (22.133)

For a stationary solution, @ 
@t D 0 and therefore any function of the Hamiltonian

is a solution of the Vlasov equation. Since the Hamiltonian does not exhibit
explicitly the time variable, any such function could be the stationary solution which
we are looking for and we set therefore  .�; ı/ D  .H/. The local particle density
is then after integrating over all momenta

�.�/ D Nb

Z 1

�1
 .H/ dı ; (22.134)

where Nb is the number of particles per bunch or with (22.122)

�.�/ D Nb

Z 1

�1
 

�
� 1
2
�cı

2 � 1
2

˝2
s0

�c
�2 �

Z �

0

qVw. N�/
ˇ2E0T0

d N�
�

d Nı : (22.135)

Without wake fields, the distribution of an electron beam is Gaussian and the
introduction of wake fields does not change that for the energy distribution. We
make therefore the ansatz

 .�; ı/ D A exp

� H
�c�

2
ı

�
D Aı exp

�
1
2

ı2

�2ı

�
A� �.�/ ; (22.136)

where Aı and A� are normalization factors for the respective distributions. Integrat-
ing over all momenta, the longitudinal particle distribution is finally

�.�/ D Nb A� exp

�
� 1
2

�2

�2�
� q

�cˇ2E0T0�2ı

Z �

0

Vw. Q�/ d Q�
�
; (22.137)

where we used �ı D ˝so��=j�cj from (13.26). A self-consistent solution of this
equation will determine the longitudinal particle distribution under the influence of
wake fields. Obviously, this distribution is consistent with our earlier results for an
electron beam in a storage ring, in the limit of no wake fields. The nature of the
wake fields will then determine the distortion from the Gaussian distribution.
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As an example, we assume a combination of an inductive .L/ and a resistive .R/
wake field

Vw D �L
dI

dt
� RIb : (22.138)

Such a combination actually resembles rather well the real average impedance
in circular accelerators at least at lower frequencies as evidenced in the impedance
spectrum of the SPEAR storage ring shown in Fig. 19.9. Inserting (22.138)
into (22.137) while setting for a moment the resistance to zero .R D 0/ we get
after integration the transcendental equation

�.�/ D Nb A� exp

�
� 1
2

�2

�2�
� q2L Nb �.�/

�cˇ2E0T0�2ı

�
(22.139)

which must be solved numerically to get the particle distribution �.�/. We note
that the inductive wake does not change the symmetry of the particle distribution
in � . For large values of � , the particle distribution must approach zero to meet
the normalization requirement .lim�!1 �.�/ D 0/ and the particle distribution is
always Gaussian for large amplitudes. The effect of the inductive wake field is
mainly concentrated to the core of the particle bunch.

Evaluating numerically (22.139), we distinguish between an electron beam and
a proton or ion beam. The momentum spread �ı in case of an electron beam is
determined by quantum effects related to the emission of synchrotron radiation and
is thereby for this discussion a constant. Not so for proton and ion beams which are
subject to Liouville’s theorem demanding a strong correlation between bunch length
and momentum spread such that the longitudinal phase space of the beam remains
constant. Equation (22.139) has the form

f .t/ D K exp
�� 1

2
t2 � f .t/

	
(22.140)

or after differentiation with respect to t

df .t/

dt
D � t f .t/

1C f .t/
: (22.141)

For strong wake fields f .t/� 1 and (22.141) can be integrated for

f .t/ D f0 � 1
2
t2: (22.142)

The particle distribution in the bunch center assumes more and more the shape of
a parabolic distribution as the wake fields increase. Figure 22.13 shows the particle
distribution for different strengths of the wake field.

Now we add the resistive wake field component. This field actually extracts
energy from the bunch and therefore one expects that the whole bunch is shifted
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Fig. 22.13 Potential-well distortion of Gaussian particle distributions (a) for an inductive wake
field, and (b) for a combination of an inductive and a resistive wake field

such as to compensate this extra loss by moving to a higher field in the accelerating
cavities. Inserting the full wake field (22.138) into (22.137) results in the distribution

�.�/ D Nb A� exp

�
� 1
2

�2

�2�
� aLNb�.�/ � aRNb

Z �

0

�. N�/ d N�
�
; (22.143)

where

a D q2

�cˇE0T0�2ı
: (22.144)

Looking for a shift of the tip of the particle distribution, we get from d�=d� D 0 the
location of the distribution maximum

�max / Nb�.�max/ : (22.145)

The maximum of the particle distribution is therefore shifted proportional to the
bunch intensity and the general distortion is shown in Fig. 22.13b for a resistive
wake much larger than generally encountered in an accelerator. The distortion of the
particle distribution leads to a deviation from a Gaussian distribution and a variation
of the bunch length. In the limit of a strong and inductive wake field, for example,
the full-width half maximum value of the bunch length increases like

�fwhm D ��
p

f0 D q��
ˇ�ı

s
ˇLNb �.�/

�cE0T0
: (22.146)

The bunch length changes as the bunch intensity is increased while the sign and
rate of change is dependent on the actual ring impedance spectrum on hand. We have
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used an induction as an example for the reactive impedance in a ring because it most
appropriately represents the real impedance for lower frequencies or longer bunch
length. In general, this potential-well bunch lengthening may be used to determine
experimentally the nature and quantity of the ring impedance by measuring the
bunch length as a function of bunch current.

Turbulent Bunch Lengthening

At higher bunch currents the bunch lengthening deviates significantly from the
scaling of potential well distortion and actually proceeds in the direction of true
lengthening. Associated with this lengthening is also an increase in the particle
momentum spread. The nature of this instability is similar to the microwave
instability for coasting beams.

Considering long bunches, a strong instability with a rise time shorter than
the synchrotron oscillation period and high frequencies with wavelength short
compared to the bunch length, we expect basically the same dynamics as was
discussed earlier for a coasting beam. This was recognized by Boussard [28] who
suggested a modification of the Keil-Schnell criterion by replacing the coasting-
beam particle density by the bunch density. For a Gaussian particle distribution, the
peak bunch current is

OI D I0
2�Rp
2��`

; (22.147)

where I0 is the average circulating beam current per bunch, and the bunch length is
related to the energy spread by

�` D ˇcj�cj
˝s0

��

E0
: (22.148)

With these modifications, the Boussard criterion isˇ̌̌̌
Zz

n

ˇ̌̌̌

 F

ˇ3E0j�cj2
qI0

p
2�
s0

�
��

E0

�3
; (22.149)

where the form factor F is still of the order unity.
As a consequence of this turbulent bunch lengthening we observe an increase of

the energy spread as well as an increase of the bunch length. The instability does
not necessarily lead to a beam loss but rather to an adjustment of energy spread and
bunch length such that the Boussard criterion is met. For very low beam currents
the stability criterion is always met up to a threshold where the r.h.s. of (22.149)
becomes smaller than the l.h.s. Upon further increase of the beam current beyond
the threshold current the energy spread and consequently the bunch length increases
to avoid the bunched beam microwave instability.
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22.5 Transverse Single-Bunch Instabilities

Transverse wake fields can also greatly modify the stability of a single bunch.
Specifically at high frequencies, we note an effect of transverse wake fields
generated by the head of a particle bunch on particles in the tail of the same bunch.
Such interaction occurs for broad-band impedances where the bunch generates a
short wake including a broad spectrum of frequencies. In the first moment all these
fields add up being able to act back coherently on particles in the tail but they
quickly decoher and vanish before the next bunch arrives. This effect is therefore a
true single-bunch effect. In order to affect other bunches passing by later, the fields
would have to persist a longer time which implies a higher Q value of the impedance
structure which we ignore here.

22.5.1 Beam Break-Up in Linear Accelerators

A simple example of a transverse microwave instability is the phenomenon of beam
break-up in linear accelerators. We noted repeatedly that the impedance of vacuum
chambers originates mainly from sudden changes in cross section which therefore
must be avoided to minimize impedance and microwave instabilities. This, however,
is not possible in accelerating cavities of which there are particularly many in a
linear accelerator. Whatever single-pass microwave instabilities exist they should
become apparent in a linear accelerator. We have already discussed the effect of
longitudinal wake fields whereby the fields from the head of a bunch act back as a
decelerating field on particles in the tail. In the absence of corrective measures we
therefore expect the particles in the tail to gain less energy than particles in the head
of an intense bunch.

Transverse motion of particles is confined to the vicinity of the linac axis by
quadrupole focusing in the form of betatron oscillations while travelling along the
linear accelerator. However, coherent transverse betatron oscillations can create
strong transverse wake fields at high bunch intensities. Such fields may act back
on subsequent bunches causing bunch to bunch instabilities if the fields persist
long enough. Here we are more interested in the effect on the same bunch. For
example, the wake fields of the head of a bunch can act back on particles in the
tail of the bunch. This interaction is effected by broad-band impedances like sudden
discontinuities in the vacuum chamber which are abundant in a linear accelerator
structure. The interaction between particles in the head of a bunch on particles in the
tail of the same bunch can be described by a two macro particle model resembling
the head and the tail.

Transverse wake fields are proportional to the transverse oscillation amplitude
of the head and we describe the dynamics of the head and tail of a bunch in a two
particle model where each particle represents half the charge of the whole bunch as
shown in Fig. 22.14.
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xh

particle bunch
tail

head

xt

Fig. 22.14 Head-tail dynamics of a particle bunch represented by two macroparticles

The head particle with charge 1
2
qNb performs free betatron oscillations while the

tail particle responds like a driven oscillator. Since all particles travel practically
at the speed of light, the longitudinal distribution of particles remains fixed along
the whole length of the linear accelerator. The equations of motion in smooth
approximation where kˇ D 1=.
0 ˇu/ and ˇu is the average value of the betatron
function in the plane u, are for both macroparticles

x00
h C k2ˇ xh D 0 ;

x00
t C k2ˇ xt D rc

xh
�

R1
Qz �.z/ QW?.z � Qz/ dz D rcNb QW?

2�
xh ;

(22.150)

where we use the indices h and t for the head and tail particles respectively and
introduce the average wake field per unit length

QW? D W?
Lacc

: (22.151)

For simplicity, it was assumed in (22.150) that the beam is just coasting along
the linear accelerator to demonstrate the dynamics of the instability. If the beam is
accelerated the adiabatic damping effect through the increase of the energy must be
included.

Because of causality only the tail particle is under the influence of a wake field.
The transverse wake field W?.2�z/, for example, which is shown in Fig. 22.8,
is to be taken at a distance 2�z behind the head particle. Inserting the solution
xh.z/ D Oxh cos kˇz into the second equation, we obtain the solution for the betatron
oscillation of the tail particle in the form

xt.z/ D Oxh cos kˇzC Oxh
rcNb QW?
4�kˇ

z sin kˇz : (22.152)

The second term in this expression increases without bound leading to particle
loss or beam break-up as soon as the amplitude reaches the edge of the aperture. If
the bunch does reach the end of the linear accelerator of length Lacc, the betatron
oscillation amplitude of the tail has grown by a factor

Fbb D Oxt

Oxh
D rcNb QW?Lacc

4�kˇ
: (22.153)
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One consequence of this instability is an apparent increase in beam emittance
long before beam loss occurs. A straight bunch with a small cross section becomes
bent first like a banana and later like a snake and the transverse distribution
of all particles in the bunch occupies a larger cross-sectional area than before.
This increase in apparent beam size has a big detrimental effect on the attainable
luminosity in linear colliders and therefore must be minimized as much as possible.
The two particle model adopted here is insufficient to determine a more detailed
structure than that of a banana. However, setting up equations similar to (22.150)
for more than two macroparticles will start to reveal the oscillatory nature of the
transverse bunch perturbation.

One scheme to greatly reduce the beam break-up effect is called BNS damping in
reference to its inventors Balakin et al. [29] and has been successfully implemented
into the Stanford Linear Collider [30]. The technique utilizes the fact that the
betatron oscillation frequency depends by virtue of the chromaticity on the energy
of the particles. By accelerating the bunch behind the crest of the accelerating field
the tail gains less energy than the head. Therefore the tail is focused more by the
quadrupoles than the head. Since the transverse wake field introduces defocusing
this additional chromatic focusing can be used for compensation.

Of course this method of damping the beam break-up by accelerating ahead of the
crest is counter productive to compensating for the energy loss of tail particles due to
longitudinal wake fields. In practice, BNS damping is applied only at lower energies
where the instability is strongest and in that regime the energy reducing effect of the
longitudinal wake field actually helps to maximize BNS damping. Toward the end
of the linear accelerator at high beam energies, the beam break up effect becomes
small ./ 1=�/ and the bunch is now moved ahead of the crest to reduce the energy
spread in the beam.

22.5.2 Fast Head-Tail Effect

Transverse bunch perturbations due to broad-band impedances are not restricted
to linear accelerators but occur also in circular accelerators. In a circular proton
accelerator, for example, the “length” is for all practical purposes infinite, there
is no radiation damping and therefore even weak transverse wake fields can in
principle lead to transverse bunch blow up and beam loss. This instability is known
as the fast head-tail instability or strong head-tail instability and has been first
discussed and analyzed by Kohaupt [31]. The dynamics in a circular accelerator
is, however, different from that in a linear accelerator because particles in the head
of a bunch will not stay there but rather oscillate between head and tail in the course
of synchrotron oscillations. These synchrotron oscillations disturb the coherence
between head and tail and the instability becomes much weaker.

On the other hand, particles in circular accelerators and especially in storage
rings are expected to circulate for a long time and even a much reduced growth rate
of the transverse bunch blow up may still be too strong. The dynamics of interaction
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is similar to that in a linear accelerator at least during about half a synchrotron
oscillation period

�
1
2
ts
�
, but during the next half period the roles are interchanged

for individual particles. Particles travelling for one half period in the head of the
bunch find themselves close to the tail for the next half period only to reach the
head again and so forth. To understand the dynamics over many oscillations, we
set up equations of motion for two macroparticles resembling the head and tail of
a particle bunch similar to (22.150), but we now use the time as the independent
variable. The distance � between head and tail particle varies between 0 and the
maximum distance of the two macro particles 2` during the course of a synchrotron
oscillation period and since the transverse wake field increases linearly with �, we
set W?.�/ D W? .2�`/ sin˝st. With this the equations of motion are for 0 
 t 

ts=2

Rx1 C !2ˇ x1 D 0 ;
Rx2 C !2ˇ x2 D rc ˇ

2c2Nb QW?.2�`/ sin˝st
2 �

x1 ;
(22.154)

where QW? D W?=.2� NR/ is the wake function per unit length. For the next half
period ts=2 
 t 
 ts

Rx1 C !2ˇ x1 D rcˇ
2c2Nb QW?.2`/ sin˝st

2�
x2 ;

Rx2 C !2ˇ x2 D 0 :
(22.155)

For further discussions we consider solutions to (22.154), (22.155) in the form
of phasors defined by

x.t/ D x.0/ ei!ˇ t D x � i
Px
!ˇ

: (22.156)

The first Eq. (22.154) can be solved immediately for

x1.t/ D x1.0/ ei!ˇ t (22.157)

and the second Eq. (22.154) becomes with (22.157)

Rx2 C !2ˇ x2 D A sin˝st ei!ˇ t x1.0/ ; (22.158)

where

A D rcˇ
2c2Nb QW?.2`/

2�
: (22.159)
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The synchrotron oscillation frequency is generally much smaller than the
betatron oscillation frequency

�
˝s � !ˇ

�
and the solution of (22.159) becomes

with this approximation

x2.t/ D x2.0/ ei!ˇ t C 1

!ˇ

Z t

0

ŒA x1.0/ sin˝st
0 ei!ˇ t0 � sin!ˇ.t � t0/ dt0

or after some manipulation

x2.t/ D x2.0/ ei!ˇ t � i x1.0/ 12a.1� cos˝st/ ei!ˇ t ; (22.160)

where a D A=.!ˇ ˝s/. During the second half synchrotron oscillation period, the
roles of both macroparticles are exchanged. We may formulate the transformation
through half a synchrotron oscillation period in matrix form and get with 1 �
cos

�
˝s

1
2
ts
� D 2 since ˝s

1
2
ts � � for the first half period�

x1.ts=2/
x2.ts=2/

�
D ei!ˇ ts=2

�
1 0

�ia 1

��
x1.0/
x2.0/

�
(22.161)

and for the second half period�
x1.ts/
x2.ts/

�
D ei!ˇ ts=2

�
1 �ia
0 1

��
x1.ts=2/
x2.ts=2/

�
(22.162)

Combining both half periods one gets finally for a full synchrotron oscillation period�
x1.ts/
x2.ts/

�
D ei!ˇ ts

�
1 � a2 �ia
�ia 1

��
x1.0/
x2.0/

�
: (22.163)

The stability of the motion after many periods can be extracted from (22.163) by
solving the eigenvalue equation�

1 � a2 �ia
�ia 1

��
x1
x2

�
D �

�
x1
x2

�
: (22.164)

The characteristic equation

�2 � .2 � a2/ �C 1 D 0 (22.165)

has the solution

�1;2 D .1 � 1
2
a2/˙

q
.1 � 1

2
a2/2 � 1 (22.166)



784 22 Wake Fields and Instabilities*

and the eigenvalues can be expressed by

� D e˙i˚ ; (22.167)

where .1 � 1
2
a2/ D cos˚ for jaj 
 2 or

jaj D rcˇ
2c2Nb QW?.2`/
2�!ˇ˝s


 2 : (22.168)

The motion remains stable since no element of the transformation matrix
increases unbounded as the number of periods increases to infinity. In the form of a
stability criterion, the single-bunch current Ib D qNb frev must not exceed the limit

Ib 
 4 q�!20
ˇ
s

rc ˇcW?.2`/
; (22.169)

where q is the charge of the particles and (
ˇ; 
s) the betatron and synchrotron tune,
respectively. In a storage ring, it is more convenient to use impedance rather than
wake fields. Had we set up the equations of motion (22.150), (22.151) expressing the
perturbing force in terms of impedance we would get the same results but replacing
the wake field by

W?.2`/ D !0

�
ImfZ?g (22.170)

and the threshold beam current for the fast head-tail instability becomes

Ib 
 4�q�!0
ˇ
s

rcˇcImfZ?
n g

: (22.171)

The bunch current Ib is a threshold current which prevents us from filling more
current into a single bunch. Exceeding this limit during the process of filling a bunch
in a circular accelerator leads to an almost immediate loss of the excess current.
This microwave instability is presently the most severe limitation on single-bunch
currents in storage rings and special care must be employed during the design to
minimize as much as possible the transverse impedance of the vacuum chamber
system.

The strength of the instability becomes more evident when we calculate the
growth time for a beam current just by an increment � above the threshold. For
jaj > 2 we have .1 � 1

2
a2/ D � cosh� and the eigenvalue is � D e˙�. The phase

� D 0 at threshold and cosh� � 1C 1
2
�2 for a D 2C � and we get

� D 2p� : (22.172)
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In each synchrotron oscillation period the eigenvalues increase by the factor e�

or at a growth rate of 1
�
D �

ts
D 2

p
�

ts
: If, for example, the beam current exceeds

the threshold by 10 %, we have � D 0:2 and the rise time would be �=ts D 0:89

or the oscillation amplitudes increase by more than a factor of two during a single
synchrotron oscillation period. This is technically very difficult to counteract by a
feedback system.

We have assumed that transverse wake fields are evenly distributed around
the accelerator circumference. In a well designed accelerator vacuum chamber,
however, most of the transverse wake field occur in the accelerating cavities and
therefore only the transverse betatron oscillation amplitude in the cavities are
relevant. In this case, one recalls the relation 
ˇ � NR=ˇu and we replace in (22.171)
the average value of the betatron function by the value in the cavities for

Ib 
 4q�˝s

rcˇu;cyW?;cy.2`/
: (22.173)

This result suggest that the betatron function in the plane u D x or u D y at the
location of cavities should be kept small and the synchrotron oscillation frequency
should be large. The exchange of head and tail during synchrotron oscillation slows
down considerably the growth rate of the instability. The result (22.173) is the same
as the amplification factor (22.153) if we consider that in a linear accelerator the
synchrotron oscillation period is infinite.

As we approach the threshold current, the beam signals the appearance of the
head-tail instability on a spectrum analyzer with a satellite below the betatron
frequency. The threshold for instability is reached when the satellite frequency
reaches a value !sat D !ˇ � 1

2
˝s. This becomes apparent when replacing the

transformation matrix in (22.163) by the eigenvalue�
x1.ts/
x2.ts/

�
D ei!ˇ ts ei˚

�
x1.0/
x2.0/

�
: (22.174)

The phase reaches a value of ˚ D � at the stability limit and (22.174) becomes at
this limit �

x1.ts/
x2.ts/

�
D ei

�
!ˇ� 1

2
˝s

�
ts

�
x1.0/
x2.0/

�
: (22.175)

At this point, it should be noted, however, that the shift of the betatron frequency
to 1

2
˝s is a feature of the two macro particle model. In reality there is a distribution

of particles along the bunch and while increasing the beam current the betatron
frequency decreases and the satellite 
ˇ � 
s moves until both frequencies merge
and become imaginary. This is the point of onset for the instability. It is this feature
of merging frequencies which is sometimes called mode mixing or mode coupling.
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Measurement of the Broad-Band Impedance

As shown by Chao [9] the combined motion of head and tail represents a coherent
transverse betatron motion which can be picked up by beam position monitors. The
betatron frequency changes with increasing beam intensity and the initial slope can
be used to determine the broad band impedance. From the lowest order instability
mode we take the derivative of the betatron oscillation frequency and get

d!ˇ
dNb
D � !s

2�

�
d˚

dNb

�ˇ̌̌̌
NbD0

D � rec2W0

16�� NR!ˇ
(22.176)

where Nb is the number of electrons per bunch. Measuring the slope d!ˇ=dNb at
low beam intensities allows to determine the wake function W0: From this wake the
transverse impedance is [9]

Z? D
NR

ˇz
ˇ

b

c
W0 (22.177)

and from (22.8) the relation to the longitudinal impedance is Z? D 2 NR
b2

Zk
n ; where NR

is the average radius of the accelerator, b the typical vacuum chamber radius, 
ˇ the
betatron frequency and ˇz the average value of the betatron function around the ring.
the mode number n is the frequency in units of the revolution frequency n D !=!0:

22.5.3 Head-Tail Instability

Discussing the fast head-tail instability we considered the effect of transverse wake
fields generated by the head of a particle bunch on the transverse betatron motion
of the tail. We assumed a constant betatron oscillation frequency which is only
an approximation since the betatron frequency depends on the particle energy. On
the other hand, there is a distinct relationship between particle energy and particle
motion within the bunch, and it is therefore likely that the dynamics of the head-tail
instability becomes modified by considering the energy dependence of the betatron
oscillation frequency.

Like in the previous section, we represent the particle bunch by two macropar-
ticles which perform synchrotron oscillations being 180ı apart in phase. The wake
fields of the head particle act on the tail particle while the reverse is not true due to
causality. However, during each half synchrotron oscillation period the roles become
reversed.

In (22.160), we obtained an expression which includes the perturbation term
and consider the variation of this term due to chromatic oscillations of the betatron
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frequency. The perturbation term is proportional to ei!ˇ t and we set therefore with
ı D p=p0

!ˇ D !ˇ.ı/ D !ˇ0 C @!ˇ

@ı
ı CO.ı2/ : (22.178)

The chromaticity is defined by the betatron tune shift per unit relative momentum
deviation

�ˇ D 
ˇ

ı
(22.179)

and (22.178) becomes with !ˇ D 
ˇ !0
!ˇ D !ˇ0 C �ˇı!0 : (22.180)

The momentum deviation is oscillating at the synchrotron frequency and is corre-
lated with the longitudinal motion by

ı D � ˝s`

ˇcj�cj sin˝st ; (22.181)

where 2` is the maximum longitudinal distance between the two macroparticles.
Combining (22.180), (22.181) we get

!ˇ D !ˇ0 � ˝s ` �ˇ


ˇ NRj�cj
sin˝st ; (22.182)

where the second term is much smaller than unity so that we may expand the
exponential function of this term to get

ei!ˇ t � ei!ˇ0t

"
1 � i

˝s`�ˇ


ˇ NRj�cj
t sin.˝st/

#
: (22.183)

The expression in the square bracket is the variation of the scaling factor a
in (22.160) and we note specifically, the appearance of the imaginary term which
gives rise to an instability. The phase˚ in the eigenvalue equation (22.167) becomes
for small beam currents ˚ � a and with (22.183)

˚ D a

"
1 � i

˝s`�ˇ

�
ˇ NRj�cj
ts

#
; (22.184)

where we have set t D 1
2
ts and hsin˝sti � 2=� . The first term represents the

fast head tail instability with its threshold characteristics discussed in the previous
section. The second term is an outright damping or antidamping effect being
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effective at any beam current. This instability is called the head-tail effect discovered
and analyzed by Pellegrini [32] and Sands [33] at the storage ring ADONE.

Considering only the imaginary term in (22.184), we note an exponential growth
of the head-tail instability with a growth rate of

1

�
D ˝sa`�ˇ
�
ˇ NRj�cj

D `�ˇrcˇcNb QW?.2`/
2�� j�cj
2ˇ

: (22.185)

Instability may occur either in the vertical or the horizontal plane depending
on the magnitude of the transverse wake function in both planes. There are two
modes, one stable and one unstable depending on the sign of the chromaticity
and momentum compaction. Above transition �c < 0 and the beam is unstable
for negative chromaticity. This instability is the main reason for the insertion
of sextupole magnets into circular accelerators to compensate for the naturally
negative chromaticity. Below transition, the situation is reversed and no correction
of chromaticity by sextupoles is required. From (22.185), we would conclude that
we need to correct the chromaticity exactly to zero to avoid instability by one or the
other mode. In reality, this is not the case because a two particle model overestimates
the strength of the negative mode. Following a more detailed discussion including
Vlasov’s equation [9] it becomes apparent that the negative mode is much weaker
to the point where, at least in electron accelerators, it can be ignored in the presence
of radiation damping.

Observation of the head-tail damping for positive chromaticities or measuring
the risetime as a function of chromaticity can be used to determine the transverse
wake function or impedance of the accelerator [34, 35]. Measurements of head-tail
damping rates have been performed in SPEAR [34] as a function of chromaticity
and are reproduced in Figs. 22.15 and 22.16.
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Fig. 22.15 Measurement of the head-tail damping rate in SPEAR as a function of chromaticity
(a) and beam energy (b) [34]
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Fig. 22.16 Measurement of
the head-tail damping rate in
SPEAR as a function of beam
current [34]
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We clearly note the linear increase of the damping rate with chromaticity. The
scaling with energy and beam current is less linear due to a simultaneous change in
bunch length. Specifically the bunch length increases with beam intensity causing
the wake fields to drop for a smaller damping rate.

22.6 Multi-Bunch Instabilities

Single-bunch dynamics is susceptible to all kinds of impedances or wake fields
whether it be narrow or broad-band impedances. This is different for multi-bunch
instabilities or coupled-bunch instabilities [27–37]. In order for wake fields to
generate an effect on more than one bunch it must persist at least until the next
bunch comes by the location of the impedance. We expect therefore multi-bunch
instabilities only due to high Q or narrow-band impedances like those encountered
in accelerating cavities. Higher-order modes in such cavities persist some time after
excitation and actually reach a finite amplitude in a circular accelerator where the
orbiting beam may periodically excite one or the other mode. Because these modes
have a high quality factor they are also confined to a narrow frequency spread. The
impedance spectrum we need to be concerned with in the study of multi-bunch
instabilities is therefore a line spectrum composed of many cavity modes.

To study the effect of these modes on the circulating beam, we must fold the
beam current spectrum with the mode spectrum and derive from this interaction
conditions for beam stability. We will do this for the case of the two lowest order
mode oscillations only where all bunches oscillate in synchronism at the same phase
or are 90ı out of phase from bunch to bunch respectively. Of course in a real
accelerator higher-order modes can be present too and must be taken into account.
Here we must limit ourself, however, to the discussion of the physical effect only and
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direct the interested reader to more detailed discussions on this subject in references
[3, 9, 19, 26].

We consider the dynamics of rigid coupled bunches ignoring the internal motion
of particles within a single bunch. The beam spectrum is then from (21.84) with q
the bunch charge and observing at ' D 0 for simplicity

Ik.!; '/ D qnb!0

2�

C1X
pD�1

C1X
nD�1

i�nJn. pnb!0 O�/ ı.! �˝n/ ; (22.186)

where now˝n D . pnbCnmCn
s/ !0 and where we have replaced the synchrotron
frequency by the synchrotron tune and the phase �i for individual particles by the
mode of the bunch distribution setting �i D m!0t with 0 
 m 
 nb. A beam of nb

equidistant bunches can oscillate in nb different modes. Two bunches, for example,
can oscillate in phase or 180ı out of phase; four bunches can oscillate with a phase
difference of 0ı, 90ı, 180ı, and 270ı between consecutive bunches. In general the
order of the mode m defines the phase difference of consecutive bunches by

� D m
360ı

nb
: (22.187)

To determine the multi-bunch dynamics we calculate first the induced voltage
V.t/ by the beam current in the impedance Z.!/ and then fold the voltage
function with the beam function to calculate the energy loss per turn by each
particle. Knowing this, we will be able to formulate the equation of motion for the
synchrotron oscillation. Specifically, we will be able to formulate frequency shifts
and damping or antidamping due to the interaction of the multi-bunch beam with its
environment to identify conditions for beam stability.

For simplicity we assume small phase oscillations . O� � 1/ and consider only
the fundamental beam frequency and the first satellite n D 0; 1. With this (22.186)
becomes

Ik.!/ D qnb!0

2�

C1X
pD�1

J0. pnb!0 O�/ ı.! �˝0/ � i J1. pnb!0 O�/ ı.! �˝1/ ;

(22.188)

where ˝0 D p nb!0, ˝1 D . pnb C m C 
s/ !0, and Ji are Bessel’s functions. The
induced voltage spectrum is V.!/ D Z.!/ I.!/ and its Fourier transform V.t/ DR

V.!/ei!t d! or

Vk.t/D qnb!0

2�

C1X
pD�1

�
J0. O�˝0/ Z.˝0/ ei˝0t (22.189)

�i J1. O� ˝0/ Z.˝1/ ei˝1t
	
:
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The energy loss per particle is then defined by integrating in time the product of
voltage function and single-bunch current function

U D 1

Nb

Z
Vk.t/

Ik.tC �/
nb

dt ; (22.190)

Nb is the number of particles per bunch and Tb D T0=nb the time between passage
of consecutive bunches. The bunch current can be expanded for � � 1

Ik.tC �/ � Ik.t/C � d

dt
Ik.t/ : (22.191)

The Fourier transforms of both current and its derivative with respect to time are
correlated by

d

dt
Ik.!/ D i! Ik.!/ (22.192)

and (22.191) becomes in frequency domain with (22.188)

Ik.tC �/ D qnb!0

.2�/2

Z C1X
pD�1

.1C i!�/ .J0 ı0 � iJ1 ı1/ ei!t dt ; (22.193)

where we have used some abbreviations which become obvious by comparison
with (22.188). Inserting (22.193) and (22.189) into (22.190), we get

U D .q!0/2nb

.2�/2 Nb

Z
t

Z
!

X
p

�
J0 Z0ei˝0t � i J1Z1ei˝1t

�
(22.194)

� .1C i!�/
X

r

.J0 ı0r � iJ1 ı1r/ ei!t d! dt :

For abbreviation we have set ıi D ı.˝i/, Zi D Z.˝i/, J0 D J0. O�˝0/, and J1 D
J1. O�˝0/. An additional index has been added to indicate whether the quantity is part
of the summation over p or r. Before we perform the time integration we reverse the
first summation by replacing p! �p and get terms like

R
e�i.˝0�!/t dt D 2�ı0 etc.

and (22.194) becomes

UD .q!0/2nb

2� Nb

Z
!

X
p

.J0 Z0ı0r C i J1Z1ı1r/ (22.195)

� .1C i!�/
X

r

.J0 ı0 � i J1ı1/ d! :
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The integration over ! will eliminate many components. Specifically, we note
that all cross terms ı0ı1 vanish after integration. We also note that the terms ı0pı0r

vanish unless r D p. With this in mind we get from (22.195)

U D .q!0/2nb

2� Nb

X
p

.J20 Z0 C i˝0� J20 Z0 C J21 Z1 C i˝1�J21 Z1/ : (22.196)

Finally the summation over p leads to a number of cancellations considering that
the resistive impedance is an even and the reactive impedance an odd function. With
Z0 D Zr0 C iZi0, Zr0.!/ D Zr0.�!/, and Zi0.!/ D �Zi0.�!/ (22.196) becomes

UD .q!0/2nb

2� Nb

C1X
pD�1

ŒJ20. O� ˝0/ Zr.˝0/C J21. O� ˝0/ Zr.˝1/ (22.197)

Ci � ˝1J
2
1. O� ˝1/ Zr.˝1/� � ˝1J

2
1. O� ˝1/ Zi.˝1/� :

The first and second term are the resistive energy losses of the circulating beam and
synchrotron oscillations respectively while the third and fourth term are responsible
for the stability of the multi bunch beam.

The equation of motion for synchrotron oscillations has been derived in Chap. 9
and we found that frequency and damping is determined by the accelerating rf-field
and energy losses. We expect therefore that the energy loss derived for coupled
bunch oscillations will also lead to a frequency shift and damping or anti damping.
Specifically, we have for the equation of motion from (9.25)

R' C !20
h �c

2�ˇc cp0
e

dV

d 

ˇ̌̌̌
 s

' � 1

T0

dU

dE

ˇ̌̌̌
E0

P' D 0 ; (22.198)

where we notice the phase proportional term which determines the unperturbed
synchrotron frequency

˝2
s0 D !20

h �c

2�ˇcp0
e

dV

d 

ˇ̌̌̌
 s

D !20
h �c e OV0 cos s

2� ˇ cp0
: (22.199)

The term proportional to P' gave rise to the damping decrement

˛s0 D � 1

2T0

dU

dE

ˇ̌̌̌
E0

: (22.200)

The modification of the synchrotron frequency is with D � D '=h!0
from (22.93)–(22.95) similar to the derivation of the unperturbed frequency

˝2
s D ˝2

s0 C !20
h�cnb

ˇcp0Nb

C1X
pD�1

�˝1Œqf0 J1. O�˝1/�
2Zi.˝1/ ; (22.201)
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where f0 D !0=2� is the revolution frequency. Note that �c < 0 above transition
and the additional damping or energy loss due to narrow-band impedances reduces
the frequency as one would expect.

Similarly we derive the modification of the damping decrement from the
imaginary term in (22.197) noting that the solution of the synchrotron oscillation
gives P� D �i˝s� with ' D h!0� and the damping decrement for a multi-bunch
beam is

˛s D ˛s0 � !0�cnb

2cp0 Nb

C1X
pD�1

˝1

˝s
Œq f0 J1. O�˝1/�

2Zr.˝1/ : (22.202)

For proton and ion beams we would set ˛s0 D 0 because there is no radiation
damping and the interaction of a multi-bunch beam with narrow-band impedances
would provide damping or antidamping depending on the sign of the damping
decrement for each term. If, however, only one term is antidamped the beam would
be unstable and get lost as was observed first at the storage ring DORIS [38]. It is
therefore important to avoid the overlap of any line of the beam spectrum with a
narrow-band impedance in the ring.

Since this is very difficult to achieve and to control, it is more convenient to
minimize higher-order narrow-band impedances in the ring by design as much as
possible to increase the rise time of the instabilities. In electron storage rings the
situation is similar, but now the instability rise time must exceed the radiation
damping time. Even though, modern storage rings are designed for high beam
currents and great efforts are being undertaken to reduce the impedance of higher
cavity modes by designing monochromatic cavities where the higher-order modes
are greatly suppressed [39–42].

We have discussed here only the dipole mode of the longitudinal coupled-bunch
instability. Of course, there are more modes and a similar set of instabilities in the
transverse dimensions. A more detailed discussion of all aspects of multi-bunch
instabilities would exceed the scope of this text and the interested reader is referred
to the specific literature, specifically to [3, 9, 19, 26].

Problems

22.1 (S). Consider a storage ring with 250 m circumference and a stored beam
current of 50 mA in 1 bunch. Assume that the bunch length is about 5 % of the bunch
spacing. A typical loss parameter for a BPM assembly is kk D 3:35 � 10�2 V/pC and
for bellows its kk D 6:12 � 10�2 V/pC. Calculate the induced power in both BPM
with 50� termination and bellows. What is the power at the 50� termination?

22.2 (S). Show that (22.94) is the same as (22.93) and show that the constant A
in (22.94) is given by A D 3

4�

qI0
ˇ2E0j�cjı2 , where ı D p=p0:
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22.3. Specify a damping ring at an energy of 1.5 GeV and an emittance of 10�10
m-rad. The rf-frequency be 500 MHz and 1011 electrons are to be stored into a
single bunch at full coupling. Calculate the Touschek lifetime and the coherent and
incoherent space-charge tune shift. Would the beam survive in case a tune shift of
Qy 
 0:05 were permissible?

22.4. Use the wake field for the SLAC linear accelerator structure (Fig. 22.8) and
calculate the energy loss of a particle in the tail of a 1 mm long bunch of 1011

electrons for the whole SLAC linear accelerator of 3 km length. This energy droop
along a bunch is mostly compensated by accelerating the bunch ahead of the crest
of the accelerating wave. This way the particles in the head of the bunch gain less
energy than the particles in the tail of the bunch. The extra energy gain of the tail
particles is then lost again due to wake field losses. How far off the crest must the
bunch be accelerated for this compensation?

22.5. Consider the phenomenon of beam break-up in a linear accelerator and split
the bunch into a head, center and tail part with a particle distribution Nb=4 to Nb=2

to Nb=4. Set up the equations of motion for all three particles including wake fields
and solve the equations. Show the exponential build up of oscillation amplitudes of
the tail particle. Perform the same derivation including BNS damping where each
macroparticle has a different betatron oscillation frequency. Determine the condition
for optimum BNS damping.

22.6. Determine the perturbation of a Gaussian particle distribution under the
influence of a capacitive wake field. In particular, derive expressions for the
perturbation of the distribution (if any) and the change in the fwhm bunch width as
a function of �� in the limit of small wakes. If there is a shift in the distribution what
physical effects cause it? Hint: think of a loss mechanism for a purely capacitive
wake field?

22.7. During the discussion of the dispersion relation we observed the stabilizing
effect of Landau damping and found the stability criterion (22.95) stating that the
threshold current can be increased proportional to the square of the momentum
spread in the beam. How does this stability criterion in terms of a momentum spread
relate to the conclusion in the section on Landau damping that the beam should
have a frequency overlap with the excitation frequency? Why is a larger momentum
spread better than a smaller spread?

22.8. Determine stability conditions for the fast head-tail instability in a storage
ring of your choice assuming that all transverse wake fields come from accelerating
cavities. Use realistic parameters for the rf-system and the number of cells appro-
priate for your ring. What is the maximum permissible transverse impedance for a
bunch current of 100 mA? Is this consistent with the transverse impedance of pill
box cavities? If not how would you increase the current limit?

22.9. Calculate the real and imaginary impedance for the first longitudinal and
transverse higher-order mode in a pill box cavity and apply these to determine the
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multi-bunch beam limit for a storage ring of your choice assuming that the beam
spectrum includes the HOM frequency. Calculate also the frequency shift at the
limit.
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Part IX
Synchrotron Radiation



Chapter 23
Fundamental Processes

Ever since J.C. Maxwell formulated his unifying electromagnetic theory in 1873,
the phenomenon of electromagnetic radiation has fascinated the minds of theorists
as well as experimentalists. The idea of displacement currents was as radical as it
was important to describe electromagnetic waves. It was only 14 years later when
G. Hertz in 1887 succeeded to generate, emit and receive again electromagnetic
waves, thus, proving experimentally the existence of such waves as predicted by
Maxwell’s equations. The sources of the radiation are oscillating electric charges
and currents in a system of metallic wires. In this text, we discuss the generation of
electromagnetic radiation emitted by free electrons from first principles involving
energy and momentum conservation as well as Maxwell’s equations.

23.1 Radiation from Moving Charges

Analytical formulation of the emission of electromagnetic radiation posed a con-
siderable challenge. Due to the finite speed of light one cannot make a snapshot to
correlate the radiation field at the observer with the position of radiating charges.
Rather, the radiation field depends on the position of the radiating charges some
time earlier, at the retarded time, when the radiation was emitted. Already 1867 L.
Lorenz included this situation into his formulation of the theory of electromagnetic
fields and introduced the concept of retarded potentials. He did, however, not
offer a solution to the retarded potentials of a point charge. Liénard [1] in 1898
and independently in 1900 Wiechert [2] derived for the first time expressions
for retarded potentials of point charges like electrons. These potentials are now
called the Liénard-Wiechert potentials relating the scalar and vector potential of
electromagnetic fields at the observation point to the location of the emitting charges
and currents at the time of emission. Using these potentials, Liénard was able to
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800 23 Fundamental Processes

calculate the energy lost by electrons while circulating in a homogenous magnetic
field.

In 1907 [3, 4] and 1912 [5] Schott formulated and published his classical theory
of radiation from an orbiting electron. He was primarily interested in the spectral
distribution of radiation and hoped to find an explanation for atomic radiation
spectra. Verifying Liénard’s conclusion on the energy loss, he derived the angular
and spectral distribution and the polarization of radiation. Since this classical
approach to explain atomic spectra was destined to fail, his paper was forgotten
and only 40 years later were many of his findings rediscovered.

23.1.1 Why Do Charged Particles Radiate?

Before we dive into the theory of electromagnetic radiation in more detail we
may first ask ourselves why do charged particles radiate at all? Emission of
electromagnetic radiation from charged particle beams (microwaves or synchrotron
radiation) is a direct consequence of the finite velocity of light. A charged particle in
uniform motion through vacuum is the source of electric field lines emanating from
the charge radially out to infinity. While the charged particle is at rest or moving
uniformly these field lines also are at rest or in uniform motion together with the
particle. Now, we consider a particle being suddenly accelerated for a short time.
That means the field lines should also be accelerated. The fact that the particle has
been accelerated is, however, still known only within the event horizon in a limited
area close to the particle. The signal of acceleration travels away from the source
(particle) only at the finite speed of light. Field lines close to the charged particle
are directed radially toward the particle, but far away, the field lines still point to
the location where the particle would be had it not been accelerated. Somewhere
between those two regimes the field lines are distorted and it is this distortion
travelling away from the particle at the speed of light what we call electromagnetic
radiation. The magnitude of these field distortions is proportional to the acceleration.

In a linear accelerator, for example, electrons are accelerated along the linac
axis and therefore radiate. The degree of actual acceleration, however, is very low
because electrons in a linear accelerator travel close to the velocity of light. The
closer the particle velocity is to the velocity of light the smaller is the actual
acceleration gained from a given force, and the radiation intensity is very small.
In a circular accelerator like a synchrotron, on the other hand, particles are deflected
transversely to their direction of motion by magnetic fields. Orthogonal acceleration
or the rate of change in transverse velocity is very large because the transverse
particle velocity can increase from zero to very large values in a very short time
while passing through the magnetic field. Consequently, the emitted radiation
intensity is very large. Synchrotron radiation sources come therefore generally in
form of circular synchrotrons. Linear accelerators can be the source of intense
synchrotron radiation in conjunction with a transversely deflecting magnet.
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23.1.2 Spontaneous Synchrotron Radiation

Charged particles do not radiate while in uniform motion, but during acceleration a
rearrangement of its electric fields is required and this field perturbation, traveling
away from the charge at the velocity of light, is what we observe as electromagnetic
radiation. Free accelerated electrons radiate similarly to those in a radio antenna,
although now the source (antenna) is moving. Radiation from a fast moving particle
source appears to the observer in the laboratory as being all emitted in the general
direction of motion of the particle. This forward collimation is particularly effective
for highly relativistic electrons where most of the radiation is concentrated into a
small cone around the forward direction with an opening angle of 1=� , typically 0.1
to 1 mrad, where � is the particle energy in units of its rest mass.

Radiation can be produced by magnetic deflection in a variety of ways. Whether
it be a single kick-like deflection or a periodic right-left deflection, the radiation
characteristics reflect the particular mode of deflection. Specific radiation charac-
teristics can be gained through specific modes of deflections. Here, we will only
shortly address the main processes of radiation generation and come back later for
a much more detailed discussion of the physical dynamics.

In an undulator the electron beam is periodically deflected transversely to
its direction of motion by weak sinusoidally varying magnetic fields, generating
periodic perturbations of the electric field lines. A receiving electric field detector
recognizes a periodic variation of the transverse electromagnetic field components
and interprets this as quasi monochromatic radiation. In everyday life periodic
acceleration of electrons occurs in radio and TV antennas and we may receive these
periodic field perturbations with a radio or TV receiver tuned to the frequency of
the periodic electron motion in the emitting antenna. The fact that we consider
relativistic electrons is not fundamental, but we restrict ourselves in this text to high
energy electrons only.

To the particle the wavelength of the emitted radiation is equal to the undulator
period length (�p) divided by � due to relativistic Lorentz contraction. In a stationary
laboratory system, this wavelength appears to the observer further reduced by
another factor 2� due to the Doppler effect. The undulator period length of the order
of centimeters is thus reduced by a factor �2 (106–108) to yield short wavelength
radiation in the VUV and x-ray regime. The spectral resolution of the radiation is
proportional to the number of undulator periods Np and its wavelength can be shifted
by varying the magnetic field. Most radiation is emitted within the small angle of
.�
p

Np/
�1.

Increasing the magnetic field strength causes the pure sinusoidal transverse
motion of electrons in an undulator to become distorted due to relativistic effects
generating higher harmonic perturbations of the electron trajectory. Consequently,
the monochromatic undulator spectrum exhibits higher harmonics and changes
into a line spectrum. For very strong fields, many harmonics are generated which
eventually merge into a continuous spectrum from IR to hard x-rays. In this extreme,
we call the source magnet a wiggler magnet. The spectral intensity varies little over
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a broad wavelength range and drops off exponentially at photon energies higher than
the critical photon energy, "crit / B�2. Changing the magnetic field, one may vary
the critical photon energy to suit experimental requirements. Compared to bending
magnet radiation, wiggler radiation is enhanced by the number of magnet poles Npol

and is well collimated within an angle of 1=� to say 10=� , or a few mrad.
A bending magnet is technically the most simple radiation source. Radiation is

emitted tangentially to the orbit similar to a search light while well collimated in
the non-deflecting, or vertical plane. The observer at the experimental station sees
radiation from only a small fraction of the circular path which can be described as a
piece of a distorted sinusoidal motion. The radiation spectrum is therefore similar to
that of a wiggler magnet while the intensity is due to only one pole. Because bending
magnets define the geometry of the electron beam transport system or accelerator,
it is not possible to freely choose the field strength and the critical photon energy is
therefore fixed. Sometimes, specially in lower energy storage rings, it is desirable
to extend the radiation spectrum to higher photon energies into the x-ray regime.
This can be accomplished by replacing one or more conventional bending magnet
with a superconducting magnet or superbends at much higher field strength. To
preserve the ring geometry the length of these superbends must be chosen such
that the deflection angle is the same as it was for the conventional magnet that has
been replaced. Again, superbends are part of the ring geometry and therefore the
field cannot be changed.

A more flexible version of a radiation hardening magnet is the wavelength shifter.
This is a magnet which consists of a high field central pole and two weaker outside
poles to compensate the deflection by the central pole. The total deflection angle
is zero and therefore the field strength can be chosen freely to adjust the critical
photon energy. It’s design is mostly based on superconducting magnet technology,
particularly in low energy accelerators, to extend (shift) the critical photon energy
available from bending magnets to higher values.

A variety of more complicated magnetic field arrangements have been developed
to primarily generate circularly or elliptically polarized radiation. In such magnets
horizontal as well as vertical magnetic fields are sequentially employed to deflect
electrons into some sort of helical motion giving raise to the desired polarization
effect.

23.1.3 Stimulated Radiation

The well defined time structure and frequency of undulator radiation can be used to
stimulate the emission of even more radiation. In an optical klystron [6] coherent
radiation with a wavelength equal to the fundamental undulator wavelength enters
an undulator together with the electron beam. Since the electron bunch length
is much longer than the radiation wavelength, some electrons loose energy to
the radiation field and some electrons gain energy from the radiation field while
interacting with the radiation field. This energy modulation can be transformed into
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a density modulation by passing the modulated electron beam through a dispersive
section. This section consists of deflecting magnetic fields arranged in such a way
that the total path length through the dispersive section depends on the electron
energy. The periodic energy modulation of the electron bunch then converts into
a periodic density modulation. Now we have microbunches at a distance of the
undulator radiation wavelength. This microbunched beam travels through a second
undulator where again particles can loose or gain energy from the radiation field.
Due to the microbunching, however, most particles are concentrated at phases where
there is only energy transfer from the particle to the radiation field, thus providing a
high gain of radiation intensity.

In a more efficient variation of this principle, radiation emitted by electrons
passing through an undulator is recycled by optical mirrors in such a way that it
passes through the same undulator again together with another electron bunch. The
external field stimulates more emission of radiation from the electrons, and is again
recycled to stimulate a subsequent electron bunch until there are no more bunches
in the electron pulse. Generating from a linear accelerator a train of thousands of
electron bunches one can generate a large number of interactions, leading to an
exponential growth of electromagnetic radiation. Such a devise is called a free
electron laser or short FEL.

23.1.4 Electron Beam

In this text we consider radiation from relativistic electron beams only. Such beams
can be generated efficiently by acceleration in microwave fields. The oscillatory
nature of microwaves makes it impossible to produce a uniform stream of particles,
and the electron beam is modulated into bunches at the distance of the microwave
wavelength. The bunched nature of the electron beam and the fact that these bunches
circulate in a storage ring determines the time structure and spectrum of the emitted
radiation. Typically, the bunch length in storage rings is 30–100 ps at a distance of
2–3 ns depending on the rf-frequency.

During the storage time of the particle beam, the electrons radiate and it is this
radiation that is extracted and used in experiments of basic and applied research.
Considering, for example, only one bunch rotating in the storage ring, the experi-
menter would observe a light flash at a frequency equal to the revolution frequency
frev. Because of the extremely short duration of the light flash many harmonics of the
revolution frequency appear in the light spectrum. At the low frequency end of this
spectrum, however, no radiation can be emitted for wavelength longer than about
the dimensions of the metallic vacuum chamber surrounding the electron beam.
For long wavelengths the metallic boundary conditions for electromagnetic fields
cannot be met prohibiting the emission of radiation. Practically, useful radiation is
observed from storage rings only for wavelengths below the microwave regime, or
for � . 1mm.
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23.2 Conservation Laws and Radiation

The emission of electromagnetic radiation from free electrons is a classical phe-
nomenon. We may therefore use a visual approach to gain some insight into
conditions and mechanisms of radiation emission. First, we will discuss necessary
conditions that must be met to allow an electron to emit or absorb a photon.
Once such conditions are met, we derive from energy conservation a quantity, the
Poynting vector, relating energy transport or radiation to electromagnetic fields. This
will give us the basis for further theoretical definitions and discussions of radiation
phenomena.

The emission of electromagnetic radiation involves two components, the electron
and the radiation field. For the combined system energy-momentum conservation
must be fulfilled. These conservation laws impose very specific selection rules on
the kind of emission processes possible. To demonstrate this, we plot the energy
versus momentum for both electron and photon. In relativistic terms, we have the

relation � D
q
1C .ˇ�/2 between energy � and momentum ˇ�: For consistency

in quantities used we normalize the photon energy to the electron rest energy,
�p D "p=mc2; where "p D „! is the photon energy and mc2 the electron rest
mass while the normalized photon momentum is ˇp� D „kp=mc2: Similarly, we
express the speed of light by ˇp D cp=c D 1=n where n > 1 is the refractive
index of the medium surrounding the photon. With these definitions and assuming,
for now, vacuum as the medium .n D 1/ the location of a particle or photon in
energy-momentum space is shown in Fig. 23.1(left).
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Δ(βγ) =Δγ
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Fig. 23.1 Energy-momentum relationship for particles and photons (left). Violation of energy or
momentum conservation during emission and absorption of electromagnetic radiation by a free
electron travelling in perfect vacuum (ˇp D 1/ (right)
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Energy and momentum of a particle are related such that it must be located on the
“particle”-line in Fig. 23.1(left) while a photon is always located on the “photon”-
line. Transfer of energy between particle and photon must obey energy-momentum
conservation. In Fig. 23.1(right) we apply this principle to a free electron in vacuum
emitting (absorbing) a photon. To create a photon the electron would have to loose
(gain) an amount of momentum which is numerically equal to the energy gained
(lost) by the photon. Clearly, in this case the electron would end up at a location
off the “particle”-line, thus violating momentum conservation. That cannot be, and
such a process is therefore not permitted. A free electron in vacuum cannot emit or
absorb a photon without violating energy-momentum conservation.

23.2.1 Cherenkov Radiation

We have been careful to assume an electron in perfect vacuum. What happens in
a material environment is shown in Fig. 23.2. Because the refractive index n > 1;

the phase velocity of radiation is less than the velocity of light in vacuum and with
ˇ D 1=n; the “photon”-line is tilted towards the momentum axis.

Formally, we obtain this for a photon from the derivative d�=d.ˇ�/ which we
expand to d�

d.ˇ�/ D d�
d!

d!
dk

dk
d.ˇ�/ and get with � D „!=mc2; k D n!c ; and the

Fig. 23.2 Energy and
momentum conservation in a
refractive environment with
n > 1
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momentum ˇ� D „
mc k; the derivative

d�p

d .ˇ�/p
D 1

n
< 1 ; (23.1)

where we have added the subscript p to differentiate between photon and electron
parameters.

The dispersion function for a photon in a material environment has a slope less
than unity as shown in Fig. 23.2. In this case, the numerical value of the photon
momentum is less than the photon energy, analogous to the particle case. To create
a photon of energy �p we set �p D �� D �ˇˇ� from (1.30), where from (23.1)
the photon energy �p D 1

n .ˇ�/p and get from both relations .ˇ�/p D �nˇˇ� .
Because of symmetry, no momentum transverse to the particle trajectory can be
exchanged, which means radiation is emitted uniformly in azimuth. The change in
longitudinal momentum along the trajectory is�ˇ� D .ˇ�/p

ˇ̌
k D .ˇ�/p cos �: In

a dielectric environment, free electrons can indeed emit or absorb a photon although,
only in a direction given by the angle � with respect to the electron trajectory. This
radiation is called Cherenkov radiation, and the Cherenkov angle � is given by the
Cherenkov condition

nˇ cos � D 1 : (23.2)

Note, that this condition is not the same as saying whenever an electron passes
though a refractive medium with n > 1 there is Cherenkov radiation. The Cherenkov
condition requires that nˇ > 1 which is, for example, not the case for an electron
beam of less than 20 MeV traveling through air.

23.2.2 Compton Radiation

To generate electromagnetic radiation from free electrons in vacuum without
violating energy-momentum conservation, we may employ the Compton effect
which is the scattering of an incoming photon by the electron. In energy-momentum
space this process is shown in Fig. 23.3. The electron, colliding head-on with an
incoming photon absorbs this photon and emits again a photon of different energy.
In this process it gains energy but looses momentum bringing the electron in the
energy-momentum space to an intermediate point, PI; from where it can reach its
final state on the “particle”-line by emitting a photon as shown in Fig. 23.3. This
is the process involved in the generation of synchrotron radiation. Static magnetic
fields in the laboratory system appear as electromagnetic fields like an incoming
(virtual) photon in the electron system with which the electron can collide. Energy-
momentum conservation give us the fundamental and necessary conditions under
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Fig. 23.3 Energy and
momentum conservation for
Compton scattering process

γ

βγ

which a free charged particle can emit or absorb a photon. We turn our attention
now to the actual interaction of charged particles with an electromagnetic field.

23.3 Electromagnetic Radiation

Phenomenologically, synchrotron radiation is the consequence of a finite value
for the velocity of light. Electric fields extend infinitely into space from charged
particles in uniform motion. When charged particles become accelerated, however,
parts of these fields cannot catch up with the particle anymore and give rise to
synchrotron radiation. This happens more so as the particle velocity approaches
the velocity of light.

The emission of light can be described by applying Maxwell’s equations to
moving charged particles. The mathematical derivation of the theory of radiation
from Maxwell’s equations is straightforward although mathematically elaborate and
we will postpone this to Chap. 25. Here we follow a more intuitive discussion1

which displays visually the physics of synchrotron radiation from basic physical
principles.

