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Adverse drug reactions (ADRs) are undesirable
effects of medications used in normal doses
[1]. ADRs can occur during treatment in an inten-
sive care unit (ICU) or result in ICU admissions.
A meta-analysis of 4139 studies suggests the inci-
dence of ADRs among hospitalized patients is
17% [2]. Because of underreporting and
misdiagnosis, the incidence of ADRs may be
much higher and has been reported to be as high
as 36% [3]. Critically ill patients are at especially
high risk because of medical complexity, numer-
ous high-alert medications, complex and often
challenging drug dosing and medication regi-
mens, and opportunity for error related to the
distractions of the ICU environment [4]. Table 1
summarizes the ADRs included in this chapter.

ADRs are among the leading causes of death in
hospitalized patients [1, 5]. Other serious effects
include disability, prolonged hospitalization, and
increased healthcare costs. These costs are vari-
able depending on the severity, but each ADR
could cost $6000–9000 and increase the length
of stay by a median of 8.8 days [4, 6]. One obser-
vational study of ICU patients found an incidence
of 20.2%, or 80.5 events per 1000 patient days, of
which 13% were life threatening and/or fatal [7].

Medical toxicologists can help to decrease
healthcare costs and reduce length of stay by
assisting with the rapid detection and treatment
of ADRs. This benefits both the patient and
healthcare system. This chapter will provide a
background for identifying ADRs as well as
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describing various types. ADRs will be summa-
rized by organ system, incorporating post-
marketing surveillance to identify higher-risk
ICU drugs. Drugs commonly used in the ICU for
the management of poisoned patients are the pri-
mary focus of this chapter.

Background

When an ADR is suspected, a Naranjo probability
score can be used to standardize the assessment,
with presumed causality assigned based on total
score (see Table 2) [8].

The higher the score, the more likely an ADR
occurred. Mechanisms by which these medica-
tions cause ADRs include pharmacogenetic, phar-
macokinetic, and metabolite accumulation and/or
combinations and are described in Table 3. Table 4
summarizes one commonly used scoring system
for grading adverse drug reactions.

The incidence of specific drug–ADR combina-
tions is low, requiring large databases and statis-
tical analysis to identify emerging trends.
Advances in information technology have

Table 1 Adverse drug reactions (ADRs) in the ICU chap-
ter overview. ADRs are categorized alphabetically by
organ system

Allergic/
hypersensitivity
ADRs Angioedema

Bronchospasm

Infusion reactions

DRESS

Dermatologic
ADRs

SJS and TEN

Cardiovascular
ADRs

Arrhythmias and conduction
disturbances

QT prolongation

Hypotension

Cardiogenic shock

Distributive shock

Hematologic
ADRs

Thrombocytopenia

Methemoglobinemia

Pulmonary ADRs Drug-induced respiratory disease

Airway dysfunction

Parenchymal and interstitial lung
disease

Pulmonary edema and
vasculopathy

Pulmonary arterial hypertension

Neuromuscular respiratory
disease

Gastrointestinal
ADRs

Constipation/ileus

Delayed absorption

Diarrhea

Hepatotoxicity

Pancreatitis

Renal ADRs Acute renal failure: prerenal,
intrarenal, and postrenal
nephrotoxicity and nephrotic
syndrome

Neurologic ADRs Delirium

Seizures

Abbreviations: drug reaction with eosinophilia and sys-
temic symptoms (DRESS), Steven–Johnson syndrome,
toxic epidermal necrolysis (TEN)

Table 2 Naranjo Adverse Drug Reaction Probability
Scale. A ten-question probability scale assigns points to
each response. If the response is unknown, a score of 0 is
assigned. From the total score, drug–ADR causality can be
stratified as definite (�9), probable (5–8), possible (1–4),
and doubtful (�0)