Electromagnetic radiation occurs wherever electric and magnetic fields exist with
components orthogonal to each other such that the Poynting vector

S D 1

�0
ŒE � B� ¤ 0 : (23.3)

1The author would like to thank Prof. M. Eriksson, Lund, Sweden for introducing him to this
approach into the theory of synchrotron radiation.
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It is interesting to ask what happens if we have a static electric and magnetic
field such that ŒE�B� ¤ 0 :We know there is no radiation but the Poynting vector is
nonzero. Applying energy conservation (1.87) we find the first two terms to be zero
which renders the third term zero as well. For a static electric and magnetic field the
integral defining the radiation loss or absorption is equal to zero and therefore no
radiation or energy transport occurs.

Similarly, in case of a stationary electrostatic charge, we note that the electrostatic
fields extend radially from the charge to infinity which violates the requirement that
the field be orthogonal to the direction of observation or energy flow. Furthermore,
the charge is stationary and therefore there is no magnetic field.

23.3.1 Coulomb Regime

Next, we consider a charge in uniform motion. In the rest frame of the moving
charge we have no radiation since the charge is at rest as just discussed. In the
laboratory system, however, the field components are different. Since the charge
is moving, it constitutes an electric current which generates a magnetic field.
Formulating the Poynting vector in the laboratory system we express the fields by
the pure electric field in the particle rest frame L�. We accomplish that by an inverse
Lorentz transformations to (1.9), where the laboratory system L now moves with the
velocity �ˇz with respect to L� and ˇz in (1.9) must be replaced by �ˇz for0BBBBBBB@

Ex

Ey

Ez

cBx

cBy

cBz

1CCCCCCCA
D

0BBBBBBB@

� 0 0 0 ˇz� 0

0 � 0 �ˇz� 0 0

0 0 1 0 0 0

0 �ˇz� 0 � 0 0

ˇz� 0 0 0 � 0

0 0 0 0 0 1

1CCCCCCCA

0BBBBBBB@

E�
x

E�
y

E�
z

cB�
x

cB�
y

cB�
z

1CCCCCCCA
: (23.4)

In the laboratory system L the components of the Poynting vector (23.3) become
then with B� D 0

c�0Sx D ��ˇzE
�
x E�

z ;

c�0Sy D ��ˇzE
�
y E�

z ; (23.5)

c�0Sz D C�2ˇz
�
E�2

x C E�2
y

�
;

where � indicates quantities in the moving system L� and ˇz D vz =c. The Poynting
vector is nonzero and describes the flow of field energy in the environment of
a moving charged particle. The fields drop off rapidly with distance from the
particle and the “radiation” is therefore confined close to the location of the particle.
Specifically, the fields are attached to the charge and travel in the vicinity and with
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the charge. This part of electromagnetic radiation is called the Coulomb regime in
contrast to the radiation regime and is, for example, responsible for the transport of
electric energy along electrical wires and transmission lines.

We will ignore this regime in our further discussion of synchrotron radiation.
It should be noted, however, that measurements of radiation parameters close to
radiating charges may be affected by the presence of the Coulomb radiation regime.
Such situations occur, for example, when radiation is observed close to the source
point. Related theories deal with this mixing by specifying a formation length
defining the minimum distance from the source required to sufficiently separate the
Coulomb regime from the radiation regime.

23.3.2 Radiation Regime

In this text we are only interested in the radiation regime and therefore ignore from
now on the Coulomb regime. To describe the physics of emission of radiation, we
consider a coordinate system moving with a constant velocity equal to that of the
charged particle and associated electric fields. The charge is at rest in the moving
reference system, the electric field lines extend radially out to infinity, and there
is no radiation as discussed before. Acceleration of the charge causes it to move
with respect to this reference system generating a distortion of the purely radial
electric fields of a uniformly moving charge (Fig. 23.4). This distortion, resulting
in a rearrangement of field lines to the new charge position, travels outward at the
velocity of light giving rise to what we call radiation.

Fig. 23.4 Distortion of fields
due to longitudinal
acceleration

electrical field
lines

cΔT

charge > 0

acceleration

Poynting vector: SSSSS

long. electric field
component EEEEEz

magnetic field BBBBBϕ

A B
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To be more specific, we consider a positive charge in uniform motion for t 6 0,
the we apply an accelerating force at time t D 0 for a time T and observe the
charged particle and its fields in the uniformly moving frame of reference. Due to
acceleration the charge moves in this reference system during the time T from
point A to point B and as a consequence the field lines become distorted within a
radius cT from the original location A of the particle. It is this distortion, travelling
away from the source at the speed of light, that we call radiation.

The effects on the fields are shown schematically in Fig. 23.4 for an acceleration
of a positive charge along its direction of motion. At time t D 0 all electric field lines
extend radially from the charge located at point A to infinity. During acceleration
fieldlines emerge from the charge now at locations between A and B. The new
field lines must join the old field lines which, due to the finite velocity of light,
are still unperturbed at distances larger than cT: As long as the acceleration lasts,
a nonradial field component, parallel and opposite to the acceleration, is created.
Furthermore, the moving charge creates an azimuthal magnetic field B�

'.t/ and
the Poynting vector becomes nonzero causing the emission of radiation from an
accelerated electrical charge.

Obviously, acceleration would not result in any radiation if the velocity of
propagation for electromagnetic fields were infinite .c!1/. In this case the radial
fields at all distances from the charge would instantly move in synchrony with the
movement of the charge. Only the Coulomb regime would exist.

The electrical field perturbation is proportional to the electrical charge q and the
acceleration a�. Acceleration along the z-axis generates an electric field E�

z ¤ 0 and
its component normal to the direction of observation scales like sin��, where�� is
the angle between the line of observation and the direction of particle acceleration.
During the acceleration a fixed amount of field energy is created which propagates
radially outward from the source. Since the total radiation energy must stay constant
and the volume of the expanding spherical sheath of field perturbation increases like
R2, the field strength decays linear with distance R: With this, we make the ansatz

E�
k D �

1

4��0

ea�

c2R
sin�� (23.6)

for the electric field, where we have added a factor c2 in the denominator to be
dimensionally correct. For an electron .e < 0/ the field perturbation would be
positive pointing in the direction of the acceleration. As expected from the definition
of the Poynting vector, the radiation is emitted predominantly orthogonal to the
direction of acceleration and is highly polarized in the direction of acceleration.
From (1.89)

S D 1

c�0
E�2

k n� ; (23.7)

where n� is the unit vector in the direction of observation from the observer toward
the radiation source. The result is consistent with our earlier finding that no free
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Fig. 23.5 Spatial radiation
distribution in the rest frame
of the radiating charge

x

z

Fig. 23.6 Distortion of field
lines due to transverse
acceleration
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electrical field, Ez

Poynting vector, S
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charge, q>0
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radiation is emitted from a charge at rest or uniform motion (a� ! 0). The
spatial radiation distribution is from (23.6) and (23.7) characterized by a sin2 ��-
distribution resembling the shape of a doughnut as shown in Fig. 23.5, where the
acceleration occurs along the x-axis.

Acceleration may not only occur in the longitudinal direction but also in
the direction transverse to the velocity of the particle as shown in Fig. 23.6.
The distortion of field lines in this case creates primarily transverse or radial
field components. The radiation field component transverse to the direction of
observation is

E�? D �
�0

4�

ea�

R
cos��: (23.8)
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This case of transverse acceleration describes the appearance of synchrotron
radiation created by charged particles being deflected in magnetic fields. Similar
to (23.7) the Poynting vector for transverse acceleration is

S D 1

c�0
E�2? n�: (23.9)

Problems

23.1 (S). Consider a relativistic electron traveling along the z-axis. In its own
system, the electrical field lines extend radially from the charge. Considering only
the xz-plane, derive an expressions for the electrical field lines in the laboratory
frame of reference. Sketch the field pattern in the electron rest frame and in the
laboratory system of reference.

23.2 (S). Use a 10 MeV electron beam passing through atmospheric air. Can
you observe Cherenkov radiation and if so at what angle? Answer the same
questions also for a 50 MeV electron beam. Describe and explain with Fig. 23.2
the fundamental difference of your results (nair D 1:0002769 for � D 5; 600 Å).

23.3 (S). A 10 MeV electron beam passes with normal incidence through a plate of
polystyren scintilator .n D 1:58/. Is there any Cherenkov radiation and if so at what
angle? Where does this radiation escape the plate?

23.4 (S). An electron beam orbits in a circular accelerator with a circumference of
300 m at an average current of 250 mA and the beam consists of 500 equally spaced
bunches each 1 cm long. How many particles are orbiting? How many particles are
in each bunch? Assuming the time structure of synchrotron radiation is the same as
the particle beam time-structure specify and plot the radiation time-structure in the
photon beam line.

23.5 (S). From Heisenberg’s uncertainty relation construct a “characteristic vol-
ume” of a photon with energy �ph D ¯!. What is the average electric field in this
volume for a 1 eV photon and an X-ray photon of 10 keV?

23.6 (S). Derive from (1.38) the formula for the classical Doppler effect valid for
sound waves emitted at a frequency fs from a source moving with velocity v and
received at an angle #:

23.7 (S). Consider an electron storage ring at an energy of 800 MeV, a circulating
current of 1 amp and a bending radius of 	 D 1:784m. Calculate the energy loss
per turn, and the total synchrotron radiation power from all bending magnets. What
would the radiation power be if the particles were 800 MeV muons.

23.8 (S). For the electron beam of exercise 23.7 calculate the critical energy and
plot the radiation spectrum. What is the useful frequency range for experimentation
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assuming that the spectral intensity should be within 1 % of the maximum value?
Express the maximum useful photon energy in terms of the critical photon energy
(only one significant digit!).

23.9 (S). What beam energy would be required to produce x-rays at a critical
photon energy of 10 keV from the storage ring of exercise 23.7? Is that energy
feasible from a conventional magnet point of view or would the ring have to be
larger? What would the new bending radius and energy have to be?

23.10. Verify that for a 10 MeV electron colliding head-on with a Ti-Saphire laser
(� D 0:8 �m) the wavelength in it’s own system is �� D 40:88 nm. Also show that
the wavelength of the backscattered photon in the laboratory system is �� D 10:4Å.
What electron beam energy do you need to produce 1 Å radiation? What is the
maximum acceptance angle allowable to still get a photon beam with a band width
of 10 % or less? Show that the acceptance angle is˙18:15mrad.

23.11. Consider a ray of 123.8 meV and 10 keV photons, both at a power density
of 100 Watt/mm2. How many photons occupy their respective “characteristic vol-
umes”? Show that the photon flux density is 1:875 � 1010 photons (100 meV)/mm3

and 1:875� 105 photons(10 keV)/mm3. Verify that, 61:07 photons (123.8 meV) and
1:44 � 10�18 photons (10 keV) occupy, on average, its own characteristic volume
in a 100 W/mm2 beam. The X-ray photon distribution is indeed sparse among it’s
characteristic volume. What are the respective characteristic volumes?

23.12. Show that Eqs. (1.88) and (1.89) are the same for electromagnetic waves.
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Chapter 24
Overview of Synchrotron Radiation

After Schott’s [1] unsuccessful attempt to explain atomic radiation with his electro-
magnetic theory no further progress was made for some 40 years mainly because of
lack of interest. Only in the mid 1940s did the theory of electromagnetic radiation
from free electrons become interesting again with the successful development of
circular high-energy electron accelerators. At this time powerful betatrons [2] have
been put into operation and it was Ivanenko and Pomeranchouk [3], who first in
1944 pointed out a possible limit to the betatron principle and maximum energy due
to energy loss from emission of electromagnetic radiation. This prediction was used
by Blewett [4] to calculate the radiation energy loss per turn in a newly constructed
100 MeV betatron at General Electric. In 1946 he measured the shrinkage of the
orbit due to radiation losses and the results agreed with predictions. On April 24,
1947 visible radiation was observed for the first time at the 70 MeV synchrotron
built at General Electric [5–7] with a transparent glass vacuum chamber. Since then,
this radiation is called synchrotron radiation.

The energy loss of particles to synchrotron radiation causes technical and
economic limits for circular electron or positron accelerators. As the particle energy
is driven higher and higher, more and more rf-power must be supplied to the
beam not only to accelerate particles but also to overcome energy losses due to
synchrotron radiation. The limit is reached when the radiation power grows to
high enough levels exceeding technical cooling capabilities or exceeding the funds
available to pay for the high cost of electrical power. To somewhat ameliorate this
limit, high-energy electron accelerators have been constructed with ever increasing
circumference to allow a more gentle bending of the particle beam. Since the
synchrotron radiation power scales like the square of the particle energy (assuming
constant magnetic fields) the circumference must scale similar for a constant amount
of rf-power. Usually, a compromise is reached by increasing the circumference
less and adding more rf-power in spaces along the ring lattice made available
by the increased circumference. In general the maximum energy in large circular
electron accelerators is limited by the available rf-power while the maximum energy

815

This chapter has been made Open Access under a CC BY 4.0 license. For details on rights

https://doi.org/10.1007/978-3-319-18317-6_24

© The Author(s) 2015  

and licenses please read the Correction https://doi.org/10.1007/978-3-319-18317-6_28

H. Wiedemann, Particle Accelerator Physics, Graduate Text in Physics,



816 24 Overview of Synchrotron Radiation

of proton or ion accelerators is more likely limited by the maximum achievable
magnetic fields in bending magnets.

What is a nuisance for researchers in one field can provide tremendous oppor-
tunities for others. Synchrotron radiation is emitted tangentially from the particle
orbit and within a highly collimated angle of ˙1=� . The spectrum reaches from
the far infrared up to hard x-rays, the radiation is polarized and the intensities
greatly exceed other sources specifically in the vacuum ultra violet to x-ray region.
With these properties synchrotron radiation was soon recognized to be a powerful
research tool for material sciences, crystallography, surface physics, chemistry,
biophysics, and medicine to name only a few areas of research. While in the past
most of this research was done parasitically on accelerators built and optimized for
high-energy physics the usefulness of synchrotron radiation for research has become
important in its own right to justify the construction and operation of dedicated
synchrotron radiation sources all over the world.

24.1 Radiation Sources

Deflection of a relativistic particle beam causes the emission of electromagnetic
radiation which can be observed in the laboratory system as broadband radiation,
highly collimated in the forward direction. The emission is related to the deflection
of a charged particle beam and therefore sweeps like a search light across the
detection apparatus of the observer. It is this shortness of the observable radiation
pulse which implies that the radiation is detected as synchrotron radiation with a
broad spectrum. The width of the spectrum is characterized by the critical photon
energy (24.49) and depends only on the particle energy and the bending radius of
the magnet. Generally, the radiation is produced in bending magnets of a storage
ring, where an electron beam is circulating for hours.

In order to adjust the radiation characteristics to special experimental needs, other
magnetic devices are being used as synchrotron radiation sources. Such magnets are
known as insertion devices since they do not contribute to the overall deflection of
the particle beam in the circular accelerator. Their effect is localized and the total
deflection in an insertion device is zero. In this chapter, we give a short overview of
all radiation sources and their characteristics and postpone more detailed discussions
of insertion device radiation to Chap. 26.

24.1.1 Bending Magnet Radiation

The radiation from bending magnets is emitted tangentially from any point along the
curved path like that of a searchlight and appears therefore as a swath of radiation
around the storage ring as shown in Fig. 24.1. In the vertical, nondeflecting plane,
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Fig. 24.1 Radiation swath
from bending magnets in an
electron storage ring

← e -

however, the radiation is very much collimated with a typical opening angle of
˙1=� .

The temporal structure of synchrotron radiation reflects that of the electron beam.
Electrons circulating in the storage ring are concentrated into equidistant bunches
equal to an integer multiple (usually equal to unity) of the rf-wavelength (60 cm
for 500 MHz) while the bunch length itself is of the order of 1 to 3 cm or 30 to
100 ps depending on beam energy and rf-voltage. As a consequence, the photon
beam consists of a series of short 30–100 ps flashes every 2 ns (500 MHz) or integer
multiples thereof.

Radiation is emitted in a broad spectrum reaching, in principal, from mircowaves
up to the critically photon energy (24.49) and beyond with fast declining intensities.
The long wavelength limit of the radiation spectrum is actually limited by the
vacuum chamber, which causes the suppression of radiation at wavelength longer
than its dimensions. The strength of bending magnets, being a part of the geometry
of the storage ring cannot be freely varied to optimize for desired photon beam
characteristics. This is specifically limiting in the choice of the critical photon
energy. While the lower photon energy spectrum is well covered even for rather
low energy storage rings, the x-ray region requires high beam energies and/or high
magnetic fields. Often, the requirements for x-rays cannot be met with existing
bending magnet and storage ring parameters.

24.1.2 Superbends

The critical photon energy from bending magnet radiation (24.51) is determined by
the magnet field and the particle energy. The combination of both quantities may
not be sufficient to extend the synchrotron radiation spectrum into the hard x-ray
regime, especially in low energy storage rings. In this case, it is possible to replace
some or all original bending magnets by much stronger but shorter magnets, called
superbends. To be more specific, conventional bending magnets are replaced by high
field, shorter superconducting magnets deflecting the electron beam by the same
angle to preserve the storage ring geometry. Since conventional bending magnet
fields rarely exceed 1.5 T, but superconducting magnets can be operated at 5–6 T or
higher, one can gain a factor of 3 to 4 in the critical photon energy and extend the
photon spectrum towards or even into the hard x-ray regime and beyond.
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24.1.3 Wavelength Shifter

The installation of superbends is not always feasible or desirable. To still meet the
need for harder x-ray radiation in a low energy storage ring, it is customary to use
a wavelength shifter. Such a device may consist of three or five superconducting
dipole magnets with alternating magnetic field directions. For this latter reason, a
wavelength shifter is a true insertion device. Figure 24.2 shows schematically a
three-pole wavelength shifter.

The particle beam passing through this wavelength shifter is deflected up and
down or left and right in such a way that no net deflection remains. To meet this
condition, the longitudinal field distribution of a horizontally deflecting wavelength
shifter must obey the conditionZ 1

�1
By .y D 0; z/ dz D 0 : (24.1)

A wavelength shifter with such field properties is neutral on the geometry of the
particle beam path through a storage ring and therefore can be made in principle as
strong as necessary or technically feasible.

Only the central high field pole is used as the radiation source, while the two
side poles compensate the beam deflection from the central pole. In a five-pole
wavelength shifter the three central poles would be used as radiators, while both end
poles again act as compensators. Mostly, the end poles are longer than the central
poles and operate at a lower field. As their name implies, the primary objective
in wavelength shifters is to extend the photon spectrum while the enhancement of
intensity through radiation accumulation from many poles, while desirable, is of
secondary importance. To maximize the desired effect, wavelength shifters are often
constructed as high field superconducting magnets to maximize the critical photon
energy for the given particle beam energy. Some limitations apply for such devices
as well as for any other insertion device. The end fields of magnets can introduce
particle focusing and nonlinear field components may introduce aberrations and
cause beam instability. Both effects must either be kept below a critical level or
be compensated.

Fig. 24.2 Magnetic field distribution along the beam path for a wave length shifter
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24.1.4 Wiggler Magnet Radiation

The principle of a wavelength shifter is extended in the case of a wiggler-magnet.
Such a magnet consists of a series of equal dipole magnets with alternating magnetic
field direction. Again, the end poles must be configured to make the total device
neutral to the geometry of the particle beam path such that the conditions

R
Bdz D 0

are met in both planes.
The main advantage of using many magnet poles is to increase the photon flux.

Like a single bending magnet, each of the Npol magnet poles produces a fan of
radiation in the forward direction and the total photon flux is Npol-times larger than
that from a single pole. Wiggler-magnets may be constructed as electromagnets
with fields up to 2T to function both as a flux enhancer and as a more modest
wavelength shifter compared to the superconducting type. An example of an 8-pole,
1.8 T electromagnetic wiggler-magnet [8] is shown in Fig. 24.3.

In this picture, the magnet gap is wide open, to display the flat vacuum chamber
running through the magnet between the poles. The pole pieces in the lower row are
visible surrounded by water cooled excitation coils. During operation, both rows of
wiggler poles are closed to almost touch the flat vacuum chamber. When the magnet
is closed, a maximum magnetic field of 1.8 T can be obtained. Strong fields can be
obtained from electromagnets, but the space requirement for the excitation coils
limits the number of poles that can be installed within a given length.

Progress in the manufacturing of high field permanent magnet material permits
the installation of many more poles into the same space compared to an electromag-
net. An example of a modern 26 pole, 2.0 T permanent magnet wiggler magnet is
shown in Fig. 24.4.1

Fig. 24.3 Electromagnetic
wiggler magnet with eight
1.8 T poles

1The author would like to thank T. Rabedau, Stanford for this picture.
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Fig. 24.4 Permanent magnet wiggler magnet with 26 poles, a 175 mm period length and a
maximum field of 2.0 T

Figure 24.4 shows the wiggler magnet during magnetic measurement with the rail
in front of the magnet holding and guiding the Hall probe. The increased number
of poles and simplified design compared to the electromagnetic wiggler in Fig. 24.3
are clearly visible.

For short wiggler poles, we express the magnetic field by

By .x; y D 0; z/ D B0 sin
2�z

�p
(24.2)

and the maximum beam deflection from the axis is equal to the deflection angle per
half pole

# D B0
B	

Z �p=4

0

sin
2�z

�p
d z D B0

B	

�p

2�
; (24.3)

where B	 is the beam rigidity. Multiplying this with the beam energy � , we define
the wiggler strength parameter

K D �# D ecB0
mc2

�p

2�
D 0:934B0 .T/ �p .cm/ : (24.4)

For longer magnet poles (24.2) must be replaced by a sum of harmonics. Most
wiggler magnets, though, are designed for the lowest harmonic only. This wiggler
strength parameter is generally much larger than unity. Conversely, a series of
alternating magnet poles is called a wiggler magnet if the strength parameter K � 1

and condition (24.1) is met. As we will see later, a weak wiggler magnet with
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Fig. 24.5 On-axis field
strength in a vanadium
Permendur hybrid wiggler
magnet as a function of gap
aperture (24.5)
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K � 1 is called an undulator and produces radiation with significant different
characteristics. The magnetic field strength can be varied in both electromagnetic
wigglers as well as in permanent magnet wigglers. While this is obvious for
electromagnets, the magnetic field strength in permanent magnets depends on the
distance between magnet poles or on the gap height g. By varying mechanically
the gap height of a permanent magnet wiggler, the magnetic field strength can be
varied as well. The field strength also depends on the period length and on the design
and magnet materials used. For a wiggler magnet constructed as a hybrid magnet
with Vanadium Permendur poles, the field strength along the midplane axis scales
approximately like [9]

By.T/ � 3:33 exp

�
� g

�p

�
5:47� 1:8 g

�p

��
; for 0:1 �p / g / 10 �p ; (24.5)

where g is the gap aperture between magnet poles. This dependency is also shown
in Fig. 24.5 and we note immediately that the field strength drops off dramatically
for magnet gaps of the order of a period length or greater.

On the other hand, significant field strengths can be obtained for small gap
apertures and it is therefore important to install the insertion device at a location,
where the beam dimension normal to the deflection plane is small.

The total radiation power can be derived by integrating (24.32) through the
wiggler magnet. The result of this integration is

˝
P�
˛ D 1

3
rcmc2 c�2K2 4�

2

�2p
; (24.6)

or in practical units ˝
P� .W/

˛ D 632:7E2B20 I Lu ; (24.7)

where I is the circulating beam current, and Lu D Np�p the length of the wiggler
magnet.



822 24 Overview of Synchrotron Radiation

For a sinusoidal field distribution B0 sin 2�
�p

z, the desired wavelength shifting
property of a strong wiggler magnet can be obtained only in the forward direction.
Radiation emitted at a finite angle with respect to the wiggler axis is softer because
it is generated at a source point where the field is lower. The hardest radiation
is emitted in the forward direction from the crest of the magnetic field. For a
distance z away from the crest, the emission angle in the deflection plane is

 D 1
	0

�p

2�
sin
�
2�
�p
z
�

and the curvature at the source point is 1
	
D 1

	0

r
1 �

�
� 

K

�2
,

where we have made use of (24.4). Consequently, the critical photon energy for
radiation in the direction with respect to the wiggler axis varies with the emission
angle  like

"c D "c0

s
1 �

�
� 

K

�2
: (24.8)

At the maximum deflection angle  max D K=� the critical photon energy has
dropped to zero, reflecting a zero magnetic field at the source point.

This property is undesirable if more than one experimental station is supposed to
receive hard radiation from the same wiggler magnet. The strength of the wiggler
magnet sweeps the electron beam over a considerable angle, a feature which can be
exploited to direct radiation not only to one experimental station along the axis but
also to two or more side-stations on either side of the wiggler axis. However, these
side beam lines at an angle  ¤ 0 receive softer radiation than the main beam line.
This can be avoided if the poles of the wiggler magnet are lengthened thus flattening
the sinusoidal field crest. As the flat part of the field crest is increased, hard radiation
is emitted into an increasing angular cone.

24.1.5 Undulator Radiation

So far, we discussed insertion devices designed specifically to harden the radiation
spectrum or to increase the radiation intensity. Equally common is the implemen-
tation of insertion devices to optimize photon beam quality by maximizing its
brightness or to provide specific characteristics like elliptically polarized radiation.
This is done with the use of undulator magnets, which are constructed similar to
wiggler magnets, but are operated at a reduced field strength.

Fundamentally, an undulator magnet causes particles to be only very weakly
deflected with an angle of less than˙1=� and consequently the transverse motion of
particles is nonrelativistic. In this picture, the electron motion viewed from far away
along the beam axis appears as a purely sinusoidal transverse oscillation similar to
the electron motion in a linear radio antenna driven by a transmitter and oscillating
at the station’s carrier frequency. The radiation emitted is therefore monochromatic
with a period equal to the oscillation period.
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To be more precise, viewed from far away the particle appears to be at rest or
uniform motion as long as the electron has not yet reached the undulator magnet.
Upon entering the magnet the electron performs sinusoidal transverse oscillations
and returns to its original motion again after it exits the undulator. As a consequence
of this motion and in light of earlier discussions, we observe emission of radiation
at the frequency of the transverse oscillating beam motion. If Nper is the number
of undulator periods, the electric field lines have been perturbed periodically Nper-
times and the radiation pulse is composed of Nper oscillations. In the particle rest
frame L� the undulator period length is Lorentz contracted to ��

� D �p=� which is
the wavelength of the emitted radiation. Because the radiation includes only a finite
number of Nper oscillations, the radiation is not quite monochromatic but rather quasi
monochromatic with a band width of 1=Nper as illustrated in Fig. 24.6 (top).

In Fig. 24.6 (bottom) the radiation lobe and spectrum is shown in the laboratory
system. The monochromatic nature of the radiation is somewhat lost because
radiation emitted at different angles experiences different Doppler shifts. Of course,
the radiation is again quasi monochromatic even in the laboratory system when
observed through a narrow pin hole along the axis. This monochromatic radiation is
called the fundamental undulator radiation and has for K � 1 a wavelength of

�� � �p

2�2
: (24.9)

ω∗

ω∗

γ
ω

ω
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γ

Fig. 24.6 Beam dynamics and radiation lobes in the particle rest system (a) and the laboratory
system (b) for a weak undulator (K � 1)
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Fig. 24.7 Distortion of
sinusoidal motion due to
relativistic perturbation of
transverse motion

The situation becomes more complicated as the undulator strength is increased.
Two new phenomena appear, an oscillatory forward motion and a transverse
relativistic effect. The first phenomenon that we need to discuss is the fact that the
transverse motion becomes relativistic. As a consequence of this, the pure sinusoidal
transverse motion becomes distorted. There is a periodic Lorentz contraction of the
longitudinal coordinate, which is larger when the particle travels almost parallel
to the axis in the vicinity of the oscillation crests and is smaller when in between
crests. The cusps and valleys of the sinusoidal motion become Lorentz-contracted
in the particle system thus perturbing the sinusoidal motion as shown in Fig. 24.7.
In addition with increasing undulator strength the transverse motion becomes
relativistic and the transverse Lorentz contraction enhances the distortion of the
sine-like motion.

This perturbation is symmetric about the cusps and valleys causing the appear-
ance of odd and only odd (3rd, 5th, 7th : : :) harmonics of the fundamental oscillation
period. From an undulator of medium strength (K & 1) we observe therefore along
the axis a line spectrum of odd harmonics in addition to the fundamental undulator
radiation.

The second phenomenon to be discussed is the periodic modulation of the lon-
gitudinal motion. The longitudinal component of the particle velocity is maximum
when the particle travels close to the crest of the oscillations and at a minimum
when it is close to the axis crossings. In a reference system which moves uniformly
with the average longitudinal particle velocity along the axis, the particle performs
periodic longitudinal oscillations in addition to the transverse oscillations. For each
transverse period, the particle performs two longitudinal oscillations and its path
looks therefore like a figure of eight. This situation is shown in Fig. 24.8.

We have now two orthogonal accelerations, one transverse and one longitudinal,
and two radiation lobes as indicated in Fig. 24.8. Since the longitudinal motion
occurs at twice the frequency of the transverse motion, we observe now radiation
also at twice the fundamental frequency. Of course, the relativistic perturbation
applies here too and we have therefore a line spectrum which includes two series,
one with all odd harmonics and one with only even harmonics. Even and odd
harmonic radiation is emitted in the particle system in orthogonal directions and
therefore we find both radiation lobes in the laboratory system spatially separated
as well. The odd harmonics all have their highest intensities along the undulator
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Fig. 24.8 Beam dynamics (left) and radiation lobes (middle) in the particle rest system together
with the harmonics spectrum (right) for a stronger undulator (K & 1)

axis, while the even harmonic radiation is emitted preferentially into an angle 1=�
with respect to the axis and has zero intensity along the axis.

In another equally valid view of undulator radiation, the static and periodic
magnetic undulator field appears in the rest frame of the electron as a Lorentz
contracted electromagnetic field or as monochromatic photon of wavelength �� D
�p=� . The emission of photons can therefore be described as Thomson scattering of
virtual photons by free electrons [10] resulting in monochromatic radiation in the
direction of the particle path. Viewed from the laboratory system, the radiation is
Doppler shifted and applying (1.38) the wavelength of the backscattered photons is

�ph D �p

�2
�
1C ˇ n�

z

� : (24.10)

Viewing the radiation parallel to the forward direction (# � 0/, (1.39) becomes
with nz D cos#� � 1 � 1

2
#�2, and ˇ � 1

1C ˇn�
z D

ˇ C n�
z

nz
� 2 � 1

2

#�2

nz
: (24.11)

Setting nz � 1, the fundamental wavelength of the emitted radiation is

�1 D �p

�2
1

2 � 1
2
#�2
nz

� �p

2�2

�
1C 1

4
#�2� : (24.12)

With (1.40) the angle #� of the particle trajectory with respect to the observation
is transformed into the laboratory system like #� D 2�# . We distinguish two
configurations. One where # D K=� D const. describing the particle motion in
a helical undulator, where the magnetic field, being normal to the undulator axis,
rotates about this axis. The other more common case is that of a flat undulator,
where the particle motion follows a sinusoidal path in which case # D #und C #obs.
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Here #und D K
�

sin kpz is the observation angle due to the periodic motion of the
electrons in the undulator and #obs is the actual observation angle. With these
definitions and taking the average

˝
#2und

˛
we get �2#2 D 1

2
K2C�2#2obs. Depending on

the type of undulator, the wavelength of radiation from an undulator with a strength
parameter K is

�1 D

8̂̂<̂
:̂

�p

2�2

�
1C K2 C �2#2obs

�
for a helical undulator

�p

2�2

�
1C 1

2
K2 C �2#2obs

�
for a flat undulator.

(24.13)

From now on only flat undulators will be considered in this text and readers
interested in more detail of helical undulators are referred to [11]. No special
assumptions have been made here which would prevent us to apply this derivation
also to higher harmonic radiation and we get the general expression for the
wavelength of the kth harmonic

�k D �p

2�2k

�
1C 1

2
K2 C �2#2obs

�
: (24.14)

The additional terms 1
2
K2 C �2#2obs compared to (24.9) comes from the correct

application of the Doppler effect. Since the particles are deflected periodically in
the undulator, we view even the on-axis radiation at a periodically varying angle
which accounts for the 1

2
K2-term. Of course, observation of the radiation at a finite

angle #obs generates an additional red-shift expressed by the term �2#2obs.
In more practical units, the undulator wavelengths for the kth harmonic are

expressed from (24.14) by

�k
�
Å
� D 13:056 �p .cm/

k E2
�
GeV2

� �1C 1
2

K2 C �2#2obs

�
(24.15)

and the corresponding photon energies are

�k .eV/ D 950 k E2
�
GeV2

�
�p .cm/

�
1C 1

2
K2 C �2#2obs

� : (24.16)

Recollecting the discussion of undulator radiation, we found that the first
harmonic or fundamental radiation is the only radiation emitted for K � 1. As
the undulator parameter increases, however, the oscillatory motion of the particle in
the undulator deviates from a pure sinusoidal oscillation. For K > 1 the transverse
motion becomes relativistic, causing a deformation of the sinusoidal motion and
the creation of higher harmonics. These harmonics appear at integral multiples of
the fundamental radiation energy. Only odd harmonics are emitted along the axis
(# � 0) while even harmonics are emitted into a small angle from the axis. As
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Fig. 24.9 Transition from quasi-monochromatic undulator radiation to broad band wiggler radia-
tion

the undulator strength is further increased more and more harmonics appear, each
of them having a finite width due to the finite number of undulator periods, and
finally merging into the well-known broad spectrum of bending or wiggler magnet
radiation (Fig. 24.9).

We find no fundamental difference between undulator and wiggler magnets, one
being just a stronger/weaker version of the other. From a practical point of view, the
radiation characteristics are very different and users of synchrotron radiation make
use of this difference to optimize their experimental capabilities. In Chap. 26 we
will discuss the features of undulator radiation in much more detail.

The electron motion through an undulator with Nper periods includes that many
oscillations and so does the radiation field. Applying a Fourier transformation to the
field, we find the spectral width of the radiation to be

�

�
D 1

Nper
: (24.17)

In reality, this line width is increased due to the finite aperture of the radiation
detection elements, and due to a finite energy spread and finite divergence of the
electron beam. Typical experimental undulator spectra are shown in Fig. 24.10 for
increasing undulator strength K [12].

Although this radiation was measured through a pin hole and on-axis, we still
recognize even harmonic radiation since the pin hole covers a finite solid angle and
lets some even harmonic radiation through. Furthermore, the measured intensities of
the line spectrum does not reflect the theoretical expectation for the lower harmonics
at higher values of K. This is an artifact of the experimental circumstances, where
the x-rays have been extracted from the storage ring vacuum chamber through a
Be-window. Such a window works very well for hard x-rays but absorbs heavily at
photon energies below some 3 keV.

The concentration of all radiation into one or few spectral lines is very desirable
for many experiments utilizing monochromatic photon beams since radiation is
produced only in the vicinity of the desired wavelength at high brightness. Radiation
at other wavelengths creating undesired heating effects on optical elements and
samples is greatly eliminated.
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Fig. 24.10 Measured radiation spectrum from an undulator for different strength parameters K.
The intensity at low photon energies are reduced by absorption in a Be-window [12]

Back Scattered Photons

The principle of Thomson backscattering or Compton scattering of the static
undulator fields can be expanded to that of photon beams colliding head on with
the particle beam. In the electron system of reference the electromagnetic field of
this photon beam looks fundamentally no different than the electromagnetic field
from the undulator magnet. We may therefore apply similar arguments to determine
the wavelength of back scattered photons. The basic difference of both effects is
that in the case of back scattered photons the photon beam moves with the velocity
of light towards the electron beam and therefore the electron sees twice the Lorentz
contracted photon frequency and we expect therefore a back scattered photon beam
at twice the Doppler shifted frequency. That extra factor of two does not apply for
undulator radiation since the undulator field is static and the relative velocity with
respect to the electron beam is c. If �L is the wavelength of the incident radiation or
incident laser, the wavelength of the backscattered photons is

�� D �L

4�2

�
1C �2#2obs

�
; (24.18)
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where #obs is the angle between the direction of observation and the particle beam
axis. Scattering, for example, a high intensity laser beam from high-energy electrons
produces a monochromatic beam of hard x-rays which is highly collimated within
an angle of ˙1=� . If the laser wavelength is, for example, �L D 10�m and the
particle energy is 100 MeV the wavelength of the backscattered x-rays would be
1.3 Å or the photon energy would be 9.5 keV which is well within the hard x-ray
regime.

Photon Flux

The intensity of the backscattered photons can be calculated in a simple way
utilizing the Thomson scattering cross section [10]

�Th D 8�
3

r2c D 6:65 � 10�25 cm2: (24.19)

The total scattering event rate or the number of back scattered photons per unit
time is then

Nsc D �ThL, (24.20)

where L is called the luminosity. The value of the luminosity is independent of the
nature of the physical reaction and depends only on the intensities and geometrical
dimensions of the colliding beams. The definition of the luminosity is the product
of the target density of one beam by the “particle”-flux of the other beam onto this
target. Therefore the luminosity can be determined by folding the particle density in
one beam with the incident “particles” per unit time of the other beam. Obviously,
only those parts of the beam cross sections count which overlap with the cross
section of the other beam. For simplicity, we assume a Gaussian distribution in
both beams and assume that both beam cross sections are the same. In a real setup
one would focus the electron beam and the photon beam to the same optimum cross
section given by the Rayleigh length (27.59). We further consider the particle beam
as the target for the photon beam.

With Ne electrons in each bunch of the particle beam within a cross section of
2��x�y the particle density is Ne= 2��x�y. We consider now a photon beam with
the same time structure as the electron beam. If this is not the case only that part of
the photon beam which actually collides with the particle beam within the collision
zone may be considered. For an effective photon flux PNph the luminosity is

L D Ne PNph

2��x�y
: (24.21)

Although the Thomson cross-section and therefore the photon yield is very
small, this technique can be used to produce photon beams with very specific
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characteristics. By analyzing the scattering distribution this procedure can also be
used to determine the degree of polarization of an electron beam in a storage ring.

So far, it was assumed that the incident and scattered photon energies are much
smaller than the particle energy in which case it was appropriate to use the classical
case of Thomson scattering. However, we note from (24.18) that the backscattered
photon energy increases quadratically with the particle energy and therefore at
some energy the photon energy becomes larger than the particle energy which is
nonphysical. In case of large photon energies comparable with the particle energy,
Compton corrections [13–15] must be included. The Compton cross-section for
head-on collision is given by [16]

�C D 3 �Th

4x

��
1 � 4

x
� 8

x2

�
ln .1C x/C 1

2
C 8

x2
� 1

2 .1C x/2

�
; (24.22)

where x D 4�„!0
mc2

, and „!0 the incident photon energy. The energy spectrum of the
scattered photons is then [16]

d �C

d y
D 3 �Th

4x

�
1� yC 1

1 � y
� 4y

x .1C y/
C 4y2

x2 .1 � y/2

�
; (24.23)

where y D „!=E is the scattered photon energy in units of the particle energy.

24.2 Radiation Power

Synchrotron radiation properties can be described in more detail by integrating
the Poynting vector (23.7) over a closed surface enclosing the radiating charge.
With (23.9) and n�dA� D R2 sin��d��d˚� we get the total radiation power from
a single electron in its own rest frame

P� D
Z

S�dA� D 2
3
rc

mc2

c3
a�2; (24.24)

where we have set q2 D 4��0rcmc2. From the discussion of 4-vectors, we know
that the square of the 4-acceleration is invariant to Lorentz transformations and get
from (B.21) for the total radiation power in the laboratory system

P D 2
3
rcmc�6

�
P̌ 2 �

�
ˇ� P̌ �2� : (24.25)

Equation (24.25) expresses the radiation power in a simple way and allows us to
calculate other radiation characteristics based on beam parameters in the laboratory
system. The radiation power is greatly determined by the geometric path of the



24.2 Radiation Power 831

particle trajectory through the quantities ˇ and P̌ . Specifically, if this path has strong
oscillatory components we expect that motion to be reflected in the synchrotron
radiation power spectrum. This aspect will be discussed later in more detail. Here
we distinguish only between acceleration parallel P̌ k or perpendicular P̌ ? to the
propagation ˇ of the charge and set therefore

P̌ D P̌ k C P̌ ? : (24.26)

Insertion into (24.25) shows the total radiation power to be composed of
separate contributions from parallel and orthogonal acceleration. Separating both
contributions we get the synchrotron radiation power for both parallel and transverse
acceleration respectively

Pk D 2
3
rcmc�6 P̌ 2k; (24.27)

P? D 2
3
rcmc�4 P̌ 2?: (24.28)

Expressions have been derived that define the radiation power for parallel
acceleration like in a linear accelerator or orthogonal acceleration found in circular
accelerators or deflecting systems. We note a similarity for both contributions except
for the energy dependence. At highly relativistic energies the same acceleration
force leads to much less radiation if the acceleration is parallel to the motion of the
particle compared to orthogonal acceleration. Parallel acceleration is related to the
accelerating force by m Pvk D 1

�3
dpk=dt and after insertion into (24.27) the radiation

power due to parallel acceleration becomes

Pk D 2

3

rc

mc

�
dpk
d t

�2
: (24.29)

The radiation power for acceleration along the propagation of the charged particle
is therefore independent of the energy of the particle and depends only on the
accelerating force or with dpk=dt DdE=dz on the energy increase per unit length
of accelerator. Different from circular electron accelerators we encounter therefore
no practical energy limit in a linear accelerator at very high energies. In contrast very
different radiation characteristics exist for transverse acceleration as it happens, for
example, during the transverse deflection of a charged particle in a magnetic field.
The transverse acceleration Pv? is expressed by the Lorentz force

dp?
d t
D �m Pv? D e Œv � B� (24.30)
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and after insertion into (24.28) the radiation power from transversely accelerated
particles becomes

P? D 2
3

rc

mc
�2
�

dp?
d t

�2
: (24.31)

From (24.29), (24.31) we find that the same accelerating force leads to a much
higher radiation power by a factor �2 for transverse acceleration compared to lon-
gitudinal acceleration. For all practical purposes, technical limitations prevent the
occurrence of sufficient longitudinal acceleration to generate noticeable radiation.
From here on we will stop considering longitudinal acceleration unless specifically
mentioned and eliminate, therefore, the index ? setting for the radiation power
P? D P� . We also restrict from now on the discussion to singly charged particles
and set q D e ignoring extremely high energies, where multiple charged ions may
start to radiate. Replacing the force in (24.31) by the Lorentz force (24.30) we get

P� D 4�

�0

2 r2c c

3 .mc2/2
B2E2 D CBB2E2; (24.32)

where ˇ � 1 and

CB D 4�

�0

2r2c c

3 .mc2/2
D 379:35 1

T2GeV s
: (24.33)

The synchrotron radiation power scales like the square of the magnetic field and
the square of the particle energy. Replacing the deflecting magnetic field B by the
bending radius 	, the instantaneous synchrotron radiation power becomes

P� D 2
3
rcmc3

ˇ4�4

	2
(24.34)

or in more practical units,

P� D c C�
2�

E4

	2
; (24.35)

where

C� D 4�

3

rc

.mc2/3
D 8:8463 � 10�5 m

GeV3
: (24.36)

The electromagnetic radiation of charged particles in transverse magnetic fields
is proportional to the fourth power of the particle momentum ˇ� and inversely
proportional to the square of the bending radius 	.
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The synchrotron radiation power increases very fast for high-energy particles and
provides the most severe limitation to the maximum energy achievable in circular
accelerators. In storage rings with different magnets and including insertion devices
it is important to formulate the average radiation power of an electron during the
course of one turn. In this case we calculate the average

˝
P�
˛ D c

2�
C�E4

�
1

	2

�
D C�E4

frev

2�

I
dz

	2
: (24.37)

We note, however, from also a strong dependence on the kind of particles involved
in the process of radiation. Because of the much heavier mass of protons compared
to the lighter electrons we find appreciable synchrotron radiation only in electron
accelerators.

The radiation power of protons actually is smaller compared to that for electrons
by the fourth power of the mass ratio or by the factor

Pe

Pp
D 18364 D 1:1367� 1013: (24.38)

In spite of this enormous difference measurable synchrotron radiation has been
predicted by Coisson [17] and was indeed detected at the 400 GeV proton syn-
chrotron, SPS (Super Proton Synchrotron), at CERN in Geneva [18, 19]. Substantial
synchrotron radiation is expected in multi-TeV proton colliders like the LHC (Large
Hadron Collider) at CERN [20].

Knowledge of the synchrotron radiation power allows us now to calculate the
energy loss per turn of a particle in a circular accelerator by integrating the radiation
power along the circumference of the circular accelerator

U0 D
I

P�dt D 2
3
rcmc2ˇ3�4

I
dz

	2
: (24.39)

In an isomagnetic lattice, where the bending radius is the same for all bending
magnets 	 D const., the integration around a circular accelerator can be performed
and the energy loss per turn due to synchrotron radiation is

U0 D P�
2�	

ˇc
D 4�

3
rcmc2ˇ3

�4

	
: (24.40)

In more practical units, the energy loss of relativistic electrons per revolution in a
circular accelerator with an isomagnetic lattice and a bending radius 	 is given by

U0;iso .GeV/ D C�
E4.GeV4/

	.m/
: (24.41)
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For a beam of Ne particles or a circulating beam current I D efrevNe the total
average radiation power is

hPsi D U0

I

e
; (24.42)

or in more practical units

hPs .MW/iiso D 0:088463
E4 .GeV/

	 .m/
I .A/ : (24.43)

The total synchrotron radiation power scales like the fourth power of the particle
energy and is inversely proportional to the bending radius. The strong dependence
of the radiation on the particle energy causes severe practical limitations on the
maximum achievable energy in a circular accelerator.

24.3 Spectrum

Synchrotron radiation from relativistic charged particles is emitted over a wide
spectrum of photon energies. The basic characteristics of this spectrum can be
derived from simple principles as suggested in [21]. For an observer synchrotron
light has the appearance similar to the light coming from a lighthouse. Although the
light is emitted continuously an observer sees only a periodic flash of light as the
aperture mechanism rotates in the lighthouse. Similarly, synchrotron light emitted
from relativistic particles will appear to an observer as a single flash if it comes
from a bending magnet in a transport line passed through by a particle only once
or as a series of equidistant light flashes as bunches of particles orbit in a circular
accelerator.

Since the duration of the light flashes is very short the observer notes a broad
spectrum of frequencies as his eyes or instruments Fourier analyze the pulse
of electromagnetic energy. The spectrum of synchrotron light from a circular
accelerator is composed of a large number of harmonics of the particle revolution
frequency. These harmonics reach a cutoff, where the period of the radiation
becomes comparable to the duration of the light pulse. Even though the aperture
of the observers eyes or instruments are assumed to be infinitely narrow we still
note a finite duration of the light flash. This is a consequence of the finite opening
angle of the radiation as illustrated in Fig. 24.11. Synchrotron light emitted by a
particle travelling along the orbit cannot reach the observer before it has reached
the point P0 when those photons emitted on one edge of the radiation cone at an
angle �1=� aim directly toward the observer. Similarly, the last photons to reach
the observer are emitted from point P1 at an angle of C1=� . Between point P0 and
point P1 we have therefore a deflection angle of 2=� . The duration of the light flash
for the observer is not the time it takes the particle to travel from point P0 to point
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Fig. 24.11 Temporal pulse formation of synchrotron radiation

P1 but must be corrected for the finite time of flight for the photon emitted at P0 . If
particle and photon would travel toward the observer with exactly the same velocity
the light pulse would be infinitely short. However, particles move slower following a
slight detour and therefore the duration of the light pulse equals the time difference
between the first photons from point P0 arriving at the observer and the last photons
being emitted by the particles at point P1. Although the particle reaches point P0 at
time t D 0 the first photon can be observed at point P1 only after a time

t� D
2	 sin 1

�

c
: (24.44)

The last photon to reach the observer is emitted when the particle arrives at point
P1 at the time

te D 2	

ˇc�
: (24.45)

The duration of the light pulse ıt is therefore given by the difference of both travel
times (24.44), (24.45)

ıt D te � t� D 2	

ˇc�
�
2	 sin 1

�

c
: (24.46)

The sine-function can be expanded for small angles keeping linear and third order
terms only and the duration of the light pulse at the location of the observer is after
some manipulation

ıt D 4	

3c�3
: (24.47)

The total duration of the electromagnetic pulse is very short scaling inversely
proportional to the third power of � . This short pulse translates into a broad
spectrum. Using only half the pulse length for the effective pulse duration the
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spectrum reaches up to a maximum frequency of about

!c � 1
1
2
ıt
� 3

2
c
�3

	
; (24.48)

which is called the critical photon frequency of synchrotron radiation. The critical
photon energy "c D „!c is then given by

"c D Cc
E3

	
; (24.49)

with

Cc D 3„c
2 .mc2/3

: (24.50)

For electrons numerical expressions are

"c .keV/ D 2:2183E3
�
GeV3

�
	 .m/

D 0:66503E2
�
GeV2

�
B .T/ : (24.51)

The synchrotron radiation spectrum from relativistic particles in a circular acceler-
ator is made up of harmonics of the particle revolution frequency !0 with values up
to and beyond the critical frequency (24.51). Generally, a real synchrotron radiation
beam from say a storage ring will not display this harmonic structure. The distance
between harmonics is extremely small compared to the extracted photon frequencies
in the VUV and x-ray regime while the line width is finite due to the energy spread
and beam emittance.

For a single pass of particles through a bending magnet in a beam transport line
we observe the same spectrum. Specifically, the maximum frequency is the same
assuming similar parameters. Synchrotron radiation is emitted in a particular spatial
and spectral distribution, both of which will be derived in Chap. 25, and we will
use here only some of these results. A useful parameter to characterize the photon
intensity is the photon flux per unit solid angle into a frequency bin!=! and from
a circulating beam current I defined by

d2 PNph

d�d 
D C˝E2I

!

!

�
!

!c

�2
K2
2=3 .�/ F .�; �/ ; (24.52)

where  is the angle in the deflecting plane and � the angle normal to the deflecting
plane,

C˝ D 3˛

4�2e .mc2/2
D 1:3255 � 1016 photons

s mrad2GeV2A 100%BW
; (24.53)
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The functions K1=3 .�/ and K2=3 .�/, displayed in Fig. 24.12, are modified Bessel’s
functions with the argument

� D 1
2

!

!c

�
1C �2�2�3=2 : (24.55)

Synchrotron radiation is highly polarized in the plane normal (�-mode), and parallel
(�-mode), to the deflecting magnetic field. The relative flux in both polarization
directions is given by the two components in the second bracket of function F .�; �/
in (24.54). The first component is equal to unity and determines the photon flux
for the polarization normal to the magnetic field or �-mode, while the second term
relates to the polarization parallel to the magnetic field which is also called the �-
mode. Equation (24.52) expresses both the spectral and spatial photon flux for both
the �-mode radiation in the forward direction within an angle of about ˙1=� and
for the �-mode off axis.

For highly relativistic particles the synchrotron radiation is collimated very much
in the forward direction and we may assume that all radiation in the nondeflecting
plane is accepted by the experimental beam line. In this case we are interested in
the photon flux integrated over all angles � . This integration will be performed in
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Chap. 26 with the result (25.140)

d PNph

d 
D 4˛

9
�

I

e

!

!
S

�
!

!c

�
; (24.56)

where  is the deflection angle in the bending magnet, ˛ the fine structure constant
and the function S .x/ is defined by

S

�
!

!c

�
D 9
p
3

8�

!

!c

1Z
!=!c

K5=3 .Nx/ dNx (24.57)

with K5=3.x/ a modified Bessel’s function. The function S.!=!c/ is known as the
universal function of synchrotron radiation and is shown in Fig. 24.13. In practical
units, the angle integrated photon flux is

d PNph

d 
D C E I

!

!
S

�
!

!c

�
(24.58)

with C defined by

C D 4˛

9e mc2
D 3:9614 � 1019 photons

s rad A GeV
: (24.59)

The spectral distribution depends only on the particle energy, the critical
frequency !c and a purely mathematical function. This result has been derived
originally by Ivanenko and Sokolov [22] and independently by Schwinger [23].
Specifically it should be noted that the spectral distribution, if normalized to the
critical frequency, does not depend on the particle energy and can therefore be
represented by a universal distribution shown in Fig. 24.13.

The energy dependence is contained in the cubic dependence of the critical
frequency acting as a scaling factor for the actual spectral distribution. The
synchrotron radiation spectrum in Fig. 24.13 is rather uniform up to the critical
frequency beyond which the intensity falls off rapidly. This synchrotron radiation
spectrum has been verified experimentally soon after such radiation sources became
available [24, 25].

Equation (24.56) is not well suited for quick calculation of the radiation intensity
at a particular frequency. We may, however, express (24.56) in much simpler form
for very low and very large frequencies making use of limiting expressions of
Bessel’s functions for large and small arguments. For small arguments x D !

!c
� 1

an asymptotic approximation [26] for the modified Bessel’s function may be used
to give instead of (24.58) with AS(9.6.9) [26]

d PNph

d 
� C EI

!

!
1:333

�
!

!c

�1=3
: (24.60)
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Fig. 24.13 Universal function of the synchrotron radiation spectrum, S.!=!c/

Similarly, for high photon frequencies x D !
!c
� 1 we get with AS(9.7.2) [26]

d PNph

d 
� C EI

!

!
0:8460

p
x

ex
; (24.61)

where x D !
!c

. Both approximations are included in Fig. 24.13 and display actually
a rather good representation of the real spectral radiation distribution over all but
the central portion of the spectrum where S.x/ � 0:4. Specifically, we note the slow
increase in the radiation intensity at low frequencies and the exponential drop off
above the critical frequency.

24.4 Spatial Photon Distribution

The expressions for the photon fluxes (24.52), (24.56) provide the opportunity
to calculate the spectral distribution of the photon beam divergence. Photons are
emitted into a narrow angle and we may represent this narrow angular distribution
by a Gaussian distribution. The effective width of a Gaussian distribution is

p
2���

and we set

d PNph

d 
� d2 PNph

d� d 

p
2��� : (24.62)
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Fig. 24.14 Scaling function f .x/ D �� .mrad/E.GeV/ for the photon beam divergence in (24.63)

With (24.52), (24.58) the angular divergence of the forward lobe of the photon beam
or for a beam polarized in the �-mode is

�� .mrad/ D C p
2�C˝

1

E

S .x/

x2K2
2=3

�
1
2
x
� D f .x/

E .GeV/
; (24.63)

where x D !=!c. For the forward direction � � 0 the function f .x/ D
�� .mrad/E .GeV/ is shown in Fig. 24.14 for easy numerical calculations.

For wavelengths ! � !c; .24.63/ can be greatly simplified to become in more
practical units

�� .mrad/ � 0:54626

E .GeV/

�
!

!c

�1=3
D 7:124�

	 .m/ �ph .eV/
	1=3 ; (24.64)

where 	 is the bending radius and �ph the photon energy. The photon beam
divergence for low photon energies compared to the critical photon energy is
independent of the particle energy and scales inversely proportional to the third root
of the bending radius and photon energy.

24.5 Fraunhofer Diffraction

Synchrotron radiation is emitted from a rather small area equal to the cross section
of the electron beam. In the extreme and depending on the photon wavelength the
radiation may be spatially coherent because the beam cross section in phase space
is smaller than the wavelength. This possibility to create spatially coherent radiation
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Fig. 24.15 Diffraction geometry

is important for many experiments specifically for holography and we will discuss
in more detail the conditions for the particle beam to emit such radiation.

Reducing the particle beam cross section in phase space by diminishing the
particle beam emittance reduces also the source size of the photon beam. This
process of reducing the beam emittance is, however, effective only to some point.
Further reduction of the particle beam emittance would have no effect on the
photon beam emittance because of diffraction effects. A point like photon source
appears in an optical instrument as a disk with concentric illuminated rings. For
synchrotron radiation sources it is of great interest to maximize the photon beam
brightness which is the photon density in phase space. On the other hand designing
a lattice for a very small beam emittance can cause beam stability problems. It is
therefore prudent not to push the particle beam emittance to values much less than
the diffraction limited photon beam emittance. In the following we will therefore
define diffraction limited photon beam emittance as a guide for low emittance lattice
design.

For highly collimated synchrotron radiation it is appropriate to assume Fraun-
hofer diffraction. Radiation from an extended light source appears diffracted in the
image plane with a radiation pattern which is characteristic for the particular source
size and radiation distribution as well as for the geometry of the apertures involved.
For simplicity, we will use the case of a round aperture being the boundaries of
the beam itself although in most cases the beam cross section is more elliptical.
In spite of this simplification, however, we will obtain all basic physical properties
of diffraction which are of interest to us. We consider a circular light source with
diameter 2a. The radiation field at point P in the image plane is then determined by
the Fraunhofer diffraction integral [27]

U.P/ D C
Z a

0

Z 2�

0

e�ik	w cos.�� /d� 	d	; (24.65)

where k is the wave number of the radiation and w is the sine of the angle between
the light ray and the optical axis as shown in Fig. 24.15.
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Fig. 24.16 Fraunhofer diffraction for a circular uniform light source

With ˛ D �� and the definition of the lowest order Bessel’s function J0 .x/ D
1
2�

R 2�
0

e�ix cos˛d˛, (24.65) can be expressed by the integral

U.P/ D 2�C
Z a

0

J0 .k	w/ 	d	: (24.66)

This integral can be solved analytically as well with the identity
R x
0

J0 .y/ y dy D
xJ1.x/. The radiation intensity is proportional to the square of the radiation field and
we get finally for the radiation intensity in the image plane at the point P

I.P/ D I0
4J 21 .kaw/

.kaw/2
; (24.67)

where I.P/ D jU.P/j2 and I0 D I.w ! 0/ is the radiation intensity at the image
center. This result has been derived first by Airy [28]. The radiation intensity from a
light source of small circular cross section is distributed in the image plane due
to diffraction into a central circle and concentric rings illuminated as shown in
Fig. 24.16.

Tacitly, we have assumed that the distribution of emission at the source is uniform
which is generally not correct for a particle beam. A Gaussian distribution is more
realistic resembling the distribution of independently radiating particles. We must
be careful in the choice of the scaling parameter. The relevant quantity for the
Fraunhofer integral is not the actual particle beam size at the source point but rather
the apparent beam size and distribution. By folding the particle density distribution
with the argument of the Fraunhofer diffraction integral we get the radiation field
from a round, Gaussian particle beam,

UG.P/ /
Z 1

0

exp

�
� 	

2

2�2r

�
J0 .k	w/ 	d	; (24.68)
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where �r is the apparent standard source radius. Introducing the variable x D
	=
p
2�r and replacing k	w D p2xk �rw D 2x

p
z we get from (24.68)

UG.P/ /
Z 1

0

e�x2x J0
�
2x
p

z
�

dx (24.69)

and after integration

UG.P/ / exp
h
� 1
2
.k�rw/

2
i
: (24.70)

The diffraction pattern from a Gaussian light source (Fig. 24.17) does not exhibit
the ring structure of a uniform source. The radiation field assumes rather the form of
a Gaussian distribution in the emission angles w with a standard width of �2r0 D

˝
w2
˛

or

�r0 D 1

k �r
: (24.71)

24.6 Spatial Coherence

Synchrotron radiation is emitted into a broad spectrum with the lowest frequency
equal to the revolution frequency and the highest frequency not far above the critical
photon energy. Detailed observation of the whole radiation spectrum, however, may
reveal significant differences to these theoretical spectra at the low frequency end.
At low photon frequencies we may observe an enhancement of the synchrotron
radiation beyond intensities predicted by the theory of synchrotron radiation as
discussed so far. We note from the definition of the Poynting vector that the
radiation power is a quadratic effect with respect to the electric charge. For photon
wavelengths equal and longer than the bunch length, we expect therefore all particles
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within a bunch to radiate coherently and the intensity to be proportional to the square
of the number Ne of particles rather than linearly proportional as is the case for high
frequencies. This quadratic effect can greatly enhance the radiation since the bunch
population can be 108 � 1011 electrons.

Generally such radiation is not emitted from a storage ring beam because
radiation with wavelengths longer than the vacuum chamber dimensions are
shielded and will not propagate along a metallic beam pipe [29]. This radiation
shielding is fortunate for storage ring operation since it eliminates an otherwise
significant energy loss mechanism. Actually, since this shielding affects all radiation
of sufficient wavelength both the ordinary synchrotron radiation and the coherent
radiation is suppressed. New developments in storage ring physics, however, may
make it possible to reduce the bunch length by as much as an order of magnitude
below presently achieved short bunches of the order of 5–10 mm. Such bunches
would then be much shorter than vacuum chamber dimensions and the emission of
coherent radiation in some limited frequency range would be possible. Much shorter
electron bunches down to a few fs can be produced in linear accelerators [30, 31],
and specifically with bunch compression [32] a significant fraction of synchrotron
radiation is emitted spontaneously as coherent radiation [33].

In this section we will discuss the physics of spontaneous coherent synchrotron
radiation while distinguishing two kinds of coherence in synchrotron radiation, the
temporal coherence and the spatial coherence. Temporal coherence occurs when
all radiating electrons are located within a short bunch length of the order of the
wavelength of the radiation. In this case the radiation from all electrons is emitted
with about the same phase. For spatial coherence the electrons may be contained in
a long bunch but the transverse beam emittance must be smaller than the radiation
wavelength. In either case there is a smooth transition from incoherent radiation
to coherent radiation as determined by a formfactor which depends on the bunch
length or transverse emittance.

Similar to the particle beam characterization through its emittance we may do
the same for the photon beam and doing so for the horizontal or vertical plane we
have with �x;y D �r=

p
2 and �x0;y0 D �r0=

p
2 the photon beam emittance

�ph,x;y D 1
2
�r�r0 D �

4�
: (24.72)

This is the diffraction limited photon emittance and reducing the electron beam
emittance below this value would not lead to an additional reduction in the photon
beam emittance. To produce a spatially coherent or diffraction limited radiation
source the particle beam emittance must be less than the diffraction limited photon
emittance

�x;y 
 �

4�
: (24.73)
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Obviously, this condition is easier to achieve for long wavelengths. For visible
light, for example, the electron beam emittance must be smaller than about 5 �
10�8 rad-m to be a spatially coherent radiation source. After having determined the
diffraction limited photon emittance we may also determine the apparent photon
beam size and divergence. The photon source extends over some finite length L
along the particle path which could be either the path length required for a deflection
angle of 2=� or a much longer length in the case of an undulator to be discussed in
the next chapter. With �r0 the diffraction limited beam divergence the photons seem
to come from a disc with diameter (Fig. 24.18)

D D �r0L: (24.74)

On the other hand, we know from interference theory the correlation

D sin �r0 � D�r0 D � (24.75)

and eliminating D from both equations gives the diffraction limited photon beam
divergence

�r0 D
r
�

L
: (24.76)

With this we get finally from (24.71) also the diffraction limited source size

�r D 1

2�

p
�L: (24.77)

The apparent diffraction limited, radial photon beam size and divergence depend
both on the photon wavelength of interest and the length of the source.
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24.7 Temporal Coherence

To discuss the appearance of temporal coherent synchrotron radiation, we consider
the radiation emitted from each particle within a bunch. The radiation field at a
frequency ! from a single electron is

Ej / ei.!tC'j/; (24.78)

where 'j describes the position of the jth electron with respect to the bunch center.
With zj the distance from the bunch center, the phase is

'j D 2�

�
zj : (24.79)

Here we assume that the cross section of the particle beam is small compared to
the distance to the observer such that the path length differences from any point of
the beam cross section to observer are small compared to the shortest wavelength
involved. The radiation power is proportional to the square of the radiation field and
summing over all electrons we get

P .!/ /
NeX
j;l

EjE�
l /

NeX
j;l

ei.!tC'j/e�i.!tC'l/

D
NeX
j;l

exp i('j � 'l/ D Ne C
NeX
j¤l

exp i
�
'j � 'l

�
: (24.80)

The first term Ne on the r.h.s. of (24.80) represents the ordinary incoherent
synchrotron radiation with a power proportional to the number of radiating particles.
The second term describes the coherent power averaging to zero for all but
long wavelengths. The actual coherent radiation power spectrum depends on the
particular particle distribution in the bunch. For a storage ring bunch it is safe to
assume a Gaussian particle distribution and we use therefore the density distribution

�G .z/ D Nep
2��

exp

�
� z2

2�2

�
; (24.81)

where � is the standard value of the Gaussian bunch length. Instead of summing over
all electrons we integrate over all phases and folding the density distribution (24.81)
with the radiation power (24.80) we get with (24.79)

P .!/ / Ne C Ne
Ne � 1
2��2

I1I2 ; (24.82)
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where the integrals I1 and I2 are defined by

I1 D
Z C1

�1
exp

�
� z2

2�2
C i 2�

z

�

�
d z ; (24.83a)

I2 D
Z C1

�1
exp

�
� w2

2�2
C i 2�

w

�

�
dw ; (24.83b)

and z D 1
2
��'j and w D 1

2
��'l. The factor Ne�1 reflects the fact that we integrate

only over different particles. Both integrals are equal to the Fourier transform for a
Gaussian particle distribution. WithZ C1

�1
exp

�
� z2

2�2
C i 2�

z

�

�
d z D p2�� exp

�
�2�2

��
�

�2�
(24.84)

we get from (24.82) for the total radiation power at the frequency ! D 2�c=�

P .!/ D p .!/ Ne
�
1C .Ne � 1/ g2 .�; �/

	
; (24.85)

where p .!/ is the radiation power from one electron and the Fourier transform

g2 .�; �/ D exp

�
�2�2

��
�

�2�
(24.86)

is called the formfactor. With the effective bunch length

` Dp2�� (24.87)

this formfactor becomes finally

g2 .`; �/ D exp

�
�� `

2

�2

�
: (24.88)

The coherent radiation power falls off rapidly for wavelengths as short or even
shorter than the effective bunch length `. In Fig. 24.19 the relative coherent radiation
power is shown as a function of the effective bunch length in units of the radiation
wavelength. The fast drop off is evident and for an effective bunch length of about
` � 0:6 � the radiation power is reduced to only about 10% of the maximum power
for very short bunches. Particle beams from a linear accelerator have often a more
compressed particle distribution of a form between a Gaussian and a rectangular
distribution. If we take the extreme of a rectangular distribution

�r .z/ D
�
1 for � 1

2
` < z < 1

2
`

0 otherwise
; (24.89)
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Fig. 24.19 Formfactor g2.`; �/ for a Gaussian and rectangular particle distribution

we expect to extend the radiation spectrum since the corners and sharp changes of
the particle density require a broader spectrum in the Fourier transform. Following
the procedure for the Gaussian beam we get for a rectangular particle distribution
the Fourier transform

g .`/ D sin x

x
; (24.90)

where x D �`=�. Figure 24.19 also shows the relative coherent radiation power
for this distribution and we note a significant but scalloping extension to higher
radiation frequencies. Experiments have been performed with picosecond electron
bunches from linear accelerators both at Tohoku University [30] and at Cornell
University [31] which confirm the appearance of this coherent part of synchrotron
radiation.

24.8 Spectral Brightness

The optical quality of a photon beam is characterized by the spectral brightness
defined as the six-dimensional volume occupied by the photon beam in phase space

B D
PNph

4�2�x�x0 �y�y0 d!
!

; (24.91)

where PNph is the photon flux defined in (24.58). In the laser community, this
quantity is called the radiance while the term spectral brightness is common in the
synchrotron radiation community.2

2Sometimes the term brilliance is used. Since there is no common definition for brilliance and the
dictionary does not connect brilliance with say luminescence of a source we do not use this term
in this book.
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For bending magnet radiation there is a uniform angular distribution in the
deflecting plane and we must therefore replace the Gaussian divergence �x0 by the
total acceptance angle of the photon beam line or experiment. The particle beam
emittance must be minimized to achieve maximum spectral photon beam brightness.
However, unlimited reduction of the particle beam emittance will, at some point,
seize to further increase the brightness. Because of diffraction effects the electron
beam emittance need not be reduced significantly below the limit (24.72) discussed
in the previous section.

For a negligible particle beam emittance the maximum diffraction limited
spectral brightness is from (24.72), (24.91)

BmaxD 4

�2 d!
!

PNph: (24.92)

For a realistic synchrotron light source the finite beam emittance of the particle
beam must be taken into account as well which is often even the dominant emittance
being larger than the diffraction limited photon beam emittance. We may add both
contributions in quadrature and have for the total source parameters

�tot,x D
q
�2b,x C 1

2
�2r ; �tot,x0 D

q
�2b,x0 C 1

2
�2r0 ; (24.93)

�tot,y D
q
�2b,y C 1

2
�2r ; �tot,y0 D

q
�2b,y0 C 1

2
�2r0 ; (24.94)

where �b refers to the respective particle beam parameters.

24.8.1 Matching

A finite particle beam emittance does reduce the photon beam brightness from it’s
ideal maximum. The amount of reduction, however, depends on the matching to
the photon beam. The photon beam size and divergence are the result of folding
the diffraction limited source emittance with the electron beam size and divergence.
In cases where the electron beam emittance becomes comparable to the diffraction
limited emittance the effective photon beam brightness can be greatly affected by
the mutual orientation of both emittances. Matching both orientations will maximize
the photon beam brightness.
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Fig. 24.20 Matching of the electron beam emittance to the diffraction limited emittance to gain
maximum photon beam brightness

This matching process is demonstrated in Fig. 24.20. The left side shows a
situation of poor matching in 2-dimensional x � x0-phase space. In this case the
electron beam width is much larger than the diffraction limited source size while
its divergence is small compared to the diffraction limit. The effective photon
beam distribution in phase space is the folding of both electron beam parameters
and diffraction limit and is much larger than either one of its components. The
photon beam width is dominated by the electron beam width and the photon beam
divergence is dominated by the diffraction limit. Consequently, the effective photon
density in phase space and photon beam brightness is reduced.

To improve the situation one would focus the electron beam to a smaller beam
size at the source point at the expense of beam divergence. The reduction of the
electron beam width increases directly the photon beam brightness while the related
increase of the electron beam divergence is ineffective because the diffraction limit
is the dominant term. Applying more focusing may give a situation shown on the
right side of Fig. 24.20 where the folded photon phase space distribution is reduced
and the brightness correspondingly increased. Of course, if the electron beam is
focused too much we have the opposite situation as discussed. There is an optimum
focusing for optimum matching. To find this optimum we use the particle beam
parameters

�2b;x;y D �x;yˇx;y and �2b;x0 ;y0 D �x;y

ˇx;y
; (24.95)

where ˇx;y are the betatron functions at the photon source location and �x;y the beam
emittances, in the horizontal and vertical plane respectively. Including diffraction
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limits, the product

�tot;x�tot;x0 D
q
�xˇx C 1

2
�2r

r
�x

ˇx
C 1

2
�2r0 (24.96)

has a minimum ( d
dˇx
�tot;x�tot;x0 D 0) for

ˇx D �r

�r0
D L

2�
: (24.97)

A similar optimum occurs for the vertical betatron function at the source point.
The optimum value of the betatron functions at the source point depends only on
the length of the undulator.

The values of the horizontal and vertical betatron functions should be adjusted
according to (24.97) for optimum photon beam brightness. In case the particle beam
emittance is much larger than the diffraction limited photon beam emittance, this
minimum is very shallow and almost nonexistent in which case the importance of
matching becomes irrelevant. As useful as matching may appear to be, it is not
always possible to reach perfect matching because of limitations in the storage ring
focusing system. Furthermore it is practically impossible to get a perfect matching
for bending magnet radiation since the effective source length L is very small, L D
2	=� .

24.9 Photon Source Parameters

In the previous paragraph, we have assumed that there is no dispersion at the
source point. This is not always true and we have to modify our beam sizes to take
the effect of energy spread and dispersion into account. Still simplifying, we use
only the horizontal dispersion. Where this is not acceptable, the vertical dispersion
effects have to be added in quadrature. The beam width or height is defined by the
contribution of the betatron phase space �ˇ;x;y and the energy phase space ��;x;y and
is

�b;x;y D
q
�2ˇ;x;y C �2� D

s
�x;yˇ; x; yC

�
�
�"

E0

�2
(24.98)

with �2ˇ;x;y D �x;yˇx;y and �� D � �"E0
, �x;y D 1C˛2x;y

ˇx;y
and ˛x;y D � 12ˇ

0
x;y. Similarly, we

get for the beam divergence

�b;x0 ;y0 D
q
�2ˇ;x0;y0 C �2�0 D

s
�x;y�x;y C

�
�0 �"

E0

�2
: (24.99)



852 24 Overview of Synchrotron Radiation

These beam parameters resemble in general the source parameters of the photon
beam. Deviations occur when the beam emittance becomes very small, comparable
to the photon wavelength of interest. First the matching conditions should be
checked and modified if necessary. Second, the photon source parameters may be
modified by diffraction effects which limit the apparent source size and divergence
to some minimum values even if the electron beam cross section and divergence
should be very small. For radiation at a wavelength �, the diffraction limited radial
photon source parameters are3

�r D 1

2�

p
�L and �r0 D

r
�

L
: (24.100)

Projection onto the horizontal or vertical plane gives �x;y D �r=
p
2 etc. Due

to diffraction, it is not useful to push the electron beam emittance to values much
smaller than

�x;y D �

4�
: (24.101)

For an arbitrary electron beam cross section the photon source parameters are the
quadratic sums of both contributions

�2ph;x;y D �2b;x;y C 1
2
�2r ; (24.102)

�2ph;x0;y0 D �2b;x0 ;y0 C 1
2
�2r0 : (24.103)

The contribution from diffraction can be ignored if

�x;y � �

4�
; (24.104)

which is generally true in the x-direction but not in the y-direction because of the
small coupling in a storage ring.

Problems

24.1 (S). Bending magnet radiation (	 D 2m) from a 800 MeV, 500 mA storage
ring includes a high intensity component of infrared radiation. Calculate the photon

3Many authors use a different definition �r D �r=
p
2. The difference is mainly that the subscript r

refers to radiation and the related beam parameters are already projected to the x or y-plane. In this
text, we use the subscript r from the radial coordinate since we derive the diffraction effects from
a round beam.
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beam brightness for � D 10�m radiation at the experimental station which is 5 m
away from the source. The electron beam cross section is �b,x��b,y D 1:1�0:11mm
and its divergence �b,x0 � �b,y0 D 0:11 � 0:011mrad. What is the corresponding
brightness for infrared radiation from a black body radiator at 2,000 K with a source
size of x � y D 10 � 2mm? (Hint: the source length L D 	2�rad where˙�rad is the
vertical opening angle of the radiation.)

24.2 (S). What is the probability for a 6GeV electron to emit a photon with an
energy of " D �" per unit time travelling on a circle with radius 	 D 25m. How
likely is it that this particle emits another such photon within a damping time? In
evaluating quantum excitation and equilibrium emittances, do we need to consider
multiple photon emissions? (use isomagnetic ring)

24.3 (S). Derive a formula for the average number of photons emitted by an
electron of energy E per turn. How many are these for E D 3GeV and 	 D 10m.

24.4 (S). In a 7GeV electron ring the circulating beam current is 200mA and the
bending radius 	 D 20m. Your experiment requires a photon flux of 106 photons/sec
at a photon energy of 8 keV, within a band width of 10�4 onto a sample with a cross
section of 10�10�m2and your experiment is 15m away from the source point. Can
you do your experiment on a bending magnet beam line of this ring?

24.5 (S). How well is the electron beam phase space of exercise 24.1 at the source
matched to the photon beam? Show the phase space ellipses of both the electron and
the photon beam in phase space and in x and y.

24.6 (S). Derive an expression for the total synchrotron radiation power from a
wiggler magnet.

24.7. Verify the numerical validity of Eqs. (24.4), (24.43), (24.51), (24.53), (24.59)

24.8 (S). In the SLAC linear accelerator operating at 100 Hz electrons can be
accelerated to 50 GeV at a rate of 17 MeV/m. Calculate to total radiation power
from 109 electrons per pulse at 50 GeV due to longitudinal acceleration. Compare
with the radiation power if this bunch of 109 electrons is deflected at the same energy
by 1 mrad in a 0.6 T bending magnet.

24.9 (S). Consider an electron storage ring at an energy of 1 GeV, a circulating
current of 200 mA and a bending radius of 	 D 2:22m. Calculate the energy
loss per turn, the critical energy and the total synchrotron radiation power. At what
frequency in units of the critical frequency has the intensity dropped to 1% of the
maximum? Plot the radiation spectrum and determine the frequency range available
for experimentation.

24.10. What beam energy would be required to produce x-rays from the storage
ring of problem 24.9 at a critical photon energy of 10 keV? Is that energy feasible
from a conventional magnet point of view or would the ring have to be larger? What
would the new beam energy and bending radius have to be?
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24.11. Consider a storage ring with an energy of 1 GeV and a bending radius of
	 D 2:5m. Calculate the angular photon flux density d PN=d for a high photon
energy O" where the intensity is still 1% of the maximum spectral intensity. What is
this maximum photon energy? Installing a wavelength shifter with a field of B D 6T
allows the spectrum to be greatly extended. By how much does the spectral intensity
increase at the photon energy O" and what is the new photon energy limit for the
wavelength shifter?

24.12. Consider an electromagnetic wavelength shifter in a 1 GeV storage ring with
a central pole length of 30 cm and a maximum field of 6 T. The side poles are
60 cm long and for simplicity assume that the field in all poles has a sinusoidal
distribution along the axis. Determine the focal length due to edge focusing for the
total wavelength shifter. To be negligible, the focal length should typically be longer
than about 30 m. Is this the case for this wavelength shifter?

24.13. Collide a 25 MeV electron beam with a 1 kW CO2-laser beam (� D 10�m).
What is the energy of the backscattered photons? Assume a diffraction limited
interaction length of twice the Rayleigh length and an electron beam cross section
matching the photon beam. Calculate the x-ray photon flux for an electron beam
from a 3 GHz linear accelerator with a pulse length of 1�s, a repetition rate of 10 Hz
and a pulse current of 100 mA.
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Chapter 25
Theory of Synchrotron Radiation

The phenomenon of synchrotron radiation has been introduced in a conceptual
way and a number of basic relations have been derived. In this chapter we will
approach the physics of synchrotron radiation in a more formal way to exhibit
detailed characteristics. Specifically, we will derive expressions for the spatial and
spectral distribution of photon emission in a way which is applicable later for special
insertion devices.

The theory of synchrotron radiation is intimately related to the electromagnetic
fields generated by moving charged particles. Wave equations can be derived from
Maxwell’s equations and we will find that any charged particle under the influence
of external forces can emit radiation. We will formulate the characteristics of this
radiation and apply the results to highly relativistic particles.

25.1 Radiation Field

The electromagnetic fields for a single moving point charge will be derived first
and then applied to a large number of particles. Fields are determined by Maxwell’s
equations (1.4) for moving charges in vacuum where �r D �r D 1. The magnetic
field can be derived from a vector potential A defined by

B D r � A : (25.1)

Inserting the vector potential into Faraday’s law (1.4/ we haver � �EC @A
@t

� D 0,
or after integration

E D �@A
@t
� r' ; (25.2)
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where ' is the scalar potential. We choose the scalar potential such that crA C
1
c
@'

@t D 0; a condition known as the Lorentz gauge. With (A.21) applied to A the
expression for the electric field together with Ampere’s law (1.4/ results in the wave
equation

r2A� 1

c2
@2A
@t2
D 1

�0
	ˇ : (25.3)

Similarly, we derive the wave equation for the scalar potential

r2' � 1

c2
@2'

@t2
D � 1

�0
	 : (25.4)

These are the well-known wave equations with the solutions

A.t/ D �0

4�

Z
v	.x; y; z/

R

ˇ̌̌̌
tr

dx dy dz (25.5)

and

'.t/ D 1

4��0

Z
	.x; y; z/

R

ˇ̌̌̌
tr

dx dy dz : (25.6)

Because of the finite velocity of light, all quantities under the integrals must be
evaluated at the retarded time

tr D t � 1
c

R.tr/ (25.7)

when the radiation was emitted by the moving charge, in contrast to the time t
when the radiation is observed at a distant point. The quantity R is the distance
between the observation point P.x; y; z/ and the location of the charge element
	.xr; yr; zr/dxrdyrdzr at the retarded time tr. The vector

RD.xr � x; yr � y; zr � z/ (25.8)

points away from the observation point to the charge element at the retarded time as
shown in Fig. 25.1.

Special care must be exercised in performing the integrations. Although we
consider only a point charge q, the integral in (25.6) cannot be replaced by q=R but
must be integrated over a finite volume followed by a transition to a point charge.
As we will see this is a consequence of the fact that the velocity of light is finite and
therefore the movement of charge elements must be taken into account.

To define the quantities involved in the integration we use Fig. 25.1. The
combined field at the observation point P at time t comes from all charges located at



25.1 Radiation Field 859

ρ

σ

Fig. 25.1 Retarded position of a moving charge distribution

a distance R away from P. We consider the contribution from all charges contained
within a spherical shell centered at P with a radius R and thickness dr to the radiation
field at P and time t. Radiation emitted at time tr will reach P at the time t. If
d� is a surface element of the spherical shell, the volume element of charge is
dx dy dz Dd�dr. The retarded time for the radiation from the outer surface of the
shell is tr and the retarded time for the radiation from the charge element on the
inner surface of the shell is tr � dr

c . From Fig. 25.1 we find the electromagnetic field
observed at P at time t to originate from the fractional charges within the volume
element d �d r or from the charge element dq D 	 d�dr.

The radiation observed at point P and time t is the sum of all radiation arriving
simultaneously at P. Elements of this radiation field may have been emitted by
different charge elements and at different times and locations. In case of only one
electrical charge moving with velocity v, we have to include in the integration those
charge elements that move across the inner shell surface into the volume d�dr
during the time dr=c. For a uniform charge distribution this additional charge is
ıq D 	vn dt d� where n is the vector normal to the surface of the shell and pointing
away from the observer

n D R
R
: (25.9)

With d t Ddr=c and ˇ D v=c, we get then for both contributions to the charge
element

dq D 	.1C nˇ/ dr d� : (25.10)

Depending on the direction of the velocity vector ˇ, we find an increase or a
reduction in the radiation field from moving charges. We solve (25.10) for 	 dr d�
and insert into the integrals (25.5), (25.6). Now we may use the assumption that the
electrical charge is a point charge and get for the retarded potentials of a moving
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point charge q at time t and observation point P

A.P; t/ D 1

4�c�0

q

R

ˇ

1C nˇ

ˇ̌̌̌
tr

(25.11)

and

'.P; t/ D 1

4��0

q

R

1

1C nˇ

ˇ̌̌̌
tr

: (25.12)

These equations are known as the Liénard–Wiechert potentials and express the
field potentials of a static or moving charge as functions of the charge parameters at
the retarded time. To obtain the electric and magnetic fields we insert the retarded
potentials into (25.1), (25.2) noting that the differentiation must be performed with
respect to the time t and location P of the observer while the potentials are expressed
at the retarded time tr.

In both equations for the vector and scalar potential we have the same denomi-
nator

r D R.1C nˇ/ : (25.13)

It will become necessary to calculate the derivative of the retarded time with respect
to the time t and since tr D t � R=c the time derivative of tr is

dtr
dt
D 1 � 1

c

dR

dtr

dtr
dt

(25.14)

The variation of the distance R with the retarded time depends on the velocity v of
the moving charge and is the projection of the vector v dtr onto the unity vector n.
Therefore,

dR D vn dtr (25.15)

and (25.14) becomes with (25.14) and (25.13)

dtr
dt
D 1

1C nˇ
D R

r
: (25.16)

The electric field (25.2) is with (25.11), (25.12) and (25.16) after a few manipula-
tions expressed by

4��0
E
q
D �1

c

R

r2
@ˇ

@tr
C ˇR

cr3
@r

@tr
C 1

r2
r rr : (25.17)
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In evaluating the nabla operator and other differentials we remember that all
parameters on the r.h.s. must be taken at the retarded time (25.7) which itself
depends on the location of the observation point P. To distinguish between the
ordinary nabla operator and the case where the dependence of the retarded time
on the position P.x; y; z/ must be considered, we add to the nabla symbol the index
r like r r. The components of this operator are then @

@x

ˇ̌
r
D @

@x C @tr
@x

@
@tr

, and similar
for the other components. We evaluate first

r rr D r rRC r r .ˇR/ (25.18)

and with rR D �n from (25.8)

r rR D �nC @R

@tr
r tr : (25.19)

For the gradient of the retarded time, we get

r tr D r
�

t � 1
c

R.tr/

�
D �1

c
r rR D �1

c

�
�nC @R

@tr
r tr

�
(25.20)

and performing the differentiation we get with @xr
@tr
D vx; : : :

@R

@tr
D @R

@xr

@xr

@tr
C @R

@yr

@yr

@tr
C @R

@zr

@zr

@tr
D nv : (25.21)

Solving (25.20) for r tr we get

r tr D R
cr

(25.22)

and (25.19) becomes finally

r rR D �nC R
r
.ˇ n/ : (25.23)

For the second term in (25.18) we note that the velocity v does not depend on
the location of the observer and with r rR�1, (25.22) and

dR
dtr
D v (25.24)

we get for the second term in (25.18)

r r .ˇ R/ D �ˇ C @.ˇ R/
@tr

r tr D �ˇ C
�

R
@ˇ

@tr

�
R
cr
C ˇ2R

r
: (25.25)
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To complete the evaluation of the electric field in (25.17), we express the
derivative @r

@tr
with

@r

@tr
D @R

@tr
C @.ˇ R/

@tr
D cnˇ C cˇ2 C R

@ˇ

@tr
; (25.26)

where we made use of (25.21). Collecting all differential expressions required
in (25.17) we get with (25.18), (25.23), (25.25), (25.26)

4��0
E
q
D 1

r2

�
�n� ˇ C R

r

�
nˇ Cˇ2 C 1

c
P̌ R
��

r

� R

cr2
P̌ C ˇ

R

r3

�
nˇCˇ2 C 1

c
P̌ R
�

r
; (25.27)

where P̌ Ddˇ =d tr. After some manipulation and using (A.10), the equation for the
electrical field of a charge q moving with velocityv becomes

4��0
E
q
D 1 � ˇ2

r3
.RC Rˇ /r C

1

cr3

�
R �

�
.RC Rˇ /r �

dˇ

dtr

�
 ˇ̌̌̌
r

; (25.28)

where we have added the index r as a reminder that all quantities on the r.h.s.
of (25.28) must be taken at the retarded time tr.

This equation for the electric field of a moving charge has two distinct parts. The
first part is inversely proportional to the square of the distance between radiation
source and observer and depends only on the velocity of the charge. For a charge
at rest ˇD0 this term reduces to the Coulomb field of a point charge q. The area
close to the radiating charge where this term is dominant is called the Coulomb
regime. The field is directed toward the observer for a positive charge at rest and
tilts into the direction of propagation as the velocity of the charge increases. For
highly relativistic particles we note the Coulomb field becomes very small.

We will not further consider this regime since we are interested only in the
radiation field far away from the moving charge. The second term in (25.28) depends
on the velocity as well as on the acceleration of the charge. This term scales linear
with the distance r falling off much slower than the Coulomb term and therefore
reaches out to large distances from the radiation source. We call this regime the
radiation regime and the remainder of this chapter will focus on the discussion of
the radiation from moving charges. The electrical field in the radiation regime is

4��0
E.t/

q

ˇ̌̌̌
rad

D 1

cr3

�
R �

�
.RC Rˇ /r �

dˇ

dtr

�
 ˇ̌̌̌
r

: (25.29)

The polarization of the electric field at the location of the observer is purely
orthogonal to the direction of observation R. Similar to the derivation of the electric
field, we can derive the expression for the magnetic field and get from (25.1)



25.1 Radiation Field 863

with (25.11)

B D r r �A D q

�
r r � ˇ

r

�
D q

r
Œr r � ˇ � � q

r2
Œr rr � ˇ � ; (25.30)

where again all parameters on the r.h.s. must be evaluated at the retarded time. The
evaluation of the “retarded” curl operation r r � ˇ becomes obvious if we evaluate
one component only, for example, the x component�

@

@y
C @tr
@y

@

@tr

�
ˇz�

�
@

@z
C @tr
@z

@

@tr

�
ˇy D Œr � ˇ �xC

�
r tr � dˇ

dtr

�
x

: (25.31)

In a similar way, we get the other components and find with (25.22) and the fact
that the particle velocity ˇ does not depend on the coordinates of the observation
point .r � ˇ D 0/,

Œr rr � ˇ � D Œr � ˇ �C
�
r tr � dˇ

dtr

�
D 1

cr

�
R � dˇ

dtr

�
;

The gradient r rr has been derived earlier in (25.18) and inserting this into (25.30)
we find the magnetic field of an electrical charge moving with velocity v

4�c�0
B
q
D � 1

r2
.ˇ � n/� R

cr2

�
dˇ

dt
� n

�ˇ̌̌̌
r

(25.32)

C R

r3

�
ˇ nCˇ2 C 1

c

dˇ

dt
R
�
Œˇ � n�

ˇ̌̌̌
r
:

Again, there are two distinct groups of field terms. In case of the electrical field
the terms that fall off like the square of the distance are the Coulomb fields. For
magnetic fields such terms appear only if the charge is moving ˇ ¤ 0 and are
identical to the Biot–Savart fields. Here we concentrate only on the far fields or
radiation fields which decay inversely proportional to the distance from the source.
The magnetic radiation field is then given by

4�c�0
B.t/

q

ˇ̌̌̌
rad
D � R

cr2

�
dˇ

dt
� n

�
r
C R

cr3

�
dˇ

dt
R
�
Œˇ � n�r (25.33)

Comparing the magnetic field (25.33) with the electrical field (25.28) reveals a
very simple correlation between both fields. The magnetic field can be obtained
from the electric field, and vice versa, by mere vector multiplication with the unit
vector n

BD 1
c ŒE � n�r : (25.34)
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From this equation we can deduce special properties for the field directions by
noting that the electric and magnetic fields are orthogonal to each other and both are
orthogonal to the direction of observation n. The existence of electric and magnetic
fields can give rise to radiation for which the Poynting vector is

S D 1

c�0
ŒE � B�r D �0c ŒE � .E � n/�r : (25.35)

Using again the vector relation (A.10) and noting that the electric field is normal
to n, we get for the Poynting vector or the radiation flux in the direction to the
observer

S D ��0c E2r n
ˇ̌
r : (25.36)

Equation (25.36) defines the energy flux density measured at the observation
point P and time t in form of synchrotron radiation per unit cross section and parallel
to the direction of observation n. All quantities expressing this energy flux are still
to be taken at the retarded time. For practical reasons it becomes desirable to express
the Poynting vector at the retarded time as well. The energy flux at the observation
point in terms of the retarded time is then dW=dtr D .dW=dt/ .dt=dtr/ and instead
of (25.36) we express the Poynting vector with (25.16) like

Sr D S
d t

d tr
D ��0cE2 Œ.1C ˇ n/ n �r : (25.37)

The Poynting vector in this form can be readily used for calculations like those
determining the spatial distribution of the radiation power.

25.2 Total Radiation Power and Energy Loss

So far, no particular choice of the reference system has been assumed, but a
particularly simple reference frame L� is the one which moves uniformly with the
charge before acceleration. From now on, we use a single particle with a charge e.
To an observer in this reference system, the charge moves due to acceleration and
the electric field in the radiation regime is from (25.29)

E�.t/ D 1

4��0

e

cR

�
n �

�
n � dˇ �

dt

� �ˇ̌̌̌
r
: (25.38)
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The synchrotron radiation power per unit solid angle and at distance R from the
source is from (25.37) with v D 0

dP�

d˝
D �nS�R2r D �0c E�2R2

ˇ̌
r : (25.39)

Introducing the classical particle radius by e2 D 4��0rcmc2 we obtain expres-
sions which are independent of electromagnetic units and with (25.38)

dP�

d˝
D rcmc2

4�c

ˇ̌̌̌
n �

�
n � dˇ �

dt

�ˇ̌̌̌2
r

D rcmc2

4�c

dˇ �

dt

ˇ̌̌̌2
r

sin2 #r ; (25.40)

where #r is the retarded angle between the direction of acceleration and the direction
of observation n. Integration over all solid angles gives the total radiated power.
With d˝ D sin#rd#rd�;where� is the azimuthal angle with respect to the direction
of acceleration, the total radiation power is in agreement with (24.24)

P� D 2

3
rcmc

ˇ̌̌̌
dˇ�

dt

ˇ̌̌̌2
r
: (25.41)

This equation has been derived first by Larmor [1] within the realm of classical
electrodynamics. The emission of a quantized photon, however, exerts a recoil on
the electron varying its energy slightly. Schwinger [2] investigated this effect and
derived a correction to the radiation power like

P� D P�
classical

�
1 � 55

16
p
3

�c

E

�
; (25.42)

where �c is the critical photon energy and E the electron energy. The correction is
generally very small and we ignore therefore this quantum mechanical effect in our
discussions.

Equation (25.41) must be transformed from the particle system to the laboratory
frame of reference. This has been done already in Sect. 24.2.

25.2.1 Transition Radiation

Digressing slightly from the discussion of synchrotron radiation we turn our
attention to the solution of (25.39). Generally, we do not know the fields E� and
to solve (25.40) we need to know more about the particular trajectory of the particle
motion. In the case of transition radiation, we have, however, all information to
formulate a solution. Transition radiation is emitted when a charged particle passes
through the boundary of two media with different dielectric constant. We will not
go into the detailed general theory of transition radiation but concentrate on the
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case where a charged particle passes through a thin metallic foil in vacuum. As
the particle passes through the foil backward transition radiation is emitted when
the particle enters the foil and forward radiation is emitted when it appears on the
other side. The emitted radiation energy can be derived directly from (25.39). First,
we replace the electric radiation field by the magnetic field component and (25.39)
becomes simply

d".t/

dt
D �0c B�2.t/R2

ˇ̌
r d˝: (25.43)

From Parseval’s theorem (A.42) we know thatZ 1

�1
B2.t/ dt D 1

2�

Z 1

�1
B2.!/d!: (25.44)

The emission of transition radiation occurs in a very short time � � !�1
p , where !p

is the plasma frequency. For this reason, the transition radiation frequency reaches
into the x-ray regime. We limit ourselves here to frequencies !, which are much
lower such that � � !�1. The magnetic field is nonzero only during the emission
process and we can therefore set

B.!/ D
Z 1

�1
B.t/ ei!t dt �

Z �=2

��=2
B.t/ dt : (25.45)

To solve this integral we recall the definition of the vector potential B.t/ D r�Ar

and keep in mind that all quantities are to be taken at the retarded time. Expressing in

component formr�Ar D
n
@Az
@y � @Ay

@z ;
@Ax
@z � @Az

@x ;
@Ax
@z � @Az

@x

o
t
rDt� 1

c R.t/

the derivatives

are @Az
@y D @Az

@tr
@tr
@y etc. With @tr

@y D 1
c

yr�y
R D ny

c we get @Az
@y � @Ay

@z D 1
c
@Az
@tr

ny � 1
c
@Ay

@tr
nz or

finally

B.t/ D r � Ar D 1

c
nr � @

@tr
Ar D 1

c

@

@tr
Œn � A�r : (25.46)

The magnetic field spectrum (25.45) becomes then simply

B.!/ D
Z �=2

��=2
B.t/ dt D 1

c
Œn � A�rjfinal

initial : (25.47)

Initially, while the electron has not yet vanished into the metallic foil, the vector
potential is made up of the Liènard–Wiechert potentials of a free electron and its
image charge (a positron) moving in the opposite direction. The vector potential is
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therefore

A D 4�c�0
eˇ

R.1C ˇ n/„ ƒ‚ …
electron

C 4�c�0
eˇ

R.1� ˇ n/„ ƒ‚ … :
positron

(25.48)

Instead of (25.43) we use the spectral radiation energy d".!/ D 1
�0

R2d˝ 1
2�

B�2
r

.t/d! 2, where the extra factor of two comes from using only positive frequencies
! > 0; and get with (25.48) and e2 D rcmc24��0

d2"

d!d˝
D 1

4�2
rcmc2

c

�
n � ˇ

1C ˇ n
C n � ˇ

1 � ˇ n


 2
D rcmc2

�2c
jn � zj2

�
ˇ

1 � ˇ2 .nz/2

�2
;

where we used ˇ � ˇz and where z is the unit vector along the z-axis. The
emission angle # is taken with respect to the z-axis. The spectral and spatial
transition radiation distribution from a single electron is finally with nz D cos#
and n� z D sin#

d2"

d! d˝
D rcmc2

�2c

ˇ2 sin2 #

.1 � ˇ2 cos2 #/2
: (25.49)

The spatial radiation distribution of transition radiation is shown in Fig. 25.2.
No radiation is emitted along the axis # D 0 while the radiation intensity reaches
a maximum at an emission angle of 1=�: Equation (25.49) does not exhibit any
frequency dependence, which is due to the fact that the emission process occurs in
a very short time generating a uniform spectrum. Very high frequencies in the x-ray
regime, where the spectral intensity is expected to drop, have been excluded in this
derivation.

Fig. 25.2 Intensity
distribution d2"

d!d˝
�2c

rcmc2 of
transition radiation

ϑ/γ
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Integrating (25.49) over a half space, we get

d"

d!
D 2rcmc2

�c

Z �=2

0

ˇ2 sin2 #

.1 � ˇ2 cos2 #/2
sin# d#

D 2rcmc2

�c

1

4ˇ

��
1C ˇ2� ln

1C ˇ
1 � ˇ � 2ˇ

�
; (25.50)

which is for relativistic particles � � 1

d".!/

d!
� 2rcmc2

�c
ln � : (25.51)

The spectral energy emitted into one half space by a single electron in form of
transition radiation is uniform for all frequencies reaching up into the x-ray regime
and depends only logarithmically on the particle energy.

25.3 Spatial Radiation Distribution

Coming back to synchrotron radiation we must define the electron motion in great
detail. It is this motion which determines many of the photon beam characteristics.
The radiation power and spatial distribution of synchrotron radiation in the electron
frame of reference is identical to that from a linear microwave antenna being emitted
normal to the direction of acceleration with a sin2-distribution.

Expressions for the radiation fields and Poynting vector exhibit strong vectorial
dependencies on the directions of motion and acceleration of the charged particles
and on the direction of observation. These vectorial dependencies indicate that
the radiation may not be emitted isotropic but rather into specific directions
forming characteristic radiation patterns. Similarly, we note a strong dependence
on the photon frequency. In the following paragraphs, we will investigate theses
dependencies closer.

25.3.1 Radiation Lobes

In this section we will derive these spatial radiation characteristics and determine
the direction of preferred radiation emission.

In (25.40) the radiation power per unit solid angle is expressed in the reference
frame of the particle

dP

d˝
D rcmc

4�
P̌�2
r sin2 � (25.52)
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Fig. 25.3 Radiation pattern
in the particle frame of
reference or for
nonrelativistic particles in the
laboratory system

ββ
.

y
x

z

showing a particular directionality of the radiation as shown in Fig. 25.3. The
radiation power is mainly concentrated in the x; y-plane and is proportional to sin2 �
where � is the angle between the direction of acceleration, in this case the z-axis,
and the direction of observation n: The radiation pattern in Fig. 25.3 is formed by
the end points of vectors with the length dP=d˝ and angles� with respect to the z-
axis. Because of symmetry, the radiation is isotropic with respect to the polar angle
' and therefore the radiation pattern is rotation symmetric about the direction of
acceleration or in this case about the z-axis.

This pattern is the correct representation of the radiation for the reference
frame of the radiating particle. We may, however, also consider this pattern as
the radiation pattern from non relativistic particles like that from a linear radio
antenna. For relativistic particles the radiation pattern differs significantly from the
non relativistic case. The Poynting vector in the form of (25.37) can be used to
calculate the radiation power per unit solid angle in the direction to the observer�n

dP

d˝
D � nS R2

ˇ̌
r D �0c E2 .1C ˇ n/R2

ˇ̌
r : (25.53)

We calculate the spatial distribution of the synchrotron radiation for the case of
acceleration orthogonal to the propagation of the particle as it happens in beam
transport systems where the particles are deflected by a transverse magnetic fields.
The particle is assumed to be located at the origin of a right-handed coordinate
system as shown in Fig. 25.4 propagating in the z-direction and the orthogonal
acceleration in this coordinate system occurs along the x-axis.

With the expression (25.29) for the electric fields in the radiation regime the
spatial radiation power distribution (25.53) becomes
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θ ϕ

Fig. 25.4 Radiation geometry in the laboratory frame of reference for highly relativistic particles

dP

d˝
D c

4�
rcmc2

R5

c3r5

n
n �

h
.nC ˇ / � P̌ io2 : (25.54)

We will now replace all vectors by their components to obtain the directional
dependency of the synchrotron radiation. The vector n pointing from the observation
point to the source point of the radiation has from Fig. 25.4 the components

n D .� sin � cos';� sin � sin '; cos �/ ; (25.55)

where the angle � is the angle between the direction of particle propagation and
the direction of emission of the synchrotron light �n. The x-component of the
acceleration can be derived from the Lorentz equation

�m Pvx D d px

dt
D c eˇzBy : (25.56)

With vz � v we have 1=	 D c eBy=cp D ceBy=.�mcv/ and the acceleration vector
is

Pv? D . Pv; 0; 0/ D
�
v2

	
; 0; 0

�
: (25.57)

The velocity vector is

v D .0; 0; v/ (25.58)

and after replacing the double vector product in (25.54) by a single vector sum

n � Œ.nC ˇ / � ˇ � D .nC ˇ / .n ˇ /�ˇ .1C n ˇ / ; (25.59)
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we may now square the r.h.s. of (25.54) and replace all vectors by their components.
The denominator in (25.54) then becomes

r5 D R5.1C nˇ /5 D R5.1 � ˇ cos �/5 ; (25.60)

and the full expression for the radiation power exhibiting the spatial distribution is
finally

dP

d˝
D rcmc2c

4�

ˇ4

	2
.1 � ˇ cos �/2 � .1 � ˇ2/ sin2 � cos2 '

.1 � ˇ cos �/5
: (25.61)

This equation describes the instantaneous synchrotron radiation power per unit
solid angle from charged particles moving with velocity v and being accelerated
normal to the propagation by a magnetic field. Integration over all angles results
again in the total synchrotron radiation power (24.34).

In Fig. 25.5 the radiation power distribution is shown in real space as derived
from (25.61). We note that the radiation is highly collimated in the forward direction
along the z-axis which is also the direction of particle propagation. Synchrotron
radiation in particle accelerators or beam lines is emitted whenever there is a
deflecting electromagnetic field and emerges mostly tangentially from the particle
trajectory. An estimate of the typical opening angle can be derived from (25.61). We
set ' D 0 and expand the cosine function for small angles cos � � 1 � 1

2
�2. With

ˇ � 1� 1
2
��2 we find the radiation power to scale like (��2C�2/�3. The radiation

ϕ

Fig. 25.5 Spatial synchrotron radiation distribution
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power therefore is reduced to about one eighth the peak intensity at an emission
angle of �� D 1=� or virtually all synchrotron radiation is emitted within an angle
of

�� D ˙ 1
�

(25.62)

with respect to the direction of the particle propagation.
From Fig. 25.5 we observe a slightly faster fall off for an azimuthal angle of

' D 0 which is in the plane of particle acceleration and propagation. Although the
synchrotron radiation is emitted symmetrically within a small angle of the order
of ˙ 1

�
with respect to the direction of particle propagation, the radiation pattern

from a relativistic particle as observed in the laboratory is very different in the
deflecting plane from that in the nondeflecting plane. While the particle radiates
from every point along its path, the direction of this path changes in the deflecting
plane but does not in the nondeflecting plane. The synchrotron radiation pattern from
a bending magnet therefore resembles the form of a swath where the radiation is
emitted evenly and tangentially from every point of the particle trajectory as shown
in Fig. 25.6.

The extreme collimation of the synchrotron radiation and its high intensity in
high energy electron accelerators can cause significant heating problems as well as
desorption of gas molecules from the surface of the vacuum chamber. In addition,
the high density of thermal energy deposition on the vacuum chamber walls can
cause significant mechanical stresses causing cracks in the material. A careful
design of the radiation absorbing surfaces to avoid damage to the integrity of the
material is required. On the other hand, this same radiation is a valuable source
of photons for a wide variety of research applications where, specifically, the
collimation of the radiation together with the small source dimensions are highly
desired features of the radiation.

← e -

sy n c hro tro n  ra d ia tio n

Fig. 25.6 Synchrotron radiation from a circular particle accelerator



25.4 Radiation Field in the Frequency Domain 873

25.4 Radiation Field in the Frequency Domain

Synchrotron radiation is emitted within a wide range of frequencies. As we have
seen in the previous paragraph, a particle orbiting in a circular accelerator emits light
flashes at the revolution frequency. We expect therefore in the radiation frequency
spectrum all harmonics of the revolution frequency up to very high frequencies
limited only by the very short duration of the radiation pulse being sent into a
particular direction toward the observer. The number of harmonics increases with
beam energy and reaches at the critical frequency the order of �3.

The frequency spectrum of synchrotron radiation has been derived by many
authors. In this text, we will stay closer to the derivation by Jackson [3] than others.
The general method to derive the frequency spectrum is to transform the electric
field from the time domain to the frequency domain by the use of Fourier transforms.
Applying this method, we will determine the radiation characteristics of the light
emitted by a single pass of a particle in a circular accelerator at the location of the
observer. The electric field at the observation point has a strong time dependence
and is given by (25.29) while the total radiation energy for one pass is from (25.38)

dW

d˝
D �

Z 1

�1
dP

d˝
dt D

Z 1

�1
Srn R2dt D �0cR2

Z 1

�1
E2r .t/ dt : (25.63)

The transformation from the time domain to the frequency domain is performed
by a Fourier transform or an expansion into Fourier harmonics. This is the point
where the particular characteristics of the transverse acceleration depend on the
magnetic field distribution and are, for example, different in a single bending
magnet as compared to an oscillatory wiggler magnet. We use here the method of
Fourier transforms to describe the electric field of a single particle passing only
once through a homogeneous bending magnet. In case of a circular accelerator
the particle will appear periodically with the period of the revolution time and we
expect a correlation of the frequency spectrum with the revolution frequency. This
is indeed the case and we will later discuss the nature of this correlation. Expressing
the electrical field Er.t/ by its Fourier transform, we set

Er.!/ D
Z 1

�1
Er.t/ e�i!tdt ; (25.64)

where �1 < ! < 1. Applying Parseval’s theorem (A.42) the total absorbed
radiation energy from a single pass of a particle is therefore

dW

d˝
D �0 c

R2

2�

Z 1

�1
jEr.!/ j2 d! : (25.65)
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Evaluating the electrical field by its Fourier components, we derive an expression
for the spectral distribution of the radiation energy

d2W

d˝d!
D �0 c

�
jEr.!/ j2 R2r ; (25.66)

where we have implicitly used the fact that Er.!/ D Er.�!/ since Er.t/ is real. To
calculate the Fourier transform, we use (25.29) and note that the electrical field is
expressed in terms of quantities at the retarded time. The calculation is simplified
if we express the whole integrand in (25.64) at the retarded time and get with tr D
t � 1

c R.tr/ and dtr D R.tr/
r dt instead of (25.64)

Er.!/ D 1

4��0

e

c

Z 1

�1

R �
h
.RC ˇ R/ � P̌ i

r2R

ˇ̌̌̌
ˇ̌
r

e�i!.trC Rr
c / dtr : (25.67)

We require now that the radiation be observed at a point sufficiently far away
from the source that during the time of emission the vector R.tr/ does not change
appreciably in direction. This assumption is generally justified since the duration
of the photon emission is of the order of 1=.!L�/; where !L D c=	 is the Larmor
frequency. The observer therefore should be at a distance from the source large
compared to 	=� . Equation (25.67) together with (25.14) may then be written like

Er.!/ D 1

4��0

e

cR

Z 1

�1

n �
h
.nCˇ / � P̌ i
.1C n ˇ /2

ˇ̌̌̌
ˇ̌
r

e�i!.trC Rr
c / dtr : (25.68)

With

n �
h
.nC ˇ / � P̌ i
.1C n ˇ /2

D d

dtr

n � .n � ˇ /

1C n ˇ
; (25.69)

we integrate (25.68) by parts while noting that the integrals vanish at the boundaries
and get

Er.!/ D 1

4��0

� i e!

cR

Z 1

�1
Œn � .n � ˇ /�r e�i!.trC Rr

c / dtr : (25.70)

After insertion into (25.66) the spectral and spatial intensity distribution is

d2W

d˝ d!
D rcmc2

4�c
!2
ˇ̌̌̌Z 1

�1
Œn � .n � ˇ /� e�i!.trC Rr

c / dtr

ˇ̌̌̌2
r

: (25.71)
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Fig. 25.7 Radiation geometry

The spectral and spatial radiation distribution depends on the Fourier transform
of the particle trajectory which itself is a function of the magnetic field distribution.
The trajectory in a uniform dipole field is different from say the step function of
real lumped bending magnets or oscillating deflecting fields from wiggler magnets
and the radiation characteristics may therefore be different. In this chapter, we will
concentrate only on a uniform dipole field and postpone the discussion of specific
radiation characteristics for insertion devices to Chap. 26.

The integrand in (25.71) can be expressed in component form to simplify
integration. For that we consider a fixed coordinate system .x; y; z/ as shown in
Fig. 25.7. The observation point is far away from the source point and we focus on
the radiation that is centered about the tangent to the orbit at the source point. The
observation point P and the vectors R and n are therefore within the .y; z/-plane and
radiation is emitted at angles � with respect to the z-axis.

The vector from the origin of the coordinate system P0 to the observation point
P is r, the vector R is the vector from P to the particle at Pp and rp is the vector from
the origin to Pp. With this we have

r D rp � R .tr/ ; (25.72)

where rpand Rr are taken at the retarded time. The exponent in (25.71) is then

!.tr C Rr=c/ D !.tr C nRr=c/ D !

c

�
ctr C nrp � nr

�
(25.73)

and the term �!c nr is independent of the time generating only a constant phase
factor which is completely irrelevant for the spectral distribution and may therefore
be ignored.

Following the above discussion the azimuthal angle is constant and set to
' D 1

2
� because we are interested only in the vertical radiation distribution. The
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horizontal distribution is uniform by virtue of the tangential emission along the orbit.
With these assumptions, we get the vector components for the vector n from (25.55)

n D .0;� sin �;� cos �/ : (25.74)

The vector rp is defined by Fig. 25.7 and depends on the exact variation of the
deflecting magnetic field along the path of the particles. Here we assume a constant
bending radius 	 and have

rp D Œ�	 cos.!Ltr/; 0; 	 sin.!Ltr/� ; (25.75)

where !L D ˇc=	 is the Larmor frequency. From these component representations
the vector product

nrp D �	 sin.!Ltr/ cos � (25.76)

Noting that both arguments of the trigonometric functions in (25.76) are very
small, we may expand the r.h.s. of (25.76) up to third order in tr and the factor
tr C nrp=c in (25.73) becomes

ctr C nrp D ctr � 	
�
!Ltr � 1

6
.!Ltr/

3
�
1 � 1

2
�2
�	
: (25.77)

With !L D ˇc=	 we get tr.1�	 !L=c/ D .1�ˇ/ tr � tr=.2�2/. Keeping only up
to third order terms in !Ltr and � we have finally for high energetic particles ˇ � 1

tr C nrp

c
D 1

2

�
��2 C �2� tr C 1

6
!2Ltr

3 : (25.78)

The triple vector product in (25.71) can be evaluated in a similar way. For the
velocity vector we derive from Fig. 25.7

ˇ D ˇ Œ�sign.1=	/ sin.!Ltr/; 0; cos.!Ltr/� : (25.79)

Consistent with the definition of the curvature, the sign of the curvature sign.1=	/
is positive for a positive charge and a positive magnetic field vector By: The vector
relation (A.10) and (25.74), (25.79) can be used to express the triple vector product
in terms of its components

n � .n � ˇ / D ˇ �sign.1=	/ sin.!Ltr/;
1
2

sin 2� cos.!Ltr/;� sin2 � cos.!Ltr/
	
:

(25.80)

Splitting this three-dimensional vector into two parts will allow us to characterize
the polarization states of the radiation. To do this, we take the unit vector u? in
the x-direction and uk a unit vector normal to u? and normal to r. The y and
z � components of (25.80) are then also the components of uk and we may express
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the vector (25.80) by

n � .n � ˇ/ D ˇ sign.1=	/ sin.!Ltr/ u? C ˇ sin � cos.!Ltr/uk ; (25.81)

Inserting (25.78) and (25.81) into the integrand (25.70) we get with ˇ � 1

Er.!/ D � 1

4��0

e

R

!

c

Z 1

�1
�
sign.1=	/ sin.!Ltr/u? C sin � cos.!Ltr/uk

	
eXdtr ;

(25.82)

where

X D �i
!

2�2

�
.1C �2�2/ tr C 1

3
�2!2Lt3r

	
:

Two polarization directions have been defined for the electric radiation field. One
of which .u?/ is in the plane of the particle path being perpendicular to the particle
velocity and to the deflecting magnetic field. Following Sokolov and Ternov [4]
we call this the �-mode (u? D u� /. The other polarization direction in the plane
containing the deflecting magnetic field and the observation point is perpendicular
to n and is called the �-mode (uk D u� ). Since the emission angle � is very small,
we find this polarization direction to be mostly parallel to the magnetic field. Noting
that most accelerators or beam lines are constructed in the horizontal plane, the
polarizations are also often referred to as the horizontal polarization for the �-mode
and as the vertical polarization for the �-mode.