Question Yes No

1 Previous reports on this reaction? +1 0

2 Timing-ADR appear after drug
administration?

+2 �1

3 Did the ADR improve after the drug
was discontinued or after an
antagonist was administered?

+1 0

4 Did the ADR reappear when the drug
was readministered?

+2 �1

5 Are there alternative causes (other
than the drug) that could on their own
have caused the reaction?

�1 +2

6 Did the reaction reappear when a
placebo was given?

�1 +1

7 Was the drug detected in blood
(or other fluids) in concentrations
known to be toxic?

+1 0

8 Was the reaction more severe when
the dose was increased or less severe
when the dose was decreased?

+1 0

9 Did the patient have a similar
reaction to the same or similar drugs
in any previous exposure?

+1 0

10 Was the ADR confirmed by any
objective evidence?

+1 0

Total:

Modified from Naranjo et al. [8]
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allowed pharmacovigilance and post-marketing
surveillance systems to calculate observed to the
expected number of drug-event pairs (propor-
tional reporting ratios (PRRs)) [9–13]. The
Empirical Bayesian Geometric Mean (EBGM) is
calculated from the PRR and accounts for differ-
ences in reporting rates and variables within the
dataset [14]. False positives, which are inherent to
data mining systems, are avoided by increasing
the number of reports and increasing PRR or
EBGM, thereby strengthening the signal
[12, 14]. Both PRR and EBGM ratios shrink
toward one, and values �2 are considered to be
the safety signal thresholds that warrant further
evaluation. Previous studies have suggested PRRs
to be more sensitive and EBGM more specific
[12, 15]. Some studies minimize false negatives
by using more than one data mining system;

however, well-known drugs associated with
ADRs continue to be missed, which is possibly
secondary to underreporting. These are often
older medications such as nitroglycerine infusions
[16]. There are limited literature studies on ICU
ADRs compared to medication error evaluation.

Organ System ADRs

Allergic/Hypersensitivity ADRs

Infusion Reactions
Infusion reactions (drug-mediated hypersensitiv-
ity, infusion-related toxicity, cytokine storm,
cytokine-release syndrome, anaphylactoid reac-
tion, and serum sickness-like illness) are associ-
ated with a spectrum of variability and
heterogeneity for both individual and drug; symp-
toms may include anxiety, diaphoresis, rigors/
chills, fever, pruritus, urticaria, angioedema,
headache, nausea, emesis, diarrhea, chest pain,
dyspnea, wheezing/bronchospasm, hypoxia,
respiratory failure, hypotension, and death
[17–21]. Symptoms can occur shortly after the
infusion begins but can have delayed onset; symp-
toms may decrease when the infusion rate is
discontinued or slowed but symptoms may
persist.

Drug classes associated with infusion reactions
include antimetabolites (drugs interfering with
nucleic acid synthesis), antimicrobials, electro-
lytes and nutrients, enzymes, and immunomodu-
lators [17]. The implicated final common pathway
for each medication may include mast cell

Table 3 Types of ADRs

1 Exaggeration of drug’s normal/desired
pharmacological mode of action

2 Continuing action/reaction, persisting for longer
than expected time period

3 Delayed onset of action

4 Withdrawal

5 Unexpected failure of therapy

6 Idiosyncratic response not expected from normal
pharmacological mode of action

7 Drug–drug interaction

8 Other pharmacokinetic interaction

9 Other pharmacodynamic interaction

Modified from American College of Medical Toxicology
ToxIC Database available at http://www.acmt.net/cgi/
page.cgi/ToxIC1.html

Table 4 CTCAE grading of adverse drug reactions. ADRs can be mild or moderate or result in death; signs/symptoms,
interventions, and limitations to ADLs are used to grade the severity with a score of 1–5