25.4.1 Spectral Distribution in Space and Polarization

As was pointed out by Jackson [3], the mathematical need to extend the integration
over infinite times does not invalidate our expansion of the trigonometric functions
where we assumed the argument !Ltr to be small. Although the integral (25.82)
extends over all past and future times, the integrand oscillates rapidly for all but the
lowest frequencies and therefore only times of the order ctr D ˙ 	=� centered
about tr contribute to the integral. This is a direct consequence of the fact that
the radiation is emitted in the forward direction and therefore only photons from
a very small segment of the particle trajectory reach the observation point. For
very low frequencies of the order of the Larmor frequency, however, we must
expect considerable deviations from our results. In practical circumstances such low
harmonics will, however, not propagate in the vacuum chamber [5] and the observed
photon spectrum therefore is described accurately for all practical purposes.

The integral in (25.82) can be expressed by modified Bessel’s functions in the
form of Airy’s integrals as has been pointed out by Schwinger [6]. Since the
deflection angle !Ltr is very small, we may use linear expansions sin.!Ltr/ �
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!Ltrand cos.!Ltr/ � 1. Inserting the expression for the electric field (25.82)
into (25.65) we note that cross terms of both polarizations vanish u?uk D 0 and
the radiation intensity can therefore be expressed by two separate orthogonal
polarization components. Introducing in (25.82) the substitutions [6]

!Ltr D
s
1

�2
C �2 x ; (25.83)

� D 1
3

!

!L

1

�3
.1C �2�2/3=2 D 1

2

!

!c
.1C �2�2/3=2 ; (25.84)

where ¯!c is the critical photon energy, the argument in the exponential factor of
(25.82) becomes

!

2�2

�
.1C �2�2/ tr C 1

3
�2!2Lt3r

	 D 1
2
�.3xC x3/ : (25.85)

With these substitutions, (25.82) can be evaluated noting that only even terms
contribute to the integral. With !Ltr and � being small quantities we get integrals of
the form [7] R1

0
cos

�
1
2
�.3xC x3/

	
dx D 1p

3
K1=3.�/ ;R1

0
sin
�
1
2
�.3xC x3/

	
dx D 1p

3
K2=3.�/ ;

(25.86)

where the functions K
 are modified Bessels’s functions of the second kind. These
functions assume finite values for small arguments but vanish exponentially for
large arguments as shown in Fig. 24.12. Fast converging series for these modified
Bessels’s functions with fractional index have been derived by Kostroun [8]. The
Fourier transform of the electrical field (25.82) finally becomes

Er.!/ D �1
4��0

p
3e

cR

!

!c
�.1C �2�2/

"
sign

�
1

	

�
K2=3.�/ u� � i

��K1=3.�/p
1C �2�2 u�

#
;

(25.87)

describing the spectral radiation field far from the source for particles traveling
through a uniform magnetic dipole field. Later, we will modify this expression to
make it suitable for particle motion in undulators or other nonuniform fields.

The spectral synchrotron radiation energy emitted by one electron per pass is
proportional to the square of the electrical field (25.87) and is from (25.66)

d2W

d˝d!
D 3 rcmc

4�2
�2
�
!

!c

�2
.1C �2�2/2

"
K2
2=3.�/u

2
� C

�2�2K2
1=3.�/

1C �2�2 u2�

#
:

(25.88)
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Fig. 25.8 Radiation lobes for
� - and �-mode polarization

π − mode

θ z

σ − mode

y

The radiation spectrum has two components of orthogonal polarization, one in
the plane of the particle trajectory and the other almost parallel to the deflecting
magnetic field. In (25.87) both polarizations appear explicitly through the orthog-
onal unit vectors. Forming the square of the electrical field to get the radiation
intensity, cross terms disappear because of the orthogonality of the unit vectors u�
and u� . The expression for the radiation intensity therefore preserves separately the
two polarization modes in the square brackets of (25.88) representing the �-mode
and �-mode of polarization, respectively.

It is interesting to study the spatial distribution for the two polarization modes in
more detail. Not only are the intensities very different but the spatial distribution is
different too. The spatial distribution of the �-mode is directed mainly in the forward
direction while the �-mode radiation is emitted into two lobes at finite angles and
zero intensity in the forward direction � D 0. In Fig. 25.8 the instantaneous radiation
lobes are shown for both the �- and the �-mode at the critical photon energy and
being emitted tangentially from the orbit at the origin of the coordinate system.

25.4.2 Spectral and Spatial Photon Flux

The radiation intensity W from a single electron and for a single pass may not always
be the most useful parameter. A more useful parameter is the spectral photon flux
per unit solid angle into a frequency bin!=! and for a circulating beam current I

d2 PNph .!/

d� d 
D d2W .!/

d! d˝

1

„
I

e

!

!
: (25.89)

Here we have replaced the solid angle by its components, the vertical angle � and
the bending angle  . In more practical units the differential photon flux is

d2 PNph .!/

d� d 
D C˝E2I

!

!

�
!

!c

�2
K 2
2=3.�/F.�; �/ ; (25.90)
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Fig. 25.9 Distribution in frequency and angular space for � -mode radiation

where

C˝ D 3˛

4�2e.mc2/2
D 1:3273� 1016 photons

s mrad2 GeV2A
; (25.91)

˛ the fine structure constant and

F.�; �/ D .1C �2�2/2
"
1C �2�2

1C �2�2
K 2
1=3.�/

K 2
2=3.�/

#
: (25.92)

For approximate numerical calculations of photon fluxes, we may use the graphic
representation in Fig. 24.12 for the modified Bessel ’s function.

The spatial radiation pattern varies with the frequency of the radiation. Specifi-
cally, the angular distribution concentrates more and more in the forward direction
as the radiation frequency increases. The radiation distribution in frequency and
angular space is shown for both the �- (Fig. 25.9) and the �-mode (Fig. 25.10) at
the fundamental frequency. The high collimation of synchrotron radiation in the
forward direction makes it a prime research tool to probe materials and its atomic
and molecular properties.

25.4.3 Harmonic Representation

Expression (25.88) can be transformed into a different formulation emphasizing
the harmonic structure of the radiation spectrum. The equivalence between both
formulations has been shown by Sokolov and Ternov [4] expressing the modified
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Fig. 25.10 Distribution in frequency and angular space for �-mode radiation

Bessel’s functions K1=3 and K2=3 by regular Bessel’s functions of high order. With

 D !

!L
the asymptotic formulas for 
 � 1 are

K1=3.�/ D
p
3�p

1 � ˇ2 cos2 �
J
.
ˇ cos �/; (25.93)

K2=3.�/ D
p
3�

1 � ˇ2 cos2 �
J 0

.
ˇ cos �/; (25.94)

where � D 

3

�
1 � ˇ2 cos2 �

�3=2 � 

3

�
��2 C ˇ2�2�3=2 for small angles. These

approximations are justified since we are only interested in very large harmonics of
the revolution frequency. The harmonic number 
 for the critical photon frequency,
for example, is given by 
c D !c=!L D 3

2
�3 which for practical cases is generally a

very large number. Inserting these approximations into (25.88) gives the formulation
that has been derived first by Schott [9–11] in 1907 long before synchrotron
radiation was discovered in an attempt to calculate the radiation intensity of atomic
spectral lines

d2P

d˝d

D rcmc3

2�	2

2
�
J02

 .
 cos �/C �2J2
.
 cos �/

	
; (25.95)

where we have introduced the radiation power P D W c
2�	

. This form still exhibits
the separation of the radiation into the two polarization modes.

25.4.4 Spatial Radiation Power Distribution

Integrating over all frequencies we obtain the angular distribution of the syn-
chrotron radiation. From (25.88) we note the need to perform integrals of the formR1

�1 !2K2
�.a!/ d!; where a! D �. The solution can be found in the integral tables
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of Gradshteyn and Ryzhik [12] as solution number GR(6.576.4)1

Z 1

0

!2K2
�.a!/ d! D �2

32a3
1 � 4�2
cos��

; (25.96)

for a > 0; and �1:5 < � < 1:5 . Applying this solution to (25.88) and integrating
over all frequencies, we get for the angular energy distribution of the synchrotron
radiation per electron

dW

d˝
D 7

16

rcmc2

	

�5

.1C �2�2/5=2
�
1C 5

7

�2�2

1C �2�2
�
: (25.97)

This result is consistent with the angular radiation power distribution (25.61/
where we found that the radiation is collimated very much in the forward direction
with most of the radiation energy being emitted within an angle of ˙1=� . There
are two contributions to the total radiation intensity, the �-mode and the �-mode.
The �-mode has a maximum intensity in the forward direction, while the maximum
intensity for the �-mode occurs at an angle of �� D 1=.

p
5=2 �/. The quantity

dW=d˝ is the radiation energy per unit solid angle from a single electron and a
single pass and the average radiation power is therefore P� D W = Trev or (25.97)
becomes

dP�
d˝
D 7 rcmc3

32 �	2
�5

.1C �2�2/5=2
�
1C 5

7

�2�2

1C �2�2
�
: (25.98)

Integrating (25.98) over all angles �; we find the synchrotron radiation power
into both polarization modes. In doing so, we note first that (25.98) can be simplified
with (24.34) and ˇ D 1

dP�
d˝
D 21

32

P�
2�

�

.1C �2�2/5=2
�
1C 5

7

�2�2

1C �2�2
�
: (25.99)

This result is consistent with (25.61) although it should be noted that (25.99)
gives the average radiation power from a circular accelerator with uniform intensity
in  , while (25.61) is the instantaneous power into the forward lobe. Equa-
tion (25.99) exhibits the power into each polarization mode for which the total
power can be obtained by integration over all angles. First, we integrate over all
points along the circular orbit and get a factor 2� since the observed radiation power
does not depend on the location along the orbit. Continuing the integration over all
angles of � , we find the contributions to the integral to become quickly negligible for
angles larger than 1=� . If it were not so, we could not have used (25.99) where the

1In this chapter we will need repeatedly results from mathematical tables. We abbreviate such
solutions with the first letters of the authors names and the formula number.
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trigonometric functions have been replaced by their small arguments. Both terms
in (25.99) can be integrated readily and the first term becomes with GR(2.271.6)
[12] Z �max�	1

�max��1

�d �

.1C �2�2/5=2 D
4

3
: (25.100)

The second term is with GR[2.272.7] [12]Z �max�	1

�max��1

�3�2d�

.1C �2�2/7=2 D
4

15
: (25.101)

With these integrals and (25.99) the radiation power into the �- and �-mode with
P� from (24.34) is

P� D 7
8
P� ;

P� D 1
8
P� :

(25.102)

The horizontally polarized component of synchrotron radiation greatly dom-
inates the photon beam characteristics and only 12:5% of the total intensity is
polarized in the vertical plane. In the forward direction the �-polarization even
approaches 100%. Obviously, the sum of both components is equal to the total
radiation power. This high polarization of the radiation provides a valuable charac-
teristic for experimentation with synchrotron radiation. In addition, the emission of
polarized light generates a slow polarizing reaction on the particle beam orbiting in
a circular accelerator like in a storage ring [13].

25.5 Asymptotic Solutions

Expressions for the radiation distribution can be greatly simplified if we restrict
the discussion to very small or very large arguments of the modified Bessel’s
functions for which approximate expressions exist [14]. Knowledge of the radiation
distribution at very low photon frequencies becomes important for experiments
using such radiation or for beam diagnostics where the beam cross section is being
imaged to a TV camera using the visible part of the radiation spectrum. To describe
this visible part of the spectrum, we may in most cases assume that the photon
frequency is much lower than the critical photon frequency.
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25.5.1 Low Frequencies and Small Observation Angles

For very small arguments or low frequencies and small angles, we find the following
approximations AS(9.6.9) [14]

K2
1=3.� �! 0/ � � 2.1=3/

22=3

�
!

!c

��2=3
1

1C �2�2 ; (25.103a)

K2
2=3.� �! 0/ � 22=3� 2.2=3/

�
!

!c

��4=3
1

.1C �2�2/2 ; (25.103b)

where the Gamma functions � .1=3/ D 2:6789385 and � .2=3/ D 1:351179 and
from (25.85)

� D 1

2

!

!c
.1C �2�2/3=2 : (25.104)

Inserting this into (25.90) the photon flux spectrum in the forward direction becomes
for � D 0 and !

!c
� 1

d2 PNph

d� d 
� C˝ E2I � 2.2=3/

�
2!

!c

�2=3
!

!
: (25.105)

The photon spectrum at very low frequencies is independent of the particle energy
since !c / E3. Clearly, in this approximation there is no angular dependence for the
�-mode radiation and the intensity increases with frequency. The �-mode radiation
on the other hand is zero for � D 0 and increases in intensity with the square of �
as long as the approximation is valid.

25.5.2 High Frequencies or Large Observation Angles

For large arguments of the modified Bessel’s functions or for high frequencies and
large emission angles different approximations hold. In this case, the approximate
expressions are actually the same for both Bessel’s functions indicating the same
exponential drop off for high energetic photons AS(9.7.2) [14]

K2
1=3.� �!1/ �

�

2

e�2�

�
; (25.106a)

K2
2=3.� �!1/ �

�

2

e�2�

�
: (25.106b)
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The photon flux distribution in this approximation becomes from (25.90/

d2Nph

d�d 
� 3rcmc2

4�¯ c
�2
!

!c
e�2�p1C �2�2!

!

I

e

�
1C �2�2

1C �2�2
�
; (25.107)

where Nph is the number of photons emitted per pass. The spatial radiation distribu-
tion is greatly determined by the exponential factor and the relative amplitude with
respect to the forward direction scales therefore like

exp

�
� !
!c

h�
1C �2�2�3=2 � 1i
 : (25.108)

We look now for the specific angle for which the intensity has fallen to 1=e.
Since ! � !c; this angle must be very small �� � 1 and we can ignore other
�-dependent factors. The exponential factor becomes equal to 1=e for

3
2

!

!c
�2�21=e � 1 (25.109)

and solving for �1=e we get finally

�1=e D
q

2
3

1

�

!c

!
for ! � !c : (25.110)

The high energy end of the synchrotron radiation spectrum is more and more
collimated into the forward direction. The angular distribution is graphically
illustrated for both polarization modes in Figs. 25.9 and 25.10.

25.6 Angle-Integrated Spectrum

Synchrotron radiation is emitted over a wide range of frequencies and it is of great
interest to know the exact frequency distribution of the radiation. Since the radiation
is very much collimated in the forward direction, it is useful to integrate over all
angles of emission to obtain the total spectral photon flux that might be accepted
by a beam line with proper aperture. To that goal, (25.88) will be integrated with
respect to the emission angles to obtain the frequency spectrum of the radiation.
The emission angle � appears in (25.88) in a rather complicated way which makes
it difficult to perform the integration directly. We replace therefore the modified
Bessel’s functions by Airy’s functions defined by AS(10.4.14) and AS(10.4.31) [14]

Ai.z/ D
p

zp
3�

K1=3.�/ ; (25.111a)
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Ai0.z/ D � zp
3�

K2=3.�/ : (25.111b)

With the definition

� D 3
4

!

!c
(25.112)

we get from (25.85)

z D � 3
2
�
�2=3 D �2=3 �1C �2�2� : (25.113)

We apply this to the periodic motion of particles orbiting in a circular accelerator.
In this case the spectral distribution of the radiation power can be obtained by
noting that the differential radiation energy (25.88) is emitted every time the particle
passes by the source point. A short pulse of radiation is sent towards the observation
point at periodic time intervals equal to the revolution time. The spectral power
distribution (25.88) expressed by Airy functions is

d2P�
d! d˝

D 9P�
2�

�

!c

h
�2=3 Ai0 2 .z/C �4=3�2�2Ai2 .z/

i
: (25.114)

To obtain the photon frequency spectrum, we integrate over all angles of emission
which is accomplished by integrating along the orbit contributing a mere factor of
2� and over the angle � . Although this latter integration is to be performed between
-�=2 and +�=2, we choose the mathematically easier integration from �1 to +1
because the Airy functions fall off very fast for large arguments. In fact, we have
seen already that most of the radiation is emitted within a very small angle of˙1=� .
The integrals to be solved are of the form

R1
0
�nAi2

�
�2=3.1C �2�2	 d� where n D

0 or 2. We concentrate first on the second term in (25.114) and form with (25.86)
and (25.111a) the square of the Airy function

�2Ai2.z/ D 1

�2

Z 1

0

�2 cos
�
1
3
x3 C zx

	
dx
Z 1

0

�2 cos
�
1
3

y3 C z y
	

dy :

(25.115)

We solve these integrals by making use of the trigonometric relation

cos.˛ C 1
2
ˇ/ cos.˛ � 1

2
ˇ/ D cos˛ cosˇ : (25.116)

After introducing the substitutions xC y D s and x � y D t, we obtain integrals
over two terms which are symmetric in s and t and therefore can be set equal to get

�2Ai2.z/ D 1

2�2

Z 1

0

Z 1

0

�2 cos
�
1
12

s3 C 3 s t2 C z s
	

ds dy ; (25.117)
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where the factor 1
2

comes from the transformation of the area element
ds dy D dsp

2

dtp
2
. In our problem we replace the argument z by the expression

z D �2=3 �1C �2�2� and integrate over the angle �

�2
1Z

�1
�2Ai2.z/ d� D

1•
�1

�2 cos
�
1
12

s3 C 3st2 C s�2=3
�
1C �2�2�	 ds dy d�:

(25.118)

The integrand is symmetric with respect to � and the integration therefore needs
to be performed only from 0 to 1 with the result being doubled. We also note
that the integration is taken over only one quadrant of the .s; t/-space. Further
simplifying the integration, the number of variables in the argument of the cosine
function can be reduced in the following way. We note the coefficient 1

4
t2C�2=3�2�2

which is the sum of squares. Setting 1
2
t D r cos' and �1=3�� D r sin' this term

becomes simply r2. The area element transforms like dt d� D 2=.�1=3�/ r dr d' and
integrating over ' from 0 to �=2; since we need integrate only over one quarter
plane, (25.118) becomes finally

1Z
�1

�2Ai2 .z/ d� D 1

2���3

“ 1

0

r2 cos
�
1
12

s3 C s �2=3 C r2
	

r dr ds :

(25.119)

The integrand of (25.119) has now a form close to that of an Airy integral and we
will try to complete that similarity. With q D .3�=2/1=3x the definition of the Airy
functions AS(10.4.31) [14] are consistent with (25.111)

Ai.z/ D 1

�

Z 1

0

cos
�
1
3
q3 C z q

	
dq : (25.120)

Equation (25.119) can be modified into a similar form by setting

w3 D 1
4
s3 and s .�2=3 C r2) D y w : (25.121)

Solving for w we get w D s=22=3 and with y D 22=3.�2=3C r2), ds D 22=3dw and
dy D 25=3r dr Eq. (25.119) becomesZ 1

�1
�2Ai2.z/ d� D 1

4��3

Z 1

y0

� y

22=3
� �2=3

�
Ai.y/ dy ; (25.122)
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where we have used the definition of Airy’s function and where the integration
starts at

y0 D .2�/2=3 D
�
3
2

!

!c

�2=3
(25.123)

corresponding to r D 0.
We may separate this integral into two parts and get a term yAi.y/ under one of

the integrals. This term is by the definition of Airy’s functions AS(10.4.1) [14] equal
to Ai00. Integration of this second derivative givesZ 1

y0

Ai00.y/ dy D �Ai0.y0/ (25.124)

and collecting all terms in (25.122) we have finallyZ 1

�1
�2Ai2.z/ d� D � 1

4�1=3�3

�Ai0.y0/
y0

C
Z 1

y0

Ai.y/ dy

�
: (25.125)

The derivation of the complete spectral radiation power distribution (25.114)
requires also the evaluation of the integral

R Ai00.z/ d � . This can be done with the
help of the integral

R Ai00.z/ d� and (25.125). We follow a similar derivation that
led us just from (25.118) to (25.119) and get instead of (25.125)Z 1

�1
Ai2.z/ d� D � 1

2�1=3�

Z 1

y0

Ai.y/ dy : (25.126)

Recalling the definition of the argument y D �2=3
�
1C �2�2�, we differenti-

ate (25.126) twice with respect to �2=3 to get

2

Z 1

�1
�Ai00.z/CAi02.z/

	
d� D � 21=3

�1=3�
Ai 0.y0/ : (25.127)

Using the relation Ai00.z/ D zAi .z/ and the results (25.124), (25.125) in (25.127)
we get Z 1

�1
Ai02.z/ d� D ��

1=3

4�

�
3Ai 0.y0/

y0
C
Z 1

y0

Ai.y/ dy

�
: (25.128)

At this point, all integrals have been derived that are needed to describe the
spectral radiation power separately in both polarization modes and the spectral
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radiation power from (25.114) becomes

dP�
d!
D 27P�!

16 !2c

��
�3Ai 0 .y0/

y0
�
Z 1

y0

Ai.y/ dy

�
�
�Ai0 .y0/

y0
C
Z 1

y0

Ai.y/ dy

��
: (25.129)

The first term describes the �-mode of polarization and the second term the �-
mode. Combining both polarization modes, we may derive a comparatively simple
expression for the spectral radiation power. To this goal, we replace the Airy’s
functions by modified Bessel’s functions

Ai0 .y0/
y0

D � 1p
3�

K2=3.x0/ ; (25.130)

where from (25.111), (25.112), and (25.122) x0 D !=!c. With
p

y dy Ddx, the
recurrence formula 2K0

2=3 D �K1=3 C K5=3 and (25.111) the Airy integral isZ 1

y0

Ai.y/ dy D � 2p
3�

Z 1

x0

K0
2=3.x/ dx � 1p

3�

Z 1

x0

K5=3.x/ dx

D 2p
3�

K2=3.x0/ � 1p
3�

Z 1

x0

K5=3.x/ dx : (25.131)

We use (25.130) and (25.131) in (25.129) and get the simple expression for the
synchrotron radiation spectrum

dP�
d!
D P�
!c

9
p
3

8�

!

!c

Z 1

x0

K5=3.x/ dx D P�
!c

S

�
!

!c

�
; (25.132)

where we defined the universal function

S

�
!

!c

�
D 9

p
3

8�

!

!c

Z 1

!=!c

K5=3.x/dx : (25.133)

The spectral distribution depends only on the critical frequency !c, the total
radiation power and a purely mathematical function. This result has been derived
originally by Ivanenko and Sokolov [15] and independently by Schwinger [6].
Specifically, it should be noted that the synchrotron radiation spectrum, if nor-
malized to the critical frequency, does not depend on the particle energy and is
represented by the universal function shown in Fig. 25.11. The energy dependence is
contained in the cubic dependence of the critical frequency acting as a scaling factor
for the real spectral distribution. The mathematical function is properly normalized



890 25 Theory of Synchrotron Radiation

Fig. 25.11 Universal
function:
S.�/ D 9

p
3

8�
�
R1
� K5=3.x/ dx;

with � D !=!c

ω/ω

ω/ω

as we can see by integrating over all frequencies.Z 1

0

dP�
d!

d! D 9
p
3

8�
P�

Z 1

0

x0

Z 1

x0

K5=3.x/dx dx0 : (25.134)

After integration by parts, the result can be derived from GR[6.561.16] [12]Z 1

0

dP�
d!

d! D 9
p
3

16�
P�

Z 1

0

x20 K5=3.x0/dx0 D � .4=3/ � .2=3/ : (25.135)

Using the triplication formula AS(6.1.19) [14] the product of the gamma functions
becomes

� .4=3/� .2=3/ D 4
9
2�p
3
: (25.136)

With this equation the proper normalization of (25.134) is demonstratedZ 1

0

dP�
d!

d! D P� : (25.137)

Of more practical use is the spectral photon flux per unit angle of deflection in the
bending magnet. With the photon flux d PNph DdP=¯! we get from (25.132)

d PNph

d 
D P�
2�¯!c

!

!
S

�
!

!c

�
(25.138)

and with (24.34) and (24.49)

d PNph

d 
D 4˛

9
�

I

e

!

!
S

�
!

!c

�
; (25.139)
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where  is the deflection angle in the bending magnet and ˛ the fine structure
constant. In practical units, this becomes

d PNph

d 
D C EI

!

!
S

�
!

!c

�
(25.140)

with

C D 4˛

9e mc2
D 3:9614 � 1016 photons

s mrad A GeV
: (25.141)

The synchrotron radiation spectrum in Fig. 25.11 is rather uniform up to the
critical frequency beyond which the intensity falls off rapidly. Equation (25.132)
is not well suited for quick calculation of the radiation intensity at a particular
frequency. We may, however, express (25.132) in much simpler form for very low
and very large frequencies as discussed in Sect. 24.3.

25.7 Statistical Radiation Parameters

The emission of synchrotron radiation is a classical phenomenon. For some
applications it is, however, useful to express some parameters in statistical form.
Knowing the spectral radiation distribution, we may follow Sands [16] and express
some quantities in the photon picture. We have used such to derive expressions
for the equilibrium beam size and energy spread. Equilibrium beam parameters
are determined by the statistical emission of photons and its recoil on the particle
motion. For this purpose, we are mainly interested in an expression for "2ph and the
photon flux at energy "ph. From these quantities, we may derive an expression for the

average photon energy
D
"2ph

E
z

emitted along the circumference of the storage ring.

With ˘
�
"ph
�

being the probability to emit a photon with energy "ph we have

D
"2ph

E
z
D
Z 1

0

"2ph˘
�
"ph
�

d"ph : (25.142)

The probability ˘
�
"ph
�

is defined by the ratio of the photon flux Pn."ph/ emitted
at energy "ph to the total photon flux PNph

˘
�
"ph
� D Pn."ph/

PNph
; (25.143)
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where

Pn."ph/ D P�
"2c

S .x/

x
; with x D "ph

"c
: (25.144)

The photon flux at "ph is related to the spectral photon power by "ph Pn."ph/ D P
�
"ph
�
.

Integrating (25.138) over all angles  and multiplying by „! D "ph we get for the
spectral radiation power

P
�
"ph
�

d"ph D "ph
d PN
d"ph

d"ph D P�
"c

S

�
"ph

"c

�
d"ph : (25.145)

The total number of emitted photons per unit time is just the integral

PNph D
Z 1

0

Pn."ph/ d"ph D P�
"c

Z 1

0

S .x/

x
dx D 15

p
3

8

P�
"c
: (25.146)

With this, the probability to emit a photon of energy "ph is finally

˘
�
"ph
� D 8

15
p
3

1

"c

S .x/

x
; (25.147)

and D
"2ph

E
z
D 8"2c

15
p
3

Z 1

0

x S.x/ dx D 11

27
"2c: (25.148)

To calculate equilibrium beam parameters in Chaps. 11.3 and 11.4, for example,

we need to know the quantity
D PNphh"2phi

E
z

which is now from (25.146), (25.148)

˝ PNphh"2i
˛
z
D 55

24
p
3

˝
"cP�

˛
z
; (25.149)

where the average is to be taken along the orbit and around the storage ring through
all magnets. Expressing the critical photon energy by (24.49) and the radiation
power by (24.34) and we get finally

˝ PNphh"2i
˛
z
D 55

24
p
3

rccmc2„c�7
�
1

	3

�
z

: (25.150)
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Problems

25.1 (S). Integrate the radiation power distribution (25.61) over all solid angles and
prove that the total radiation power is equal to (24.34).

25.2 (S). In the ESRF (European Synchrotron Radiation Facility) synchrotron
radiation source in Grenoble (France) an electron beam of 200 mA circulates at an
energy of 6 GeV. The bending magnet field is 1.0 T. Derive and sketch the spectral
photon flux into a band width of 1% and an acceptance angle of 10 mrad as a
function of photon energy.

25.3 (S). Derive an expression identifying the angle at which the spectral intensity
has dropped to p% from the maximum intensity. Derive approximate expressions for
very low or very large photon energies. Find the angle at which the total radiation
intensity has dropped to 10%:

25.4. Derive the wave equations (25.3) and (25.4).

25.5. Derive (25.17).

25.6. Derive (25.28) from (25.27). Show that the electrical field in the radiation
regime is purely orthogonal to the direction of observation. Is the field also parallel
to the acceleration?

25.7. Design a synchrotron radiation source for a critical photon energy of your
choice. Use a simple FODO lattice and specify the minimum beam energy, beam
current, and bending radius which will produce a bending magnet photon flux of
1014 photons/s/mrad at the desired photon energy and into a band width of!=! D
1%. What is the minimum and maximum photon energy for which the photon flux
is at least 1011 photons/s/mrad? How big is your ring assuming a 30% fill factor for
bending magnets?
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Chapter 26
Insertion Device Radiation

Synchrotron radiation from bending magnets is characterized by a wide spectrum
from microwaves up to soft or hard x-rays as determined by the critical photon
energy. To optimally meet the needs of basic research with synchrotron radiation,
it is desirable to provide radiation characteristics that cannot be obtained from ring
bending magnets but require special magnets. The field strength of bending magnets
and the maximum particle beam energy in circular accelerators like a storage ring
is fixed leaving no adjustments to optimize the synchrotron radiation spectrum for
particular experiments. To generate specific synchrotron radiation characteristics,
radiation is often produced from insertion devices installed along the particle beam
path. Such insertion devices introduce no net deflection of the beam and can
therefore be incorporated in a beam line without changing its geometry. Motz [1]
proposed first the use of wiggler magnets to optimize characteristics of synchrotron
radiation. By now, such magnets have become the most common insertion devices
consisting of a series of alternating magnet poles deflecting the beam periodically
in opposite directions as shown in Fig. 26.1.

In Chap. 24 the properties of wiggler radiation were discussed shortly in an
introductory way. Here we concentrate on more detailed and formal derivations
of radiation characteristics from relativistic electrons passing through periodic
magnets.

There is no fundamental difference between wiggler and undulator radiation.
One is the stronger/weaker version of the other. The deflection in an undulator is
weak and the transverse particle momentum remains nonrelativistic. The motion is
purely sinusoidal in a sinusoidal field, and the emitted radiation is monochromatic at
the particle oscillation frequency which is the Lorentz-contracted periodicity of the
undulator period. Since the radiation is emitted from a moving source the observer in
the laboratory frame of reference then sees a Doppler shifted frequency. We call this
monochromatic radiation the fundamental radiation or radiation at the fundamental
frequency of the undulator.
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Fig. 26.1 Trajectory of a
particle beam in a flat wiggler
magnet
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As the undulator field is increased, the transverse motion becomes stronger and
the transverse momentum starts to become relativistic. As a consequence, the so far
purely sinusoidal motion becomes periodically distorted causing the appearance of
harmonics of the fundamental monochromatic radiation. These harmonics increase
in number and density with further increase of the magnetic field and, at higher
frequencies, eventually merge into one broad spectrum characteristic for wiggler
or bending magnet radiation. At very low frequencies, the theoretical spectrum is
still a line spectrum showing the harmonics of the revolution frequency. Of course,
there is a low frequency cut-off at a wavelength comparable or longer than vacuum
chamber dimensions which therefore do not show-up as radiation.

An insertion device does not introduce a net deflection of the beam and we
may therefore choose any arbitrary field strength which is technically feasible to
adjust the radiation spectrum to experimental needs. The radiation intensity from
a wiggler magnet also can be made much higher compared to that from a single
bending magnet. A wiggler magnet with say ten poles acts like a string of ten
bending magnets or radiation sources aligned in a straight line along the photon
beam direction. The effective photon source is therefore ten times more intense than
the radiation from a single bending magnet with the same field strength.

Wiggler magnets come in a variety of types with the flat wiggler magnet being
the most common. In this wiggler type only the component By is nonzero deflecting
the beam in the horizontal plane. To generate circularly or elliptically polarized
radiation, a helical wiggler magnet [2] may be used or a combination of several flat
wiggler magnets deflecting the beam in orthogonal planes which will be discussed
in more detail in Sect. 26.3.2.

26.1 Particle Dynamics in a Periodic Field Magnet

Insertion devices are characterized by the requirement thatZ
B?dz D 0:

As discussed in Chap. 15 this requirement demands that the first and second integral
must be made zero with the use of steering magnets before and after the undulator.
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This correction is sufficient from the beam stability point of view. However, it does
not address the effect of field tolerances on the intensity of radiation into harmonics.
For example, the curved trajectory in Fig. 15.4 can reduce the radiation intensity
because not all periods radiate in the same direction and constructive interference of
light emitted by individual periods is not optimum. Therefore the overall trajectory
curvature in Fig. 15.4 should be corrected as discussed in Chap. 15. Furthermore,
variations in field strength and period length from period to period in the undulator
can seriously diminish the radiation intensity especially in the higher harmonics.
The effect of such errors on individual harmonic intensities have been studied [3].
A special shimming procedure has been proposed by Elleaume [4] to transform an
undulator with construction tolerances to an almost ideal undulator giving close to
perfect intensities for about a dozen harmonics. If the shimming is done correctly
the long coil mentioned in Chap. 15 is not necessary anymore. In the following
discussion we assume that the integrals have been corrected and that the undulator
has been shimmed.

Particle dynamics and resulting radiation characteristics for an undulator have
been derived first by Motz [1] and later in more detail by other authors [5, 6].
A sinusoidally varying vertical field causes a periodic deflection of particles in
the .x; z/-plane shown in Fig. 26.1. To describe the particle trajectory, we use the
equation of motion

n
	
D ec

mc2�ˇ2
Œˇ � B�; (26.1)

where ˇ is the particle velocity and get with (6.110) the equations of motion in
component form

d2x
dt2
D � eB0

�ˇm
dz
dt cos

�
kpz
�

d2z
dt2
D C eB0

�ˇm
dx
dt cos

�
kpz
�
;

(26.2)

where we have set kp D 2�=�p and d z D ˇcdt with ˇ D v=c.
Equations (26.2) describe the coupled motion of a particle in the sinusoidal field

of a flat wiggler magnet. This coupling is common to the particle motion in any
magnetic field but generally in beam dynamics we set dz=dt � v and dx=dt � 0

because dx=dt � dz=dt. This approximation is justified in most beam transport
applications for relativistic particles, but here we have to be cautious not to neglect
effects that might be of relevance on a very short time or small geometric scale
comparable to the oscillation period and wavelength of synchrotron radiation.

We will keep the dx=dt-term and get from (26.2) with dz=dt � v and after
integrating twice that the particle trajectory follows the magnetic field in the sense
that the oscillatory motion reaches a maximum where the magnetic field reaches a
maximum and crosses the beam axis where the field is zero. We start at the time
t D 0 in the middle of a magnet pole where the transverse velocity Px0 D 0 while
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the longitudinal velocity Pz0 D ˇc and integrate both equations (26.2) utilizing the
integral of the first equation in the second to get

dx
dt D �ˇc K

ˇ�
sin
�
kpz
�
;

dz
dt D ˇc

h
1 � K2

2ˇ2�2
sin2

�
kpz
�i
:

(26.3)

The transverse motion describes the expected oscillatory motion and the longitu-
dinal velocity v exhibits a periodic modulation reflecting the varying projection of
the velocity vector to the z-axis. Closer inspection of this velocity modulation shows
that its frequency is twice that of the periodic motion. It is convenient to describe
the longitudinal particle motion with respect to a Cartesian reference frame moving
uniformly along the z-axis with the average longitudinal particle velocity Ňc D hPzi
which can be derived from (26.3b)

Ň D ˇ
�
1 � K2

4ˇ2�2

�
: (26.4)

In this reference frame the particle follows a figure-of-eight trajectory composed
of the transverse oscillation and a longitudinal oscillation with twice the frequency.
We will come back to this point since both oscillations contribute to the radiation
spectrum. A second integration of (26.3b) results finally in the equation of motion
in component representation

x.t/ D K
ˇ�kp

cos
�
kp
Ňct
�
;

z.t/ D ŇctC K2

8ˇ2�2kp
sin
�
2kp
Ňct
�
;

(26.5)

where we set z D Ňct. The maximum amplitude a of the transverse particle
oscillation is finally

a D K

ˇ�kp
D �pK

2�ˇ�
: (26.6)

This last expression gives another simple relationship between the wiggler
strength parameter and the transverse displacement of the beam trajectory

a .�m/ D 0:8133�p .cm/K

E .GeV/
: (26.7)

For most cases, this beam displacement is very small.
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26.2 Undulator Radiation

The physical process of undulator radiation is not different from the radiation
produced from a single bending magnet. However, the radiation received at great
distances from the undulator exhibits special features which we will discus in
more detail. Basically, we observe an electron performing Np oscillations while
passing through an undulator with Np undulator periods. The observed radiation
spectrum is the Fourier transform of the electron motion and therefore quasi-
monochromatic with a finite line width inversely proportional to the number of
oscillations performed.

26.2.1 Fundamental Wavelength

Undulator radiation can also be viewed as a superposition of radiation fields from Np

sources yielding quasi-monochromatic radiation as a consequence of interference.
To see that, we observe the radiation at an angle # with respect to the path of the
electron as shown in Fig. 26.2.

The electron travels on its path at an average velocity given by (26.4) and it takes
the time

� D �p

c Ň D
�p

cˇŒ1 � K2=.4�2/�
(26.8)

to move along one undulator period. During that same time, the radiation front
proceeds a distance

sph D �c D �p

ˇŒ1 � K2=.4�2/�
(26.9)

moving ahead of the particle since sph > �c Ň. For constructive superposition of
radiation from all undulator periods, we require that the difference sph � �p cos#
be equal to an integer multiple of the wavelength �k or for small observation angles
# � 1

k�k D �p

ˇŒ1 � K2=.4�2/�
� �p.1 � 1

2
#2/: (26.10)

Fig. 26.2 Interference of
undulator radiation
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After some manipulations, we get with K2=�2 � 1 and ˇ � 1 for �k

�k D �p

2�2k

�
1C 1

2
K2 C �2#2� : (26.11)

The lowest harmonics is defined by k D 1 and is called the fundamental undulator
wavelength.

From an infinitely long undulator, the radiation spectrum consists of spectral
lines at a wavelength determined by (26.11). In particular, we note that the shortest
wavelength is emitted into the forward direction while the radiation at a finite angle
# appears red shifted by the Doppler effect. For an undulator with a finite number
of periods, the spectral lines are widened to a width of about 1=Np or less as we will
discuss in the next section.

26.2.2 Radiation Power

The radiation power is from (25.41)

P D 2
3
rcmcj P̌�j2r ; (26.12)

where � indicates quantities to be evaluated in the particle reference system. We
may use this expression in the particle system to calculate the total radiated energy
from an electron passing through an undulator. The transverse particle acceleration
is expressed by mPv� D dp?=dt� D �dp?=dt where we used t� D t=� and inserting
into (26.12) we get

P D 2
3

rc �
2

mc

�
dp?
dt

�2
: (26.13)

The transverse momentum is determined by the particle deflection in the
undulator with a period length �p and is for a particle of momentum cp0

p? D Op sin!pt ; (26.14)

where Op D p0� and !p D ckp D 2�c=�p. The angle � D K=� is the maximum
deflection angle defined in (6.121). With these expressions and averaging over one
period, we get from (26.13) for the instantaneous radiation power from a charge e
traveling through an undulator

Pinst D 1
3
crcmc2�2K2k2p ; (26.15)

where rc is the classical electron radius. The duration of the radiation pulse is equal
to the travel time through an undulator of length Lu D �pNp and the total radiated
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energy per electron is therefore

E D 1
3
rcmc2�2K2k2pLu : (26.16)

In more practical units

E.eV/ D Cu
E2K2

�2p
Lu D 725:69 E2K2

�2p.cm/
Lu (26.17)

with

Cu D 4�2rc

3mc2
D 7:2569 � 10�20 m

eV
: (26.18)

The average total undulator radiation power for an electron beam circulating in a
storage ring is then just the radiated energy (26.16) multiplied by the number of
particles Nb in the beam and the revolution frequency or

Pavg D 1
3
rccmc2�2K2k2pNb

Lu

2� NR (26.19)

or

Pavg.W/ D 633:6E2B20I Lu ; (26.20)

where I is the circulating electron beam current. The total angle integrated radiation
power from an undulator in a storage ring is proportional to the square of the beam
energy and maximum undulator field B0 and proportional to the beam current and
undulator length.

26.2.3 Spatial and Spectral Distribution

For bending magnet radiation, the particle dynamics is relatively simple being
determined only by the particle velocity and the bending radius of the magnet.
In a wiggler magnet, the magnetic field parameters are different from those
in a constant field magnet and we will therefore derive again the synchrotron
radiation spectrum for the beam dynamics in a general wiggler magnet. No special
assumptions on magnetic field configurations have been made to derive the radiation
spectrum (25.71) and we can therefore use this expression together with the
appropriate beam dynamics to derive the radiation spectrum from a wiggler magnet

d2W

d! d˝
D rc mc!2

4�2

ˇ̌̌̌Z 1

�1
n � Œn � ˇ�e�i! .trC R

c /dtr

ˇ̌̌̌2
: (26.21)



902 26 Insertion Device Radiation

Fig. 26.3 Particle trajectory
and radiation geometry in a
wiggler magnet

θ

ϕ

ϑ

The integrand in (26.21) can be evaluated from known particle dynamics in a
wiggler magnet noting that all quantities are to be taken at the retarded time tr.
The unit vector from the observer to the radiating particle is from Fig. 26.3

n D � cos' sin# Ox � sin ' sin# Oy � cos# Oz; (26.22)

where .Ox; Oy; Oz/ are coordinate unit vectors. The exponent in (26.21) includes the
term R=c D nR=c. We express again the vector R from the observer to the particle
by the constant vector r from the origin of the coordinate system to the observer and
the vector rp from the coordinate origin to the particle for R D �rC rp as shown in
Fig. 26.3.

The r-term gives only a constant phase shift and can therefore be ignored. The
location vector rp of the particle with respect to the origin of the coordinate system
is

rp.tr/ D x.tr/OxC z.tr/Oz

and with the solutions (26.5) we have

rp.tr/ D K

kp�
cos.!ptr/OxC

�
Ňctr C K2

8�kp
sin.2!ptr/

�
Oz; (26.23)

where

!p D kp
Ňc: (26.24)

The velocity vector finally is just the time derivative of (26.23)

ˇ.tr/ D �K

�
Ň sin.!ptr/OxC Ň

�
1C K2

4�2
cos.2!ptr/

�
Oz: (26.25)
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We use these vector relations to evaluate the integrand in (26.21). First, we express
the triple vector product n� Œn � ˇ� by its components and get with (26.22), (26.25)

n � Œn � ˇ� D COx
�
�K

�
Ň sin2 # cos2 ' cos!ptr C K

�
Ň sin!ptr

C Ň
�
1C K2

4�2
cos 2!ptr

�
sin# cos# cos'

�
C Oy

�
�K

�
Ň sin2 # sin ' cos' sin!ptr

C Ň
�
1C K2

4�2
cos 2!ptr

�
sin# cos# sin '

�
(26.26)

C Oz
�
�K

�
Ň sin# cos# cos' cos!ptr

C Ň
�
1C K2

4�2
cos 2!ptr

� �
cos2 # � 1�� :

This expression can be greatly simplified considering that the radiation is emitted
into only a very small angle # � 1. Furthermore, we note that the deflection due
to the wiggler field is in most practical cases very small and therefore K � � and
Ň D ˇ

�
1 � K2

4�2

�
� ˇ. Finally, we carefully set ˇ � 1 where this term does not

appear as a difference to unity. With this and ignoring second order terms in # and
K=� we get from (26.26)

n � Œn � ˇ � D
�
Ň# cos' C ŇK

�
sin
�
!ptr

�� OxC � Ň# sin '
� Oy : (26.27)

The vector product in the exponent of the exponential function is just the product
of (26.22) and (26.23)

1

c
nrp.tr/ D � K Ň

�!p
sin# cos' cos

�
!ptr

� �  Ňtr C K2N̨
8�2!p

sin 2!p tr

!
cos# :

(26.28)
Employing again the approximation # � 1 and keeping only linear terms we get
from (26.28)

tr C 1

c
nrp.tr/ D tr.1 � Ň cos#/ � K N̨#

�!p
cos' cos

�
!ptr

� � K2N̨
8�2!p

sin
�
2!p tr

�
:

(26.29)

With (26.4) and cos# � 1 � 1
2
#2, the first term becomes
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1 � Ň cos# D 1

2�2

�
1C 1

2
K2 C �2#2� D !p

!1
; (26.30)

where we have defined the fundamental wiggler frequency !1 by

!1 D !p
2�2

1C 1
2
K2 C �2#2 (26.31)

or the fundamental wavelength of the radiation

�1 D �p

2�2

�
1C 1

2
K2 C �2#2� (26.32)

in full agreement with (26.11). At this point, it is worth to remember that the term
1
2
K2 becomes K2 for a helical wiggler [2]. With (26.30), the complete exponential

term �i!
�
tr C 1

c nrp.tr/
	

in (26.21) can be evaluated to be equal to

� i
!

!1

"
!ptr � K Ň#

�

!1

!p
cos' cos

�
!ptr

�� K2 Ň
8�2

!1

!p
sin
�
2!ptr

�#
; (26.33)

and (26.21) can be modified with this expression into a form suitable for integration
by inserting (26.27) and (26.30) into (26.21) for

d2W

d! d˝
D rc mc!2

4�2
Ň
2

(26.34)

�
ˇ̌̌̌Z 1

�1

�
# cos' C K

�
sin
�
!ptr

��
xC .# sin '/ y eXdtr

ˇ̌̌̌2
;

where

X D
�
�i

!

!1

�
!ptr � K#

�

!1

!p
cos' cos

�
!ptr

� � K2

8�2
!1

!p
sin
�
2!p tr

��

:

We are now ready to perform the integration of (26.34) noticing that the
integration over all times can be simplified by separation into an integral along the
wiggler magnet alone and an integration over the rest of the time while the particle
is traveling in a field free space. We write symbolicallyZ 1

�1
D
Z �Np=!p

��Np=!p

.K ¤ 0/C
Z 1

�1
.K D 0/�

Z �Np=!p

��Np=!p

.K D 0/ : (26.35)

First, we evaluate the second integral for K D 0 which is of the formZ 1

�1
ei�!t dt D 2�

j�j ı.!/ ;
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where ı.!/ is the Dirac ı-function. The value of the integral is nonzero only for
! D 0 in which case the factor !2 in (26.34) causes the whole expression to vanish.
The second integral is therefore zero.

The third integral has the same form as the second integral, but since the
integration is conducted only over the length of the wiggler magnet we get

Z �Np=!p

��Np=!p

e
�i !

2�2
tr dtr D 2�Np

!p

sin �Np

2�2
!
!p

�Np

2�2
!
!p

: (26.36)

The value of this integral reaches a maximum of 2� Np

!p
for ! ! 0. From (26.34)

we note the coefficient of this integral to include the angle # & 1=� and the whole
integral is therefore of the order or less than Lu=.c�/; where Lu D Np�p is the total
length of the wiggler magnet. This value is in general very small compared to the
first integral and can therefore be neglected. Actually, this statement is only partially
true since the first integral, as we will see, is a fast varying function of the radiation
frequency with a distinct line spectrum. Being, however, primarily interested in the
peak intensities of the spectrum we may indeed neglect the third integral. Only
between the spectral lines does the radiation intensity from the first integral become
so small that the third integral would be a relatively significant although absolutely
a small contribution.

To evaluate the first integral in (26.35) with K ¤ 0 we follow Alferov [5] and
introduce with (26.31) the abbreviations

C D 2K Ň �# cos'

1C 1
2
K2 C �2#2 ; (26.37a)

S D K2 Ň
4
�
1C 1

2
K2 C �2#2� (26.37b)

to get from (26.34) the exponential functions in the form

e�i !
!1
!ptr ei !

!1
C cos!ptr ei !

!1
S sin 2!ptr : (26.38)

The integral in the radiation power spectrum (26.34) has two distinct forms, one
where the integrand is just the exponential function multiplied by a time independent
factor while the other includes the sine function sin!ptr as a factor of the exponential
function. To proceed further we replace the exponential functions by an infinite sum
of Bessel’s functions

ei� sin D
pD1X

pD�1
Jp.�/ eip (26.39)
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and apply this identity to the first integral type in (26.34). Applying the iden-
tity (26.39) also to the second and third exponential factors in (26.38), we get with
ea cos x D ea sin.xC�=2/ the product of the exponential functions

e�i
�
!
!1
!ptr� !

!1
C cos!ptr� !

!1
S sin 2!ptr

�
D

1X
mD�1

1X
nD�1

Jm.u/ Jn.v/ ei 12 �ne�i R!!ptr ; (26.40)

where

R! D !

!1
� n � 2m ; u D !

!1
S; and v D !

!1
C : (26.41)

The time integration along the length of the wiggler magnet is straight forward
for this term since no other time dependent factors are involved and we getZ �Np=!p

��Np=!p

e�i
�
!
!1

�n�2m
�
!ptr dtr D 2�Np

!p

sin
�
�NpR!

�
�NpR!

: (26.42)

In the second form of the integrand, we replace the trigonometric factor, sin!ptr,
by exponential functions and get with (26.42) integrals of the formZ �Np=!p

��Np=!p

sin!ptr e�iR!!ptr dtr

D �i
1

2

Z �Np=!p

��Np=!p

�
ei!ptr � e�i!ptr

�
e�iR!!ptr dtr (26.43)

D i
�Np

!p

sin
�
�Np.R! C 1/

	
�Np.R! C 1/ � i

�Np

!p

sin
�
�Np.R! � 1/

	
�Np.R! � 1/ :

Both integrals (26.42) and (26.43) exhibit the character of multibeam interference
spectra well known from optical interference theory. The physical interpretation
here is that the radiation from the Np wiggler periods consists of Np photon beamlets
which have a specific phase relationship such that the intensities are strongly
reduced for all frequencies but a few specific frequencies as determined by the sin x

x -
factors. The resulting line spectrum, characteristic for undulator radiation, is the
more pronounced the more periods or beamlets are available for interference. To get
a more complete picture of the interference pattern, we collect now all terms derived
separately so far and use them in (26.34) which becomes with (26.38)

d2W

d! d˝
D a

ˇ̌̌̌
ˇ
Z �Np=!p

��Np=!p

��
A0 C A1 sin!ptr

� OxC B0Oy
	

�e�i !
!1
!ptr ei v cos!ptr ei u sin 2!ptr dtr

ˇ̌̌2
; (26.44)
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where a D rc mc Ň2
4�2

!2; A0 D # cos';A1 D K
�
; and B0 D # sin ': Introducing the

identity (26.38), the photon energy spectrum becomes

d2W

d! d˝
D a

ˇ̌̌̌
ˇ
Z �Np=!p

��Np=!p

��
A0 C A1 sin!ptr

� OxC B0 Oy
	

�
1X

mD�1

1X
nD�1

Jm.u/ Jn.v/ ei 12 �ne�iR!!ptrdtr

ˇ̌̌̌
ˇ
2

(26.45)

and after integration with (26.42) and (26.43)

d2W

d! d˝
D a

ˇ̌̌̌
ˇ̌x A0

1X
mD�1

1X
nD�1

Jm.u/ Jn.v/ ei 12 �n 2�Np
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�
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nD�1

Jm.u/ Jn.v/ ei 12 �n (26.46)
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"
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�
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�Np.R! C 1/ � i

�Np

!p

sin
�
�Np.R! � 1/
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#

COy B0

1X
mD�1

1X
nD�1

Jm.u/ Jn.v/ ei 12 �n 2�Np

!p

sin
�
�NpR!

�
�NpR!

ˇ̌̌̌
ˇ̌
2

:

To determine the frequency and radiation intensity of the line maxima, we
simplify the double sum of Bessel’s functions by selecting only the most dominant
terms. The first and third sums in (26.46) show an intensity maximum for R! D 0

at frequencies

! D .nC 2m/ !1 ; (26.47)

and intensity maxima appear therefore at the frequency !1 and harmonics thereof.
The transformation of a lower frequency to very high values has two physical
components. In the system of relativistic particles, the static magnetic field of the
wiggler magnet appears Lorentz contracted by the factor � , and particles passing
through the wiggler magnet oscillate with the frequency �!p in its own system
emitting radiation at that frequency. The observer in the laboratory system receives
this radiation from a source moving with relativistic velocity and experiences
therefore a Doppler shift by the factor 2� . The wavelength of the radiation emitted in
the forward direction, # D 0, from a weak wiggler magnet, K � 1, with the period
length �p is therefore reduced by the factor 2�2. In cases of a stronger wiggler
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magnet or when observing at a finite angle # , the wavelength is somewhat longer as
one would expect from higher order terms of the Doppler effect.

From (26.46) we determine two more dominant terms originating from the
second term for R! ˙ 1 D 0 at frequencies

! D .nC 2m � 1/ !1 (26.48a)

! D .nC 2mC 1/ !1 ; (26.48b)

respectively. The summation indices n and m are arbitrary integers between �1
and1. Among all possible resonant terms we collect such terms which contribute
to the same harmonic k of the fundamental frequency !1. To collect these dominant
terms for the same harmonic we set ! D !k D k!1 where k is the harmonic number
of the fundamental and express the index n by k and m to get

from (26.47): n D k � 2m;

from (26.48a): n D k � 2mC 1 (26.49)

and from (26.48b): n D k � 2m � 1 :

Introducing these conditions into (26.46) all trigonometric factors assume the

form
sin.�Np !k=!1/
�Np !k=!1

; where

!k

!1
D !

!1
� k (26.50)

and we get the photon energy spectrum of the kth harmonic for radiation from a
single electron passing through an undulator

d2Wk.!/

d! d˝
D rc mc Ň2N2

p

�2
!2

!2p

"
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�
�Np!k=!1

�
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�
ˇ̌̌̌
ˇCOxA0

1X
mD�1

Jm.u/ Jk�2m.v/ ei 12 �.k�2m/

C OyB0

1X
mD�1

Jm.u/ Jk�2m.v/ ei 12 �.k�2m/ (26.51)

C i Ox 1
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:
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Fig. 26.4
sin.�Npx/
�Npx distribution for Np D 5 and Np D 100

All integrals exhibit the resonance character defining the locations of the spectral
lines. The .sin x=x/-terms represents the line spectrum of the radiation. Specifically,
the number Np of beamlets, here source points, determines the spectral purity of the
radiation. In Fig. 26.4 the .sin x=x/-function is shown for Np D 5 and Np D 100. It
is clear that the spectral purity improves greatly as the number of undulator periods
is increased. This is one of the key features of undulator magnets to gain spectral
purity by maximizing the number of undulator periods.

The spectral purity or line width is determined by the shape of the .sin x=x/-
function. We define the line width by the frequency at which sin x=x D 0 or where
�Np!k=!1 D � defining the line width for the kth harmonic

!k

!k
D ˙ 1

kNp
: (26.52)

The spectral width of the undulator radiation is reduced proportional to the
number of undulator periods, but reduces also proportional to the harmonic number.

The Bessel functions Jm.u/ determine mainly the intensity of the line spectrum.
For an undulator with K � 1, the argument u / K2 � 1 and the contributions
of higher order Bessel’s functions are very small. The radiation spectrum consists
therefore only of the fundamental line. For stronger undulators with K > 1, higher
order Bessel’s functions grow and higher harmonic radiation appears in the line
spectrum of the radiation.
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Summing over all harmonics of interest, one gets the total power spectrum. In the
third and fourth terms of (26.51) we use the identities i e˙i�=2 D �1 ; Jm.u/ ei�m D
J�m.u/ and abbreviate the sums of Bessel’s functions by the symbols

X
1
D

1X
mD�1

J�m.u/ Jk�2m.v/ (26.53a)

X
2
D

1X
mD�1

J�m.u/ ŒJk�2m�1.v/C Jk�2mC1.v/� : (26.53b)

The total number of photons Nph emitted into a spectral band width !=!
by a single electron moving through a wiggler magnet is finally with Nph.!/ D
W.!/=.„!/

dNph.!/

d˝
D ˛�2 Ň2N2

p
!

!

1X
kD1

k2
"

sin
�
�Np!k=!1

�
�Np!k=!1

#2
(26.54)

�
�
2�#

P
1 cos' � K

P
2

�2 Ox2 C �2�#P1 sin '
�2 Oy2�

1C 1
2
K2 C �2#2�2 ;

where ˛ is the fine structure constant and where we have kept the coordinate unit
vectors to keep track of the polarization modes. The vectors x and y are orthogonal
unit vectors indicating the directions of the electric field or the polarization of the
radiation. Performing the squares does therefore not produce cross terms and the
two terms in (26.54) with the expressions (26.53) represent the amplitude factors
for both polarization directions, the �-mode and �-mode respectively.

We also made use of (26.50) and the resonance condition

!

!p
D k!1 C!k

!p
� k

!1

!p
D 2�2 k

1C 1
2
K2 C �2#2 ; (26.55)

realizing that the photon spectrum is determined by the .sin x=x/2-function. For not
too few periods, this function is very small for frequencies away from the resonance
conditions.