Grade Description Signs/symptoms Intervention ADLs

1 Mild Asymptomatic or mild None

2 Moderate Minimal Noninvasive intervention Limited

3 Severe Significant but not immediately life
threatening

Hospitalization and/or
prolongation

Disabling

4 Life
threatening

Life-threatening consequences Urgent intervention indicated Disabling

5 Death

Modified from the US Department of Health and Human Services Common Terminology Criteria for Adverse Events
(CTCAE) Version 4.0 available at http://evs.nci.nih.gov/ftp1/CTCAE/About.html (Accessed Aug 18, 2015)
Abbreviations: ADL activities of daily living, CTCAE common terminology criteria for adverse events
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activation and nitric oxide (NO) signaling via
nitric oxide synthase (e.g., N-acetylcysteine [22,
23] and calcium [24]), NO donors and NO-like
compounds (e.g., nitroprusside [25]), reactive
oxygen and nitrogen species (e.g., amphotericin
[26]), S-nitrosylation and transnitrosylation (e.g.,
adenosine [27–29], iron, N-acetylcysteine, and
nitroprusside), histamine release (e.g.,
amphotericin [26], N-acetylcysteine [20], and
vancomycin [30]), and cytokine release (e.g.,
amphotericin [26], N-acetylcysteine [20], and
immunoglobulins) [31–34]. Sometimes, clinical
effects are caused by an excipient such as
polyethoxylated castor oil which has been used
as the solubilizing vehicle for phytonadione
[35]. Some drugs such as N-acetylcysteine have
been prospectively studied. When administered
rapidly, N-acetylcysteine has caused mild,
moderate, and severe infusion reactions for up to
60%, 30%, and 10% of patients, respectively
[20]. This association may be underreported, as
this drug does not appear in the table of drugs
associated with infusion reactions. The medical
toxicologist may see infusion reactions related to
IV N-acetylcysteine, although slower infusion
rates have made this less common [20, 21, 23,
36, 37].

For ICU patients, electrolytes had the highest
association with infusion reactions followed by
immunomodulatory drugs, antiarrhythmics, anti-
fungals, and antibiotics (Table 5). Treatment
involves discontinuing or slowing the rate of infu-
sion for the suspected drug or pretreating with
antihistamine and prostaglandin inhibitors.

Drug-Induced Angioedema
Angioedema, or rapid localized edema of the deep
dermis, subcutaneous, or submucosal tissues, can
be idiopathic, or it can be mediated by bradykinin
or mast cells [38]. Angioedema associated with
the use of drugs can manifest after the first dose of
a drug, but for some drugs, such as those targeting
the renin–angiotensin–aldosterone system, it can
occur at any time [39]. The presence of
angioedema with wheals or urticaria suggests the
etiology involves mast cells. Culprit medications
include nonsteroidal anti-inflammatory drugs
(NSAIDs) or antibiotics, often acting through the
inhibition of cyclooxygenase resulting in alter-
ation in the metabolism of arachidonic acid with
increased leukotrienes [40–42]. Angioedema
without wheals or urticaria could be bradykinin
mediated, which implicates angiotensin-
converting enzyme inhibitors [38]. Bradykinin

Table 5 ICU drugs highly associated with infusion reac-
tions from two post-marketing surveillance systems:
Molecular Analysis of Side Effects (MASE) and the
FDA’s Adverse Event Reporting System (FAERS). Statis-
tical criteria for MASE was set as PRR � 2.0 and N � 30

reports and for FAERS as EBGM � 2.0 and N � 30
reports. Drugs are grouped by drug class and then
displayed with comparison data. Using two systems
improved the sensitivity of drug detection

Classification Generic name

FAERS MASE

N EBGM N PRR

Analgesic Meperidine – – 32 3.9

Antiarrhythmic Adenosine 29 19.4 33 18

Antibiotic Meropenem – – 34 3.1

Ceftriaxone 20 1.3 33 3.1

Vancomycin 109 6.8 162 4.7

Antifungal Amphotericin B 58 7.0 66 4.9

Electrolytes CaCl and KCl 34 26.6 8 1.7

Ferric Na Gluc 55 37.6 – –

Iron dextran 68 48.1 66 48.9

Iron sucrose 57 27.0 – –

Immunomodulator Ig 314 17.4 68 9

Rho-Ig 32 13.3 – –

Mucolytic Acetylcysteine 16 5.0 25 2.8

Abbreviations: calcium (Ca), chloride (Cl), immunoglobulin (Ig), and potassium (K )
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accumulation results in an increased vascular per-
meability resulting in angioedema [42].