Storage rings optimized for very small beam emittance are being used as modern
synchrotron radiation sources to reduce the line width of undulator radiation and
concentrate all radiation to the frequency desired. The progress in this direction is
demonstrated in the spectrum of Fig. 26.5 derived from the first electron storage ring
operated at a beam emittance below 10 nm at 7.1 GeV [7]. In Fig. 26.5 a measured
undulator spectrum is shown as a function of the undulator strength K [8]. For a
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Fig. 26.5 Measured frequency spectrum from an undulator for different strength parameters K [8]

strength parameter K � 1 there is only one line at the fundamental frequency.
As the strength parameter increases, additional lines appear in addition to being
shifted to lower frequencies. The spectral lines from a real synchrotron radiation
source are not infinitely narrow as (26.66) would suggest. Because of the finite size
of the pinhole opening, some light at small angles with respect to the axis passes
through, and we observe therefore also some signal of the even order harmonic
radiation.

Even for an extremely small pin hole, we would observe a similar spectrum as
shown in Fig. 26.5 because of the finite beam divergence of the electron beam. The
electrons follow oscillatory trajectories due not only to the undulator field but also
due to betatron oscillations. We observe therefore always some radiation at a finite
angle given by the particle trajectory with respect to the undulator axis. Figure 26.5
also demonstrates the fact that all experimental circumstances must be included to
meet theoretical expectations. The amplitudes of the measured low energy spectrum
is significantly suppressed compared to theoretical expectations which is due to a
Be-window being used to extract the radiation from the ultra high vacuum chamber
of the accelerator. This material absorbs radiation significantly below a photon
energy of about 3 keV.

While we observe a line spectrum expressed by the .sin x=x/2-function, we also
notice that this line spectrum is red shifted as we increase the observation angle
# . Only, when we observe the radiation though a very small aperture (pin hole)
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Fig. 26.6 Actual radiation spectra from an undulator with a maximum field of 0.2 T and a beam
energy of 7.1 GeV through a pin hole and angle-integrated after removal of the pin hole [7]

do we actually see this line spectrum. Viewing the undulator radiation through a
large aperture integrates the linespectra over a finite range of angles # producing
an almost continuous spectrum with small spikes at the locations of the harmonic
lines.

The difference between a pin hole undulator spectrum and an angle-integrated
spectrum becomes apparent from the experimental spectra shown in Fig. 26.6 [7].
While the pin hole spectrum demonstrates well the line character of undulator
radiation, much radiation appears between these spectral lines as the pin hole is
removed and radiation over a large solid angle is collected by the detector. The pin
hole undulator line spectrum shows up as mere spikes on top of a broad continuous
spectrum.

The overall spatial intensity distribution includes a complex set of different radi-
ation lobes depending on frequency, emission angle and polarization. In Fig. 26.7
the radiation intensity distributions described by the last factor in (26.54)

I�;k D .2�#˙1 cos' � K˙2/
2

.1C 1
2
K2 C �2#2/2

for the �-mode polarization and

I�;k D .2�#˙1 sin '/2

.1C 1
2

K2 C �2#2/2

for the �-mode polarization are shown for the lowest order harmonics.
We note clearly the strong forward lobe at the fundamental frequency in �-mode

while there is no emission in �-mode along the path of the particle. The second
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Fig. 26.7 Undulator radiation distribution in � - and �-mode for the lowest order harmonics

harmonic radiation vanishes in the forward direction, an observation that is true for
all even harmonics. By inspection of (26.54), we note that v D 0 for # D 0 and
the square bracket in (26.53b) vanishes for all odd indices or for all even harmonics
k. There is therefore no forward radiation for even harmonics of the fundamental
undulator frequency.

A contour plot of the first harmonic �- and �-mode radiation is shown in
Fig. 26.8. There is a slight asymmetry in the radiation distribution between the
deflecting and nondeflecting plane as one might expect. It is obvious that the pin hole
radiation is surrounded by many radiation lobes not only from the first harmonics
but also from higher harmonics compromising the pure line spectrum for larger
apertures.
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Fig. 26.8 Contour plot of the
first harmonic � -mode (solid)
and �-mode (dashed)
undulator radiation
distribution

26.2.4 Line Spectrum

To exhibit other important and desirable features of the radiation spectrum (26.54),
we ignore the actual frequency distribution in the vicinity of the harmonics and set
!k D 0 because the spectral lines are narrow for large numbers of wiggler periods
Np: Further, we are interested for now only in the forward radiation where # D 0

keeping in mind that the radiation is mostly emitted into a small angle h#i D 1=� .
There is no radiation for the �-mode in the forward direction and the only

contribution to the forward radiation comes from the second term in (26.54) of the
�-mode. From (26.41) we get for this case with ! =!1 D k

u0 D kK2

4C 2K2
and v0 D 0 : (26.56)

The sums of Bessel’s functions simplify in this case greatly because only the lowest
order Bessel’s function has a nonvanishing value for v0 D 0. In the expression for
˙2 all summation terms vanish except for the two terms for which the index is zero
or for which

k � 2m � 1 D 0; or k � 2mC 1 D 0 (26.57)

and

X
2
D

1X
mD�1

J�m.u/ ŒJk�2m�1.0/C Jk�2mC1.0/�

D J� k�1
2
.u0/C J� kC1

2
.u0/: (26.58)
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The harmonic condition (26.57) implies that k is an odd integer. For even
integers, the condition cannot be met as we would expect from earlier discussions
on harmonic radiation in the forward direction. Using the identity J�n D .�1/nJn

and (26.56), we get finally with Nph D W=„! the photon flux per unit solid angle
from a highly relativistic particle passing through an undulator

dNph.!/

d˝

ˇ̌̌̌
�D0
D ˛�2N2

p
!

!

K2�
1C 1

2
K2
�2 1X

kD1
k2
�

sin�Np!k=!1

�Np!k=!1

�2
JJ2;

(26.59)
where the JJ-function is defined by

JJ D
�

J 1
2 .k�1/

�
kK2

4C 2K2

�
� J 1

2 .kC1/
�

kK2

4C 2K2

��
: (26.60)

The amplitudes of the harmonics are given by

Ak.K/ D k2K2

.1C1
2
K2/2

JJ2 : (26.61)

The strength parameter greatly determines the radiation intensity as shown
in Fig. 26.9 for the lowest order harmonics. For the convenience of numerical
calculations the values Ak.K/ are tabulated for odd harmonics in Table 26.1. For
weak magnets .K � 1/ the intensity increases with the square of the magnet field or
undulator strength parameter. There is an optimum value for the strength parameter
for maximum photon flux depending on the harmonic under consideration. In
particular, radiation in the forward direction at the fundamental frequency reaches
a maximum photon flux for strength parameters K � 1:3. The photon flux per unit
solid angle increases like the square of the number of wiggler periods Np; which is
a result of the interference effect of many beams concentrating the radiation more
and more into one frequency and its harmonics as the number of interfering beams
is increased.

Fig. 26.9 Undulator
radiation intensity Ak.K/ in
the forward direction as a
function of the strength
parameter K for the six
lowest order odd harmonics
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Table 26.1 Amplitudes
Ak.K/ for k D 1; 3; 5; 7; 9; 11

K A1 A3 A5 A7 A9 A11
0.1 0.010 0 0 0 0 0

0.2 0.038 0 0 0 0 0

0.4 0.132 0:004 0 0 0 0

0.6 0.238 0:027 0:002 0 0 0

0.8 0.322 0:087 0:015 0:002 0 0

1.0 0.368 0:179 0:055 0:015 0:004 0:001

1.2 0.381 0:276 0:128 0:051 0:019 0:007

1.4 0.371 0:354 0:219 0:118 0:059 0:028

1.8 0.320 0:423 0:371 0:286 0:206 0:142

2.0 0.290 0:423 0:413 0:354 0:285 0:220

5.0 0.071 0:139 0:188 0:228 0:261 0:290

10.0 0.019 0:037 0:051 0:064 0:075 0:085

20.0 0.005 0:010 0:013 0:016 0:019 0:022

The radiation opening angle is primarily determined by the .sin x=x/2-term. We
define the opening angle for the kth harmonic radiation by #k being the angle for
which sin x=x D 0 for the first time. In this case x D � or Np!k=!1 D 1. With

!1 D !p
2�2

1C 1
2 K2

, !k D k!p
2�2

1C 1
2K2C�2#2k and !k

!1
D
ˇ̌̌
!k
!1
� k

ˇ̌̌
; we get Np k �2#2k

1C 1
2K2C�2#2k D

1 or after solving for #k

#2k D
1C 1

2
K2

�2.kNp � 1/ : (26.62)

Assuming an undulator with many periods
�
kNp � 1

�
the rms opening angle of

undulator radiation is finally

�r � 1p
2
#k D 1

�

s
1C 1

2
K2

2kNp
: (26.63)

Radiation emitted into a solid angle defined by this small opening angle

�˝ D ��2r (26.64)

is referred to as the forward radiation cone. The opening angle of undulator radiation
becomes more collimated as the number of periods and the order of the harmonic
increases. On the other hand, the radiation cone opens up as the undulator strength
K is increased. We may use this opening angle to calculate the total photon flux of
the kth harmonic within a bandwidth !

!
into the forward cone

Nph.!k/
ˇ̌
#D0 D 1

2
�˛Np

!

!k

k K2

1C 1
2
K2

JJ2; (26.65)
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where !k D k!1. The radiation spectrum from an undulator magnet into the
forward direction has been reduced to a simple form exhibiting the most important
characteristic parameters. Utilizing (26.61) the number of photons emitted into a
band width !

!k
from a single electron passing through an undulator in the kth

harmonic is

Nph.!k/
ˇ̌
#D0 D 1

2
�˛Np

!

!k

1C 1
2
K2

k
A.K/: (26.66)

Equation (26.66) is to be multiplied by the number of particles in the electron
beam to get the total photon intensity. In case of a storage ring, particles circulate
with a high revolution frequency and we get from (26.66) by multiplication with
I=e, where I is the circulating beam current, the photon flux

dNph.!k/

dt

ˇ̌̌̌
#D0
D 1

2
�˛Np

I

e

!

!k

1C 1
2
K2

k
A.K/: (26.67)

The spectrum includes only odd harmonic since all even harmonics are suppressed
through the cancellation of Bessel’s functions. This photon flux represents fully
spatial coherent radiation as long as the beam divergence does not significantly
contribute to the photon divergence (26.63).

26.2.5 Spectral Undulator Brightness

Similar to Chap. 27 we define the spectral brightness of undulator radiation as the
photon density in six-dimensional phase space. The actual photon brightness is
reduced from the diffraction limit due to betatron motion of the particles, transverse
beam oscillation in the undulator, apparent source size on axis and under an oblique
angle. All of these effects tend to increase the source size and reduce brightness.

The particle beam cross section varies in general along the undulator. We assume
here for simplicity that the beam size varies symmetrically along the undulator with
a waist in its center. From beam dynamics it is then known that, for example, the
horizontal beam size varies like �2b D �2b0C� 02

b0s2, where �b0 is the beam size at the
waist, � 0

b0 the divergence of the beam at the waist and � 1
2
L 5 s 5 1

2
L the distance

from the waist. The average beam size along the undulator length L is then

h�2b i D �2b0 C 1
12
� 02

b0L2: (26.68)

Similarly, due to an oblique observation angle # with respect to the .y; z/-plane
or with respect to the .x; z/-plane we get a further additive contribution 1

6
#L to the

apparent beam size. Finally, the apparent source size is widened by the transverse
beam wiggle in the periodic undulator field. This oscillation amplitude is from (26.6)
a D �pK=.2��/.
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Collecting all contributions and adding them in quadrature, the total effective
beam-size parameters are given by

�2t;x D 1
2
�2r C �2b0;x C

�
�pK

2��

�2
C 1

12
�2b0;x0L2 C 1

36
#2L2; (26.69a)

�2t;x0 D 1
2
�2r0 C �2b0;x0 ; (26.69b)

�2t;y D 1
2
�2r C �2b0;y C

�
�pK

2��

�2
C 1

12
�2b0;y0 L2 C 1

36
 2L2; (26.69c)

�2t;y0 D 1
2
�2r0 C �2b0;y0 ; (26.69d)

where the particle beam sizes can be expressed by the beam emittance and betatron
function as �2b D �ˇ, � 0

b
2 D �=ˇ, and the diffraction limited beam parameters are

�r0 D p�=L, and �r D
p
�L=.2�/.

26.3 Elliptical Polarization

During the discussion of bending magnet radiation in Chap. 25 and insertion
radiation in this chapter, we noticed the appearance of two orthogonal components
of the radiation field which we identified with the �-mode and �-mode polarization.
The �-mode radiation is observable only at a finite angle with the plane defined
by the particle trajectory and the acceleration force vector, which is in general
the horizontal plane. As we will see, both polarization modes can, under certain
circumstances, be out of phase giving rise to elliptical polarization. In this section,
we will shortly discuss such conditions.

26.3.1 Elliptical Polarization from Bending Magnet Radiation

The direction of the electric component of the radiation field is parallel to the
particle acceleration. Since radiation is the perturbation of electric field lines from
the charge at the retarded time to the observer, we must take into account all
apparent acceleration. To see this more clear, we assume an electron to travel counter
clockwise on an orbit travelling from say a 12-o’clock position to 9-o’clock and then
6-o’clock. Watching the particle in the plane of deflection, the midplane, we notice
only a horizontal acceleration which is maximum at 9-o’clock. Radiation observed
in the midplane is therefore linearly polarized in the plane of deflection.

Now we observe the same electron at a small angle above the midplane. Apart
from the horizontal motion, we notice now also an apparent vertical motion. Since
the electron follows pieces of a circle this vertical motion is not uniform but exhibits
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acceleration. Specifically, at 12-o’clock the particle seems to be accelerated only
in the vertical direction (downward), horizontally it is in uniform motion; at 9-
o’clock the acceleration is only horizontal (towards 3-o’clock) and the vertical
motion is uniform; finally, at 6-o’clock the electron is accelerated only in the vertical
plane again (upward). Because light travels faster than the electron, we observe
radiation first coming from the 12-o’clock position, then from 9-o’clock and finally
from 6-o’clock. The polarization of this radiation pulse changes from downward to
horizontal (left-right) to upward which is what we call elliptical polarization where
the polarization vector rotates with time. Of course, in reality we do not observe
radiation from half the orbit, but only from a very short arc segment of angle˙1=� .
However, if we consider Lorentz contraction the 9-o’clock trajectory in the particle
system looks very close to a half circle radiation into˙180 degrees which appears in
the laboratory system within˙1=�: Therefore the short piece of arc from which we
observe the radiation has all the features just used to explain elliptical polarization
in a bending magnet.

If we observe the radiation at a small angle from below the midplane, the
sequence of accelerations is opposite, upward-horizontal (left-right)-downward.The
helicity of the polarization is therefore opposite for an observer below or above the
midplane. This qualitative discussion of elliptical polarization must become obvious
also in the formal derivation of the radiation field. Closer inspection of the radiation
field (25.87) from a bending magnet

Er.!/ D �
p
3

4��0

e

cR

!

!c
�.1C �2#2/

"
sign

�
1

	

�
K2=3.�/ u� � i

�#K1=3.�/p
1C �2#2 u�

#
(26.70)

shows that both polarization terms are 90ı out of phase. As a consequence, the
combination of both terms does not just introduce a rotation of the polarization
direction but generates a time dependent rotation of the polarization vector which
we identify with circular or elliptical polarization. In this particular case, the
polarization is elliptical since the �-mode radiation is always weaker than the
�-mode radiation. The field rotates in time just as expected from the qualitative
discussion above. The linear dependence of the second term in (26.70) also defines
the helicity proportional to the sign of #:

We may quantify the polarization property considering that the electrical field is
proportional to the acceleration vector P̌. Observing radiation at an angle with the
horizontal plane, we note that the acceleration being normal to the trajectory and
in the midplane can be decomposed into two components P̌x and P̌z as shown in
Fig. 26.10a.

The longitudinal acceleration component together with a finite observation angle
# gives rise to an apparent vertical acceleration with respect to the observation
direction and the associated vertical electric field component is

Ey / P̌y D ny
P̌
z C nxny

P̌
x :
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Fig. 26.10 Acceleration along an arc-segment of the particle trajectory in (a) a bending magnet,
(b) polarization as a function of time, and (c) radiation field components as a function of time

An additional component appears, if we observe the radiation also at an angle with
respect to the .x; y/-plane which we, however, ignore here for this discussion. The
components nx; ny are components of the observation unit vector from the observer
to the source with ny D � sin# . We observe radiation first from an angle # > 0.
The horizontal and vertical radiation field components as a function of time are
shown in Fig. 26.10b. Both being proportional to the acceleration (Fig. 26.10a), we
observe a symmetric horizontal field Ex and an antisymmetric vertical field Ey. The
polarization vector (Fig. 26.10c) therefore rotates with time in a counter clockwise
direction giving rise to elliptical polarization with lefthanded helicity. Observing
the radiation from below with # < 0; the antisymmetric field switches sign and
the helicity becomes righthanded. The visual discussion of the origin of elliptical
polarization of bending magnet radiation is in agreement with the mathematical
result (26.70) displaying the sign dependence of the �-mode component with # .

The intensities for both polarization modes are shown in Fig. 26.11 as a function
of the vertical observation angle # for different photon energies. Both intensities
are normalized to the forward intensity of the �-mode radiation. From Fig. 26.11
it becomes obvious that circular polarization is approached for large observation
angles. At high photon energies both radiation lobes are confined to very small
angles but expand to larger angle distributions for photon energies much lower than
the critical photon energy.

The elliptical polarization is left or right handed depending on whether we
observe the radiation from above or below the horizontal mid plane. Furthermore,
the helicity depends on the direction of deflection in the bending magnet or the sign
of the curvature sign.1=	/. By changing the sign of the bending magnet field the
helicity of the elliptical polarization can be reversed. This is of no importance for
radiation from a bending magnet since we cannot change the field without loss of
the particle beam but is of specific importance for elliptical polarization state of
radiation from wiggler and undulator magnets.
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 γθ

 ω/ω

π
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Fig. 26.11 Relative intensities of � -mode and �-mode radiation as a function of vertical
observation angle � for different photon energies

26.3.2 Elliptical Polarization from Periodic Insertion Devices

We apply the visual picture for the formation of elliptically polarized radiation in
a bending magnet to the periodic magnetic field of wiggler and undulator magnets.
The acceleration vectors and associated field vectors are shown in Fig. 26.12a, b
for one period and similar to the situation in bending magnets we do not expect
any elliptical polarization in the mid plane where # D 0. Off the mid-plane, we
observe now the radiation from a positive and a negative pole. From each pole we
get elliptical polarization but the combination of lefthanded polarization from one
pole with righthanded polarization from the next pole leads to a cancellation of
elliptical polarization from periodic magnets (Fig. 26.12c). In bending magnets, this
cancellation did not occur for lack of alternating deflection. Since there are generally
an equal number of positive and negative poles in a wiggler or undulator magnet
the elliptical polarization is completely suppressed. Ordinary wiggler and undulator
magnets do not produce elliptically polarized radiation.

Asymmetric Wiggler Magnet

The elimination of elliptical polarization in periodic magnets results from a
compensation of left and righthanded helicity and we may therefore look for an
insertion device in which this symmetry is broken. Such an insertion device is
the asymmetric wiggler magnet which is designed similar to a wavelength shifter
with one strong central pole and two weaker poles on either side such that the
total integrated field vanishes or

R
By ds D 0. A series of such magnets may be
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Fig. 26.12 Acceleration vectors along one period of (a) a wiggler magnet, (b) associated
polarization vectors, and (c) corresponding radiation fields
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Fig. 26.13 Asymmetric wiggler magnet

aligned to produce an insertion device with many poles to enhance the intensity. The
compensation of both helicities does not work anymore since the radiation depends
on the magnetic field and not on the total deflection angle. A permanent magnet
rendition of an asymmetric wiggler magnet is shown schematically in Fig. 26.13

The degree of polarization from an asymmetric wiggler depends on the desired
photon energy. The critical photon energy is high for radiation from the high field
pole

�
�C

c

�
and lower for radiation from the low field pole

�
��

c

�
. For high photon

energies
�
�ph � �C

c

�
the radiation from the low field poles is negligible and the

radiation is essentially the same as from a series of bending magnets with its
particular polarization characteristics. For lower photon energies

�
��

c < �ph < �
C
c

�
the radiation intensity from high and low field pole become similar and cancellation
of the elliptical polarization occurs. At low photon energies

�
�ph < �

�
c

�
the intensity

from the low field poles exceeds that from the high field poles and we observe again
elliptical polarization although with reversed helicity.

Elliptically Polarizing Undulator

The creation of elliptically and circularly polarized radiation is important for
a large class of experiments using synchrotron radiation and special insertion
devices have therefore been developed to meet such needs in an optimal way.
Different approaches have been suggested and realized as sources for elliptically
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λλ

Fig. 26.14 Permanent magnet arrangement to produce elliptically polarized undulator radia-
tion [11]
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Fig. 26.15 3-D view of an elliptically polarizing undulator, EPU [11]

polarized radiation, among them for example, those described in [9, 10]. All
methods are based on permanent magnet technology, sometimes combined with
electromagnets, to produce vertical and horizontal fields shifted in phase such that
elliptically polarized radiation can be produced. Utilizing four rows of permanent
magnets which are movable with respect to each other and magnetized as shown in
Fig. 26.14, elliptically polarized radiation can be obtained.

Figure 26.15 shows the arrangement in a three dimensional rendition to visualize
the relative movement of the magnet rows [9, 11].
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Fig. 26.16 Undulator for elliptically polarized radiation [10]

The top as well as the bottom row of magnet poles are split into two rows, each of
which can be shifted with respect to each other. This way, a continuous variation of
elliptical polarization from left to linear to right handed helicity can be obtained. By
shifting the top magnet arrays with respect to the bottom magnets the fundamental
frequency of the undulator radiation can be varied as well. Figure 26.16 shows a
photo of such a magnet [10].

Problems

26.1 (S). Consider an undulator magnet with a period length of �p D 5 cm in a
7GeV storage ring. The strength parameter be K D 1: What is the maximum
oscillation amplitude of an electron passing through this undulator? What is the
maximum longitudinal oscillation amplitude with respect to the reference system
moving with velocity Ň?
26.2 (S). An undulator with 50 poles, a period length of �p D 5 cm and a strength
parameter of K D 1 is to be installed into a 1 GeV storage ring. Calculate the
focal length of the undulator magnet. Does the installation of this undulator require
compensation of its focusing properties? How about a wiggler magnet with K D 5?
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26.3 (S). Consider the expression (26.67) for the photon flux into the forward cone.
We also know that the band width of undulator radiation scales like!=! / 1=Np.
With this, the photon flux (26.67) becomes independent of the number of undulator
periods!? Explain in words, why this expression for the photon flux is indeed a
correct scaling law.

26.4 (S). A hybrid undulator is to be installed into a 7 GeV storage ring to produce
undulator radiation in a photon energy range of 4 keV to 15 keV. The maximum
undulator field shall not exceed a value of B0 
 2 T at a gap aperture of 10 mm. The
available photon flux in the forward cone shall be at least 10% of the maximum flux
within the whole spectral range. Specify the undulator parameters and show that the
required photon energy range can be covered by changing the magnet gap only.

26.5 (S). Consider an electron colliding head-on with a laser beam. What is the
wavelength of the laser as seen from the electron system. Derive from this the
wavelength of the “undulator“ radiation in the laboratory system.

26.6 (S). An electron of energy 2 GeV performs transverse oscillations in a wiggler
magnet of strength K D 1:5 and period length �p D 7:5 cm. Calculate the maximum
transverse oscillation amplitude. What is the maximum transverse velocity in units
of c during those oscillations. Define and calculate a transverse relativistic factor
�?. Note, that for K & 1 the transverse relativistic effect becomes significant in the
generation of harmonic radiation.

26.7 (S). Calculate for a 3 GeV electron beam the fundamental photon energy for
a 100 period-undulator with K D 1 and a period length of �p D 5 cm. What is
the maximum angular acceptance angle # (as determined by adjustable slits) of the
beam line, if the radiation spectrum is to be restricted to a bandwidth of 10%?

26.8 (S). Strong mechanical forces exist between the magnetic poles of an undu-
lator when energized. Are these forces attracting or repelling the poles? Why?
Consider a ` D1 m long undulator with a pole width w D 0:1m, 15 periods each
�p D 7 cm long and a maximum field of B0 D 1:5T. Estimate the total force
between the two magnet poles ?

26.9 (S). In Chap. 23 we mentioned undulator radiation as a result of Compton
scattering of the undulator field by electrons. Derive the fundamental undulator
wavelength from the process of Compton scattering.

26.10 (S). The undulator radiation intensity is a function of the strength parameter
K: Find the strength parameter K for which the fundamental radiation intensity
is a maximum. Determine the range of K-values for which the intensity of the
fundamental radiation is within 10% of the maximum.

26.11 (S). Show from (26.54) that along the axis .# D 0/ radiation is emitted only
in odd harmonics.

26.12 (S). Show from (26.51) that undulator radiation does not produce elliptically
polarized radiation in the forward direction .# D 0/.
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26.13 (S). Try to design a hybrid undulator for a 3 GeV storage ring to produce
4 keV to 15 keV photon radiation. Is it possible? Why not? Optimize the undulator
parameters such that this photon energy range can be covered with the highest flux
possible and utilizing lower order harmonics (order 7 or less). Plot the radiation
spectrum that can be covered by changing the gap height of the undulator.

26.14 (S). An undulator is constructed from hybrid permanent magnet material
with a period length of �,p D 5:0 cm. What is the fundamental wavelength range
in a 800 MeV storage ring and in a 7 GeV storage ring if the undulator gap is to be
at least 10 mm?

26.15 (S). Determine the tuning range for a hybrid magnet undulator in a 2.5 GeV
storage ring with an adjustable gap g  10mm. Plot the fundamental wavelength
as a function of magnet gap for two different period lengths, �,p D 15mm and
�,p D 75mm. Why are the tuning ranges so different?

26.16. Consider a 26-pole wiggler magnet with a field By .T/ D 1:5 sin
�
2�
�,p

z
�

and

a period length of �,p D 15 cm as the radiation source for a straight through photon
beam line and two side stations at an angle # D 4mr and # D 8mr in a storage ring
with a beam energy of 2.0 GeV. What is the critical photon energy of the photon
beam in the straight ahead beam line and in the two side stations?

26.17. Verify the relative intensities of �-mode and �-mode radiation in Fig.26.12
for two quantitatively different pairs of observation angles # and photon energies
"="c.

26.18. Design an asymmetric wiggler magnet assuming hard edge fields and
optimized for the production of elliptical polarized radiation at a photon energy of
your choice. Calculate and plot the photon flux of polarized radiation in the vicinity
of the optimum photon energy.

26.19. Calculate the total undulator
�
Np D 50; �p D 4:5 cm, K D 1:0� radiation

power from a 200 mA, 6 GeV electron beam. Pessimistically, assume all radiation
to come from a point source and be contained within the central cone. This is a safe
assumption for the design of the vacuum chamber or mask absorbers. Determine the
power density at a distance of 15 m from the source. Compare this power density
with the maximum acceptable of 10 W/mm2. How can you reduce the power density,
on say a mask, to the acceptable value or below?

26.20. Use the beam and undulator from problem 26.19 and estimate the total
radiation power into the forward cone alone. What percentage of all radiation falls
within the forward cone? [hint: make reasonable approximations to simplify the
math but keep the result reasonably close to the correct answer].

26.21. Derive an expression for the average velocity component Ň D Nv=c of a
particle traveling through an undulator magnet of strength K:
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Chapter 27
Free Electron Lasers

Synchrotron radiation is emitted when electromagnetic fields exert a force on a
charged particle. This opens the possibility to apply external fields with specific
properties for the stimulation of electrons to emit more radiation. Of course, not
just any external electromagnetic field would be useful. Fields at some arbitrary
frequency would not work because particles interacting with such fields would in
general be periodically accelerated and decelerated without any net energy transfer.
The external field must have a frequency and phase such that a particle may
continuously lose energy into synchrotron radiation. Generally, it is most convenient
to recycle and use spontaneous radiation emitted previously by the same emission
process. In this part, we will discuss in some detail the process of stimulation as it
applies to a free electron laser.

In a free electron laser (FEL) quasi-monochromatic, spontaneous radiation
emitted from an undulator is recycled in an optical cavity to interact with the
electron beam causing accelerations which are periodic with the frequency of the
undulator radiation. In order to couple the particle motion to the strictly transverse
electromagnetic radiation field, the path of the electrons is modulated by periodic
deflections in a magnetic field to generate transverse velocity components. In a
realistic setup, this magnetic field is provided in an undulator magnet serving both as
the source of radiation and the means to couple to the electric field. The transverse
motion of the particle results in a gain or loss of energy from/to the electromagnetic
field depending on the location of the particle with respect to the phase of the
external radiation field. The principle components of a FEL are shown in Fig. 27.1.

An electron beam is guided by a bending magnet unto the axis of an undulator.
Upon exiting the undulator, the beam is again deflected away from the axis by a
second bending magnet, both deflections to protect the mirrors of the optical cavity.
Radiation that is emitted by the electron beam while travelling through the undulator
is reflected by a mirror, travels to the mirror on the opposite side of the undulator
and is reflected there again. Just as this radiation pulse enters the undulator again,
another electron bunch joins to establish the emission of stimulated radiation. The
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Fig. 27.1 Free electron laser setup (schematic)

electron beam pulse consists of a long train of many bunches, much longer than
the length of the optical cavity such that many beam-radiation interactions can be
established.

27.1 Small Gain Regime

We may follow this process in great detail observing an electron as it travels
through say the positive half period of its oscillatory trajectory. During this phase,
the electron experiences a negative acceleration from the undulator magnet field
which is in phase with the oscillation amplitude. Acceleration causes a perturbation
of the electric fields of the electron as was discussed in detail in Chap. 12. This
perturbation travels away from the source at the speed of light, which is what we
call electromagnetic radiation. For an electron, the electric radiation field points in
the direction of the acceleration. As the electron travels through the positive half
wave, it emits a radiation field made of half a wave. Simultaneously, this radiation
field, being faster than the electron, travels ahead of the electron by precisely
half a wavelength. This process tells us that the radiation wavelength is closely
related to the electron motion and that it is quasi-monochromatic. Of course, for
a strong undulator the sinusoidal motion becomes perturbed and higher harmonics
appear, but the principle arguments made here are still true. Now, the electron
starts performing the negative half of its oscillation and, experiencing a positive
acceleration, emits the second halfwave of the radiation field matching perfectly the
first halfwave. This happens in every period of the undulator and when the electron
reaches the end of the last period a radiation wave composed of Np oscillations exists
ahead of the electron. This process describes the spontaneous radiation emission
from an electron in an undulator magnet.

The radiation pulse just created is recycled in the optical cavity to reenter the
undulator again at a later time. The length of the optical cavity must be adjusted very
precisely to an integer multiple of both the radiation wavelength and the distance
between electron bunches. Under these conditions, electron bunches and radiation
pulses enter the undulator synchronously. A complication arises from the fact that
the electrons are contained in a bunch which is much longer than the wavelength of
the radiation. The electrons are distributed for all practical purposes uniformly over
many wavelengths. For the moment, we ignore this complication and note that there
is an electron available whenever needed.
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We pick now an electron starting to travel through a positive half wave of its
oscillation exactly at the same time and location as the radiation wave starts its pos-
itive field halfperiod. The electron, experiences then a downward acceleration from
the radiation field. During its motion the electron is continuously accelerated until
it has completed its travel through the positive half oscillation. At the same time,
the full positive have wave of the radiation field has moved over the electron. At
this moment the electron and the radiation field are about to start their negative half
periods. Continuing its motion now through the negative half period, the electron
still keeps loosing energy because it now faces a negative radiation field. The fact
that the radiation field “slides“ over the electron just one wavelength per undulator
period ensures a continuous energy transfer from electron to the radiation field.
The electron emits radiation which is now exactly in synchronism with the existing
radiation field and the new radiation intensity is proportional to the acceleration or
the external radiation field. Multiple recycling and interaction of radiation field with
electron bunches results therefore in an exponential increase in radiation intensity.

At this point, we must consider all electrons, not just the one for which the
stimulation works as just described. This process does not work that perfect for all
particles. An electron just half a wavelength behind the one discussed above would
continuously gain energy from the radiation field and any other electron would loose
or gain energy depending on its phase with respect to the radiation. It is not difficult
to convince oneself that on average there may not be any net energy transfer one way
or another and therefore no stimulation or acceleration. To get actual stimulation,
some kind of asymmetry must be introduced.

To see this, we recollect the electron motion in a storage ring in the presence of
the rf-field in the accelerating cavity. In Sect. 9.2.1 we discussed the phase space
motion of particles under the influence of a radiation field. The radiation field of
a FEL acts exactly the same although at a much shorter wavelength. The electron
beam extends over many buckets as shown in Fig.27.2 and it is obvious that in its
interaction with the field half of the electrons gain and the other half loose energy
from/to the radiation field. The effect of the asymmetry required to make the FEL
work is demonstrated in Fig. 27.3. Choosing an electron beam energy to be off-

λ

Fig. 27.2 Interaction of an electron beam (on-resonance energy) with the radiation field of a FEL.
The arrows in the first bucket indicate the direction of particle motion in its interaction with the
electromagnetic field
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Fig. 27.3 Interaction of an electron beam (off-resonance energy) with the radiation field of a FEL

resonance by a small amount, the energy gain and losses for all electrons within a
bucket becomes unbalanced and we can choose a case where all electrons on average
loose energy into (FEL) or gain energy (particle acceleration by a radiation field)
from the radiation field. The arrows in the first bucket of Fig. 27.3 show clearly
the imbalance of energy gain or loss. What it means to choose an electron beam
energy off-resonance will be discussed in more detail in the next section, where we
formulate quantitatively the processes discussed so far only qualitatively.

We concentrate on the case where only a small fraction of the particle energy
is extracted such that we can neglect effects on particle parameters. This regime is
called the “small-gain“ regime. Specifically, we ignore changes in the particle
energy and redistribution in space as a consequence of the periodic energy
modulation.

27.1.1 Energy Transfer

Transfer of energy between a charged particle and an electromagnetic wave is
effected by the electric field term of the Lorentz force equation and the amount
of transferred energy is

W D e
Z

EL dz D e
Z

L
Ev dt ; (27.1)

where EL is the external field or the Laser field in the optical cavity and v the particle
velocity. In free space v?EL and therefore there is no energy transfer possible
.W � 0/ : Generating some transverse velocity v? through periodic deflection in
an undulator, we get from (26.3)

vx D Cˇc
K

�
sin
�
kpz
�
; (27.2)

where kp D 2�=�p: The external radiation field can be expressed by

EL D E0L cos .!Lt � kLzC '0/ (27.3)
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and the energy transfer is

W D e
Z

vELdt D e
Z
vxELdt

D eˇc
K

�
E0L

Z
cos .!Lt � kLzC '0/ sin

�
kpz
�

dt (27.4)

D 1
2
eˇc

K

�
E0L

Z �
sin�C � sin��� dt ;

where

�˙ D !Lt � �kL ˙ kp
�

zC '0: (27.5)

The energy transfer appears to be oscillatory, but continuous energy transfer can
be obtained if either �C= const. or ��= const. In this case

d�˙

dt
D !L �

�
kL ˙ kp

� Pz D 0 (27.6)

and we must derive conditions for this to be true. The velocity Pz is from (26.3)

Pz D ŇcC ˇc
K2

4�2
cos

�
2kpz

�
; (27.7)

where the average drift velocity Ňc is defined by

dNz
dt
D Ňc D ˇc

�
1 � K2

4�2

�
: (27.8)

We modify slightly the condition (27.6) and require that it be true only on average

d�˙

dt
D !L �

�
kL ˙ kp

� dNz
dt
D 0; (27.9)

or

�
kL ˙ kp

�
ˇ

�
1 � K2

4�2

�
� kL D 0: (27.10)

With ˇ � 1 � 1=2�2 and kp � kL, (27.10) becomes

kL

��
1 � 1

2�2

��
1 � K2

4�2

�
� 1

�
˙ kp � 0; (27.11)
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or for � � 1

� kL

2�2

�
1C 1

2
K2
�˙ kp D 0: (27.12)

Equation (27.12) can be met only for theCsign or for

kp D kL

2�2

�
1C 1

2
K2
�
; (27.13)

which is identical to the definition of the fundamental undulator radiation wave-
length

�L D �p

2�2

�
1C 1

2
K2
�
: (27.14)

Radiation at the fundamental wavelength of undulator radiation guarantees
a continuous energy transfer from the particles to the electromagnetic wave or
stimulation of radiation emission by an external field. For this reason, it is most
convenient to use spontaneous undulator radiation as the external field to start the
build-up of the free electron laser.

27.1.2 Equation of Motion

The energy gain dW of the electromagnetic field is related to the energy change d�
of the electron by

d�

dz
D � 1

mc2
dW

ˇcdt
(27.15)

or with (27.4)

d�

dz
D � eKE0L

2�mc2
�
sin�C � sin��� : (27.16)

With the substitution sin x D �Re
�
i eix

�
d�

dz
D eKE0L

2�mc2
Re

�
iei�C � iei���

: (27.17)

In �˙ D !Lt � �kL ˙ kp
�

z .t/ C '0; we replace the location function z.t/ by its
expression (26.5)

z .t/ D Ňct„ƒ‚…
D Ns
C K2

8�2kp
sin
�
2kp
Ňct
�

„ ƒ‚ …
� Ňct

; (27.18)
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composed of an average position Nz and an oscillatory term. With kp � kL

d�

dz
D eˇKE0L

2�mc2
Re

�
i exp

�
i

kLK2

8�2kp
sin
�
2kpNz

�� h
ei N�C � ei N��i


(27.19)

and the phase

N�˙ D !Lt � �kL ˙ kp
� NzC '0 : (27.20)

With the definition exp .ix sin �/ DPnDC1
nD�1 Jn .x/ein� we get finally

d�

dz
D eˇK E0L

2�mc2
Re

�
i
XnDC1

nD�1 Jn

�
kLK2

8�2kp

�
ei2nkpNz �ei N�C � ei N����

: (27.21)

The infinite sum reflects the fact that the condition for continuous energy transfer
can be met not only at one wavenumber but also at all harmonics of that frequency.
Combining the exponential terms and sorting for equal wavenumbers hkp; where h
is an integer, we redefine the summation index by setting

2nkp C kp D hkp �! n D h � 1
2

(27.22a)

2nkp � kp D hkp �! n D hC 1
2

(27.22b)

and get

d�

dz
D eˇK E0L

2�mc2

1X
hD1

h
J h�1

2
.x/ � J hC1

2
.x/
i

Re
n
i eiŒ.kLCh kp/ Nz�!LtC'0�

o
„ ƒ‚ …

D� sinŒ.kLCh kp/ Nz�!LtC'0�

; (27.23)

where x D K2

4C2K2
. Using the JJ-function (26.60) the energy transfer is

d�

dz
D �eˇK E0L

2�mc2

1X
hD1

ŒJJ� sin�: (27.24)

For maximum continuous energy transfer sin� D const. or

d�

dt
D �kL C h kp

� dz

dt
� !L (27.25)

D �kL C h kp
�
ˇc

�
1 � K2

4�2

�
� !L
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D �kL C h kp
� �

1 � 1

2�2

�
c

�
1 � K2

4�2

�
� ckL

d�

dt
D � ckL

2�2r

�
1C 1

2
K2
�C h kpc D 0 ;

where we assumed that kL � h kp, which is true since �p � �L and the harmonic
number of interest is generally unity or a single digit number. This condition
confirms our earlier finding (27.14) and extends the synchronicity condition to
multiples h of the fundamental radiation frequency

�L D �p

2�2h

�
1C 1

2
K2
�
: (27.26)

The integer h therefore identifies the harmonic of the radiation frequency with
respect to the fundamental radiation.

In a real particle beam with a finite energy spread we may not assume that all
particles exactly meet the synchronicity condition. It is therefore useful to evaluate
the tolerance for meeting this condition. To do this, we define a resonance energy

�2r D
kL

2hkp

�
1C 1

2
K2
�
; (27.27)

which is the energy at which the synchronicity condition is met exactly. For any
other particle energy � D �r C ı� we get from (27.25) and (27.27)

d�

dz
D 2hkp

ı�

�r
: (27.28)

With the variation of the energy deviation d
dzı� D d�

dz

ˇ̌̌
�r

� d�r
dz D d�

dz

ˇ̌̌
�r

and (27.24)

we get from (27.28) after differentiating with respect to z

d2�

dz2
D 2hkp

d

dz

ı�

�r
D �ehkpKE0L

�2r mc2
ŒJJ� sin�.z/ ; (27.29)

where, for simplicity, we use only one harmonic h. This equation can be written in
the form

d2�

dz2
C˝2

L sin� D 0 (27.30)

exhibiting the dynamics of a harmonic oscillator. Equation (27.30) is known as the
Pendulum equation [1] with the frequency

˝2
L D

ehkpKE0L

�2r mc2
jJJj : (27.31)
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While interacting with the external radiation field, the particles perform harmonic
oscillations in a potential generated by this field. This situation is very similar to the
synchrotron oscillation of particles in a storage ring interacting with the field of the
rf-cavities as was discussed in Sect. 9.2.1. In phase space, the electron perform
synchrotron oscillations at the frequency ˝L while exchanging energy with the
radiation field.

27.1.3 FEL-Gain

Having established the possibility of energy transfer from an electron to a radiation
field, we may evaluate the magnitude of this energy transfer or the gain in field
energy per interaction process or per pass. One pass is defined by the interaction of
an electron bunch with the radiation field while passing through the entire length
of the undulator. The gain in the laser field WL D �mc2ne�;where � is the
energy loss per electron and pass to the radiation field and ne the number of electrons
per bunch. The energy in the laser field

WL D 1
4
�0E

2
0LV ; (27.32)

where V is the volume of the radiation field. With this, we may define the average
FEL-gain for the hth harmonic by

Gh D hWLi
WL

D �mc2ne h�ine
�0
4

E20LV
D � 2mc2�rne

�0hkpE20LV

˝
� 0˛

ne
; (27.33)

making use of (27.28) . h� 0ine
is the average value of� 0=� 0

f�� 0
0 for all electrons

per bunch, where � 0
0 is defined at the beginning of the undulator and � 0

f at the end
of the undulator. To further simplify this expression, we use (27.31), solve for the
laser field

E0L D mc2�2r ˝
2
L

ehKkpŒJJ�
, (27.34)

and define the electron density nb D ne=V :Here we have tacitly assumed that the
volume of the radiation field perfectly overlaps the volume of the electron beam.
This is not automatically the case and must be achieved by carefully matching the
electron beam to the diffraction dominated radiation field. If this cannot be done,
the volume V is the overlap volume, or the larger of both. With this the FEL-gain
becomes

G D �8�e2nbhK2kpŒJJ�2

mc2�3r ˝
4
L

˝
� 0˛

ne
(27.35)
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Numerical evaluation of h� 0ine
can be performed with the pendulum equation.

Multiplying the pendulum equation 2� 0 and integrating we get

� 02 � 2˝2
L cos� D const. (27.36)

Evaluating this at the beginning of the undulator

� 02 � � 02
0 D 2˝2

L .cos� � cos�0/ ; (27.37)

which becomes with � 0
0 D 2h kp

�0��r
�r

� 02 D
�
2hkp

�0 � �r

�r

�2
C 2˝2

L .cos� � cos�0/ (27.38)

Finally,

� 0 .z/ D 2 h kp
� � �r

�r

s
1C ˝2

L

2k2 k2p

�2r

.� � �r/
2
Œcos� .z/ � cos�0�; (27.39)

or with

w D h kpLu
� � �r

�r
; (27.40)

where Lu D Np�p is the undulator length,

� 0 .z/ D 2w

Lu

s
1C L2u˝

2
L

2w2
Œcos� .z/ � cos�0� : (27.41)

We solve this by expansion and iteration. For a low gain FEL, the field E0L is
weak and does not influence the particle motion. Therefore ˝L � 1 and (27.41)
becomes

� 0 � 2w

L

�
1C 1

2

L2˝2
L

2w2
.cos� � cos�0/

�1
8

L4˝4
L

4w4
.cos� � cos�0/

2 C : : :
�
: (27.42)

In the lowest order of iteration � 0 D � 0
0 D 2w

L and � 0
.0/ D 0 for all particles,

which means there is no energy transfer. For first order approximation, we integrate
� 0
0 .z/ D 2w

Lu
to get �.1/.z/ D 2w

Lu
zC �0 and

� 0
.1/ D � 0.Lu/� � 0

1 .0/ D L˝2
L

2w Œcos .2wC �0/ � cos�0�CO.2/ (27.43)
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from (27.42). Averaging over all initial phases occupied by electrons 0 
 �0 
 2�

˝
� 0

1

˛ D L˝2
L

2w

1

2�

Z 2�

0

Œcos .2wC �0/ � cos�0� d�0 D 0 : (27.44)

No energy transfer to the laser field occurs in this approximation either. We need
a still higher order approximation. The higher order correction to � 0

1 .s/ D � 0
0 .s/C

ı� 0
1 .s/ is from (27.42)

ı� 0
.1/ D

L˝2
L

2w
Œcos� � cos�0� ; (27.45)

and the correction to �1 .s/ is

ı�.1/ D L˝2
L

2w

Z L

0

�
cos

�
2w

L
zC �0

�
� cos�0

�
ds

D L2˝2
L

4w2
Œsin .2wC �0/� sin�0 � 2w cos�0� : (27.46)

The second order approximation to the phase is then �1.z/ D 2w
Lu

z C �0 C
ı�.1/ and using (27.42) in second order as well we get

� 0
.2/ D L˝2

L
2w

�
cos

�
2wC �0 C ı�.1/

� � cos�0
	

� L 3˝4
L

4w2
Œcos .2wC �0/ � cos�0�

2 C : : : ; (27.47)

where in the second order term only the first order phase �1.z/ D 2w
Lu

zC�0 is used.
The first term becomes with ı�.1/ � �0 C 2w

cos .2wC �0 C ı�1/� cos�0 (27.48)

� cos .2wC �0/� ı�1 sin .2wC �0/� cos�0 (27.49)

and

� 0
2 D

L3u ˝
4
L

16w3

�
8w2

L2u˝
2
Œcos .2wC �0/� cos�0�

� 2 sin .2wC �0/ Œsin .2wC �0/� sin�0 � 2w cos�0�

� Œcos .2wC �0/� cos�0�
2 C : : :

o
: (27.50)
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Now, we average over all initial phases assuming a uniform distribution of
particles in z or in phase. The individual terms become then

hcos .2wC �0/� cos�0i D 0˝
sin2 .2wC �0/

˛ D 1
2

hsin .2wC �0/ sin�0i D 1
2

cos .2w/ (27.51a)

hsin .2wC �0/ cos�0i D 1
2

sin .2w/

hcos .2wC �0/ cos�0i D 1
2

cos .2w/ :

With this ˝
� 0

2

˛ D � L3u ˝
4
L

16w3
Œ1 � cos .2w/� w sin .2w/� (27.52)

and finally with Œ1 � cos .2w/ � w sin .2w/� =w3 D � d
dw

�
sin w

w

�2
˝
� 0

2

˛ D L3u˝
4
L

8

d

dw

�
sin w

w

�2
: (27.53)

The FEL-gain is finally from (27.35)

Gh D ��rcnbh K2L3ukp

�3r
ŒJJ�2

d

dw

�
sin w

w

�2
; (27.54)

where we may express the particle density nb by beam parameters as obtained from
the electron beam source

nb D ne

V
D ne

2��2`
; (27.55)

where � is the radius of a round beam. With these definitions, and OI D cene=` the
electron peak current, the gain per pass becomes

Gh D �2
2=3�rch�3=2L3u

c�2�5=2p

OI
e

K2ŒJJ�2�
1C 1

2
K2
�3=2 d

dw

�
sin w

w

�2
: (27.56)

The gain depends very much on the choice of the electron beam energy through
the function (27.40), which is expressed by the gain curve as shown in Fig. 27.4.

There is no gain if the beam energy is equal to the resonance energy .� D �r/.
As has been discussed in the introduction to this chapter, we must introduce an
asymmetry to gain stimulation of radiation or gain and this asymmetry is generated
by a shift in energy. For a monochromatic electron beam maximum gain can be
reached for w � 1:2. A realistic beam, however, is not monochromatic and the
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Fig. 27.4 Free electron laser

gain curve G /- d
dw

�
sin w

w

�2

narrow gain curve indicates that a beam with too large an energy spread may not
produce any overall gain. There is no precise upper limit for the allowable energy
spread but from Fig. 27.4 we see that gain is all but gone when jwj & 5. We use
this with (27.40) and (27.27) to formulate a condition for the maximum allowable
energy spread ˇ̌̌̌

ı�

�

ˇ̌̌̌
� 2�2r �L

1C 1
2
K2
: (27.57)

For efficient gain the geometric size of the electron beam and the radiation field
must be matched. In (27.55) we have introduced a volume for the electron bunch.
Actually, this volume is the overlap volume of radiation field and electron bunch.
Ideally, one would try to get a perfect overlap by forming both beams to be equal.
This is in fact possible and we will discuss the conditions for this to happen. First,
we assume that the electron beam size varies symmetrically about the center of the
undulator. The beam size develops like

�2 .z/ D �20 C
�
�

�0

�2
z2 (27.58)

with distance z from the beam waist. To maximize gain we look for the minimum
average beam size within an undulator. This minimum demands a symmetric
solution about the undulator center. Furthermore, we may select the optimum beam
size at the center by looking for the minimum value of the maximum beam size
within the undulator. From d�2=d�20 D 0; the optimum solution is obtained for
z D 1

2
Lu D �20 =� D ˇ0. For ˇ0 D 1

2
Lu the beam cross section grows from a value of

�20 in the middle of the undulator to a maximum value of 2�20 at either end.
The radiation field is governed by diffraction. Starting at a beam waist, the growth

of the radiation field cross section due to diffraction is quantified by the Rayleigh
length

zR D �w20
�
; (27.59)
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where w0 is the beam size at the waist and � the wavelength. This length is defined
as the distance from the radiation source (waist) to the point at which the cross
section of the radiation beam has grown by a factor of two. For a Gaussian beam,
we have for the beam size at a distance z from the waist

w2.z/ D w20 C�2z2; (27.60)

where � D �
�w0

is the divergence angle of the radiation field. This is exactly the
same condition as we have just discussed for the electron beam assuming the center
of the undulator as the source of radiation.

27.2 High Gain Free Electron Laser

We have discussed the interaction of an electron beam with an external electromag-
netic field and found that repeated recycling of the photon beam by reflecting mirrors
this photon beam intensity can be made to grow until it is big enough to modulate
the electron beam into microbunches at a distance equal to the radiation wavelength.
This interaction works only at wavelength where good reflectors are available. This
is, for example, not possible for UV and x-rays. The question arises what would
happen if an electron beam would travel through a very long undulator instead
of being reflected many times. This is the principle of self-amplified-spontaneous-
emission or SASE.

The goal is to look for electron dynamics which leads to micro bunching at
the wavelength of interest. Any bunch radiates coherently at wavelengths equal or
longer than the bunch length as was discussed in Sect. 24.7. This coherent radiation
scales like the square of the number of particles per bunch n2b rather than linear with
nb as is the case of incoherent radiation emitted at wavelength shorter than the bunch
length. Since the number of electrons per bunch can be very large we gain a large
increase in the photon intensity. Actually this is the highest photon intensity one
can extract from a bunch of electrons. Unfortunately, it is technically not possible
to generate bunches at visible or shorter wavelength and preserve such bunches
along a beam line. The way out is to possibly generate microbunches at the place
of the radiation source. This was possible in the FEL and we will now discuss this
possibility in the realm of SASE.

27.2.1 Electron Dynamics in a SASE FEL

In this section we aim at producing coherent radiation at any wavelength specifically
at very short wavelength like x-rays without the support of reflecting mirrors.
The electron beam appears in bunches which are long compared to the desired
wavelength. Although the electron distribution is assumed to be uniform, there will
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be statistical fluctuations due to the finite number of electrons per bunch. This beam
is travelling through an undulator of as yet undetermined length. An x-ray single
pass FEL consists basically of a high brightness electron source, a linac followed
by a long undulator, both with parameters to produce the desired photon radiation
wavelength as the fundamental wavelength of the undulator.

In a perfect uniform beam every electron radiates in the undulator at an arbitrary
phase resulting in in-coherent radiation. The radiation travels faster than the
electrons and therefore the radiation field will interact with them. This interaction
however is incoherent and will not lead to anything. Now we assume that along the
bunch there is a density fluctuation or whisker which is very short of the order of
the desired wavelength. That whisker radiates coherently at wavelengths equal to
the temporal length of the whisker. The coherent radiation, although very small at
first, interacts with the electron beam. However, only the fundamental wavelength
as determined by electron beam energy and undulator properties will constructively
grow from undulator period to period. As this fundamental radiation travels over the
bunch ahead of the whisker it interacts coherently with the electrons and modulates
their energy periodically at the fundamental wavelength. This energy modulation
together with the deflection in the undulator leads to a density modulation at
the desired wavelength. This process occurs because electrons which have been
decelerated by the photon field get deflected more in the undulator field while
electrons being accelerated by the photon field get deflected less. Both effects lead
to a density modulation.

Such whiskers can and do occur at any place along the bunch. Therefore a number
of coherent fields will be created and grow along the undulator. Eventually though
there will be a strongest radiation field and all others, being spread over statistical
phases, will decoher and vanish in the one largest spike. This spike keeps growing
along the undulator and reaches a point from which on the photon field is strong
enough to microbunch the electron beam at which point the intensity does not grow
anymore. The SASE-FEL has reached its saturation. At the same time the energy
change introduced by the photon field is big enough to spoil the SASE principle
leading also to saturation. The theory of SASE-FEL has been first developed by [2]
as a 1-D theory. Later this was extended to a 3-D theory [3, 4]. We will however
restrict ourselves in this text to the 1-D approximation which is well met for a high
quality electron beam. Where ideal parameters are not available some degradation
of the photon beam parameters must be accepted and the actual characteristics are
mostly determined by numerical simulations.

The increase of photon intensity along the undulator is exponential because the
bunching depends on the photon intensity itself and is given by

Iph / I0 exp

�
z

LG

�
; (27.61)
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where LG the power gain length and I0 the initial spontaneous coherent intensity for
an undulator of length LG (26.66). The gain length is defined by

LG D �u

4
p
3�	

(27.62)

where 	 is the FEL-parameter

	 D
�

K � JJ

4
p
2

�u˝p

2�c�

�2=3
: (27.63)

Here the JJ-function is defined by (26.60) with the argument x D K2

4C2K2
, ˝p Dq

4�c2rene
1
�

is the plasma frequency and ne the electron density. Tacitly we have

assumed a planar undulator which could also generate third harmonic radiation
albeit at a lower intensity .	 1%/ while a helical undulator would only produce the
fundamental harmonic. Numerical simulations indicate that for presently achievable
electron beam parameters about 20 gain lengths are required to reach saturation
while the FEL-parameter is of the order of 10�3:

The peak photon pulse power at saturation is expected [2] to be

Ppeak D 	effNeEp
2��b,rms

D 	eff Ipeak
E

e
; (27.64)

which is about 14GW for SLAC-LCLS parameters [5] (	eff D 2:9�10�4; �b,rms D 77
fs, Ipeak D 3; 400A, E D 14:35GeV). Simulations give a somewhat lower power of
about 8 GW by taking all inefficiencies like increase of beam emittance along linac
and undulator into account.

A high photon intensity (27.61) demand a short gain length for a given length of
the facility while the gain length (27.62) itself is only related to the undulator period
length and FEL-period. The period length is limited to a minimum of a few cm
by technical considerations and the available linear accelerator energy and desired
radiation wavelength. The FEL-parameter (27.63) is greatly determined by the
electron density, e.g. by the electron beam emittance and bunch length. Therefore
a small beam emittance and bunch length is of paramount importance. In addition
the electron beam emittance must be close to the photon emittance for the desired
wavelength to get maximum overlap of both beams. Theoretical considerations
also require that the beam energy spread should be less than the FEL-parameter�
�E
E < 	

�
.

To make SASE work well, a very high quality electron beam must be produced
and preserved along the linac and undulator. In the following sections we will shortly
discuss the requirements and the solutions employed in the first few x-ray facilities.
The development in this newest accelerator system is still flowing and experimental
experience from the first facilities contribute to a vigorous development especially
toward more compact solutions.
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Different from storage ring which can provide radiation to many users simul-
taneously an x-ray laser can do so only for one user at one wavelength at a time.
This is acceptable because of the extraordinary properties of the radiation in terms
of photon intensity, brightness, coherence and femto-second pulse length. A high
desired pulse repetition rate obviously pushes the facility designs more and more to
superconducting technology.

27.2.2 Electron Source

The electron source determines the ultimate performance of the x-ray laser. For
maximum radiation intensity the number of electrons per microbunch should be
as large as possible. This strongly points to a laser gun where it is possible to
generate a large electron charge within a pulse of less than 100 fs. Not to loose
spatial coherence the beam emittance must be very small of the order of less than
10�10 m at the end of the linac. At source energies of � D 1 the lowest possible
normalized emittance is 1 � 2 10�6 m at high electron intensity of about 1 pC per
bunch. Lower emittances are possible for lower charges. The design requirements
are determined by many detailed simulations with specially developed numerical
programs to find solutions close to desired performance.

27.2.3 Beam Dynamics

Along the linac and undulator the beam should be focused as much as possible to
maximize the electron density. However, if the beam size is too small diffraction
effects will appear. Therefore there is an optimum beam size which can be realized
by quadrupole focusing in a FODO channel. Numerical simulations are required to
determine the optimum beam size for the parametrization of the FODO channel.
The focusing requirements must also include the effect of beam steering which is
stronger in strong focusing FODO channels.

To reach a realistic gain length a high peak current or short bunch length in the
fs regime must be achieved. That is not possible with present day technology and
bunch compression schemes must be included in the beam dynamics design.

In the low energy section of the linac .up to 200–300 MeV/ the electron bunch
is accelerated “off-crest” to obtain a mostly linear correlation of energy with phase
along the electron bunch in preparation for the bunch compression system. There
is a small non-linearity left from the sinusoidal variation of the acceleration field.
Simulations show that part of this non-linearity can be eliminated by deceleration
in a higher harmonic accelerating section. If the main linac operates at 3 GHz then
this linearizing section could operate in the X-band or about 12 GHz where suitable
power sources exist [6]. The decelerating in the X-band section is small and has no
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detrimental effect on the overall beam dynamics. After passing through the X-band
section the beam travels through a four-bend bunch compressor.

Following Liouville’s theorem the bunch compression is obtained in exchange
with energy spread. In order not to increase the energy spread too much two bunch
compression systems must be employed to reach the desired short bunch length.
After the first bunch compression the beam is further accelerated (still “off-crest”) to
a higher energy and the energy spread is reduced due to adiabatic damping. At some
intermediate energy a second four-bend bunch compressor is installed. The choice
of the intermediate energy should be chosen such that the remaining acceleration is
enough to reduce the beam energy spread by adiabatic damping to the final value of
E
E 	 	 for optimum SASE. No beam heater is necessary here because the bunch

length is already much shorter and the non-linearity is very small. Both bunch
compressors must be designed such as not to perturb beam parameters like beam
emittance too much. The R56-term is therefore chosen to be about the same in both.
Final distribution of compression is determined though by numerical simulations.

The resulting beam after the second bunch compressor includes now a very
high peak current which can drive a micro-bunching instability [7, 8] thus possibly
ruining emittance and energy spread. Therefore a “beam heater” is installed just
before the second bunch compressor. This beam heater is a short and strong wiggler
magnet which by emission of synchrotron radiation increases the incoherent energy
spread. While this seems to be the wrong method only a very small insignificant
increase of the energy spread is required to suppress the instability. After the second
bunch compressor the beam is ready to be accelerated “on-crest” to the final energy.

A significant problem arises if the bunch length is reduced too much such
that coherent radiation .CSR/ can be emitted with detrimental effect on the beam
emittance and energy spread. Other problems arise from the interaction of the
beam with surface resistance of the vacuum chamber .resistive wall effect/ : As a
consequence vacuum chamber materials with low wall resistance should be used,
e.g. aluminum rather than steel or copper-plated steel. In addition the surface must
be polished to reduce the roughness which can cause beam instabilities. Satisfactory
polishing to a roughness of well below 100 nm must be followed.

The specific techniques described here are not the only way to solve problems.
The interested reader is therefore encouraged to review the design reports of various
X-FEL facilities. The performance is determined by simulation of the electron
beam propagating through linac and undulator as well as the simulation of the
photon built-up in the undulator. While it is possible to calculate order of magnitude
parameters theoretically, small effects from actual particle distribution from source
to end can significantly affect the outcome. Therefore the whole process must
be simulated and any undesirable effect be studied and possibly eliminated or
corrected.
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27.2.4 Undulator

The undulator parameters determine together with the electron beam energy the
wavelength of the photon beam. This is the fundamental wavelength of the undulator
and at reduced intensity one can contemplate the third-harmonic. To reduce the
undulator length for a desired wavelength a short period length is desired. There are,
however, technical limits for period length below 2–3 cm. When the gap aperture
becomes close to the period length the field drops off rapidly. The period length
in the SLAC-LCLS is 3 cm and the desired undulator strength K D 3:71 which
requires an electron beam energy of 14.35 GeV to reach a fundamental wavelength

of 1:5 VA: This high undulator strength requires a very small aperture of 6 mm which
is acceptable for a linac beam because no Gaussian tails must be preserved for
lifetime.

The built-up of photon intensity occurs exponentially from noise and therefore
many gain length are needed to get the intensity into desired values. In other words,
the undulator must be very long. In the SLAC-LCLS case the undulator length is
120 m long of which theoretically 91 m are required to reach saturation. Such a long
undulator cannot be built in one piece and is therefore broken down into shorter
pieces of, in this case, 3.42 m. This breakup allows some space for beam monitoring
and beam control.

Problems

27.1 (S). Consider an electron travelling through an undulator producing radiation.
Show, that the radiation front moves ahead of the electron by one fundamental
radiation wavelength per undulator period.

27.2 (S). Why does a helical undulator not produce higher harmonics?

27.3 (S). From the peak power at saturation derive the number of x-ray photons�
"x 	 104 eV

�
per electron. For the SLAC-LCLS K D 3:711, �p D 3 cm and Np D

3; 070: Compare this with incoherent radiation. For the band width use !
!
D 1

Np
:
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Solutions

Solutions for Chap. 1

1.1 We start with the total energy and solve for the momentum cp Dq
E2 � .mc2/2 D mc2

p
�2 � 1 D �mc2

p
1 � 1=�2 D ˇ

�
Ekin C mc2

�
: In terms

of kinetic energy cp D
q
.Ekin C mc2/2 � .mc2/2 D

q
E2kin C 2mc2Ekin and the

kinetic energy is Ekin D E � mc2 D mc2 .� � 1/ : For very large energies we get
with � � 1 for the momentum cp � E and for the kinetic energy Ekin � E. For
ˇ� 1 the kinetic energy is with ��1 � 1

2
ˇ2 just Ekin D 1

2
mv2: The non-relativistic

momentum is from p D 1
cˇ
�
Ekin C mc2

� � ˇmc D mv:

1.2 From Maxwell’s equations we have rE D 1
�0
	. We integrate this over a

cylindrical volume including part or all of the charge and get with Gauss’s Integral
Theorem:

R rEdV D H
Eda D Er2�rL, where L is the length of the cylindrical

beam considered. The electrical field has for symmetry reasons only a radial
component. The r.h.s. of Maxwell’s equation is then the integral over the volume
contained within the surface used on the l.h.s. 1

�0

R
	dV D 	

�0
�r2L for .r < R/

and 	

2�0
�R2L for .r > R/, and the radial electrical field component is Er D 	

2�0
r

for .r < R/ and 	

2�0

R2

r for .r > R/ : Similarly we get for the magnetic field after

integration
R r � BdV D 	

�0

R
vdV D 	

�0
ˇ�r2L for .r < R/ and 	

�0
ˇ�R2L for

.r > R/ : Since v D .0; 0; vz/, symmetry restricts the r.h.s. to only a z-component
and the field to only a '-component. We get

R r � BdV D R @B'
@r dV D B'L2�r.

Solving for the field, we get B' D 1
2
�0	ˇr for .r < R/ and 1

2
�0	ˇ

R2

r for .r > R/.

1.3 We integrate Maxwell’s equation rE D 	.r/
�0

over a cylindrical volume con-
centric to the beam. The l.h.s. becomes

R rEdV D H
Eda D Er2�rL, where

da is an element of the co-centric cylindrical surface and L an arbitrary length
along the beam axis. Since an infinitely long beam is assumed, only a radial
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electric field component exists. The r.h.s. is integrated over the same cylinder

2�
	

�0
L
R r
0

exp
�
� Nr2
2�2

�
NrdNr D 2�

	

�0
L�2

h
1 � exp

�
� r2

2�2

�i
and the radial electric

field component is finally Er D 	

�0

�2

r

h
1 � exp

�
� r2

2�2

�i
: In a similar way the

magnetic field can be obtained. Only the azimuthal component is non-zero given

by B' D �0	ˇ �2r
h
1 � exp

�
� r2

2�2

�i
. The fields vanish for r! 0 and for r D � are

Er .�/ D 	

�0
�
�
1 � exp

�� 1
2

�	
and B' .�/ D �0	ˇ�

�
1 � exp

�� 1
2

�	
:

1.4 The circulating beam current is defined by i D enfrev D env=C where n is
the number of particles circulating, frev is the revolution frequency, v the particle
velocity and C the accelerator circumference. The number of particles representing a
current of 1A are: n D iC= .Ev/ D 6:2458�1012. The ejected beam resembles a pulse
with a pulse current of 1A since particles are assumed to be distributed uniformly.
The pulse length is given by the revolution time � D C

cˇ D 1:0007�s assuming
ˇ � 1. The synchrotron produces ten pulses of 1:0007�s duration and at a pulse
current of 1A. The average beam current is therefore iavg D 10 � � � 1AD 10�A.

1.5 The bending radius 	 of a particle’s path due to a force F is given by the

equality of this force with the centrifugal force. �mv2

	
D F or 	 D ˇ2�mc2=F. The

gravitational force is F D f mM
R2
D 1:6397 � 10�26 kg m s�2;where the proton mass

mp D 1:67262 �10�27 kg, the mass of earth M D 5:98 �1024 kg, and the earth’s radius
R D 6:380 �106 m. Numerically, the gravitational constant is f D 6:67259 �10�11m3

kg�1s�2 and for a 1 eV proton
�
� D 1C 1

0:938�109 D 1C 1:0661 � 10�9� the velocity

ˇ �
q

2Ekin
mc2

D 4:6175 � 10�5. With these parameters, the bending radius is

	 D 1:955 � 107 m and therefore negligible compared to any bending radius
occurring in a realistic beam transport. Equivalent electromagnetic fields can be
derived from the Lorentz equation. The electrical field equivalent to the gravitational
force is Eel D F=e D 1:023 � 10�7 V/m and the corresponding magnetic field is
B D F= .ecˇ/ D 7:393 � 10�12 T. The ratio of electrical to magnetic field is 13; 837.
For an intergalactic 10 TeV proton the gravitational force is the same and therefore
the bending radius is increased by the increase in the factor ˇ2� D 4:696 � 109
and the bending radius is 	 D 9:18 � 1010 km. The required electrical field to bend
the same does not depend on the particle energy, while the required magnetic field
scales inversely proportional to ˇ and is therefore reduced to B D 3:414 � 10�16 T.
The field ratio finally has changed from 13; 837 to 2:996 � 108 D c making the
magnetic field the more efficient field to bend relativistic particles. This is indeed a
small field, actually about a million times smaller than intergalactic magnetic fields
of some 10�10 T. Cosmic rays therefore are more affected by intergalactic magnetic
fields than by gravitational field.

1.6 The fields at the surface of the beam are Er D 	

2�0
R and B' D 1

2
�0	ˇR.

The charge density for the cylindrical slug is 	 D e n
�R2`

D 1:275 � 107 C/m3.
The electrical field on the surface of the beam is then .ˇ � 1/ Er D 	

2�0
R D

1:44�1011 V/m and the magnetic field is B' D 1
2
�0	ˇR D 480T. The peak electrical
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current is defined by i D Q=� , where Q D e � 1010 is the total charge, and � is
the duration of the current pulse � D 1

ˇc D 3:3356 � 10�12 s. The peak current is
then I D 480:33A. Two particle beams either attract or repel each other depending
on whether we use an eC-e�-system or an e�-e� or eC-eC-system. For � � 1 the
forces due to electrical and magnetic field are the same and act along a line including
the particle in one beam and the center of charge of the other beam. The longitudinal
forces cancel as both beams pass each other and the radial forces are Fr D e 	ˇ

2�0

R2

r ,

where now r D 10�m. From problem 1.5 we have for the curvature F=
�
�mv2

�
and the deflection angle is then � D 2F`

�mv2
D 1:152 � 10�5 rad. This deflection is

significant and can be used as a diagnostic means to probe the closeness of both
beams which eventually must be steered to collide head-on.

1.7 Plane waves can be expressed by a D a0 exp Œi .! � kr/�, where the wave propa-
gation vector k D kn, k D !=c and n the unit vector in the direction of wave propa-
gation. Applied to the fields .E; B/ and using Amperes law r�E D � @B

@t , we get on
the l.h.s. r�E D r exp Œi .! � kr/��E0 Dir .kr/� E Dikr .nr/� E Dik .n � E/
The r.h.s. is � @B

@t Di!B: Equating both sides gives finally n � E D cB:

1.8 We multiply two 4-vectors Qa and Qb and apply a Lorentz transformation:

Na� Nb� D a�
1b�

1 C a�
2b�

2 C a�
3b�

3 � a�
4b�

4

D a1b1 C a2b2 C �2 .a3 � ˇa4/ .b3 � ˇb4/ � �2 .ˇa3 � a4/ .ˇb3 � b4/

D a1b1 C a2b2 C �2
�
1 � ˇ2�„ ƒ‚ …
D1

a3b3 � �2
�
1 � ˇ2�„ ƒ‚ …
D1

a4b4

D a1b1 C a2b2 C a3b3 � a4b4

1.9 The 4-acceleration Qa D �2 d2Qs
dt2
C Qv 	4

c2
.va/ or in component form Qa D�Qax; Qay; Qaz; iQat

�
we get Qax D �2ax C �4ˇx .ˇa/ ; Qay D : : : ; Qaz D : : : ; Qat D �4 .ˇa/ ;

where a is the ordinary acceleration. The other components can be obtained in
a similar way. Experimental verification through, for example, observation of
synchrotron radiation parameters.

1.10 We formulate in laboratory frame the 4-vectors before and after scattering. To
describe electron and photons we use the 4-velocity Qu D .�; �u/ with u D v=c
and energy-momentum 4-vector cQk D .!; ck/ : In the lab frame QuL D .�; �uLOz/ and
cQkL D .!L;�!LOz/ where Oz is a unit vector in the direction of photon motion. We
assume both the electron and photons to travel along the z-axis. After scattering,
QuL D .�; �uLOz/ and cQkL D

�
!�; !�Oz�, where !� is the frequency of the outgoing

photon. Here, we have assumed that the photon energy is much less than the electron
energy. The product of both 4-vectors is Lorentz invariant and is therefore the
same before and after scattering, or !L .1C uL/ D !� .1 � uL/ and solving for the
scattered frequency !� D !L

1CuL
1�uL

� 4!L�
2 where we made use of ��2 D 1 � u2L

and uL � 1.
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1.11 Here, the only difference to problem 1.10 is that the undulator field does
not move, or that cQk D .!u; 0/, where !u D 2�c=�u and QuL D .�; �uLz/. After
scattering cQkL D

�
!�; !�z

�
and QuL D .�; �uLz/ as in problem 1.10. Equating again

the Lorentz invariant products gives !u D !� .1 � uL/ or !� D !u
1

1�uL
� 2!L�

2.
This is the fundamental radiation frequency emitted by electrons from an undulator.

1.12 The total proton energy at the end of the 200 MeV linac is E D Ekin C mc2 D
1; 138:27MeV and the momentum is cp D

q
E2 � .mc2/2 D 644:44MeV. Finally

the velocity is ˇ D cp
E D 0:56616 or about half the velocity of light.

1.13 Due to Lorentz contraction the length of the linac is reduced by the factor �
which along the linac is � .z/ D �0 C 20

0:5109990
z D �0 C 39:139 � z. The initial

energy is �0 D 1p
1�ˇ20

D 1:1547 and the final energy � .L/ D 27; 418: Now, the

integrated length of the linac is ` D R L
0

dz
�0C39:139�z D 1

39:139
ln .�0 C 39:139 � z/jL0 D

0:29458m. In the electron system the 3 km SLAC linac has contracted to some
30 cm. Now coasting, a tube of 3 km would contract even more to 3;000

�.L/ D
0:10942m� 11 cm.

1.14 The invariant center of mass energy of colliding particles is defined by E2cm DP
E2i �

P
.cpi/

2. For the collision of a positron with a target electron assumed to

be at rest this evaluates to E2cm D
�
�mc2 C mc2

�2 � ��ˇmc2
�2 D 2 .� C 1/m2c4 or

Ecm D
p
2 .� C 1/mc2. This is also the available energy to produce new particles

since no particles must be conserved in a positron-electron collision. In an electron-
electron collision the available energy would be only Eavail D Ecm � 2mc2 because
the lepton number must be conserved in the collision. The same calculation for
head-on collision of such particles would produce a center of mass energy of Ecm D
2�mc2. Obviously, head-on collisions provide more available energy to produce new
particles.

1.15 From the invariant E2cm D
P

E2i �
P
.cpi/

2 we get for a particle colliding

with a target particle at rest E2cm D
�
�mc2 C mtc2

�2 � ��ˇmc2
�2 D �

�mc2
�2 C

2�mc2mtc2 C
�
mtc2

�2 � ��ˇmc2
�2

, where mt is the mass of the target particle. The
available energy to produce a  =J particle must be 3.1 GeV. In case of a proton
colliding with a target proton, the center of mass energy must be at least Ecm D
3:1GeVCmc2, because the proton number must be preserved. With m D mt we
get Ecm D

p
2 .� C 1/mc2 D 3:1 C 2mc2 and solving for the particle energy we

get � D 1
2

�
3:1
0:938
C 2� � 1 D 13:071. The proton energy must therefore be at least

Ep  12:264GeV which was available at the Brookhaven AGS. In case of a positron
colliding with a target electron the center of mass energy is also the available energy
since the lepton number in this case is zero. Therefore,

p
2 .� C 1/mc2 D 3:1GeV

and the minimum positron energy � D 1
2

�
3:1

0:000511

�2 � 1 D 1:84 � 107. This energy
is not available at any existing particle accelerator. Only in an electron-positron
colliding beam storage ring like SPEAR is it possible in head-on collisions to reach
sufficient center of mass energy to produce a  =J particle.
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1.16 The pion lifetime will be lengthened by the factor �: Therefore, the pion
lifetime at 20 MeV is ��;20 D 29:759 ns and at 100 MeV ��;100 D 44:679 n. The
velocities of the pions are ˇ20 D 0:48473 and ˇ100 D 0:81277 for 20 MeV and
100 MeV respectively: The distances traveled are `20 D �20cˇ20 D 4:3245m and
`100 D 10:887m. This is a significant difference when trying to transport a pion
beam from the target to the patient.

1.17 We look for the minimum kinetic energy necessary to perform the reaction,
which means, the resulting particles have after collision no kinetic energy left.
The length of the 4-vector .cp; iE/ D p� after the collision is therefore �16M2

which must be equal to the length of the 4-vector before collision or �16M2 D�
p1;� C p2;�

�2 D p21;�C2p1;�p2;�Cp22;� D �2M2C2p1;�p2;� and p1;�p2;� D �7M2:

For the two protons before collision p1;�p2;� D .cp1; iE/ .0; iM/ D EM. With this,
we get finally E D 7M or the minimum total proton energy required to produce
antiprotons is 7M or subtracting the mass of the incoming proton the minimum
kinetic energy must be Ekin D 5:6GeV. The 6.2 GeV Berkeley Bevatron was
designed to do just this allowing the discovery of the antiproton.

Solutions for Chap. 2

2.1 A horizontal deflection can be accomplished by a horizontal electric field
generated between two vertical plane electrodes (x Dconst) connected to a potential
V . Since the aperture is 2 cm we place the electrodes at a position of x D ˙1 cm.
The deflection angle is given by ' D e jEj `= �ˇ2E� ; where ` D 0:1m and
E D 10:511MeV and � D 20:57. With this, we get ˇ D 0:99882 and ˇ2E D
10:486MeV. The required electrical field is jEj D 1:0486MV/m � 10:5 kV/cm.
A potential difference of 21 kV between the electrodes would be sufficient. This is
across a gap of 2 cm which is possible in dry air (rule of thumb: breakdown field is
about 30 kV/cm in dry air) or in vacuum.

2.2 Assuming no friction, the beam power is the product of the beam energy in Volt
and the beam current. The minimum power for the charging belt motor is therefore
500 kW.

2.3 The particles travel from the source to the first gap where they gain an energy of 1
MeV. At the end of the nth gap they have an energy of Ekin,n D 100 keVCn � 1MeV
(n D 1; 2; 3 : : :/: After each gap the particles travels protected from microwave
fields in tubes for most of an rf-period. At 7 MHz the period is �rf D 0:1428 6 �s.

The velocities of the particles after each gap is ˇn D
p
1 � ��2

n D
q

E2kin,nC2Amc2Ekin,n

Ekin,nCAmc2

which translates for potassium ions to ˇp1 D 0:002265; ˇp2 D 0:007511; ˇp3 D
0:01038; ˇp4 D 0:01261. For electrons, the equivalent velocities are ˇe1 D
0:9484; ˇe2 D 0:9807; ˇe3 D 0:9899; ˇe4 D 0:9938. The related lengths of the
drift tubes are now ln D cˇn�rf. For potassium ions this gives Lp1 D 0:097m;
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Lp2 D 0:322 cm, Lp3 D 0:445m; Lp4 D 0:540m. These are realistic drift
tube lengths. For electrons, the drift tube lengths would have to be much longer
Lp1 D 20:315m;Lp2 D 21:007m, Lp3 D 21:204m; Lp4 D 21:287m due to the
higher velocities It is obvious that much higher frequency microwave sources had
to be developed before this principle could be applied to electrons. This became
possible with the invention of the klystron.

Solutions for Chap. 3

3.1 The total electron energy at injection is Etot D .50C 511/ 103 D cp D
�mc2 vc D �mc2ˇ: From (1.76) and an orbit radius of 1:23m, the magnetic field

on the orbit is Bi
ˇ
D Etot =e

0:3R D 1:520 � 10�3 ŒT� : The velocity can be derived from

� D Etot=mc2 D 1:0978 and ˇi D 0:41260. Therefore the magnetic field at injection
is Bi D 6:273� 10�4 ŒT� : The field increases at a 60Hz cycle and the particle needs
a time of � D 2�R=cˇi D 6:243 6 � 10�8 s for the first turn. During that time,
the magnetic field increases by B � B0!� D 1:907 � 10�5 ŒT�. At 20 MeV, the
particles have gained virtually velocity of light with ˇ � 1: The field change per
turn at 20 MeV is now less by the factor ˇi forB � 7:866 6�10�6 ŒT� : The reason
for this drop of acceleration is due to the higher velocity of the particle making the
go-around time shorter. The acceleration is indeed slow and it takes the particles
more than a million turns to reach the final energy.

3.2 From (1.4) we choose Ampère’s law while ignoring the electric field and apply
it to the betatron magnet. We integrate over an area which includes one coil. The left
hand side of this integral can be expressed with Stoke’s Theorem as a line integral
of the magnetic field along the boundary of the area chosen. The right hand side
is just the total current in the coil multiplied by �0: To be able to evaluate the line
integral, we choose a boundary or integration path starting in the middle of the
magnet aperture (orbit) and integrate the field .�r D 1/ along a vertical line to the
magnet pole. This field is just the desired field By0 The integration path through the
magnet iron to the mid plane is zero because we assume .�r D1/ : Integration
from the magnet iron along the midplane to the origin of the integration path is also
zero because all fields in the midplane of a symmetric magnet are in the vertical
direction while the integration path is in the horizontal direction. That gives the end
result of By0

1
2
g D �0Icoil: Note, for the integration path chosen, we have to use here

only half the gap. The field for 42 MeV electrons is By0 D cp
0:3�R D 0:35T and the

total current in one coil is Icoil D 13; 926 A: This seems to be a large current, but
actually isn’t. Magnet coils are wound of many turns and the current from the power
supply is only Ips D Icoil=nturns: if the coil in this example has say 20 turns then the
power supply current is only Ips D 696:33 A which is perfectly acceptable.

3.3 The microwave frequency scales inversely to the relativistic factor � or
frf,max=frf,0 D �0=�: The relativistic factor is � D 1 C Ekin

mc2
and the microwave
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frequency is then given by frf
frf,0
D E0

E : For protons mc2 D 938:27MeV and the end

frequency frf D 0:610 frf,0: Deuterons are twice as heavy mDc2 D 1; 875:61MeV
and frf D 0:758 frf,0. The situation for electrons is quite different. The rest mass is
mc2 D 0:511MeV and frf D 1; 175 frf,0. The frequency swing is way too large to
be practical and this is the reason why synchro-cyclotrons work only for heavier
particles and at energies where the relativistic factor is not too far from unity.

3.4 The energy loss to synchrotron radiation power per electron is given by (24.41).
This energy loss should be multiplied with the circulating current to get the total
radiation power. P� D 8:85�10�5 E4

R
I
e D 55:976 I. For 1W of synchrotron radiation

power the current should be 17:865mA.

3.5 a.) The bending radius at 25 MeV is 1
R D 0:3 B

E D 2:568m�1(assuming ˇ � 1/

or 2R D 0:7788m. b.) We choose a gap of 10 cm. c.) The excitation current for the
field is derived similar to problem 27.2.4 and is Icoil D B

�0

1
2
g D 4; 259:6 A: The

length of the coil is Lcoil D 2�R C 10% D 2:69m and the resistance is Rel D
	Cu

Lcoil
A D 1:205 � 10�4 ˝ (	Cu D 1:68 � 10�8 ˝m at 20 ıC) The electrical power

loss in each coil is then Pcoil D Rel �I2coil D 2186W and, yes, you need water cooling:
d.) The electrical power requirement does not depend on the number of turns, only
on the amount of copper in the coil. If the coil is made of n turns, then the current
will be reduced by the factor n:Yet, the length of the coil is increased by n and the
cross section decreases by the factor n:To summarize, the coil resistance is increased
by n2 while the current scales like 1=n: Therefore the power is independent of n.

3.6 The frequency swing depend on the velocity of the protons. The relativistic

factor at injection is �0 D
q
.mc2/

2C.cp0/
2

mc2
D 10:706 and at the maximum energy � D

426:35: The corresponding velocities are at injection ˇ0 D 0:995 and at maximum
energy ˇ � 1:000. The frequency changes only by 0.44 %.

Solutions for Chap. 4

4.1 From the variational principle (4.1) and the definition of the Hamiltonian (4.26)
we have ı

R t1
t0

L .'/ d'
dt dt D �ı R t1

t0
Œ
P PqiPi �Ht .t/�dt D 0 and after changing to '

this is ı
R t1

t0

h
@qi
@'

d'
dt Pi �H' .'/

d'
dt

i
dt D 0: Therefore Ht D d'

dt H':

4.3 We apply d
dt
@L
@Px � @L

@x D 0 to the Lagrangian (4.25) in curvilinear

coordinates. With ˇ2h D
�Px2 C Py2 C Pz2 C h2Pz2� =c2 we get @L

@x D m h�xPz2p
1�ˇ2h

C

e
�
Px @Ax
@x C Py @Ay

@x C hPz @Az
@x C �xPzAz

�
� e @�

@x and d
dt
@L
@Px D d

dt

�
Pxp
1�ˇ2h

�
Ce

�
Px @Ax
@x C Py @Ay

@y C Pz @Az
@z

�
D �mh�xPz2 C e

�
Px @Ax
@x C Py @Ay

@x C Pz @Az
@x C �xPzAz

�



956 Solutions

�e @�
@x : In curvilinear coordinates

B D r � A

D
�
1

h

�
@

@y
.hAz/� @Ay

@z

�
;
1

h

�
@Ax

@z
� @

@z
.hAz/

�
;

�
@Ay

@x
� @Ax

@y

�


and we can replace @Ax
@y D @Ay

@x � Bz and @Ax
@z D @

@y .hAz/C hBy D h @Ax
@z C �xAzC hBy

and thereby replace the terms involving the vector potential by magnetic fields to
give the equation of motion d

dt .�mPx/ D �mh�xPz2 C e
�PyBz � PzBy

� C eEx which is
the same as (4.16).

Solutions for Chap. 5

5.1 We use the Lagrangian (4.25) and evaluate (4.5) to get first @L
@x D

�mPx C eAx and second d
dt
@L
@Px D d

dt .�mPx/ C e
�
Px @Ax
@x C Py @Ax

@y C Pz @Ax
@z

�
. Then

@L
@x D �mPz2h�x C e

�
Px @Ax
@x C Py @Ax

@y C Pz @Ax
@z

@.hAz/

@x

�
C eEx and the Lagrange equation is

d.�mPx/
dt C e

�
Px @Ax
@x C Py @Ax

@y C Pz @Ax
@z

�
D �mPz2h�x C e

�
Px @Ax
@x C Py @Ay

@y C Pz @.hAz/

@x

�
C eEx or

after reordering and replacing @Ay

@x � @Ax
@y D Bz and @.hAz/

@x � @Ax
@z D hBy the equation

of motion is finally d
dt .�mPx/ D �mPz2h�x C e

�
Bz PyC hByPz

� C eEx. Inserting into

the Lagrange equations we get first @L
@z D �mPz2hh0 C e

�
Px @Ax
@z C Py @Ax

@z C Pzh @Az
@z

�
C

eEz D �mPz2h ��0
xxC �0

yy
� C e

�
Px @Ax
@z C Py @Ay

@z C Pzh @Az
@z

�
C eEz and second d

dt
@L
@Pz D

d
dt

�
�mh2Pz�Ce d.hAz/

dt . With @Ax
@z D hByC @.hAz/

@x and @Ay

@z D �hBxC @.hAz/

@y the equation

of motion is d
dt

�
�mh2Pz� D �mPz2h�xC �mPz2h ��0

xxC �0
yy
�C e

�
hByPx � hBxPy

�C eEz.

5.2 Application of (5.33)–(5.30) gives with Ax D �
x0Ax C y0Ay C hAz

�
the

Lagrangian L D �mc2
p
1 � ˇ2 C e vs0 Ax � e� and from this LC�mc2

�mv
s0
v
D

s0 C e
�mvAx � e�. Dividing by the momentum p D �mv and setting p D p0

1�ı ,
LC�mc2

�mv
s0
v
D s0 C .1 � ı/ e

p0
Ax � .1 � ı/ e

p0
s0
v
�. The variational principle


R LC�mc2

p
s0
v

dt D 
R LC�mc2

p dz D 0, because constant additions or factors to
the Lagrangian do not change the variational principle.

5.3 Use the definition of the bending radius (5.3) and remember that we express the
particle energy only in Volts, which is E=e: For 1 GeV particles we have then E=e
=109 V. With this the curvature is 1

	
� 0:2998 B

ˇE . In the last step of the equation
we get a bit sloppy by using the energy in GeV instead of the voltage E=e as is
commonly done. Numerically, however, we would ignore e insert only the voltage
in GV.
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5.4 We evaluate the second derivative of the solution P" .z/ and insert into (5.74).
From the first derivative P0 .z/ we obtain with the property of the Wronskian (5.73)
for the principal solutions the second derivative P" .z/ D S" .z/

R z
0

p .Qz/C .Qz/dQz �
C" .z/

R z
0

p .Qz/ S .Qz/dQz: Recalling that S" D �KS and C" D �KC; we insert
the expression for P" .z/ and (5.75) into (5.74) and verify the validity of the
ansatz (5.75). The function P .z/ is therefore indeed a particular solution of the
inhomogeneous differential equation (5.74).

5.5 The Cartesian coordinates .x; x0/ are identical to the normalized coordinates
.w; Pw/ except for some scaling factors if we consider the independent variable to be
z in both cases. The transformations are then given from (5.54) by x0 D �vx tan 
and J D 1

2

x2

cos2  or x Dp2J=
 cos and x0 D 2
 sin . With this, the Hamiltonian

is K D 
J sin2  C D J



cos2  : The frequency of the oscillator is P or from the
equation of motion @K

@J D P D 
 sin2  C D



cos2  which requires that D D 
2.
Finally, K D 
J and @K

@J D P D 
 as we would expect.

Solutions for Chap. 6

6.1 The coil power, assuming only one turn, is P D RI2: The resistance is R D 	 L
A ;

where 	 is the specific resistance of the coil material (copper), L the length of the
coil and A the coil cross section.With nt turns, the resistance changes to R D 	 Lnt

A=nt
D

	 L
A n2t , the current is I

nt
and the total power P D 	 L

A n2t
�

I
nt

�2
is independent of the

number of turns. The total coil power is P D RI2. Utilizing the current density j
the total power is now P D 	LAj2. The weight of copper is W D �LA and the total
power is finally P D 	W

�
j2 depending only on specific resistance, weight and current

density.

6.2 The focal length of an electric quadrupole is 1
f D k` D e

ˇ2E
g`: Solving for

the gradient g we get g D ˇ2E
e`

1
f D 19:81MV/m2:The profile of the electrodes is

given by V2 D � 12g
�
x2 � y2

�
and the profile of the electrodes is therefore given

by V2 D 9:905 � 106R2a D 24; 763V where Ra is the aperture radius of the electric
quadrupole. The r.h.s. derives from the potential for Ra D 0:05m and y D 0: The
electrode potentials are V2 D ˙24; 763V.

6.3 For a purely transverse field B D �Bx;By;0
� D r �A: The field components are

Bx D @Az
@y � @Ay

@z D @Az
@y and By D @Ax

@z � @Az
@x D � @Az

@x : Here we made use of the fact
that the fields do not depend on the longitudinal coordinate z: Therefore Ax;Ay are
constant which we may as well choose to be zero Ax D Ay D 0 and the magnetic

field is B D
�
@Az
@y ;� @Az

@x ; 0
�
: If we derive the magnetic field from a scalar potential

B D �rV; we would get @Az
@y D � @V

@x and @Az
@x D @V

@y or Az D �
R
@V
@x dy and Az D
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R
@V
@y dx: For a dipole magnet Bx D 0 and By D B0 and the potential is V1 D �B0yC

f .x/ and
�
@Az
@y D gy; @Az

@x D �gx
�
: For a quadrupole we have a potential V D �gxy

and @Az
@y D gy; @Az

@x D �gx: After integration Az D 1
2
gy2 and Az D � 12gx2 to give

a combined potential Az D � 12g
�
x2 � y2

�
: Following from their definition both, V

and Az; depend differently on the coordinates but are equivalent otherwise for purely
transverse fields. While the scalar potentials V define equipotential lines, the vector
potential Az defines the field lines which are orthogonal to the equipotential lines.

6.4 Such a magnet is basically a quadrupole which is displaced to generate a dipole
field component along the path of the beam. From 1

	
D kx the displacement

is x D 0:00741m or 7:41mm. The sextupole term is a small perturbation of
the quadrupole profile. From (6.86) and the definitions for Aij;we get for this

combined field magnet the potential V D ˇE
ec

h
1
	
yC kxyC 1

6
m
�
3x2y � y3

�i D
0:557y C 75:15xy C 640

�
3x2y � y3

� D const. The constant can be estimated as
follows: At a displacement x D 7:41mm we require an aperture of r D 1 cm
and so we define one point .x D 7:41mm,y D 10mm/ of the profile. Inserted into
the profile equation, we get V .0:00741; 0:01/ D 0:01155285 and the pole profile
equation is 0:557yC 75:15xyC 640 �3x2y � y3

� D 0:01155285:
6.5 Forces between magnet pole exist because a change of the field volume is
associated with a change of field energy. Increasing the gap of a dipole magnet
while keeping the field constant results in an increase of field energy due to work
against the force trying to reduce the gap or the distance between poles. Therefore
the force is attracting the pole. The field energy in the dipole magnet with a pole gap
G is Ef D 1

2�0
B2wlG D 89570 � G. The force is F D �dE=dG D 89570 ND 9:13

tons. The force does not depend on the pole gap.

26.8 In first approximation, we assume that all the fields are contained within the
volume between the two rows of poles and no field leaks out. Separating the poles
by g requires to generate the additional field energy de D Fdg where F is the force
between poles. Since de > 0 for dg > 0 the force is attractive meaning that the

poles are attracted. The force is then F D de
dg D w

2�0

R 15�p

0 B20 sin2
�
2� z

�p

�
dz D

w
2�0

B20
�p

2�
1
2
Np D 7; 484 N D 0:76 tons.

6.6 See Sect. 6.2.2 for solution. With respect to the numerical part of the question,
we calculate the gradient to be g D k`

0:3
ˇE D 33:33T/m and the coil excitation

current must be Icoil D gR2

2�0
D 11937 A�turns.

6.7 Since this is a cylindrical problem, we use the definition of the magnetic
potential in (6.7) P .r; z/ D P

n�0
Cnrnein' from which we get the magnetic fields.

From Maxwell’s equation r � E D � @B
@t and integrating over the cross section of

the rotating coil we get an emf of mV D �@�=@t; where � D �0 cos 2�
t is the
flux through the coil at time t and m the number of turns in the coil. At time t D 0
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we assume the coil to be parallel with the midplane enclosing the maximum flux
�0 D B'2R. We ignore the length of the coil because the field is assumed to be
uniform longitudinally. From the potential, we get B' / ein' , ' D 2�
t and the
induced voltage in the coil is mP D 2�


P
n�0

Cnrnein2�
t: The signal voltage from

the rotating coil includes therefore all harmonics of the magnetic field. Usually the
harmonics are normalized to the ideal field of the magnet at r D 1 cm. The signal of
the ideal magnet of order N is mVN / 2�
NeiN2�
t and the relative strengths rnN of
the harmonics are rnN D Rn�N Vn

VN
:

6.8 A finite width of a quadrupole is like superimposing poles of opposite polarity on
both sides of a pole. This is a symmetric perturbation with two negative poles within
a 90ı quadrant. We may complete this picture by assuming that there is also an
additional pole superimposed on the main pole with the same polarity. We have now
in each quadrant a main pole with a somewhat lower quadrupole field and three poles
describing the perturbation by a multipole. In the case of a quadrupole this would
be a 12-pole. Since the perturbation is nonlinear but symmetric about the main pole,
we observe all odd harmonics of the quadrupole field, 3 � 4 D12-pole, 5 � 4 D20-
pole, etc. These perturbations are due to the finite width of the quadrupole and
have nothing to do with tolerances. We call therefore these harmonics, “allowed”
harmonics or multipole components.

6.9 The fields scale differently depending on the multipole field order. The
quadrupole scales linearly and therefore B2 .1 cm/ D B2 1

1:79
D 0:20832T. The

next higher order field is the sextupole field which scales quadratically and the
normalized field is therefore B3 .1 cm/ D B2

B3
1:792

D 1:8727 � 10�4. Similar
renormalizations lead to B4 .1 cm/ D 1:925 � 10�5, B5 .1 cm/ D 1:6833 � 10�5,
B6 .1 cm/ D 1:8964 � 10�5; B7 .1 cm/ D 2:9186 � 10�7, B8 .1 cm/ D 1:875 � 10�7,
B9 .1 cm/ D 2:322 � 10�8; B10 .1 cm/ D 1:8066 � 10�7: The 12-pole and 20-pole
components do not follow the general downward trend and are larger, because they
are “allowed” harmonics due to the finite pole width.

6.10 The upright octupole potential is from Table 6.6 given by � ec
cp V4 D

r 1
6

�
x3y � xy3

� D const. From the geometry of an octupole the pole tip is at a
radius R and angle 22:5ı or at x D R cos�=8, y D R sin�=8: With these values the
constant or potential of the pole is 1

6

�
x3y � xy3

� D 1:50R4. It is actually easier to do
the calculation for a rotated octupole, which has a pole tip in the midplane at x D R
and y D 0. From Table 6.6 the potential is �V4 .x; y/ D s4

1
24

�
x4 � 6x2y2 C y4

� D
const and the equation for the pole profile is 1

24

�
x4 � 6x2y2 C y4

� D R: The field in
the midplane is Bx .x; 0/ D s4

1
6
x3, the field at the pole tip is expected to be 0.2 T and

the octupole strength parameter is s4 D s4 D 6
0:2
0:033

D 44; 444T/m3: To calculate
the coil excitation current, we integrate from the octupole center along the x-axis
to the pole giving

R R
0
1
6
x3dx D 1

24
R4. The integration through the iron is zero as is

the integration back along the 45ı line from the return yoke to the magnet center,
because field and integration path are orthogonal. Similar to the calculation of the
excitation current for the quadrupole, we have Icoil D s4

24�0
R4 D 1; 193:7A�turns.
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6.11 For a pure dipole field the current distribution scales like cos', we assume
the coil thickness to be h .�/ D h0 cos' and the current density at ' D 0 is from
dI .'/ D I1 cos' d' and A D h .'/R' just j D I1

R�h0
: To generate a field of

B0 D �0H0 D 5T we need a peak current of I1 D 2RH1 D 2R B0
�0
D 2:387 � 105 A

and O| D 109 D 2:387
105'
R'h0

with h0 D 7:96mm. The maximum coil thickness is
therefore about 8 mm.

Solutions for Chap. 7

7.1 Study Fig. 7.16 in detail. Now, make a similar sketch with the cosine-like
trajectory for the horizontal and vertical plane both ending at the focal point. Tracing
back both cosine-like trajectories from the focal point straight to the intersection
with the incoming cosine-like trajectories. The distance from the focal point to
the intersections should be equal to the doublet focal lengths from (7.20). The two
intersections are also known from light optics as the principal planes of the system.

7.2 Transform through doublet and 5m drift space to focal point. We need only the
M11 element of the total transformation matrix, which must be zero to let a parallel
trajectory entering the doublet go through the focal point such that x D M11x0 D 0.
We have M11;x D 1 � dCD

j f1j � D
j f2j C dD

j f1f2j D 0: Since we want the focal point in both

planes, we have a second equation M11;y D 1C dCD
jf1j C D

jf2j C dD
jf1f2j D 0: From both

equations we isolate f1 and f2 for f1 D
p
6m and f2 D 5=

p
6m. The total focal

lengths in both planes are different f �
x D 5

p
6p

6�1 D 8:4495m and f �
y D 5

p
6p

6C1 D
3:5505m. The definition of these focal lengths is the distance of two principal planes
from the focal point. The principal planes, one for each plane, are located at the
intersection of the parallel incoming trajectory and the extension of the trajectories
reaching the focal point. The principal planes are the positions of virtual lenses
resembling the doublet. These lenses are at different location for both planes.

7.3 The transformation matrix of a quadrupole doublet with a drift space of length

d between quadrupoles is

�
1� d=f1 d
�1=f � 1 � d=f2

�
, where 1

f � D 1
f1
C 1

f2
� d

f1f2
. We

set 1
f1
D � 1

f2
D 0:2m�1 and get for the on-energy focal lengths in both planes

1
f � D 1

25
or f � D 25m. Since the combined focal length depends quadratically on

the energy, we get a ˙10% spread in focal length. The beam width at the focal
point is with f1 D 5m is r2 D �ˇ D .1 � d=f1/

2 �ˇ0 C d2��0 D 0:64�ˇ0 C �2

r20
.

The beam emittance is � D r0r0
0 and therefore the spot size in the horizontal plane

is r2x D 0:64r20 C r and in the vertical plane with f1 D �5m is r2y D 1:44�ˇ0 C �2

r20
.

For the last question on dispersive beam sizes set jf1j D 5 �
�
1C p

p0

�
and calculate

rx;y D .p=p0/ :
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7.4 Equations (7.63) and (7.67) give the focal lengths for a wedge magnet in both
planes: 1

�fx
D .tan �0 C tan �e/ cos � � tan �0 tan �e C sin � and 1

�fy
D tan �0 C

tan �e C 1
3
ıf e C ı: We choose both edge angles to be the same and require that both

focal lengths be the same as well. This results in the condition 2 tan� cos ��tan2 �C
sin � D 2 tan �C 2

3
ıf , which can be solved for the wedge angle �.

7.5 The deflection angle # D u0
0 and we assume u0 D 0. Then the betatron

amplitude downstream from point z0 is just u .z/ D p
ˇˇ0# sin . �  0/. From

this it is clear that the value of the betatron function should be as large as possible
at both points to get a large kick amplitude.

7.6 a.) a trim coil in QF1 causes a beam bump which will reach zero again in the
middle of QF3. This is too early and we need to activate another trim coil in QD2

to be symmetric. The beam bump arrives in the middle of QD2 with a slope of x0:
A kick with an angle of �2 D 2x0 .QD2/ will symmetrize the beam bump ending
at zero in the middle of QF4 where a third trim coil �3 D �1 ends the beam bump.
Because of symmetry we need to consider only half the three FODO cells from QF1

to QD2 for which the transformation matrix be M D
�

m11 m12

m21 m22

�
: The beam bump

at QD2 is then x .QD2/ D m12�1 and x0 .QD2/ D m22�1: Since x .QD2/ D 0:02

m we get �1 D 0:02
m12

and �3 D �2 � x0 .QD2/ : The bump amplitude AM is not the
maximum bump amplitude which occurs in the QF2 and QF3:

Solutions for Chap. 8

8.1 We start from u D p
�ˇ cos . C ı/, calculate the derivative u0 D

�p� p̨
ˇ

cos . C ı/ �
p
�p
ˇ

sin . C ı/, and eliminate from both equations the

phase terms to get ˇu02 C 2˛u0u C ˛2u2 C u2

ˇ
D � (*): Defining a coordinate

transformation by w D u=
p
ˇ and Pw D pˇu0C ˛ up

ˇ
and inserting into (*) we get

w2 C Pw2 D � which is the equation of a circle. The derivative Pw D dw
d and the new

independent variable is the phase  :

8.2 First, we transform the phase ellipse as in problem 8.1. This transformation is
scale preserving since its determinant is equal to unity. The phase ellipse is now a
circle with radius

p
� and therefore the area of the circle is ��.

8.3 Write (8.41) in component form and place beam matrix elements with their
definitions (8.38)

8.4 The transformation matrix of such a transformer between symmetry points

P0 and P1 is

 
0

p
ˇ0ˇ

� 1p
ˇ0ˇ

0

!
. The transformation of ˇ0 with ˛0 D 0 through
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such a transformer is ˇ1 D C2ˇ0 C 1
ˇ0

S2 and �1 D C02ˇ0 C 1
ˇ0

S02 D 1
ˇ1
: The

dispersion function transforms through this matching section like a trajectory and
we would look for �1 D C�0 C S�0

0 D C�0. A �=2-transformer does not work for
the dispersion functions since C D 0.

Solutions for Chap. 9

9.1 The proton energy after accelerating gap i is Ekin .MeV/ D 1 C 0:5i. At the
energies under consideration the protons are nonrelativistic and their velocities are

vi D c
q

2Ekin
mc2
D 1:384 � 107p1C 0:5i m/s. The period of the 500 MHz rf-field is

2 ns and the tube lengths therefore must be `i C `gap D n � 2 � 10�9vi, where n is
an integer and `i � `gap. The first three sections are .n D 1/ `1 C `gap D 3:39 cm,
`2 C `gap D 3:92 cm, and `3 C `gap D 4:38 cm. These are the minimum lengths
of the tubes. To meet the requirement of a minimum tube length of 15 cm we need
to choose n1  5; n2  4; n3  4. That means the first tube length is as long as 5
wavelengths and the second and third tube length is as long as 4 wavelengths.

9.2 Each proton travels at a slightly different velocity due to a finite energy spread.
We assume nonrelativistic protons and get for the velocity spread v

v0
D ˙ 1

2
E
E0

. The
time � it takes for debunching is equal to the time it take for the fastest particle to
travel half the separation of bunches  D C

1nb
C where C is the circumference. The

other half of the bunch spacing is covered by particles with E
E0
< 0: The debunching

time is then � D C
2nb

E0
v0E .

9.3 The accelerating rate is given by dEkin
dt D freveVrf sin s. We solve for the

synchronous phase and insert into (9.74) to get
�
cp
cp0

�2 D eV0
�hj�cjcp0h

cos' C 1C
�
2 arcsin dEkin=dt

freveVrf
C ' � �

�
dEkin=dt
freveVrf

i
:

9.4 We start from (9.52) and write it in the form of a linear harmonic oscillator
R' C ˝2

0
sin ' cos s�sin s.1�cos'/

' cos s
' D 0 where the synchrotron frequency is ˝2 D

˝2
0

sin ' cos s�sin s.1�cos '/
' cos s

. For small oscillation amplitudes the frequency ˝ � ˝0

and reaches zero at the separatrix. There is also a '-dependence of the synchrotron
frequency indicating a periodic variation as the particle travels along the phase space
trajectory.

9.5 The longitudinal emittance is ccp
cp0
O'0 D ˝0

h!revj�cj O'20 and does not change by

increasing the rf-voltage. Since ˝0 / pVrf; we get
p

Vrf,0 O'20 D
p

Vrf,1 O'21 or

O'1 D O'1
�

Vrf,0
Vrf,1

�1=4
: The bunch length scales like the fourth root of the rf-voltage.
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Solutions for Chap. 10

10.6 We use a FODO lattice with � D p2; Ǒ D L
�
2Cp2

�
and O� D L2

2	

�
4Cp2

�
to construct a ring. The beam width in such a lattice is O�2x D � Ǒ C O�2

�
�E
E

�2
and the

beam height L�2y D � Ľ. Since L�y < O�x we get O�2x C L�2y D R2 � �
� Ǒ C Ľ� C

O�2 � �E
E

�2
: From the peak magnetic field 1

	
D 0:0036m�1 and we can solve for L:

The length of the bending magnet should be no more than 0:8L and each bending
magnet deflects the beam by  b D 0:8L

	
. To complete a ring, we need n D 2�= b

half cells. Numerically, we get 104R2 � 0:2LC 9:75 � 10�5L2 D 4 or solving for
half the cell length L D 19:818m.

10.2 For a Gaussian beam the largest beam size is along one axis or in case
of an optimum FODO lattice O�2x D � Ǒ C O�2 � �E

E

�2
from which we get L since

L�2y D � Ľ � O�2x . For a maximum field of 1:8T the bending radius and angle
1
	
D 0:0108m�1 and  b D 0:8L

	
, respectively with the total number of cells

nc D 2�= .2 b/. The focal length of a half quadrupole is f D �L D p2L and
k�1 D p2L`q D 0:05

p
2L2 assuming that the total quadrupole length is 10% of

L: Numerically, we get 104R2 D 0:2L C 0:0292L2 D 9 and solving for half the
cell length L D 14:463 m. The bending field is 1:8T and therefore within practical
limits, the quadrupole gradient is g D kE

0:3
D 11:268T/m and the pole tip field

is Bt D gR D 11:268 � 0:03 D 0:338T, which is well within practical limits of
about 1T. The number of FODO cells is nc D �= b D 25:141 and to make it
an even number of cell, say 26, we may decrease the bending magnet field by a
factor 25:141=26 to 1:740T. Now the tunes are Qx;y D 6:25 or right on a destructive
half integer resonance. By raising the quadrupole strengths, we increase the tunes
to say Qx;y D 6:75. The new quadrupole strengths are from sin D 1

�
D 0:72815

from which we get the new quadrupole strength k D 0:06962m�2 and gradient
g D 11:603T/m which is still within practical limits.

10.3 The transformation matrix of an unperturbed FOFO cell is M0 D 
cos 0 ˇ0 sin 0
� 1
ˇ0

sin 0 cos 0

!
and for nc cells forming a half ring with �0 D nc 0

the transformation matrix is M0n D Mnc
0 D

 
cos�0 ˇ0 sin�0
� 1
ˇ0

sin�0 cos�0

!
. Inserting

a drift space of length ` at the beginning and end of the half ring results in a new



964 Solutions

transformation matrix with

Mn D
�
1 `

0 1

� 
cos�0 ˇ0 sin�0
� 1
ˇ0

sin�0 cos�0

!�
1 `

0 1

�

D
 

cos�0 � `
ˇ0

sin�0 ˇ0 sin�0 C 2` cos�0 � `2

ˇ0
sin�0

� 1
ˇ0

sin�0 cos�0 � `
ˇ0

sin�0

!
:

This must be equal to a new symmetric matrix Mn D
 

cos� ˇ sin�
� 1
ˇ

sin� cos�

!
and

equating matrix elements on both sides we can solve for the new phase � and
betatron function ˇ: The tune change is Q D .� � �0/ =� which we get from
the equality cos� D cos�0 � `

ˇ0
sin�0 and the change of the betatron function is

.ˇ � ˇ0/ � ˇ0 sin�0�sin�
sin� . Since �0 D 0 at the insertion point, we don’t find a change

in the �-function by inserting a drift space.

10.4 For ˛1 D ˛2 D 0 the transformation matrix of an arbitrary matching section is

Mm D
0@ q

ˇ2
ˇ1

cos 
p
ˇ1ˇ2 sin 

� 1p
ˇ1ˇ2

sin 
q

ˇ1
ˇ2

cos 

1A D �
C S
C0 S0

�
and the transformation of the

betatron function between two symmetry points is ˇ2 D C2ˇ1 C 1
ˇ1

S2: Especially
simple solutions exist if the phases x D  y D �=2 in which case Cx D Cy D 0
and the sine-like matrix element is adjusted such that S2x;y D ˇ1;x;yˇ2;x;y. We have
made no use of any FODO parameter and therefore the matching works between
any two symmetry points where ˛1 D ˛2 D 0:
10.5 The vertical betatron function is periodic since the vertical focusing is periodic
from the quadrupoles. This should be true also for the horizontal betatron function
but it is not because of the use of sector bending magnets which contribute
to horizontal but not to vertical focusing. The dispersion function is even more
perturbed because of the missing bending magnets.

Solutions for Chap. 11

11.1 The oscillation period for 500 MHz is Trf D 1
5�108 D 2:0 � 10�9 s. Therefore

the bunches are separated by 2 ns:

11.2 First we note that Js D 2 for rectangular magnets and the synchrotron

oscillation damping time is from (11.30) ��1
s D 2

3
rec�3

D
1
	2

E
D 1139:6 s�1 or

�s D 0:877ms: On the other hand, the energy loss per turn is U .GeV/ D
7:1685 � 10�4 GeV or 0:023895% of the particles energy. At this rate the particle
radiates all its energy away in 4,185 turns. To orbit one turn it takes the particle
0:2096 �s or to radiate away all its energy 0:877ms. In other words, the synchrotron
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damping time is just as long as it takes the particle to radiate away all its energy at
the initial energy rate.

Solutions for Chap. 12

12.1 We use the coordinates . ;cp=cp0/ for which the changes per unit time

are P D �h!0�c

�
cp
cp0

�
(h harmonic number, !0 revolution frequency) and

d
dt

�
cp
cp0

�
D eVrf. /�U.E/

cp0T0
with Vrf . / the rf-voltage at the phase  and U .E/

the energy loss per turn at energy E: Expanding we get eVrf . / � U .E/ �
e dVrf

d 

ˇ̌̌
 s

' � 4U .E0/ ˇ2
dcp
cp0

where ' is the phase deviation from the synchronous

phase  s: The last term gives rise to damping which we ignore here and
d
dt

�
cp
cp0

�
D 1

cp0T0
e dVrf

d 

ˇ̌̌
 s

'. Following the discussion leading to the Vlasov

equation we scale the coordinates ' �!
q

cp0T0
e dVrf=d j s

' and cp
cp0
�!

q
1

�h!0�c

cp
cp0

to get
q

cp0T0
e dVrf=d j s

P' D �h!0�c

q
1

�h!0�c

cp
cp0

or P' D !0

r
� h�c
2�cp0

e dVrf
d 

ˇ̌̌
 s

cp
cp0

and

d
dt

�
cp
cp0

�
D !0

r
� h�c
2�cp0

e dVrf
d 

ˇ̌̌
 s

'. The synchrotron oscillation frequency is then

just the coefficient to the coordinates ˝s D !0

r
� h�c
2�cp0

e dVrf
d 

ˇ̌̌
 s

: To make the

synchrotron oscillation frequency zero we would need a second rf-system adjusted

such that dVrf
d 

ˇ̌̌
 s

D 0. For simplicity of discussion we assume sinusoidal rf-voltages

and an additional rf-system at twice the frequency of the first. For maximum
efficiency, we phase the second rf-system such that  2 D 0 at the synchronous
phase of the first system. The conditions are then Vrf sin s D V1 sin s and
Vrf cos s D V1 cos s C V2 D 0 from which we can isolate the voltages to be
V1 D Vrf and V2 D Vrf cos s.

12.2 The equilibrium bunch length is given by (11.48) and is with dVrf
d 

ˇ̌̌
 s

D
OV cos s for this problem �` D

p
2�c
!0

q
�cE0

he dVrf=d j s

�E
E0

. The bunch length can be

manipulated by adjusting the relative phase and voltages of both rf-systems. In
general, for a two frequency rf-system the combined voltage is Vrf D V1 sin!1t C
V2 sin .!2tC ı/, where ı is the phase shift between both systems and dVrf

d 

ˇ̌̌
 s

D
V1 cos!1tC V2 cos .!2tC ı/ with the synchronous time ts D  s=!1.

12.3 An external field acts the same on all particles in a beam. If the beam as a
whole performs coherent transverse or longitudinal oscillations, we may consider
the situation being just one macroparticle. One could consider an external field
which does depend on the amplitude of the macroparticle and this field would then
damp the coherent oscillations because @f=@w ¤ 0. This is the case for a feedback
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system to damp coherent oscillations within a beam. The beam position is measured
at one point and the signal acts back on the beam after some amplification. If the
feedback system is fast enough it works for slices of a bunch where the slice charge
is offset from the equilibrium. This is exploited in stochastic cooling to reduce
the beam emittance. However, damping of incoherent oscillations, as we get from
the emission of synchrotron radiation, is not possible by external fields. Here each
individual particle has a different coordinate but the external field is the same for all
particles.

12.4 We use (12.106) and note that for a stationary solution ˛n D 0 for all n: The
remaining coefficients depend only on ˛w=D or parameters that are determined by
the storage ring containing the beam. This makes the Gaussian distribution of the
injected beam irrelevant.

12.5 The beam lifetime without quantum effects is 21:4 h and we allow this lifetime
to be reduced by 10 %. The quantum lifetime for all three degrees of freedom
therefore should be longer than �q D 577:8 h. Quantum effect lifetime is given
by (12.132) where 2x is the aperture in Gaussian standard units. The vertical

damping time is 1
�y
D hP�i

2E . The synchrotron radiation power is
˝
P�
˛ D 1; 155GeV/s

and the vertical damping time �y D 2:60ms: The aperture factor is then ex

x D 2 �q

�y
D

4:4 � 105 which can be solved for x � 15:75 or for A
�
D 5:6: The vertical aperture

should therefore be at least 5–6 times the Gaussian standard height. The same is
true for the other two degrees of freedom. The damping times may be slightly
different which makes little difference on the number of “sigma’s” because of the
fast variation of the exponential function. To cover all three degrees of freedom it is
common to use 7–10 Gaussian standard units.

Solutions for Chap. 13

13.1 The damping characteristics are determined by the partition numbers and the #-

parameter. Horizontal motion becomes antidamped when # D
H
�2�.1C2	2k/dzH

�2dz
 1:

We evaluate this integral in thin lens approximation for only one half cell, since all
others are the same and assume that kQF D �kQD D k and `QF D `QD D `: Then
# D � . O�C L�/ C 2	 . O� � L�/ k: Furthermore O� C L� D �L 2

k` and . O� � L�/ k D � L
`
:

With this the #-parameter is finally # D 2 L
`

�
�2

k C 1
�
: It follows from ` � L that

# > 1 and that the horizontal betatron function is antidamped. It is only because
of adiabatic damping during acceleration that the beam does not blow up. If the
acceleration is too slow the beam emittance will grow.
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Solutions for Chap. 14

12.2 For

�
H
j	3j

�
D 1

C

R C
0

H.z/
j	3j dz where hH .z/i D ˝ˇ�02˛Ch2˛��0iC˝��2˛we need to

formulate an analytical expression. Since all bending magnets contribute similarly,
only one has to be evaluated. We estimate the average values from known solutions
in the middle of FODO-cell quadrupoles (10.3), (10.74), and (10.5). Transforming

through the QF �0
QF D �O�=f ; �0

QD D �L�=f and
˝
ˇ�02˛ � 1

2

� Ǒ�02
QF C Ľ�02

QD

�
D

L3

	2
4�2C5
4
p
�2�1 . For h2˛��0i we approximate h�i � O�CL�

2
D L2�2

	
, h�0i � O��L�

L D L�
	

and

with ˛ D � 1
2
ˇ0 � � 1

2

Ǒ� Ľ
L we get for the second term h2˛��0i D � L3

	2
�4.4�2C5/
2
p
�2�1 :

Finally, we note that � .z/ is constant in a drift space (bending magnet) and is from
matrix transformation at the exit of QF �QF D 1

�2L2
Ǒ D const. With this

˝
��2

˛ ��
1

�2L2
Ǒ C 1

Ň
� O�2CL�2

2
D L3

	2
�2.4�2C5/
2
p
�2�1 . Collecting all terms hH .z/i � L3

	2
�2.4�2�3/
4
p
�2�1 and

the minimum is reached from @H=@� D 0 for � � 1:071. The associated FODO
phase advance per cell is  � 138ı:

12.6 We use an energy of E D 2GeV and an optimized 90ı lattice for which from
Fig. 14.5 hHi = �	�3

� � 3. We also assume that only 75% of the ring is occupied
by bending magnets and therefore `b=`b;0 D 0:75: Solving (14.25) for the minimum
bending angle � per bending magnet we get � D �x

Cq�2
1

hHi=.	�3/
`b
`b;0

180
�
D 3:845ı.

To compose a ring, we need at least 94 bending magnets or quadrupoles to reach a
minimum beam emittance of �x D 5 � 10�9 m.

Solutions for Chap. 15

15.1 We use the perturbation P22 .z/ D 1
2

20ˇ

5=2mw2ˇ in the equation of

motion Rwˇ C 
20wˇ D 1
2

20ˇ

5=2mw2ˇ and get after reordering the equation

Rwˇ C 
20
�
1 � 1

2
ˇ5=2mwˇ

�
wˇ D 0. On average, the sextupoles do not contribute

in linear approximation to a tune shift because
˝
1
2
ˇ5=2mwˇ

˛ D 0: In higher
order, however there is some tune shift which we can expect from the fact
that the contribution to the tune shift is greater while wˇ > 0 compared to
the case when wˇ < 0. The P21 .z/-term contributes to a tune shift because a
beam passing on a distorted orbit wc through a sextupole feels a quadrupole field
component and therefore a tune shift. The equation of motion shows this directly
Rwˇ C 
20

�
1 � 1

2
ˇ5=2mwc

�
wˇ D 0 and the tune shift is ı
 � 1

4

0
�
ˇ5=2mwc

�
.

15.2 At the bending magnet exit the dispersion is D D 	
�
1 � cos `b

	

�
and the slope

D0 D sin `b
	

. Extrapolating linearly back, we expect the dispersion to start with a

slope of D0 at a distance s before the bending magnet exit. Therefore, s sin `b
	
D
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�
1 � cos `b

	

�
and using `b

	
� 1 we get s � 1

2
`b demonstrating that the dispersion

function seems to start in the middle of the bending magnet.

15.3 With errors 1
	
` D � and A D

p
ˇ.z/

2 sin�
 the vertical �-function is � .z/ D
A
H
1
	

p
ˇ .Nz/ cos 
 Œ' .z/� ' .Nz/C ��dNz D A

P
i

p
ˇi�i cos 
 Œ' .z/ � 'i C ��

where we have omitted the index y. The expectation value for the dispersion
function is for N statistically distributed errors

˝
�2
˛ D A2

P
i ˇi�

2
i cos2 
� D

1
4
ˇ .z/N Ň�2� cot 
� where �� D

ph�2i is the rms deflection angle due to
misalignment errors and Ň the average value of the betatron function at the location
of errors. For random quadrupole misalignment errors �x and ` the length of the
quadrupole �� D k`�x and for bending magnet rotational errors �˛ the rms errors
are �� D `

	
�˛ . Use numerical values from lattice #3 in Table 10.1 to estimate the

actual expectation value of the vertical dispersion function.

15.4 The transformation M through both bending magnets and the drift space L
between them is with D D 	 .1 � cos �/

M D
0@ 1 LC 2` � .LC `/ sin �
0 1 sin �
0 0 1

1A

D
0@ 1 ` D
0 1 sin �
0 0 1

1A0@1 L 0
0 1 0

0 0 1

1A0@1 ` �D
0 1 � sin �
0 0 1

1A :
From this, we get the dispersion at the end of the second bending magnet D D
� .LC `/ sin � D �d and D0 D 0.

15.5 The tune change due to quadrupole field errors is 
 D 1
4�

P
i ˇi .ki`/

and with �k D
rD
.ki`/

2
E

the expectation value is �
 D 1
4�

Nq
Ň�k: To have a

96% probability to avoid an integer or half integer resonance 2�
 should be less
than 0.25 or �
;q < 0:125. With numerical values Nq and Ň one can solve for
the rms quadrupole field tolerance �k. Manufacturing tolerances resulting in non-
parallelism of bending magnet poles cause gradient field errors as well. If the angle

between pole surfaces is ˛ then the field will be B .x/ � B0G0
G0C˛x � B0G0

�
1C ˛

G0
x
�

.

From this, we extract the gradient field error ık D � 1
	
˛

G0
and get the rms tune

shift �
;b D 1
4�

Nb
Ň
b
`
	G0
�˛ , where G0 is the nominal gap between magnet poles,

`=	 is the bending angle, Nb the number of magnets and Ňb the average value
of the betatron function in the bending magnets. The total allowable tune shift is

then �
 D
q
�2
;q C �2
;b < 0:125 determining the gradient field and parallelism

tolerances.
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Solutions for Chap. 16

16.1 We use an energy E, a FODO half cell length L and a bending fill factor
of 50% or `b D L=2. We assume that there are N D 21 FODO cells. The
natural chromaticities are in both planes from (15.105) �x;y D � 1

2�
per FODO

half-cell and the sextupole strengths are mSF`s D �

O�. Ǒ� Ľ/ and mSD`s D �

L�. Ǒ� Ľ/ .

The phase differences between similar sextupoles (SFs or SDs) are ' D
2�=N. The stop-band width
.3/stop D � 
x;0

4�
x0p
ˇ0

ˇ̌̌R 2�
0 ˇ

5=2
x mei3
x0'd'

ˇ̌̌
becomes with


x;0ˇxd' Ddz and replacing the integral with sums over all SFs and SDs



.3/
stopD �x0

4�
p
ˇ0

ˇ̌̌̌
N�1P
kD0

�
ˇ
5=2
x m`s

ˇ̌̌
SF

ei3
x0k' C ˇ
5=2
x m`s

ˇ̌̌
SD

ei3
x0.kC1=2/'
�ˇ̌̌̌
: The sums

become
N�1P
kD0

ei3
x0k' D exp.i6�
x0/

exp.i6�
x0=N/�1 and exp
�
i 3
x0
2N '

� N�1P
kD0

exp .i3
x0k'/ D

exp
�
i 3�
x0

N2

� exp.i6�
x0/�1
exp.i6�
x0=N/�1 . Finally, the stop band width is
.3/stop D �x0�

4�
p
ˇ0

ˇ̌̌̌�
Ǒ3=2

O�. Ǒ� Ľ/�
Ľ3=2

L�. Ǒ� Ľ/ exp
�
i 3�
x0

N2

�� exp.i6�
x0/�1
exp.i6�
x0=N/�1

ˇ̌̌̌
: Close to the third order resonance

.
x0 � 3C ı
/ we set exp
�
i 3�
x0

N2

� � exp
�
i 9�

N2

�
and exp.i6�
x0/�1

exp.i6�
x0=N/�1 � 16�ı

exp.i18�=N/�1

and get 
.3/stop / x0ı
. For finite betatron amplitudes x0 the stop band width scales
like the tune distance ı
 from the third order resonance.

16.2 In the definition (16.33) we notice that jmj 
 n and therefore there are odd
values for m if m is even and vice versa. That means for n even there can be a value
m D 0 while for an odd n we have m ¤ 0: Only terms cnm D cn0 ¤ 0 give rise to a
tune shift in this approximation which is the case for even values of n only.

16.3 We write (16.33) like cosn  D cn0 C cn1ei C cn2ei2 C : : : C cnnein : on
the other hand cosn  D 1

2n

�
ei C e�i 

�n D 1
2n

�
ein C aei.n�1/ C : : :� : In both

equations there is only one term ein : Therefore cnnein D 1
2n ein and cnn D 1

2n :

Solutions for Chap. 17

17.1 First, we find from (6.95) all second order terms in ı: The term ��ı2 together
with C .�/ D cos .�=	/ and S .�/ D 	 cos .�=	/ the perturbation P .z; ı/ D
�ı2 R �x jS .z/C0 .�/� C .z/ S0 .�/j D �ı2	 .1 � cos z=	/. Since no slopes are
involved, T166 D c166 D �	 .1 � cos z=	/. We could have guessed this result, since
the perturbation term is the same as for the dispersion except for a factor �ı: This
second order term is therefore just the second order chromatic perturbation.



970 Solutions

17.2 From (6.95) we collect quadratic terms and with x D Cx0 and x0 D C0x0 we
get the desired perturbation p

�
�jx20

� D ���m
2
� �3x � 2�xk

�
C2 C �x

2
C02	 x20. Note,

that we ignore the �0-term since we exclude non-constant strength parameters. With
this perturbation, the integral (5.75)

T111 D
Z z

0

p
�
�jx20

� �
S .z/C0 .�/� C .z/ S0 .�/

	
d�

D
�
�1
2

m � �3x � 2�xk

�
1

3k

�
kS2 C .1 � C/

	C 5

6

�
2 .1 � C/� kS2

	
where C; S are the principal solutions of linear beam dynamics.

17.3 We consider a ring made of a total of Nc D 61 FODO-cells, each with a phase
advance of 90ı and the tune is then 
 D 15:25. This ring has 61 QFs and 61 QDs.

The betatron functions in the middle of the quadrupoles are ˇ D L
�
2˙p2

�
and

the �-function � D L2

2	

�
4˙p2

�
. The natural chromaticity �0;x;y D �Nc

�
and the

change in chromaticity due to sextupoles

�x;y D Nc

4�

�
.ˇ�m`s/QF ˙ .ˇ�m`s/QD

	
D Nc

4�

L3

2	

h
˙
�
10C 6p2

�
mQF`s ˙

�
10 � 6p2

�
mQD`s

i
D ��x;y:

After evaluation �x D 18:485mQF`s C 1:515mQD`s D 8	

L3
and �y D

�1:515mQF`s � 18:4851mQD`s D 8	

L3
; which can be solved for the two sextupole

families mQF`s D �mQD`s D 2	

3
p
2L3
: We use this result for (17.45) and getP

i mi`iˇ
3=2 exp .i xi/ D

ˇ̌
m`sˇ

3=2
ˇ̌
QF�

ˇ̌
m`sˇ

3=2
ˇ̌
QD exp .i�=4/ ¤ 0 because

of cancellations within every four cells. Only the contribution of the last cell is
uncompensated. If we place non-interleaved sextupoles in pairs 180ı apart there is
total cancellation and the driving term is zero.

17.4 The tunes of the ring are in both planes 
 D 15:25: Equations (17.45)–(17.49)
exhibit mainly integer and third order resonances. A proper choice on the tunes can
minimize these aberration terms. A tune of 15:25 is close to a multiple of 3 and
therefore efficient at driving a third order resonance. A better tune would be say
16:25:16:75 or 17:25: One could argue that 16:75 or 17:25 might give the lowest
driving terms, although this ignores the variation of sextupole strengths and betatron
functions. To find the minimum driving terms (17.45)–(17.49) must be evaluated.
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Solutions for Chap. 18

18.1 The longest wavelength belong to the lowest TM and TE-mode. The lowest
TM-mode is TM01:We use (18.44) with Bz D 0 and note that Er meets the boundary
condition by definition, E' D 0 at the walls because m D 0 and Ez D 0 at the
wall for J0 .kcR/ D 0 or �c D 2�R

2:405
: The longest TM-mode wavelength that could

propagate in this tube is about 30% bigger than the diameter of the tube. The TE-
mode fields are given by (18.44) with Ez D 0: The magnetic field Bz / Jm .kcR/
just like Ez: The radial electric field end normally at the wall, E' D 0 for J0

0 .kcR/ D
0 or kcR D 1:84: Solving for the cut-off wavelength �c D 2�R

1:84
which is about

30 % smaller than the tube diameter. Therefore, we may conclude that wavelength
longer than the tube diameter do not propagate. One big consequence of this is that
electron bunches with a bunch length of 1–2 cm or longer do not emit coherent
synchrotron radiation because the wavelength would be of the order of the bunch
length or vacuum chamber dimensions or longer.

18.2 A change of temperature would change all linear dimensions of a cavity as
determined by the temperature coefficient of the cavity material, in this case copper.
The fundamental cavity frequency is inversely proportional to the radial dimension
a1 of the cavity (18.48). From a1

a1
D �frf

frf
D �TT andfrf D �16:6 � frf T(ıC).

Assuming that the cavity is dimensioned for 500 MHz
ˇ̌̌
frf
frf

ˇ̌̌
D ˙10�6 D �16:6 �

10�6 �T and the temperature tolerance is ˙0:06 ıC.

18.3 The cavity length scales like d / 1
frf
; the diameter like a1 / 1

frf
; for a pill

box cavity the transit time factor is independent of the frequency; the quality factor
Q / f 0rf ; the shunt impedance Rs / 1p

frf
; the specific shunt impedance rs / pfrf and

cavity fill time tF / 1
frf

.

18.4 Such high fields can be sustained only in pulsed linac systems. The wall losses
per meter of accelerating structure are from (18.90) PW D 5:6MW/m. This is too
large for financial and technical reasons because it would not be possible to cool
that much power from one meter of structure. An electron linac is pulsed with
a pulse length of say 2:5 �s and a rep rate of say 100 s�1: The duty cycle is the
250�s per second or 2:5 10�4: The average wall losses are therefore 1:4 kW which
is manageable.

18.5 The capture dynamics in linear accelerators depends on the particle velocity
and initial phase at the time it enters the accelerating section. Particles can be
accelerated even if the initial field is negative for example in the area 90ı to
180ı= � 180ı to �90ı: Between 90 and 180ı initially low energy particles travel
slower that the rf-wave and quickly fall back into the accelerating phase before
they loos all energy. In the accelerating phase they get accelerated very fast and
reach high energies. Higher energy particles do not reach equally high final energies
because they are faster and will not fall back from the negative acceleration so
fast and lose much of their initial energy before they get accelerated again in the
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accelerating phase. Particles starting at < �90ı will stay longer in the decelerating
phase and loose all their energy. After that they get accelerated/decelerated at
random. The optimum phase should be  0 D 0ı and particles with higher initial
relativistic energies gain the highest energy and stay at this phase. Lower energy
particles at 1–2 MeV are not relativistic yet and therefore fall back from the crest
of the wave gaining less energy. This is the regime of a buncher section where the
phase velocity of the rf-wave is reduced to match that of the particles.

18.6 We excite the prebuncher to a total effective voltage of OVrf and the linear
part scales with 3 GHz phase like Vrf D OVrf'500. For simplicity, we assume the
electrons to be nonrelativistic and the velocity deviation ıv from the E0 D 100 keV

reference particle
q

m
2E0
ıv D

q
Ekin
E0
�1 D

q
1C e OVrf'500

E0
�1 � e OVrf

2E0
'500. A distance `

downstream from the prebuncher the reference particle arrives at a time � D `=v0 D
`=
p
2E=m: During this same time a particle at phase '500 must advance or fall back

with respect to the reference particle by the distance �rf
2�
'500 to arrive at the same

time as the reference particle. Therefore, we require �ıv D �rf
2�
'500 and the shortest

bunch length is obtained at a distance ` D �rf
2�

2E0
e OVrf

. In this ideal (linear) case the
resulting bunch length is zero independent of the original bunch length. In reality,
the sinusoidal variation of the prebuncher voltage results in a finite S-like bunch
distribution in phase space. We may over-compress the bunch by going slightly
beyond the distance ` thus getting a slightly higher intensity within a finite phase
distance of, for example,˙12ı at 3 GHz.

18.7 The no-load energy gain is Ekin .MeV/ D 10:48
p

P0 .MW/ D 40:6MeV and
with beam loading this energy gain is reduced by E D �37:47 ib D �0:75MeV.
The fill time of one linac section is tF D 0:73�s and the rf-pulse remaining
for beam acceleration is 1.77�s. The beam pulse is therefore � D 1:77�s long
with an energy gain of Eload D 39:85MeV. The total beam energy is then eb D
.Eload=e/ ib� D 2:0 J. On the other hand the total rf-pulse energy is erf D 37:5 J and
the linac efficiency is then � D 5:3%. If only one pulse is accelerated as is the case
for a linear collider or a x-ray laser the total beam energy is eb D nbEkin D 0:065 J
and the efficiency is � D 0:17%:

Solutions for Chap. 19

19.1 The synchrotron radiation energy loss per turn is U D 93:0 keV, the beam
current is I D 68:0mA and the radiation power Psyn D 6:32 kW. The energy spread
is �E

E D 0:0727% and the required acceptance 6�E
E D 0:436% for a beam lifetime

of at least one hour. From (9.64) we solve for the function F .q/ D 1:202 and
q D 1:902. Ignoring beam loading the required minimum rf-voltage is Vrf D qU D
176:9 kV. Including the cavity power Pcy D 1:86 kW, the total minimum rf-power
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needed is Ptot D 8:18 kW. Beam loading will change these parameters. From (19.35)
the optimum coupling ˇopt D 4:40.

19.2 We express the current in an even Fourier series I .t/ D 1
2
a0C

1P
nD1

an cos .n!t/

and assume only one circulating bunch of charge Q between � 1
2
� 
 t 
 1

2
� where

� � T0 is the revolution time and the average current I0 D Q=� . The current is

I .t/ D
1P

nD�1
cn eik!t D c0 C 2P

n>0
cn cos .n!t/ : Here cn D 1

T0

R 1
2 T0

� 1
2 T0

I .t/ e�ik!tdt:

After integration cn D I0
1

T0
2

�i!k

R �i!k 12 �
0 exdx D I0

1
T0
� D Ib: The coefficient an D

2cn D 2Ib for all values of n D 0; 1; 2; 3 : : :

Solutions for Chap. 20

20.1 From (20.95) we calculate the coupling from statistical errors to be �rms Dph�2i D 1
2�

�
ık `q

�q
ˇxˇyNq where ık is the strength of the error, the length of

the error is ` and Nq D 122 the number of errors. For 90ı cells, the quadrupole

strength has to be k D 2=
�p

2L`q

�
D p2 and ık D k ı˛. In the lattice we

have Nq D 122 quadrupoles, for 90ı cells ˇxˇy D 2L2 and the rms coupling is
�rms D 38:8 ı˛. In the sample lattice we have equal tunes 
x D 
y and therefore
the emittance coupling is always 100%: To get a finite emittance coupling we must
separate the tunes by fine adjustment of the quadrupoles and choose, for example,
tunes like 
x D 15:20 and 
y D 15:15. The emittance coupling is from (20.117)
�y

�x
D �2


2C�2 D 0:01. Solving for the coupling, we get � � 0:005 which determines
the rotational alignment tolerance of the quadrupoles to ı˛rms � 0:13mrad.

20.2 From the graph we obtain 
I � 
x D
ˇ̌

II � 
y

ˇ̌ � 0:05. With this and r D 0

at resonance (20.120) can be solved for the coupling resonance to be � � 0:1: The
coupling coefficient is just the narrowest distance between the tune measurements.

Solutions for Chap. 21

21.1 The beam-beam tune shift is ı
 D 1
4�
ˇ�
0y.k`/. We split the ring at the

collision point and insert half of the beam-beam focusing on either side of the
symmetry point. With the transformation matrix of the unperturbed ring being

M0 we get for the perturbed ring M D PM0P, where P D
�

1 0

� 1
2
 .k`/ 1

�
;

M0 D
 

cos 2�
0 ˇ�
0y sin 2�
0

� 1
ˇ�
0y

sin 2�
0 cos 2�
0

!
; and M D

 
cos 2�
 ˇ�

y sin 2�

� 1
ˇ�

y
sin 2�
 cos 2�


!
:
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Performing the matrix multiplications, we look for the determination of the
perturbed betatron function ˇ�

y at the collision point only for the terms C D
cos 2�
0 � 1

2
 .k`/ ˇ�

0y sin 2�
0 and S D ˇ�
0y sin 2�
0. The perturbed betatron

function is

ˇ�
y D

�
cos 2�
0 � 1

2
 .k`/ ˇ�

0y sin 2�
0
�2
ˇ�
0y C

�
ˇ�
0y sin 2�
0

�2
1
ˇ�
0y

or the linear

change of the betatron functions is
ˇ�

y

ˇ�
0y
� �2�ı
 sin 2�
0.

Solutions for Chap. 22

22.1 To calculate the bunch charge we need to calculate the revolution frequency
f0 D 1:199 � 106 s�1: A bunch current of Ib D 50mA resembles therefore a charge
of Q D 41:70 pC. The induced voltage is then for the BPM Vind D 2:55V and the
power into the 50 Ohm terminator is P D V2

R D 0:130W. This is very small but
so are the BPMs which are very well insulated and continuously heat up. For the
bellows these values are Vind D 2:552V and the power is from (22.20) PHOM D
0:128W. Again this power is small enough without special cooling. However, this
small impedance could only be achieved by shielding the inside of the bellows by
smooth strips of flexible metal. An unshielded bellows has a loss factor of about
kk D 50V/pC. In this case the power would be PHOM � 105W which is too much
to tolerate in a bellows. With shielding the bellows looks for the beam smooth while
pumping is still possible through the small gaps between the metal strips. Similar
techniques are now common practice to keep the impedance small in all components
of a modern storage rings.

22.2 From (22.93) we get a�ib D rCa
2
� r�a

2
�i2

q
r2�a2

4
D a�ib: Furthermore

ı2 D a
q

Z2r CZ2i
n2
� a Zi

n and
�
ı2 C a Zi

n

�2 D a2 Z2r CZ2i
n2
D ı4 C 2ı2a Zi

n C
�
a Zi

n

�2
: From

this a2 Z2r
n2
D ı4 C 2ı2a Zi

n and Zi
n D a

2ı2
Z2r
n2
� ı2

2a or Zi
n D A Z2r

n2
� 1

4A with A D a
2ı2
:

Solutions for Chap. 23

23.1 The geometry of the field lines in the particle system may be expressed by
x D tan ˛�z were ˛ is the angle between the field line and the z-axis. In the laboratory
system the z-coordinates are Lorentz contracted and the equation of the field lines
becomes x� D tan˛

�
� z�:

23.2 The Cherenkov condition is ˇnair cos � D 1. For electrons ˇ .10 MeV/ D
0:99869 and ˇ .50 MeV/ D 0:99995. The Cherenkov angle for 10 MeV electrons is
imaginary .cos � D 1:001/. In order to preserve energy and momentum, the electron
energy must have a minimum energy such that nˇ > 1$. For 50 MeV electrons
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this condition is met and the Cherenkov angle is �Ch D arccos
�

1
0:99995�1:000277

� D
1:214ı:

23.3 The Cherenkov angle is �Ch D 180
�

arccos
�

1
0:99869�1:58

� D 50:673ı. This
radiation will meet the other side of the plate at this angle with respect to the surface

normal and will be totally reflected, because according to Snell’s law
�

sin �1
sin �2
D n2

n1

�
transmission is limited to a maximum angle of n2 sin �2 or �2 
 36:0ı. The radiation
continues to be totally reflected until it reaches the small side of the plate in which
case the incident angle is now 39:327ı which is still larger than the angle allowed
by Snell’s law. This is an ideal material for a scintillator in high energy physics
experiments to detect secondary particles. In this case the radiation will eventually
reach the surface of a photomultiplier and escape the plastic.

23.4 The revolution frequency is frev D c=C D 1MHz and the total number of
particles orbiting is ne D 1:5604 � 1012 electrons or 3:1208 � 109 electrons per
bunch. The photon pulses reflect exactly those of the electron bunches. We assume
a uniform electron distribution over the bunch length. Therefore, there is a 1 cm long
photon pulse every 0.6 m or one 30 ps photon pulse every 2 ns.

23.5 We use the uncertainty relation xp D x � „k  „ or x  1=k and

the characteristic volume of a photon may be set to Vph � .x/3 D �
�
2�

�3
. The

average electric field within this volume is from the photon energy „! D 1
2�0

E2Vph

or E D k2
p
2�0„c: For a 0.1238 eV photon (CO2 Laser) the wavelength is 10�m

and the average electric field is E D 2:96�10�7 V/m. In the case of a 10 keV photon
the field is E D 1:93 kV/m.

23.6 The relativistic Doppler effect is !��
�
1C ˇzn�

z

� D ! and for the classical
case we set � D 1, n�

z D � cos# and ˇ D v=v0, where v0 is the velocity of the
wave (light or acoustic). The relative Doppler shift is then f

f0
D v

v0
cos# .

23.7 The energy loss per turn is from (24.41) U0 D 20:32 keV and the total radiation
power P D 20:32 kW. In case of muons, we have the mass ratio m�=me D 206:8

and the energy loss is reduced by the fourth-power of this ratio to become U� D
11:1�eV, which is completely negligible. Besides electrons and positrons there are
no other particles that would produce competitive synchrotron radiation.

23.8 The maximum photon flux occurs at a photon energy of about " D 0:286"c and
S.0:286/ � 0:569. To find the 1% photon energy we use (24.61) to scale the photon
flux and have 0:777

p
x=ex D 0:00569, which is solved by x D 5:795. Appreciable

radiation exists up to almost six times the critical photon energy.

23.9 From (24.51) the beam energy is E D Œ0:4508 "c .keV/ 	 .m/�1=3 D
2:0035GeV. The magnetic field necessary for a bending radius of 	 D 1:784m
would be B D 3:75T, which is beyond conventional magnet saturation. Either
superconducting magnets must be used to preserve the ring geometry or a new ring
must be constructed with bending magnets which must be longer by about a factor
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of 2.5 for realistic magnetic fields, but then the beam energy must be increased to
keep the critical photon energy.

Solutions for Chap. 24

24.1 In the horizontal plane the radiation distribution is uniform and an angle of
 D 0:2mr will produce a photon beam width of 1 mm at a distance of 5 m. The
critical photon energy is "c D 563 eV and "="c D 0:00022: For the IR radiation
the vertical opening angle �rad D 11:3mr .�rad � 1=�/ and the source length
L D 0:045m. The total source height is �tot;y D

p
0:112 C 0:1072 D 0:153mm

and the vertical divergence �tot;y0 D 14:9mr. The photon flux for � D 10�m and

S.0:00022/ D 0:0805 is d PNph

d D 1:275 � 1015 photons/s/mr/100 %BW. The photon

brightness is then B D .d PNph=d / 
2��2tot;y�

2
tot;y0
D 1:162 � 1014 ph/s/mm2/mr2=100%BW.

24.2 The probability to emit a photon of energy " in a unit time is Pn �"ph
� D P�

"2c

S.x/
x .

We are looking for the case " D �" D E2

mc2

q
55„c

64
p
3mc2Js	

D 10:9MeV. For "c D
3
2
„c �3

	
D 19; 166 eV, the ratio x D "

"c
D 1

�

q
55mc2	

144
p
3Js„c

D 277:54 � 1 and P�
"2c
D

23; 826 1
eVs . The probability becomes with this Pn �"ph

� � 2� 10�96ŠWe may, safely
assume that no second photon of this energy will be emitted within a damping time.
Energy is emitted in very small fractions of the electron energy.

24.3 From (25.146) we get the number of photons emitted per unit time to be
PNph D 15

p
3

8

P�
"c
D 3:158 � 106 �

	
and per radian Pnph D 0:01063� � �

100
.

24.4 The critical photon energy is "c D 38:04 keV and "="c D 0:21. The

universal function is S.0:21/ D 0:5625 and the photon flux d PNph

d D 3:1185 �
1012 photons/s/mrad. The vertical opening angle

p
2��� D 0:251mrad resulting

in an effective beam height at the experiment of Y D 3:77mm. A beam size of 10
�m at 15 m corresponds to an angle of 0.667�rad at the source. The total photon
flux into the required sample cross section is then PNph D 5:53 � 106 ph/s, which
is more than required. For a still higher photon flux one might apply some photon
focusing.

24.5 From problem 24.1 L D 0:045m and the diffraction limited source size and
divergence are �r D 0:107mm and �r0 D 14:9mr, respectively. This is to be
compared with the electron beam parameters

�
�b;x; �b;y

� D .1:1; 0:11/mm and�
�b;x0 ; �b;y0

� D .0:11; 0:011/mr. There is a considerable mismatch in the x-plane
with �r=

p
2 D 0:076mm and �r0=

p
2 D 10:5mr while in the vertical plane

the mismatch is small. In both planes the diffraction limited photon emittance is
�ph;x;x D 797 nm, which is much larger than the electron beam emittances in both
planes. The 10�m IR radiation is therefore spatially coherent.
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24.6 The instantaneous radiation power is given by (24.32) as P� .GeV/s/ D
379:35B2E2: The total energy loss of an electron due to wiggler radiation power
can be obtained by integrating through the wiggler field for E .GeV/ D
189:67B2E2 Lu

cˇ and the total radiation power for a beam current I is Pu .W/ D
632:67B2E2LuI.

Solutions for Chap. 25

25.1 Integration of (25.61) over ' results in factors 2� and � for the two terms
in the nominator, respectively and we have the integrals 2�

R �
0

sin �
.1�ˇ cos �/5

d� �
�
�
1 � ˇ2� R �

0
sin3 �

.1�ˇ cos �/5
d� D 4��4 2

3
. With this the radiation power is Ptot D

2
3
rcmc2 cˇ4�4

	2
which is (24.34).

25.2 The vertical opening angle is 1=� D 0:085mr and therefore all radiation will
be accepted. The spectral photon flux into an opening angle of  D 10mr is
PNph D C EI!

!
S .!=!c/ and with a critical photon energy of "c D 23:94 keV

the spectral photon flux from an ESRF bending magnet is PNph D 4:75 � 1014 �
S
�
"ph.keV/
23:94

�
.

25.3 We use (25.88) and get with � D 1
2
!
!c

�
1C �2�2�3=2 for the photon flux

at p% the expression d2W.10%/
d˝d! = d2W

d˝d! D
�
1C �2�2�2 �K22=3.�/

K22=3.0/
C �2�2

1C�2�2
K21=3.�/

K22=3.0/

�
D

0:1. Solving for � gives the angle at which the intensity has dropped to 10%:

For low frequencies d2W.10%/
d˝d! = d2W

d˝d! �!�!0
1 C �2�2

1C�2�2
� 4.1=3/

28=3� 4.2=3/

�
!
!c

�4=3 D p

and for large arguments d2W.10%/
d˝d! = d2W

d˝d! �!
�!1

1C2�2�2p
1C�2�2

exp.!=!c/

exp
h
!
!c .1C�2�2/

3=2
i D p.

All expressions have to be evaluated numerically. The angle at which the total

radiation intensity has dropped to 10% is from (25.97) given by d2W.10%/
d˝d! = d2W

d˝d! D
1

.1C�2�2/5=2
�
1C 5

7

�2�2

1C�2�2
�
D p, which can be solved by �� D 1:390 for p D 10%:

Solutions for Chap. 26

26.1 The amplitude of the oscillatory motion in an undulator is from (26.6)
a? D �pK

2��
D 0:581�m. The longitudinal oscillation amplitude is from (26.5)

ak D K
8�2kp

D 0:053Å. Both amplitudes are very small, yet are responsible for
the high intensities of radiation.
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26.2 The focal length of a single pole end is given by (7.75) 1
f1;
D �2

2�2
K2

�p
D

2:58 � 10�5 m�1 and for the whole undulator 1
fy;
D �2

2�2
K2

�p
2N D 0:00258m�1 or

fy; D 387:60m. This focal length is very long compared to the focal lengths of
the ring quadrupole, which are of the order of the distance between quadrupoles.
Typically, the focal length of any insertion device should be more than about 50 m
to be negligible. The wiggler magnet with K D 5, on the other hand, produces
a focal length of fy; D 15:50m which is too strong to be ignored and must be
compensated. The difference comes from the fact that its the deflection angle which
is responsible for focusing and 1

fy;
/ �2. Focusing occurs only in the nondeflecting

plane and 1
fx;
D 0:

26.3 This result appears nonphysical, yet it is correct, but requires some interpre-
tation. If the experimenter uses all radiation into the forward cone the photon flux
is independent of Np; but as Np becomes smaller the bandwidth increases. That is
not as experimenters generally use synchrotron radiation. They use spectrometers to
cut out a very small bandwidth ı!

!
� 1

Np
and in this case the useful band width is

independent of Np and the photon flux is proportional to Np:

26.4 To solve this problem, we do not rely on exact calculations, but are satisfied
with the precision of reading the graph (Fig. 24.5). We also use iterations to get
the solution we want. The fundamental flux drops below 10 % for K < 0:25 and
we use this value to get 15 keV radiation. From the definition of the fundamental
photon energy the periodlength is �p D 3:0 cm. To generate 4 keV radiation we
need to change K enough to raise the factor

�
1C 1

2
K2
�

from a low value of 1:031
by a factor of 15=4 to a value of 3:87 or to a value of K D 2:4, which corresponds
to a field of B D 0:857T. Unfortunately that field requires a gap of 8:1mm which is
less than allowed. We have to increase the period length to say �p D 3:0 cm, which
gives a maximum photon energy for K D 0:25 of "ph D 12:9 keV. We plan to use
the 3rd harmonic to reach 15 keV. To reach "ph D 4 keV we need K D 2:16 and
a field of B D 0:661T which requires an allowable gap of g D 11:7mm. We use
the 3rd harmonic to reach "ph D 15 keV at K D 1:82. With this result we may even
extend the spectral range on both ends.

26.5 In the electron system the wavelength of the laser beam is Lorentz contracted
by a factor of 1/.2�/, where the factor of two is due to the fact that the relative
velocity between both beams is 2c. The wavelength in the laboratory system is
therefore � D �L

4�2
since K � 1 for the laser field.

26.6 The maximum transverse oscillation amplitude is 4:57�m and the transverse
velocity in units of c is just equal to the maximum deflection angle ˇ? D � D
K=� D 0:38mr. The transverse relativistic factor �? � 1 C 7:22 � 10�8, indeed
very small, yet enough to start generating relativistic perturbations in the transverse
particle motion.
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26.7 The fundamental wavelength is � D �p
2�2

�
1C 1

2
K2 C �2#2� and for # D 0 we

have the fundamental wavelength � D 10:88Å. The natural bandwidth is !
!
D 1

Np

and we look therefore for an angle O# such that the wavelength has increased by no

more than 9%, or �2 O#2
1C 1

2K2
D 0:09 and solving for O#;we get O# D ˙62:6�rad.

26.8 In first approximation, we assume that all the fields are contained within the
volume between the two rows of poles and no field leaks out. Separating the poles
by g requires to generate the additional field energy de D Fdg where F is the force
between poles. Since de > 0 for dg > 0 the force is attractive meaning that the

poles are attracted. The force is then F D de
dg D w

2�0

R 15�p

0 B2 .z/dz D 47; 024N
D 4:70 tons.

26.9 In the electron rest frame energy conservation requires „! C mc2 D „!0 Cp
c2p2 C mc2 where „! and „!0 are the incoming and outgoing photon energies,

respectively and cp the electron momentum after the scattering process. Solving for
cp we get c2p2 D „2 .! � !0/2 C 2„mc2 .! � !0/. For momentum conservation,
we require that „k D „k0 C p with the angle # between k and p. From this we get
c2p2 D .„!0/2 C .„!/2 � 2„2!!0 cos#: Comparing booth expressions for cp we
get �2„!!0 C 2„mc2 .! � !0/ D �2„2!!0 cos# or „

mc2
.1 � cos#/ D 1

!0 � 1
!
D

�0��
2�c :We look for radiation emitted in the forward direction or for # D 180ı and

get for the scattered wavelength �0 D � because 4�„c
mc2
� 4:8 � 1012 � �. Note,

that all quantities are still defined in the electron rest frame. The wavelength of the
undulator field in the electron system is � D ��

p=� , where now L�the laboratory
system of reference and the scattered radiation in the laboratory system due to the

Doppler effect is �� D ��
p

2�2

�
1C 1

2
K2
�
, which is the expression for the fundamental

wavelength of undulator radiation.

26.10 The photon flux density in the forward cone from a given undulator and
storage ring is proportional to (26.61). For the fundamental the maximum value
is reached for K D 1:1985 with an amplitude of A1 .1:1985/ D 0:381: An intensity
of 90 % has an amplitude of 0:343 which corresponds to K-values of K D 0:873

and K D 1:642:
26.11 Equation (26.54) is for # D 0 proportional to

��K
P

2

�2
and we look at

the factor
P

2 D
P1

mD�1 J�m.u/ ŒJk�2m�1.v/C Jk�2mC1.v/� to select harmonics.
Here u D !

!1
S and v D !

!1
C: Furthermore C / # D 0 and S / K2 Ň: Therefore

v D 0 and ŒJk�2m�1.0/C Jk�2mC1.0/� D 0 for all indices which are non-zero. Only
for k D 2m ˙ 1 are the indices equal to zero and ŒJ0.0/C J0.0/� ¤ 0: FinallyP

2 D 0 for all even values of k and
P

2 ¤ 0 only for odd values of k:

26.12 To get elliptically polarized radiation we look at (26.51) and try to find one
real term together with an imaginary term in the other plane to be non-zero at
the same time. We also remember that undulator radiation is emitted only at odd
harmonics k D 2m ˙ 1: From (26.51) we note that the iOx-terms are both non-zero
but the OyB0-term has a factor Jk�2m.v/ for which v D 0 in the forward direction and
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Jk�2m.0/ D 0 for all non-zero indices. Since k is odd Jk�2m.0/ D 0 for all odd values
of k and with it the OyB0-term is zero too. Therefore there is no elliptical polarization.
Of course the radiation from each pole is elliptically polarized, say, clock-wise but
that polarization is compensated by the counter-clock-wise radiation from the next
pole.

26.13 The best approach to solve this design problem is to use a computer program
like EXCEL. There are many parameters and the photon wavelength must be
calculated many times. Specify beam energy, period length and min/max desired
wavelengths. Calculate fundamental wavelength for Kmin=Kmax: For reasonable
intensities Kmin & 0:5. Kmax determines the maximum field. At this point we can
only guess, say Kmax D 6: Calculate min/max wavelength or photon energies for up
to seventh harmonic. Try to find period length which covers the desired spectrum.
From the undulator strength parameter calculate the maximum field strength. The
maximum field in a permanent magnet undulator depends on the gap and period
length. For a closed undulator assume a minimum gap of ˙10mm. That means
to reach, say 1.5 T, the period length should be longer than about 5–6 cm (see
Fig. 24.5). Note, do not assume that you must find a perfect solution that covers
the whole desired spectrum. If, for example, you desire low energy photons from an
unduator in a high energy storage ring you will not find a solution with a reasonable
value of K: Sometimes the harmonic spectra just will not close. In this case several
undulators with different period length and automatically exchangeable can be used.
Such undulators are also known as “revolver”-type undulators.

26.14 The fundamental wave length for a weak undulator .K < 1/ are
� .800MeV/ D 102Å and � .7 GeV/ D 1:33Å which are the shortest achievable
wavelength. For a 10 mm gap the field is from (24.5) B D 1:198T and the maximum
value of the strength parameter is K D 5:595. With this, the longest fundamental
wavelength is � D 1698:5Å for the 800 MeV ring and � D 22:14Å for the 7 GeV
ring.

26.15 The short wavelength limits are given for a weak undulator .K < 1/

and are � D 3:13Å for �p D 15mm and � D 15:7Å for �p D 75mm.
The long wavelength limits are determined by the magnetic fields when the
undulator gaps are closed to 10 mm. The fields are from (24.5) B

�
�p D 15mm

� D
0:19T and B

�
�p D 75mm

� D 1:66T, respectively. The undulator strengths are
K
�
�p D 15mm

� D 0:270 and K
�
�p D 75mm

� D 1:35 and the wavelengths
�
�
�p D 15mm

� D 3:24 Å and �
�
�p D 15mm

� D 30:0Å. The tuning range is
very small for the 15 mm undulator and about a factor of two for the long period
undulator. The tuning ranges are so different because the K-value can be varied
much more for longer period undulators.
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Solutions for Chap. 27

27.1 We may solve this problem two ways. First, we use the average drift velocity

ˇ D ˇ
�
1 � K2

4�2

�
and calculate the time te D �p

cˇ
� �p

cˇ

�
1C K2

4�2

�
it takes the

electron to travel along one period. During that same time the photon travels a

distance s� D cte D �p

ˇ

�
1C K2

4�2

�
and the difference is ıs D s� � �p D

�p

�
1
ˇ
� 1

�
C �p

ˇ
K2

4�2
� �p

2�2

�
1C 1

2
K2
�
, which is just equal to the fundamental

radiation wave length. We may also integrate the path length along the sinusoidal
trajectory and get for one quarter period se D �p

2�2

R �=2
0

p
1C �2 cos2 xdx D

�p

2�2
EllipticE

���2� which is the Legendre elliptical integral of the second kind.

Since the argument will always be very small, we may expand EllipticE
���2� �

�
2
C 0:393�2 for small arguments and get the electron travel time for one period

te D 4 �p

2�
1

cˇ

�
�
2
C 0:393�2�. The path length difference between the photon, �p and

electron cte is ıs D cte��p D �p
1
ˇ

�
1C 0:393�2

�=2

�
��p � �p

2�2

0BB@1C 8 � 0:393
�„ ƒ‚ …
�1

1
2
K2

1CCA
which is again the fundamental wavelength of radiation.

27.2 In a helical undulator the transverse as well as the longitudinal motion are
uniform and therefore there are no varying relativistic effects perturbing the uniform
motion. A Fourier transform of the motion will therefore only exhibit one, the
fundamental harmonic .

27.3 The total energy of the photon flux is E� D 	NeE into a band width of
!
!
D 1

Np
and the number of coherent x-ray photons of energy "x per electron

is nph,coh D E�
"xNe

D 717:5: On the other hand the radiation pulse energy from

an undulator into the forward cone per electron and band width !
!
D 1

Np
is

nph,incoh D 1
2
�˛

�
1C 1

2
K2
�

A1 .K/ D 0:015: The SASE process accounts for about
five orders of magnitude in photon flux per electron.



Appendix A
Useful Mathematical Formulae

A.1 Vector Algebra

Electric and magnetic fields are vectors which are defined by direction and
magnitude in space E.x; y; z/ and B.x; y; z/; where we use a Cartesian coordinate
system .x; y; z/:The distribution of such vectors is called a vector field in contrast to
a scalar field such as the distribution of temperature T.x; y; z/: In component form
such vectors can be written as

E D Ex xC Ey yC Ez z : (A.1)

EC B D .Ex C Bx/ xC .Ey C By/ yC .Ez C Bz/ z (A.2)

E B D ExBx C EyBy C EzBz D jEj jBj cos � (A.3)

where � is the angle between the vectors, and the

E � B D .EyBz � EzBy;EzBx � ExBz;ExBy � EyBx/ ; (A.4)

jE � Bj D jEj jBj sin �:

The resulting vector is orthogonal to both vectors E and B and the vectors ŒE;B;
E � B
 form a right handed orthogonal coordinate system.
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A.1.1 Differential Vector Expressions

To describe the variation of scalar and vector fields a gradient for scalars if defined
by

rT D grad T D
�
@T

@x
;
@T

@y
;
@T

@z

�
; (A.5)

which is a vector.
For vectors we define two differential expressions. The first is the divergence of

the vector field:

rE D div E D @Ex

@x
C @Ey

@y
C @Ez

@z
; (A.6)

which is a scalar. Geometrically, the divergence of a vector is the outward flux of
this vector per unit volume. As an example consider a small cube with dimensions
dx;dy:dz: Put this cube in a uniform vector field and you get zero divergence, because
the flux into the cube is equal to the flux out. Now, put the cube into a field free area
and place a positive charge into the cube. The flux of fields is all outwards and the
divergence is nonzero.

The divergence can be evaluated by integrating over all volume and we get with
Gauss’s integral theorem (A.25)Z

V
rE dV D

I
En da ; (A.7)

where n is a unit vector normal to the surface and da a surface element. The volume
integral becomes an integral over the outer surface.

The second differential expression is the ”curl” of a vector:

r � B D
�
@Bz

@y
� @By

@z
;
@Bx

@z
� @Bz

@x
;
@By

@x
� @Bx

@y

�
: (A.8)

The ”curl” of a vector per unit area is the circulation about the direction of the vector.

A.1.2 Algebraic Relations

a .b � c/ D b .c � a/ D c .a � b/ (A.9)

a � .b � c/ D b .ac/ � c .ab/ (A.10)

.a � b/ .c � d/ D .ac/ .bd/� .bc/ .ad/ (A.11)
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a � .b � c/C b � .c � a/C c � .a � b/ D 0 (A.12)

.a � b/ � .c � d/ D c Œ.a � b/ d�� d Œ.a � b/ c�
(A.13)

A.1.3 Differential Relations

r .a'/ D 'raC ar' (A.14)

r � .a'/ D ' .r � a/ � a � r' (A.15)

r .a � b/ D b .r � a/ �a .r � b/ (A.16)

r � .a � b/ D .br / a � .ar/ bC a .rb/ � b .ra/ (A.17)

r .ab/ D .br/ aC .ar/ bC a � .r � b/C b � .r � a/ (A.18)

r � .r'/ D 0 (A.19)

r .r � a/ D 0 (A.20)

r � .r � a/ D r .ra/ �a (A.21)

A.1.4 Partial Integration

Partial integration is defined byZ b

a
uv0dx D uvjba �

Z b

a
vu0dx; or (A.22a)Z b

a
udv D uvjba �

Z b

a
vdu (A.22b)

A.1.5 Trigonometric and Exponential Functions

eix D cos xC i sin x
cos x D 1

2

�
eix C e�ix

�
sin x D 1

i2

�
eix � e�ix

�
cos .a˙ b/ D cos a cos b� sin a sin b sin .a˙ b/ D sin a cos b˙ sin b cos a

tan .a˙ b/ D tan a˙tan b
1�tan a tan b cot .a˙ b/ D cot a cot b�1

cot a˙cot b
d

da tan a D 1
cos2 a

D 1C tan2 a d
da arctan a D 1

1Ca2

(A.23)
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A.1.6 Integral RelationsZ
V

r' dr D
I
S

' Ou d� (A.24)

Z
V

ra dr D
I
S

a Ou d� Gauss’ theorem (A.25)

Z
S

.r�a/ Ou d� D
I

a ds Stokes’ theorem (A.26)

A.1.7 Dirac’s Delta Function

ı .x/ D
�1 for x D 0
0 for x ¤ 0

1R
�1

ı .x/ dx D 1

j˛j
1R

�1
ı .˛x/ dx D

1R
�1

ı .y/ dy D 1 ı .!/ D
1R

�1
ı .t/ e�i2�!tdt D 1

ı .x/ D 1
2�

1P
nD�1

einx 1
2�

1P
nD�1

einx D
1P

mD�1
ı .x � 2�m/

(A.27)

A.1.8 Bessel’s Functions

Order n and first kind:

Jn .x/ D
1X

pD0

.�1/p .x=2/nC2p

pŠ .nC p/Š
(A.28)

n D 0 J0 .0/ D 1
n D 1; 2; 3 : : : Jn .0/ D 0 (A.29)

derivatives and recursion formulas with Jn D Jn .x/:

JnC1 D 2n

x
Jn � Jn�1 (A.30)

J0
n D Jn�1 � n

x
Jn D n

x
Jn � JnC1 D 1

2
.Jn�1 � JnC1/ (A.31)
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first four roots of Bessel’s functions of the first kind: Jn .xi/ D 0

n Jn .x1/ Jn .x2/ Jn .x3/ Jn .x4/
0 2:4048 5:5200 8:6537 11:7954

1 3:8317 7:0155 10:1743

2 5:1356 8:4172 11:6198

3 6:3801 9:7610

(A.32)

A.1.9 Series Expansions

For ı � 1

ex DŠC xC 1

2Š
x2 C 1

3Š
x3 C : : : (A.33)

ln .1 � x/ D �x � 1
2

x2 � 1
3

x3 � : : : for � 1 
 x < 1 (A.34)

sin x D x � 1

3Š
x3 C 1

5Š
x5 � : : : (A.35)

cos x D 1 � 1

2Š
x2 C 1

4Š
x4 � : : : (A.36)p

1C ı D 1C 1

2
ı � 1

23
ı2 C 1

25
ı3 : : : : (A.37)

1

1C ı D 1 � ı C ı
2 � ı3 C : : : :: (A.38)

A.1.10 Fourier Series

A function f .t/ is periodic if f .t/ D f .tC T/ D f .tC nT/ where n is an integer
and T the lowest value for which this statement is true. Such a function can be
expressed with � D t

T by

f .�/ D 1

2
a0 C

1X
nD1

Œan cos .2�n� C #n/C bn sin .2�n� C #n/� (A.39)
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or using exponentials

f .�/ D
1X

nD�1
cnein� (A.40)

where cn D c�n are complex with cn D c�n and c0 D hf .�/i : The coefficients are

cn D
Z 1

0

f .�/ e�in�d� where � D t=T (A.41)

Parseval’s Theorem Z 1

�1
F2.t/ dt D 1

2�

Z 1

�1
F2.!/ d! ; (A.42)

where F.t/ D 1
2�

R
F.!/ e�i!t d! and F.!/ D R F.t/ ei!t dt:

Fourier Transform

For non-periodic functions f .t/ with .T !1/ the Fourier transform is

F.!/ D
Z 1

�1
f .t/ e�i!tdt (A.43)

and

f .t/ D 1

2�

Z 1

�1
F.!/ e�in!td! (A.44)

A.1.11 Coordinate Transformations

Cartesian coordinates

ds2 D dx2 C dy2 C dz2

dV D dx dy dz

r D
�
@ 

@x
;
@ 

@y
;
@ 

@z

�
(A.45)

ra D @ax

@x
C @ay

@y
C @az

@z
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r � a D
�
@az

@y
� @ay

@z
;
@ax

@z
� @az

@x
;
@ay

@x
� @ax

@y

�
 D @2 

@x2
C @2 

@y2
C @2 

@z2

General Coordinate Transformation

Transformation into new coordinates .u; v;w/ ; where x D x.u; v;w/;
y D y.u; v;w/ and z D z.u; v;w/

ds2 D du2

U2
C dv2

V2
C dw2

W2

dV D du

U

dv

V

dw

W

r D
�

U
@ 

@u
;V
@ 

@v
;W

@ 

@w

�
(A.46)

ra D UVW

�
@

@u

au

VW
C @

@v

av
UW
C @

@w

aw

UV

�
r � a D

�
VW

�
@
@v

aw
W � @

@w
av
V

	
;UW

�
@
@w

au
U � @

@u
aw
W

	
;

UV
�
@
@u

av
V � @

@v
au
U

	 

 D UVW

�
@

@u

�
U

VW

@ 

@u

�
C @

@v

�
V

UW

@ 

@v

�
C @

@w

�
W

UV

@ 

@w

��
where

U�1 D
s�

@x

@u

�2
C
�
@y

@u

�2
C
�
@z

@u

�2
;

V�1 D
s�

@x

@v

�2
C
�
@y

@v

�2
C
�
@z

@v

�2
; (A.47)

W�1 D
s�

@x

@w

�2
C
�
@y

@w

�2
C
�
@z

@w

�2
;
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and

au D axU
@x

@u
C ayU

@y

@u
C azU

@z

@u
;

av D axV
@x

@v
C ayV

@y

@v
C azV

@z

@v
;

aw D axW
@x

@w
C ayW

@y

@w
C azW

@z

@w
:

Cylindrical Coordinates

Transformation to cylindrical coordinates .r; '; �/

.x; y; z/ D .r cos'; r sin '; �/

ds2 D dr2 C r2d'2 C d�2

dV D r dr d' d�

r D
�
@ 

@r
;
1

r

@ 

@'
;
@ 

@�

�
(A.48)

raD1
r

@

@r
.rar/C 1

r

@a'
@'
C @a�
@�

r � aD
�
1

r

@a�
@'
� @a'
@�
;
@ar

@�
� @a�
@r
;
1

r

@

@r

�
ra'
� � 1

r

@ar

@'

�
 D@

2 

@r2
C 1

r

@ 

@r
C 1

r2
@2 

@'2
C @2 

@�2

Polar Coordinates

Transformation to polar coordinates .r; '; �/

.x; y; z/ D .r cos' sin �; r sin' sin �; r cos �/

ds2 D d r2 C r2 sin2 � d'2 C r2 d�2

dV D r2 sin � dr d' d�

r D
�
@ 

@r
;
1

r

@ 

@'
;

1

r sin �

@ 

@�
;

�
(A.49)

raD 1
r2
@

@r

�
r2 ar

�C 1

r sin �

@

@'

�
sin ' a'

�C 1

r sin �

@a�
@�



A.1 Vector Algebra 991

r � aD

264 1
r sin �

�
@.sin � a�/

@'
� @a'

@�

�
; 1

r sin �

�
@ar
@�
� sin � @.ra� /

@r

�
;

1
r

�
@
@r

�
ra'
� � @ar

@'

�
:

375
 D 1

r2
@

@r

�
r2
@ 

@r

�
C 1

r2 sin2 �

@2 

@'2
C 1

r2 sin �

@

@�

�
sin �

@ 

@�

�

Curvilinear Coordinates

Transformation to curvilinear coordinates of beam dynamics

ds2 D dx2 C dy2 C .1C �xxC �yy/2 dz2 D dx2 C dy2 C h2dz2

dV D dx dy h dz

r D @ 

@x
xC @ 

@y
yC 1

h

@ 

@z
z;

ra D 1

h

�
@ .hax/

@x
C @ .h ay/

@y
C @az

@z

�
; (A.50)

r � a D 1

h

�
@.h az/

@y
� @ay

@z

�
xC 1

h

�
@ax

@z
� @.h az/

@x

�
yC

�
@ay

@x
� @ax

@y

�
z

 D1
h

�
@

@x

�
h
@ 

@x

�
C @

@y

�
h
@ 

@y

�
C @

@z

�
1

h

@ 

@z

��



Appendix B
Physical Formulae and Parameters

B.1 Physical Constants

Speed of light in vacuum c D 2:99792458� 108 m/s
Electric charge unit e D 1:602176462� 10�19 C
Electron rest energy mec2 D 0:510998902 MeV
Fine structure constant ˛ D 1=137:04
Avogadro’s number A D 6:0221367� 1023 1/mol
Molar volume at STP 22:41410� 10�3 m3/mol
Atomic mass unit amu D 931:49432 MeV
Classical electron radius re D 2:8179403� 10�15 m
Classical proton radius rp D 1:534698� 10�18 m
p/e mass ratio mp=me D 1836:2
Planck’s constant h D 4:1356692� 10�15 eVs
Planck’s constant ¯ D 6:5821220� 10�16 eVs

¯c D 197:327053 MeV s
Compton wavelength �C D 2:42631058� 10�12 m
� of a 1eV photon ¯c=e D 12398:424 Å
Thomson cross-section �T D 0:66524616� 10�28 m2

Boltzmann constant k D 1:3806568� 10�23 J/K
Stephan-Boltzmann � D 5:67051� 10�8 Wm�2K�4
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B.2 Relations of Fundamental Parameters

fine structure constant ˛ D e2

4��0 ¯c

classical electron radius rc D e2

4��0mec2

e2 D 14:399652 eVÅ

B.3 Unit Conversions

permittivity of vacuum �0 D 8:85418782� 10�12 C/(Vm)
permeability of vacuum �0 D 1:25663706� 10�6 Vs/(Am)

See Tables B.1, B.2, and B.3.

Table B.1 Energy conversion table

Calories Joule eVolt Wavenumber degKelvin

(cal) (J) (eV) (1/cm) (ıK)

1 cal 1 4.186 2.6127 1019 2.1073 1023 3.0319 1023

1 J 0.23889 1 6.2415 1018 5.0342 1022 7.2429 1022

1 eV 3.8274 10�20 1.6022 10�19 1 8065.8 11604

1 cm 4.7453 10�24 1.9864 10�23 1.2398 10�4 1 1.4387

1 ıK 3.2984 10�24 1.3807 10�23 8.6176 10�5 0.69507 1

Table B.2 Equation conversion factors

Variable Replace cgs variable By SI variable

Potential, voltage Vcgs
p
4��0 VMKS

Electric field Ecgs
p
4��0 EMKS

Current, current density Icgs; jcgs 1=
p
4��0 IMKS; jMKS

Charge, charge density q; 	 1=
p
4��0 qMKS; 	MKS

Resistance Rcgs
p
4��0 RMKS

Capacitance Ccgs 1=
p
4��0 CMKS

Inductance Lcgs
p
4��0 LMKS

Magnetic induction Bcgs
p
4�=�0 BMKS
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Table B.3 Numerical conversion factors

Quantity Label Replace cgs units By SI units

Voltage U 1 esu 300 V

Electric field E 1 esu 3 104 V/cm

Current I 1 esu 10 c = 2.9979 109 A

Charge q 1 esu .10c/�1 = 3.3356 10�10 C

Resistance R 1 s/cm 8.9876 1011 ˝

Capacitance C 1 cm (1/8.9876) 10�11 F

Inductance L 1 cm 1 109 Hy

Magnetic induction B 1 G 3 10�4 T

Magnetic field H 1 Oersted 1000/4� = 79.577 A/m

Force f 1 dyn 10�5 N

Energy E 1 erg 10�7 J

B.4 Maxwell’s Equations

rE D 1
�0�
	;

rB D 0

r � E D � @B
@t ;

r � B D �0�	vC ��

c2
@E
@t :

F D qEC q Œv � B�

Coulomb’s law

Faraday’s law
Ampère’s law

Lorentz force

(B.1)

where �; � are the relative dielectricity and permeability, respectively.

B.5 Wave and Field Equations

Definition of potentials

vector potential AW B D r � A (B.2)

scalar potential ' W E D �@A
@t
� r'; (B.3)

Wave equations in vacuum

�A� 1

c2
@2A
@t2
D �	ˇ

�0c
(B.4)
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�' � 1

c2
@2'

@t2
D � 	

�0
(B.5)

Vector and scalar potential in vacuum

A.t/ D 1

4�c2�0

Z
v	.x; y; z/

R

ˇ̌̌̌
tret

dx dy dz (B.6)

'.t/ D 1

4��0

Z
	.x; y; z/

R

ˇ̌̌̌
tret

dx dy dz (B.7)

Vector and scalar retarded potentials for a point charge q in vacuum

A.P; t/ D 1

4�c�0

q

R

ˇ

1C nˇ

ˇ̌̌̌
tret

(B.8)

'.P; t/ D 1

4��0

q

R

1

1C nˇ

ˇ̌̌̌
tret

(B.9)

Radiation field in vacuum

E.t/ D 1

4�c�0

q

r3

n
R �

h
.RC ˇR/ � P̌ioˇ̌̌

tret

(B.10)

cB .t/D ŒE � n�tret
(B.11)

B.6 Relativistic Relations

B.6.1 Lorentz Transformation

Quantities x� etc. are taken in the particle system L�;while quantities x etc. refer to
the laboratory system L. The particle system L� is assumed to move at the velocity
ˇ along the z-axis with respect to the laboratory system L.
Lorentz transformation of coordinates0BB@

x�
y�
z�
ct�

1CCA D
0BB@
1 0 0 0

0 1 0 0

0 0 � �ˇ�
0 0 �ˇ� �

1CCA
0BB@

x
y
z
ct

1CCA : (B.12)

Lorentz transformation of frequencies (relativistic Doppler effect)

! D !��
�
1C ˇn�

z

�
(B.13)
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Lorentz transformation of angles (collimation)

� � sin ��

�.1C ˇ cos ��/
: (B.14)

B.6.2 Four-Vectors

Properties of 4-vectors are used in this text to transform physical phenomena from
one inertial system to another.
Space-time 4-vector

Qs D .x; y; z; ict/ ; (B.15)

World time

c� D
p
�Qs2: (B.16)

Properties of 4-vectors
length of a 4-vector is Lorentz invariant
any product of two 4-vectors is Lorentz invariant

Lorentz transformation of time. From (B.16)

cd� D
q

c2 .dt/2 � .dx/2 � .dy/2 � .dz/2

D
q

c2 � �v2x C v2y C v2z �dt

D
p

c2 � v2dt D
p
1 � ˇ2cdt

or

d� D 1

�
dt : (B.17)

Velocity 4-vector

Qv D dQs
d�
D � dQs

dt
D � .Px; Py; Pz; ic/ : (B.18)

4-acceleration

Qa D d Qv
d�
D � d

dt

�
�

dQs
dt

�
(B.19)
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4-acceleration Qa D �Qax; Qay; Qaz; i Qat
�

in component form

Qax D �2ax C �4ˇx .ˇ a/ ; (B.20)

where a is the ordinary acceleration.

B.6.3 Square of the 4-Acceleration

Qa2 D �6
n
a2 � Œˇ � a�2

o
D Qa�2: (B.21)

in particle system .ˇ D 0; � D 1/

Qa�2 D a�2: (B.22)

B.6.4 Miscellaneous 4-Vectors and Lorentz Invariant
Properties

B.7 Transformation Matrices in Beam Dynamics

In this section, we will collect transformation matrices for elements discussed in
various parts of this book. Generally, we assume the following designations:

C.z/; S.z/;D.z/

�
cosine and sine like solution and dispersion
function, respectively

C0.z/; S0.z/; ::etc: derivatives are taken with respect to z
u.z/ u.z/ can be either x.z/ or y.z/
` path (arc) length of element
ı D p=p0 relative momentum error
' Dpjk0j` quadrupole phase
f quadrupole focal length

� D
qˇ̌

kC �2x
ˇ̌
` deflection angle of synchrotron magnet

� D �x` D `=	0 deflection angle of bending magnet

�0 and �e

�
magnet entrance and exit angles with respect to
sector magnet, �0 D �e D ��=2 < 0 for rect. magnet

L straight length of bending magnet
2G full magnet gap aperture
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4-vector: invariance of
space-time world time

Qs D .r; ict/ Qs2 D �c2�2

momentum-energy mass

c Qp D .cp; iE/ c2 Qp2 D �A2m2c4

wave number isotropy of space

c Qk D .ck; i!/ c2 Qk2 D 0

velocity speed of light

Qv D � .Pr; ic/ Qv2 D �c2

acceleration radiation intensity or Poynting vector

Qa D �2a C �4ˇ .ˇ a/ Qa2 D �
�2a C �4ˇ .ˇ a/

	2
current divergence charge conservationerej D

�
�r j;i @	

@t

�
.r j/2 �

�
@	

@t

�2 D �
�
@	0
@t

�2 D 0

current density charge density
Qj D . j; i	c/ ej2 D �	20c2
force, inertial system

cePp D �
cPp; i PE� c2ePp2 D 0

field potential Maxwell’s equationseA D .A; i�/

4-divergence d’Alambertianer D ��r ; i @
@t

�
� D r 2 � @2

@t2

� W world time

B.8 General Transformation Matrix

0@ u.z/
u0.z/
ı

1A D
0@ C.z/ S.z/ D.z/

C0.z/ S0.z/ D0.z/
0 0 1

1A0@u0.z/
u0
0.z/
ı

1A DM
0@u0.z/

u0
0.z/
ı

1A (B.23)

B.8.1 Symmetric Magnet Arrangement

Mtot DMr M D
�

CS0 C SC0 2SCS0
2CC0 CS0 C SC0

�
(B.24)

In a symmetric magnet or lattice segment, the diagonal elements of the transforma-
tion matrix are equal.
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B.8.2 Inverse Transformation Matrix

If M D
�

C S
C0 S0

�
H) inverse matrix is Mi D

�
S0 �S
�C0 C

�
; (B.25)

and the total transformation matrix is Mtot DMi M D
�
1 0

0 1

�

B.9 Specific Transformation Matrices

B.9.1 Drift Space

Length of drift space is `

Md D
0@1 ` 00 1 0

0 0 1

1A

B.9.2 Bending Magnets

Sector Magnet

With ` being the arc length and 	0 the bending radius, the transformation matrices
are in deflecting plane

Ms;	 D

0B@ cos � 	 sin � 	 .1 � cos �/
� 1
	

sin � cos � sin �

0 0 1

1CA (B.26)

and in the non-deflecting plane (including edge focusing)

Ms;0 D

0B@ 1C 1
3
� ıf ` 0

2
3
ıf
	
C 1

9
�
ı2f
	
1C 1

3
� ıf 0

0 0 1

1CA ; (B.27)

where ıf D G=	 and 2G the gap size between magnet poles.
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Wedge Magnet

In deflecting plane

Mw,	 D

0BBB@
cos � � sin � tan �0 	 sin � 	 .1 � cos �/
� tan �eCtan�0

	
cos �

� 1�tan �e tan �0
	

sin �
cos � � sin � tan �e

sin �
� tan �e .1 � cos �/

0 0 1

1CCCA
(B.28)

and in the non-deflecting plane

Mw,0.`j0/ D

0B@ 1 � `
	

t0 ` 0

� 1
	
.te C t0/C `

	2
tet0 1 � `

	
te 0

0 0 1

1CA ; (B.29)

where t0;e D � tan �0,e � 1
3
ı0;e and ı0;e D G

	 cos2 �0;e
.

Rectangular Magnet

In the deflecting plane with �0 D �e D ��=2

Mr,	 .` j 0/ D
0@1 	 sin � 	 .1 � cos �/
0 1 2 tan .�=2/
0 0 1

1A ; (B.30)

and in the non-deflecting plane

Mr;0 .`j0/ D

0B@ 1 � `
fy

` 0

� 2
fy
C `

f 2y
1 � `

fy
0

0 0 1

1CA ; (B.31)

where 1
fy
D 1

	
tan
�
�
2

� �
1 � 2G

3L

�
, L D 2	 sin `

2	0
the straight length and ` the arc

length of the magnet.
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Synchrotron Magnet (Sector Type)

For a focusing synchrotron magnet with K D kC �2x > 0 the transformation matrix
in the deflecting plane is with (� D pK`; �x D 1=	/

Msy;f.`; 0/ D

0B@ cos� 1p
K

sin� 1�cos�
	K

�pK sin� cos� sin�
	
p

K

0 0 1

1CA (B.32)

and when K D k C �2x < 0 the transformation matrix for a defocusing synchrotron
magnet is

Msy;d .` j0/ D

0B@ cosh� sinh�pjKj � 1�cosh�
	jKjpjKj sinh� cosh� sinh�

	
pjKj

0 0 1

1CA (B.33)

In the non-deflecting plane the transformation matrices are with . D pk` > 0/

Msy;s;0 D

0B@ cos 1p
k

sin 0

�pk sin cos 0

0 0 1

1CA (B.34)

and for k < 0 and  Dpjkj `

Msy,s,d D

0B@ cosh 1pjkj sinh 0pjkj sinh cosh 0

0 0 1

1CA (B.35)

Synchrotron Magnet (Rectangular Type)

For a focusing synchrotron magnet K D k0 C �2x > 0 and with � D pK`;
� D `=	; �x D 1=	; 1f D

p
K tan �=2

Msy,r,f D

0BBBB@
cos� C 1

f
p

K
sin� sin�p

K

.1�cos�/
	K

1
f

�
cos� C 1

f
p

K
sin�

�
C 1

f cos� �pK sin�

cos�
C 1

f
p

K
sin�

sin�
	
p

K

0 0 1

1CCCCA :
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In a defocusing synchrotron magnet K D k0 C �2x < 0 and with
� D pjKj`; � D `=	; �x D 1=	; 1f D

pjKj tan �=2

Msy,r,d D

0BBBB@
cosh� C sinh�

f
p

K
sinh�p

K
� .1�cosh�/

	
p

K
1
f

�
cosh� C sinh�

f
p

K

�
C 1

f cosh� CpK sinh�

cosh�
C 1

f
p

K
sinh�

sinh�
	
p

K

C 1�cosh�
f	jKj

0 0 1

1CCCCA :

B.9.3 Quadrupole

Focusing Quadrupole
�

k0 > 0; ' D p
k`

�

MQF D

0B@ cos' 1p
k

sin' 0

�pk sin ' cos' 0

0 0 1

1CA (B.36)

Defocusing Quadrupole
�

k < 0; ' D pjkj`
�

MQD D

0B@ cosh' 1pjkj sinh' 0pjkj sinh' cosh' 0

0 0 1

1CA (B.37)

Quadrupole Doublet

A quadrupole doublet formed by two quadrupoles of focal length f1 and f2 and
separated by the distance d has the transformation matrix

Mdb D
0@1 � d=f1 d 0

�1=f � 1 � d=f2 0
0 0 1

1A ; (B.38)

where 1
f � D 1

f1
C 1

f2
� d

f1 f2
:
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Quadrupole Triplet

Symmetric quadrupole triplet made of two equal doublets

Mtr DMr M D
0@1 � 2d 2=f 2 2d .1C d=f / 0
�1=f � 1 � 2d 2=f 2 0

0 0 1

1A ; (B.39)

where 1
f � D 1

f1
C 1

f2
� d

f1 f2
:
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Aberration, 546, 573
chromatic, 108, 164, 338, 509, 514, 565,

584
geometric, 108, 164, 338, 513, 565,

575
Accelerating

cavities, 68
cavity fields, 253, 257
rf wave, 256
section, 44, 254, 255, 258, 272, 477, 629
voltage, 262, 263, 627

Acceleration, 256
charged particles, 270
electrostatic field, 253
longitudinal, 831
transverse, 831

Accelerator
Alvarez structure, 56
application, 10
circular, 43, 368

orbit, 315
quasi-isochronous, 279

Cockcroft–Walton, 46
ion, 21
laser, 278
linear, 43

focusing, 339
proton, 21
Van de Graaff, 47
Wideroe structure, 258

Acceptance, 281
efficiency, 283
longitudinal, 281
physical ring, 392

Accumulator ring, 8

Achromat, 207, 208, 240
double bend, 469
first order, 208
linear, 240

Achromatic lattice, 207
Action, 235
Action-angle variables, 115, 548, 581,

594
Adiabatic capture, 283
Adiabatic damping, 66, 67, 345, 356, 365, 404,

414, 437
ADONE, 336
Airy’s functions, 885
Algebraic relations, 984
Alignment, 565

error, 477, 565
tolerances, 490–492

Alpha magnet, 449
Alvarez structure, 258
Ampere turns, 140
Ampère’s law, 14, 27, 35, 995
Amplification factor, 491
Antiprotons, 7
Aperture, 104, 133
Aperture limitation, 385
Approximations made

ctr D ˙ 	=� , 877
sin.!Ltr/ � !Ltr, 877

Arc length, 192
AS(x.y.z), 882
Astigmatism, 164
Asymmetric wiggler, 921
Attenuation coefficient, 627, 628, 630
Avogadro’s number, 388
Ampère’s law, 30
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Backscattered photons, 828
Beam-beam effect, 337, 477, 713
Beam break-up, 779
Beam-cavity interaction, 641
Beam center

displacement, 481
Beam current, 12, 354

average current, 354
bunch current, 354
Fourier spectrum, 657, 658
maximum, 649
optimum linac, 631
peak current, 354
pulsed beam, 354

Beam dynamics, 26, 30, 99, 106
with acceleration, 341
action, 116
basic elements, 205
beam size, 222
beam waist, 220
with betatron functions, 231
circular accelerator, 315
collective motion, 213
coupling, 213
dispersion function, 122
dispersive systems, 236
divergence, 375
equation of motion, 108, 110
Hamiltonian, 113, 234

non-linear, 565
higher order, 565
Lagrangian, 110
linear, 99, 131, 177
linear achromat, 240
linear approximation, 178
longidudinal focusing, 256
longitudinal synchronous phase, 257
matrix formalism, 118, 180
in normalized coordinates, 233
paraxial, 107
perturbation, 477, 480, 487

chromatic, linear, 207
methods, 524

phase space, 213
single particle, 177
skew quadrupole, 670
strong focusing, 116
thin lens approximation, 184

Beam emittance, 214, 223, 235
in achromat lattice

minimum value, 462
colliding beams, 472
with damping wiggler, 381
DBA lattice, 469

definition, 357
equilibrium, 441, 442

transverse, 370, 371, 441, 442
geometric, 218, 219
lattice design, 459
longitudinal, 281
measurement, 224
minimum, 462
normalized, 218
in periodic lattice, 468
quantum excitation, 371, 440
scaling, 462
and scattering, 386
time dependance of, 433
in transport line, 371
transverse equilibrium, 368
variation of, 377
and wiggler magnets, 377

Beam energy, 353
Beam envelope, 230, 374

angular, 375
Beam focusing, 63
Beam heater, 946
Beam intensity, 12
Beam lifetime, 385

Bremsstrahlung, 394
Coulomb scattering, 386, 388
elastic scattering, 387
and vacuum, 386

Beam line, 94
Beam loading, 629, 641, 645, 654

fundamental theorem, 650
Beam matrix, 222, 223

transformation, 224
Beam momentum, 353
Beam monitoring, 492
Beam optics, 30, 99

linear, 177
paraxial, 97

Beam position monitors, 494
Beam pulse, 354
Beam rigidity, 101, 129
Beam size, 230, 373
Beam transformer, 60
Beam translation, 242
Beam transport line, 100, 178, 303

acceptance, 332
building blocks, 205
chromatic properties, 206
control of beam size, 531
general focusing properties, 205
isochronous, 208, 210
matching, 332
perturbations, 482
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Beam waist, 220
location, 220

Beat-beat, 508
Bending

field, 62
magnet, 139, 140

radiation, 802
radius, 33, 101

Bessel’s functions
modified, 877

Beta beating, 585
Beta-beat, 506, 507, 585
Betatron, 5, 6, 60

Donald Kerst, 63
oscillation, 229, 485
phase, 116, 228
tune shift, 500

Betatron function, 227, 229, 356, 850
average, 320
beam dynamics, 231
beam waist, 232

optimum value, 232
beta beating, 507
coupled motion, 678
differential equation, 228, 229
independent variable, 228
measurement, 227, 409, 489
modes, 682
periodic, 305, 318
perturbation, 506
smooth approximation, 320
symmetric, 305
symmetric solution, 319
transformation, 220, 318
transformation in drift space, 232
transformation through drift space,

221
variation of, 585

Betatron oscillation, 65, 110
amplitude, 567
damping, 416, 422
frequency, 65, 116
perturbation, 408

Betatron tunes
coupled motion, 692

Bevatron, 6
Biot–Savart fields, 863
BNS damping, 781
Booster, 10
Bore radius, 143
BPM

offset, 496
Bremsstrahlung, 393
Brho, 129

Brightness, 841, 917
diffraction limited, 849
spectral, 848

Broad band parasitic losses, 740
Bunch, 8, 12, 279

compression, 446
accelerating section, 447

current, 12
Buncher section, 972
Bunches, 354
Bunching, 634, 636
Bunch length, 275, 279, 368, 429, 444, 664,

803
equilibrium, 444
manipulation, 286

Byending, radius, 33

Canonical
momentum, 89
transformation, 90, 268, 548, 588,

589
variables, 92, 268

Capacitive detuning, 658
Carbon content, 144
Cascade generator, 5, 6, 46
Cathode rays, 4, 5
Cauchy-Riemann conditions, 126
Cauchy’s residue theorem, 762
Cavity

losses, 621
modes, 609
voltage, 649

CB, 832
Cc, 836
Central limit theorem, 367, 491
Centrifugal force, 33, 48
C� , 367, 832
Characteristic length, 135
Characteristic matrix equation, 310
Charged particles, in an electromagnetic field,

33
Charge multiplicity, 31
Chasman-Green lattice, 241, 469
Cherenkov

angle, 806
condition, 806
radiation, 805, 806

Chopper, 8, 634, 636
rf, 636

Chromatic
aberration, 164, 573
effects, 161, 509
error, 122
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Chromaticity, 138, 509, 510
compensation, 575
correction, 513, 514
FODO cell, 512
function, 522
harmonic correction, 584
higher order, 514
horizontal, 516
measurement, 512
natural, 511
non linear, 517
vertical, 516

Circular accelerator, 9, 43, 59
characteristic parameters, 77
chromatic effects, 509
operating point, 320
periodic dispersion function, 327
periodic perturbation, 528
resonance, 327
superperiod, 330
tune, 320

CK, 171
Closed orbit, 324, 480, 484–487, 489

correction, 494
distortion, 486
equilibrium, 484

Cockcroft–Walton, 7, 46
Coherence

spatial, 844
temporal, 846

Coherent
radiation, 843
radiation power, 847

Coil slot, 144
Collective

effects, 701
instabilities, 701

Colliding beam facility, 9, 331, 337
luminosity, 331

Colliding beams
facility, 25

Collimation, 801
angle, 872, 997

Collins insertion, 336
Collision

head on, 25
particle, 24
point, 338

Combined function lattice, 159, 365
C˝ , 836, 880
Complex potential, 126
Composite focusing system, 205
Compton effect, 806, 828

Conjugate
coordinates, 92
momenta, 92
trajectories, 679

Constant gradient structure, 628
Constant impedance structure, 628
Coordinates

Cartesian, 104, 115
curvilinear, 93
Floquet’s, 233
Frenet-Serret, 87, 88, 94
normalized, 115, 229, 233
transformation, 988, 989

Coordinate system
Cartesian, 125, 988
curvilinear, 152, 160, 991
cylindrical, 27, 61, 990
Frenet-Serret, 61, 160
general, 989
polar, 26, 990

Cosine like solutions, 118
Cosmotron, 6
Coulomb, 3

egime, 809
field, 862
gauge, 29
multiple scattering, 386
regime, 808, 862
scattering lifetime, 389

Coulomb scattering, 387
Coulomb’s law, 14, 995
Coupled motion, 164, 669, 686
Coupling coefficient, 642, 648, 649, 657, 688
Coupling resonance, 544, 545
Courant-Snyder invariant, 228, 235, 407
Cp, 77
Cq, 367, 442
C , 838, 891
Critical photon energy, 367, 836
Cu, 901
Current, beam, 12
Current density, maximum, 144
Curvature, 33, 87, 100, 107, 129
Curvilinear coordinates, 991
Cutoff, wave number, 606
Cyclic, 115
Cyclic variables, 90, 115, 588
Cyclotron, 5, 70, 101
Cyenter of mass energy, 24
Cylindrical coordinates, 990
Cyolliding beams, 25
Cyollimation, 24
Cyompton effect, 39
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d’Alembert’s principle, 48, 83
Damping, 263, 358, 404, 410

adiabatic, 66, 345, 437
distribution, 375
due synchrotron radiation, 412
in electron accelerator, 411
and rf-frequency, 375
ring, 8, 447
synchrotron oscillations, 412
time, 67, 364, 485
wiggler, 167, 377, 379, 380

Damping criterion
Robinson, 358, 362

Damping decrement, 67, 263, 362, 364, 405,
410, 412, 419, 422

Robinson, 660
Damping partition, 364, 375

and synchrotron oscillations, 382
variation of, 375

DBA lattice, 241
Decapole magnet, 128, 154
Deflection angle, 101
Defocusing quadrupole, 183, 344

with acceleration, 344
Design orbit, 61
Deuteron, 6
Dielectric constant, 13

absolute, 14
relative, 14

Difference resonance, 689
Differential relations, 985
Diffraction, 841, 941

Fraunhofer, 841
intergral, Fraunhofer, 841

Diffraction limit, 852
emittance, 844
source divergence, 845
source size, 845

Diffusion coefficient, 425
due synchrotron radiation, 438
total, 439

Dipole, fringe fields, 194
Dipole field, 132

error, 480, 481, 484
statistical errors, 490

Dipole kick, single, 489
Dipole magnet, 132, 138, 139

cross section, 139
focusing in, 190
fringe field, 193, 195
rectangular type, 198
sector, 108, 192
sector type, 191
synchrotron, 192

Dispersion function, 122, 164, 237, 279, 325,
487

dipole field errors, 482
higher order, 287
matrix formalism, 237
measurement, 238
nonlinear terms, 250
periodic, 321, 322, 327
periodic lattice, general solution, 324
spurious, 443

Dispersion suppressor, 334
Dispersive effects, 108
Dispersive systems, 236
Dissipating forces, 120, 406
Divergence, photon beam, 839
Doppler effect, 801, 996
Double bend achromat, 241
Doublet, 205
6-D phase space

motion in, 402
Drift space, 182

phase ellipse, 220
transformation

betatron function, 221, 232
matrix, 1000

D’s of a cyclotron, 71
Duty factor, 356
Dynamic aperture, 152, 385, 392, 513, 587,

588
Dyoppler effect, relativistic, 23

Effective magnet length, 187
Ehrenfest’s theorem, 261
Eigenvalue equation, 310, 319, 326
Eigenvalues, 310, 326
Einzellens, 52

focusing properties, 53
Electric and magnetic

field equivalence, 99
Electric charge of electron, 5
Electric field

point charge, 26
static, 7
uniform charged particle beam, 27

Electromagnetic
radiation, 4
waves, 4

Electromagnetic fields, 26
for a Gaussian beam, 38
orthogonality, 39
for uniform beam, 38

Electromagnetic radiation, 799, 800
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Electromagnetic waves
standing, 255
traveling, 255

Electromotive force, 30
Electron, 3, 4

beam, 803
gun, 8
source

cathode, 8
photo cathode, 8

Volt, 11
Electrostatic

deflector, 48
dipole, 56
einzellens, 52
focusing device, 49
generator, 47
iris electrode, 49

transformation matrix, 51
quadrupole, 172

Electrostatic field, 48, 159
multipole, 159
patterns, 159

Emittance
adiabatic damping, 345
coupling, 692
diffraction limited, 844, 852
longitudinal, 268
minimum, 462
normalized, 345, 356

Energy, 12, 21
center of mass, 24
conservation, 35, 36, 804
errors, 509
gain, total, 262
kinetic, 89
potential, 89
spectrum, measurement, 245
total, 20

Energy loss, 67, 833
due synchrotron radiation, 415

Energy spread, 366, 429, 625
elimination of, 384
equilibrium, 367, 444
variation of, 378

Envelope, coupled motion, 683
Equation of motion, 31, 32, 34, 44, 106

chromatic effects, 161, 164
cosine-like solution, 205
dispersion, 164, 207
general, 161–163
horizontal, 108, 113
inhomogeneous, 121
from Lagrangian, 98

linear, 117
with perturbations, 120
unperturbed, 117

perturbation terms, 163
in phase space, longitudinal, 259
sine-like solution, 206
in solenoid, 672
solutions, 116
third order, 160, 522
vertical, 109, 114

Equations
Euler-Lagrange, 85
Hamilton, 88

Equations of motion
coupled systems, 669
from Hamiltonian, 97
homogeneous, 117

Equilibrium orbit, 324, 325, 484, 486, 487
existence of, 484

Equipotential surface, 48, 105, 132, 133, 141
�-function, 322, 325

average, 329
Euler - Lagrange equations, 84, 85
Euler’s formula, 311
Euler’s identity, 676
Excitation, 140

Faraday’s law, 14, 27, 30, 995
Fast head-tail instability, 781, 787

fast, 781
Feed-forward, 493
FEL, 261, 279, 803, 929

high gain, 942
parameter, 944
peak pulse power, 944
small gain, 932

Field errors, 142, 484, 566
sources, 478
statistical dipole, 490

Field gradient, 103, 104
maximum, 145

Field index, 64, 66, 74
Fields, 128

electrostatic, 43
high frequency electromagnetic, 254
linear, 99
linear magnetic, 178
longitudinal, 255
microwave, 43, 254
radio frequency, 254
transverse, 101
trapezoidal approximation, 187

Figure of eight trajectory, 898
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Filamentation, 282, 581
in phase space, 581

Filling time, 629
First integral, 493
First order achromat, 208
Fixed point

in phase space, 274
stable, 557
unstable, 557

Flat undulator, 825
Floquet’s coordinates, 233
Floquet’s theorem, 316
Focal length, 102, 105, 184, 205, 322
Focal point, 102
Focusing, 63

in bending magnets, 190
in electrostatic accelerator, 51
principle of, 102
in sector magnets, 190
strong, 6
transverse, 66

Focusing devices, 102, 133
Focusing quadrupole, 182

with acceleration, 344
Focusing strength, 105
FODO, 311

acceptance, 308
cell, 304
channel, 186, 304
general lattice, 311
lattice, 304, 461
necktie diagram, 312
optimum phase advance, 307
parameter, 305, 306
symmetric lattice, 305

FODO cell, 329
betatron phase, 306
maximum acceptance, 307
optimum, 307
stability criterion, 312

FODO channel
acceptance, 308
region of stability, 312
stability criterion, 313

FODO lattice, 304
and acceleration, 339
dispersion function, 321
emittance, 461, 470

Fokker–Planck equation, 236, 401, 422, 425,
430, 438

solutions, 425, 427
Force, centrifugal, 100
Formation length, 809
Form factor, 847

Forward cone, 916
Forward radiation, 916
Fourier series, 525, 529, 987
Fourier transform, 988
Fraunhofer

diffraction, 840
diffraction integral, 841

Free electron laser, 261, 273, 279, 803, 929
Frenet-Serret

coordinates, 87, 94
coordinate system, 106

Frequency
Larmor, 101
tuning, 647

Fringe field, 145, 181
Fringe field effect, 193
Fundamental frequency, 825, 826, 895, 904
Fundamental theorem of beam loading, 650

Gain curve, 940
Gain length, 944
Gapheight magnetpole shimming, 142
Gas desorption

coeficient, 397
photo electron current, 396
synchrotron radiation, 396
thermal, 395

Gaussian distribution, 27, 367, 427
Gaussian tails, 430
Gauss’ integral theorem, 26, 36, 984, 986
Generating function, 91, 92, 115, 589
Generator voltage, 645
Geometric aberrations, 164, 573, 574
Glow discharge, 7, 45
Good field region, 142
GR(x.y.z), 882
Gradient, 128

field error, 142, 408, 541
field quality, 142
magnet, 132

Green’s function, 121
Green’s function method, 122
Group velocity, 609, 613, 629
Gyromagnetic constant, 454

Hall probe, 147
Hamilton’s equations, 88
Hamilton’s integral principle, 83
Hamiltonian, 89, 112, 234, 406

beam dynamics, 97, 109, 113
coupling, 685, 686
equations, 89
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extended, 95, 96
non linear, 547
non-linear, 565, 589
perturbation theory, 565, 588
resonant terms, 550
synchrotron oscillations, 268, 270

Hard edge model, 107, 181
Harmonic correction of chromaticity, 584
Harmonic number, 73, 76, 258, 264, 624, 737
Harmonic oscillator, 114, 116, 123, 229, 406,

619
damped, 66, 404, 618
damping decrement, 405
driven, 617
Q-value, 618
resonace curve, 618

Harmonics, 824
Head-tail instability

fast, 787
Heavy ion storage rings, 277
Heavy ions, 12
Helical undulator, 825
Helicity, 920
Higher-order modes (HOMs), 650, 740

loss parameter, 651
Hill’s equation, 315
Hybrid magnet, 821
Hydrogen atom, 4

Ideal orbit, 61
Ideal path, 94
Impedance, 663, 738

broad band, 740, 753
internal, 642
resistive wall, 752
space charge, 751

Independent variable
change of, 96

Induction, 30
Induction accelerator, 9
Insertion, 319, 335

device, 168, 816
low beta, 335, 337
quadrupoles, 338

Instability, 385
single bunch, 740

Integer resonance, 327, 503
Interaction region, 9
Intra beam scattering, 357, 385
Inverse matrix, 186
Ion beam, 7, 31
Ionization, 7
Iris doublet, 51

Iris electrode, 49
Iron dominated magnets, 131
Isochronous

beam transport line, 210, 279
ring, 368

quasi, 368
storage ring, 286
system, 208

Isomagnetic
lattice, 833

�I transformation, 584

JJ-function, 915, 935

Kanalstrahlen, 4
Keil-Schnell stability criterion, 767
Keil-Schnell-Zotter criterion, 654
Kinematic perturbations, 478
Kinetic energy, 629
Klystron, 6, 55, 954

Lagrange function, 86
Lagrangian, 85, 112

beam dynamics, 110
charged particle

electro-magnetic field, 85
formulation of beam dynamics, 109

Lamor frequency, 874
Langragian, 88
Laplace equation, 125
Large Hadron Collider (LHC), 833
Larmor frequency, 101, 673
Larmor precession, 5
Laser beams, 7
Laslett form factors, 723
Lattice, 303

achromatic, 207
cell, 303
combined function, 159, 178
DBA, 469
double bend achromat, 241
FODO, 186, 304
function, 229
periodic, 303

superperiod, 303
resonances, 539
separated function, 159, 178
symmetric, 303
triple bend achromat, 241
unit, 304

Lawrence Berkeley Laboratory, 73
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Legendre transformation, 92
Libration, 268
Liénard-Wiechert potentials, 29, 799, 860
Lifetime, 385

Coulomb scattering, 389
inelastic scattering, 393

Linac efficiency, 631, 632
Line spectrum, 909

undulator, 915
Linear accelerator, 5, 8, 43, 54, 59, 413, 800

Alvarez, 6
electron, 5, 625

Linear beam dynamics, 99, 179
Linear collider, 10, 60, 432, 459
Linear fields, 99
Linear superposition, 489

of perturbations, 487
Linear systems, 177
Liouville’s theorem, 120, 215, 229, 282, 356,

401, 406, 414
Lithium lens, 103
Longitudinal

emittance, 268, 281
fields, 253
oscillations, 263
phase space, 265
phase space stability, 73
stability limit, 273
tune, 321

Lorentz
contraction, 5, 16, 801
equation, 99
force, 5, 30, 31, 33, 44, 61, 86, 99, 100,

160, 450, 711, 995
force equation, 66
gauge, 28, 858
transformation, 15, 18, 996

electromagnetic fields, 16
space-time coordinates, 16

Loss parameter, 651, 746
Low beta insertion, 337
Luminosity, 331, 472, 712, 829

MAD, 332
MAGNET, 142
Magnet

arc length, 192
bending, 139
bore radius, 143
coils, 62
combined function, 365
decapole, 128, 154

deflecting, 132
dipole, 132, 138, 139
effective length, 187
excitation, 140
free spaces, 335
fringe field, 193
gap, 140
hard edge, 107
hard edge model, 181, 187, 193
iron dominated, 138
lattice, 100, 178, 303
longitudinal field, 165
mechanical forces, 173, 925
misalignment, 137, 478
multipole, 135
octupole, 128, 154
periodic, 167
permanent, 131
pole profile, 133
quadrupole, 133
return yoke, 139
rotated, 136
separated function, 365
sextupole, 128, 154
strength parameter, 128
superconducting, 131, 138
synchrotron, 133, 134, 178
trapezoidal model, 187
upright, 136

Magnetic field
charged particles in a, 33
equation, 131
expansion, 107, 158
measurement, 145
potential, 158
uniform charged particle beam, 27

Magnetic permeability, 138
Magnetization curve, 144
Markoff process, 423
Matching, 332

1
4

wave length transformer, 347
codes, 332
conditions, 331, 332
dispersion, 332
phase space, 282
photon beam, 849
Twiss parameters, 331

Matrix formalism, 180
non-linear, 569

Matrix formulation, 118
betatron function, 220

Maxwell’s equations, 14, 26, 44, 125, 799,
857, 995
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Measurement
beam emittance, 224
betatron function, 227, 409, 489
broad-band impedance, 786
coupling coefficient, 692
dispersion function, 238
energy spectrum, 245
momentum and spectrum, 245
momentum resolution, 245
natural chromaticity, 512
tune, 321

Micro bunches, 354
Microwave instability, stability criterion, 766
Mid-plane symmetry, 127, 136
Modes, parasitic, 739
Moivre’s formula, 311
Momentum, 21

canonical, 84, 86, 89, 112
compaction, 248, 250, 263, 266, 279, 286,

368, 429
conjugate, 86, 95
conservation, 804
error, 108
longitudinal, 97
ordinary, 86
resolution, optimum, 247
spread, 633

Momentum acceptance, 273, 275
higher order effects, 298

Momentum compaction factor, 249, 260, 329
approximate, 329
higher order, 291, 292

Moving rf-buckets, 272, 277
Multipole

magnets, 135, 154
strength, 149
terms, 154
upright, 130

Multipole field errors, 565
allowed, 143
higher order, 141
random, 143

Nabla operator, 405
Necktie diagram, 312
Negative mass instability, 757
Network model, rf-cavity, 642
Neutrino horn, 104
Neutron, 6
Normalized

coordinates, 229
emittance, 345, 356

Octupole magnet, 128, 135, 154
Operating point, 320, 546
Optical klystron, 802
Orbit, 64

correction magnets, 494
correction schemes, 496
design- or ideal-, 61
equilibrium, 325
kick, 494

Orbit distortion, 138, 164, 494, 567
dominant harmonic, 488
expectation value, 526
harmonic content, 495
normalized coordinates, 488

Oscillation amplitude, 266
Oscillator, harmonic, 114
Over voltage factor, 276

Panofsky-Wenzel theorem, 384
Parabolic current sheet lens, 103
Parasitic losses, broad band, 740
Parasitic modes, 739
Paraxial approximation, 34
Paraxial beam optics, 97, 478
Paraxial beams, 107
Parseval’s theorem, 873, 988
Particle

capture, 632
density distribution, 402
energy, 12
tracking, 587
trajectories, with betatron functions,

231
Particle beam

bunch length, 368
bunches, 354
continuous, 354
current, 354
damping, 358
dimension, 356
dynamics, 26, 106
emittance, 356
energy, 356
energy spread, 366
equilibrium transverse emittance, 368
focusing, 102
Gaussian distribution, 367
guidance, 102
halo, 385
intensity, 356
micro bunches, 354
parameters, 353
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polarization, 453
pulsed, 354
size, 356
stability, 37
standard sizes, 374
time structure, 354

Particle bunch, 279
bunch length, 279

Particle distribution, 223
aperture limited, 430
equilibrium, 437
Gaussian, 223, 846
longitudinal, 365, 429
no damping, 432
in phase space, 437
Vlasov equation, 405

Path length, 69, 103, 107, 208, 260
higher order, 289
momentum dependence, 248

Pendulum equation, 936
Periodic lattice

betatron functions, 316
betatron oscillation, 309
characteristic coefficient, 316
in circular accelerator, 329
determinant of matrix, 316
lattice functions, 318
perturbation in circular accelerators,

528
stability criterion, 310, 311, 319
trace, 316
transformation matrix, 310

trace, 310
Period length, 168
Permanent magnet, wiggler, 821
Permeability, 144, 604

absolute, 14
magnetic, 13
relative, 14
vacuum chamber, 137

Perturbation(s), 121
alignment error, 477
in beam dynamics, 477
betatron function, 506
coupling terms, 544
detectors for high energy physics, 477
dipole field, 481
field error, 477
insertion devices, 477
kinematic, 478, 522
magnetic field, 522
periodic distribution, 525
quadrupole field, 499
self compensation, 479

statistical methods, 530
terms, 177, 408, 480, 566

Phase
diagram, 274
function, 228, 229, 320
oscillations, stability limits, 299
plane, 213
stability, 266
stable region, 272, 274
velocity, 256, 607, 612

Phase advance, drift space, 233
Phase ellipse, 218, 222, 229, 235, 332

parameters, 220
Phase equation, 264

longitudinal, 262
Phase focusing, 6, 73, 267

higher order, 286
Phase oscillation(s), 272, 656

coherent, 657
damping decrement, 263
focusing, 272
large amplitudes, 268
Robinson damping, 657
small amplitudes, 262

Phase space, 213, 356
constant area of, 216
beam matrix, 222
continuity equation, 215
current, 215
density, 283
density distribution, 215
diagram, 271, 272
ellipse, 277, 683
ellipse transformation, 220
exchange, 446
filamentation, 283, 581
focusing, 256
geometric beam emittance, 219
higher order dynamics, 292

secondary buckets, 294
longitudinal, 265, 428, 634

dynamics, 256
stability criteria, 296
stable fixed point, 274
unstable fixed point, 274

manipulation, 446
matching, 282, 331
motion, 235
parameters, longitudinal, 274
particle motion, 563
phase ellipse, 218
rotation, 446
stable, 280
transformation, 218, 219
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Phasor diagram, 646, 647, 655
Photo cathode, 8
Photo electron

current, 396
emission coeficient, 397

Photo-electric effect, 4
Photon beam

divergence, 839
matching, 849
temporal structure, 817

Photon energy
critical, 802, 836
rms, 439
undulator, 826

Photon flux
angular, 838
differential, 879
per unit solid angle, 836
spectral, 439, 890
total, 439

Photon source parameters, 849, 851
Photons, backscattered, 828
Photon spectrum, 367
Physical constants, 993
Pill box cavity, 616
Pin hole, 912
Plane wave, 44
Plasma frequency, 944
Plasma lens, 103
Poincaré integral, 268
Point charge, 26
Point to point imaging, 206
POISSON, 142
Poisson bracket, 93
Poisson’s equation, 709
Polar coordinates, 990
Polarization, 879, 918

elliptical, 802, 918
of particle beam, 453
��mode, 837, 918
��mode, 837, 918
states, 876
time, 453

Pole face, 208
angles, 209
entrance, 208
exit, 208

Pole profile, 141
Pole root, 145

saturation, 145
Positron, 5, 6
Potential(s)

retarded, 859, 996
scalar, 27–29, 858

vector, 27, 28, 857
well distortion, 662, 771
wells, 269

Poynting vector, 36, 804, 807, 808, 864
Prebuncher, 8, 634, 637
Preinjector, 634
Principal solutions, 117
Principle of phase focusing, 270, 282
Propagating waves, 606
Proton

beam, 5
radiation power, 833
source, 7

Proton accelerator, Alvarez-type, 7

Quadrupole, 104, 105, 133, 141
bore radius, 143
defocusing, 183, 344
design concepts, 140
doublet, 184, 205

focal length, 106
transformation matrix, 1003

electrostatic, 172
end field effects, 187
excitation, 143
field gradient, 187
focal length, 105
focusing, 182, 344
fringe field correction, 187
misalignments, 491
pole tip field, 145
rotated, 133, 669
strength, 35, 105
transformation matrix, 1003
upright, 133

Quadrupole triplet
transformation matrix, symmetric, 1004

Quad scan, 226
Quality factor, 626

loaded, 643
unloaded, 643

Quantum excitation, 6, 366, 371, 430
Quantum lifetime, 431
Q-value, 618, 623

R56, 449
Race track microtron, 70
Radiance, 848
Radiation

bending magnet, 816
cleaning, 398
coherent, 843
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cone, 872
forward, 916
length, 394
lobes, 868
longitudinal acceleration, 811
regime, 809, 862
shielding, 844
sources, 460
spatial and spectral distribution, 22, 23
spectrum, 834, 879
spontaneous, 930
stimulated, 929
synchrotron, 807
transverse acceleration, 831
undulator, 6

Radiation field, 862, 996
longitudinal acceleration, 810
spectral, 878

Radiation power, 830, 831
instantaneous, 832
spatial distribution, 871, 882
total, 834, 865
undulator, 901
wiggler, 821

Radio antenna, 801
Radio frequency

antenna, 801
fields, 7

Rayleigh length, 941
Rectangular magnet, 198

focusing, 198
gap effect, 200
straight magnet length, 199
transformation matrix, 1001

Recursion formula, 153
Reference

orbit, 487
particle, 88
path, 324, 487
phase, 260
trajectory, 106

Relativistic
factor, 15, 20
relations, 996

Residual gas atoms, 385
Resistive wall, 738
Resistive-wall instability, transverse, 770
Resonance, 236, 327, 503, 539

conditions, 540–543, 545, 695
coupling, 544, 545
curve, 618
diagram, 545
difference, 689, 690
forbidden, 544

frequency, 612
half integer, 502, 504, 541, 556, 558
Hamiltonian theory, 539
higher order, 546
higher-order coupling, 695
integer, 503, 541
lattice, 539, 543
linear, 539
multiple, 695
nonlinear, 540, 542, 543
order of, 543, 546
pattern, 553, 556
perturbation terms, 540
stop band, 503, 543
structural, 539, 543
sum, 689, 694
third order, 542, 560, 563

Resonant frequency, rf-cavity, 642
Response matrix, 494, 496
Restoring force, 64
Retarded

potentials, 5, 799, 859
time, 29, 799, 858

Reversed matrix, 185
Revolution frequency, 12, 250, 264, 321, 803,

834
Revolution time, 68
rf-bucket, 268, 273

moving, 272, 277, 281
stationary, 269, 277, 281

rf cavity(ies), 254, 603, 614
cylindrical, 614
energy gain, 616
energy transfer, 653
field, 615
filling time, 619
impedance, 644, 659, 661
losses, 619
network modelling, 642
pill box, 616
resonant, 54
resonant frequency, 615
transit time, 255, 616
wall losses, 621

rf fields, 254
rf-fields and particles, 641
rf frequency, 264, 624

fundamental, 258
rf klystron, 59
rf-parameter, 623
rf phase, 258
rf-voltage, 625
rf-waveguide, 603
Ring acceptance, 388
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Robinson
criterion, 422
damping, 660
damping criterion, 362, 375, 419
wiggler, 382

Rotated magnet, 136
Rotating coil, 148

"bucked" signals, 150
two coils, 150

Rutherford scattering, 387

SASE-FEL, 942
Satellite frequencies, 321
Saturation, 143
Scalar potential, 104, 126, 133, 152, 858
Scattering angle, 386
Second integral, 493
Sector magnet, 190, 191, 208

fringe field, focal length, 195
transformation matrix, 1000

Self fields
electric, 710
magnetic, 710
space-charge, 711

Sensitivity, 151
Separated-function lattice, 159, 365
Separatrix, 268, 275, 556
Sextupole

magnet, 128, 135, 154
tune shift, 536

Shimming, 141
magnet pole, 142

Shunt impedance, 619, 621, 627, 642
specific, 622

Sine like solutions, 118
Single value decomposition (SVD), 497
Skew magnet, 127, 130
Skew quadrupole, 133, 669
Skin depth, 620
SLAC linac structure, 628
Small gain FEL, 932
Smooth approximation, 358
Solenoid, 165

field strength, 166, 670
focal length, 678
transformation matrix, 675, 677, 678

Space charge
fields, 715
forces, 37
self fields, 708, 711
tune shift, 624

Spatial coherence, 844

Spatial distribution, synchrotron radiation,
869

SPEAR, 336
Special relativity, 5, 15
Spectral brightness, 848, 917
Spectral line width, 909
Spectral photon flux, 439, 890
Spectral purity, 909
Spectrometer, 244

180 degree, 244
Spectrum, 834
Spill-down, 137, 138, 477
Spin, 453

rotator, 453
Spontaneous radiation, 930
Stability criterion, 64, 65, 310, 556

Steenbeck’s, 65
Stability limit, longitudinal, 273
Stable phase space, 280
Standard size, 374
Standing wave, 614
Stationary buckets, 277
Steenbeck’s stability criterion, 65
Stimulated radiation, 929
Stochastic cooling, 704
Stokes’ theorem, 27, 30, 139, 986
Stop band, 503, 505, 555

half integer, 555
n-th order, 559
width, 544, 546, 553, 556, 558

Storage ring, 8, 9, 77, 803
beam emittance, 461
heavy ions, 277
isochronous, 286, 296
principle, 6

Strength parameter, 820
Strong focusing, 6, 75, 77, 116, 178
Structural resonance, 539
Sum resonance, 689
Superbend, 802, 817
Superconducting

dipole magnet, current distribution, 174
magnets, 138

Superperiodicity, 544
Superperiods, 330, 331, 543
Super Proton Synchrotron (SPS), 833
Surface resistance, 621
Symmetric quadrupole triplet, 186
Synchro cyclotron, 73
Synchronicity condition, 54, 68, 70, 75, 77,

256, 257, 272
Synchronous particle, 271
Synchronous phase, 257, 260, 270, 277, 625
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Synchronous rf phase, 266
Synchrotron, 6, 800

booster, 10
electron, 6
lattice, 330
radiation, 807

Synchrotron magnet, 108, 132, 134, 192
defocusing, 239, 1002
focusing, 239
transformation matrix

rectangular magnet, 1002
sector magnet, 1002

Synchrotron oscillation, 110, 263, 366
damping decrement, 415
frequency, 263, 264, 266, 276, 321,

429
frequency shift, 661, 662
incoherent tune shift, 664
stability, 656
tune, 264, 321

Synchrotron radiation, 5, 6, 9, 59, 67, 168, 261,
356, 358, 366, 378, 484, 812

angular distribution, 881
coherent, 843
diffusion coefficient, 438
energy loss, 277
energy loss per turn, 833
gas desorption, 396
harmonics, 880
polarization, 877

��mode, 877
��mode, 877

power per unit solid angle, 865
spatial distribution, 869, 871, 874, 878
spectral distribution, 874, 878
spectrum, 889
total power, 865

Synchrotron tune, 264

Target, 7
stationary, 25

TBA lattice, 241
TE-modes, 609
Temporal coherence, 844
Thales of Milet, 3
Thermal gas desorption, 395
Thermionic emission, 4
#�parameter, 416
Thin lens approximation, 184, 305
Thomson scattering, 828

cross section, 829
Time dilatation, 17
TM-modes, 609

Tolerance
alignment, 490
assembly, 477, 490
gradient, 142
quadrupole field, 499
requirements, 492
statistical, 490

Touschek effect, 705
Transformation

betatron function, 220
canonical, 90
nonlinear coefficient, 570
of phase space, 219

Transformation matrix, 118, 181
with acceleration, 343

in defocusing quadrupole, 344
drift space, 344
in drift space, 343
in focusing quadrupole, 344
in quadrupole, 343

chromatic, 322
composite beam line, 183
defocusing quadrupole, 183
drift space, 182
focusing quadrupole, 182
FODO cell, 305
inverse lattice, 186
in normalized coordinates, 234
quadrupole doublet, 184
rectangular magnet, 199, 239
reversed lattice, 185
sector magnet, 192

fringe field, 196
skew quadrupole, 671
solenoid, 675, 677, 678
symmetric quadrupole triplet, 186
synchrotron magnet, 192, 239, 1002
in terms of betatron functions, 231
triplet, 186
wedge magnet, 197, 198

3
 3 Transformation matrix, 123, 238
Transformer principle, 30
Transient time, 621

factor, 621
Transit time factor, 255, 616
Transition energy, 250, 266

approximate, 329
Transition radiation, 865

spatial distribution, 867
spectral distribution, 868
total energy, 868

TRANSPORT, 332
nomenclature, 569

Transport line, non-isochronous, 447
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Transverse focusing, 66
Travel time, 249
Trim magnets, 494
Triple bend achromat, 243
Tune, 116, 320

amplitude dependent, 550
approximate, 320
measurement, 321, 501
spread, 409
synchrotron oscillation, 264

Tune shift, 409, 502, 527
amplitude dependence, 543, 597
chromatic, 512
coherent, 770
due general perturbations, 409
field errors, 500
higher order, 595
in sextupoles, 536
space charge, 624
synchrotron oscillation, 772, 773

Tuning angle, 644, 645, 657
optimum, 647, 649

Twin paradox, 17
Twiss function, 220, 227, 229

in terms of conjugate trajectories, 679
Two rf-system, 434

Ultra high vacuum (UHV), 395
Undulator, 801

flat, 825
fundamental wavelength, 823, 826, 900
helical, 825
line spectrum, 801, 915
magnet, 167, 821, 822, 895
period, 801
radiation, period length, 801
strength parameter, 820

Unit conversion, 994
Units, 11

cgs, 13
SI or mks, 11

Universal function, 838, 889
Upright magnets, 136
Upright multipoles, 127

Vacuum
chamber environment, 261
ultra high, 395

Van de Graaff
accelerator, 5, 7, 47
Tandem, 47

Vanadium Permendur, 821

Variables
canonical, 89, 92
cyclic, 90, 115

Variational principle, 83, 91
Vector

algebra, 983
curl, 984
divergence, 984
potential, 126, 857

4-vector, 18, 997
acceleration, 19, 830, 997
EM potential, 22
energy-momentum, 20
force, 22
Lorentz invariance, 18, 39
Lorentz invariants, 998
photon, 22
space-time, 18, 997
velocity, 19, 997

Velocity of light, 18
Virtual photon, 16
Vlasov equation, 236, 401, 402, 405, 419,

775
damping, 410

Voltage breakdown, 253

Wake fields, 737, 738, 740
Wave equation(s), 28, 604, 858, 995
Wave number, 259
Waveguide

cutoff wave number, 612
cylindrical, 610
disk loaded, 6, 625
fields, 608, 613
modes, 607
parameter, 626
rectangular, 605
TE/TM-modes, 609
wall losses, 626
wavelength, 609

Wavelength
fundamental, 823, 900
shifter, 802, 818
undulator, 826

Weak focusing, 63, 66, 74, 178
Wedge magnet, 196, 209

fringe field, focal length, 197
gap effect, 198
pole face rotation, 196
transformation matrix, 197, 198, 1001

Wideroe
condition, 60, 62, 63
structure, 55
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Wiggler magnet, 6, 167, 801, 819, 895
achromat, 243
asymmetric, 921
beam deflection, 171
critical photon energy, 822
dispersion function, 243
electromagnetic, 821
field, 170
flat, 167
focusing, 200
hard edge model, 203

effective length and rho, 204
helical, 167

period, 168
permanent magnet, 821
strength parameter, 171, 820
transformation matrix, 203

Wire lens, 103
Wronskian, 119, 217, 404, 681
Wyorld time, 19

X-ray(s), 5
beams, 63
tube, 45
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