Drugs acting on the renin–angiotensin–aldosterone
system are commonly implicated, but several
other classes have also been implicated including
antibiotics, aspirin, NSAIDs, antifungals, calcium
channel blockers, diuretics, and lidocaine
[43–45]. ACE inhibitors [ACEI] have been asso-
ciated with angioedema, and incidence rates for
specific drugs have been reported for captopril (7.17
events per1000 persons) [46], enalapril (6.85
events per 1000 persons) [45], lisinopril (4.09 events
per 1000 persons), and ramipril (2.92 events per
1000 persons) [47]. Other studies have reported
cumulative incidence of angioedema per 1000
persons for the class of ACEIs as 1.79, 1.80, and
2.95 [39, 48, 49]. Comparing drugs targeting the
renin–angiotensin–aldosterone system, one cohort
study found risk for angioedema three times

higher for ACEIs and renin inhibitors than for
the control group (Table 6) [39].

Treatment involves stopping the implicated
medication(s) and monitoring the patient for at
least 6 h [42, 50]. If angioedema is secondary to
mast cell activation, antihistamines, epinephrine,
and corticosteroids may be effective. These will
be less effective if bradykinin is implicated
[50]. Cases of ACEI-induced angioedema can
continue to occur for weeks despite
discontinuing therapy [42]. If an ACEI is impli-
cated, changing to angiotensin receptor blockers
is associated with a 10% risk of angioedema
recurrence [51]. When bradykinin-mediated
angioedema is suspected and life threatening,
bradykinin antagonists (e.g., icatibant) and C1
inhibitor concentrates (e.g., ecallantide, an
inhibitor of kallikrein) may be effective, but
their cost is prohibitive for routine use [42, 50,

Table 6 Comparative risk of angioedema (AE) associated
with drugs that target the renin–angiotensin–aldosterone
system (Modified from Toh et al. [39]). Incidence rates
were calculated for angiotensin receptor blockers (ARBs)
and compared to the entire class of angiotensin-converting
enzyme inhibitors (ACEIs) using beta-blockers as a control

group as they are generally not thought to be associated
with AE. Incidence reported per 1000 persons with 95%
confidence interval. Hazard ratio reported with 95% con-
fidence interval. Severe reactions were those that required
ICU admission

Class/generic
name N Incidence HR

N
(severe)

Incidence
(severe) HR (severe)

ACEIs 3301 1.79
(1.73–1.85)

3.04
(2.81–3.27)

326 0.18 (0.16–0.20) 4.91
(3.62–6.65)

ARBs 288 0.62
(0.55–0.69)

1.16
(1.00–1.34)

10 0.02 (0.01–0.04) 0.56
(0.28–1.14)

Candesartan 4 0.33
(0.09–0.83)

0.95
(0.35–2.55)

Eprosartan 0

Irbesartan 24 0.54
(0.35–0.81)

1.11
(0.73–1.67)

Losartan 94 0.88
(0.71–1.08)

1.53
(1.23–1.90)

3 0.03 (0.01–0.08) 1.01
(0.31–3.34)

Olmesartan 39 0.42
(0.30–0.57)

0.88
(0.63–1.22)

1 0.01 (0.00–0.06) 0.83 (0.11–6.57)

Telmisartan 11 0.42
(0.21–0.74)

0.86
(0.47–1.56)

Valsartan 110 0.6 (0.49–0.72) 1.08
(0.88–1.34)

6 0.03 (0.01–0.07) 1.14
(0.46–2.82)

Renin inhibitor

Aliskiren 7 1.44
(0.58–2.96)

2.85
(1.34–6.04)

1 0.21 (0.01–1.14) 8.84
(1.13–69.41)

Beta-blockers 915 0.58
(0.54–0.61)

1 51 0.03 (0.02–0.04) 1
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52, 53]. Fresh frozen plasma contains
angiotensin-converting enzyme and C1 esterase
inhibitor and can reverse bradykinin-mediated
angioedema [52, 53].

Drug-Induced Bronchospasm
A Swiss post-marketing surveillance system
found that bronchospasm was present in 2% of
reported ADRs; 55% of these cases are classified
as serious [54]. Implicated drug classes include
analgesics and NSAIDs in 24% (64.5% serious),
antimicrobial agents in 18% (52% serious), car-
diovascular drugs in 11% (50% serious), and
excipients in 5.5% (41% serious) [54]. The
nonsterile nebulized bronchodilator solutions
contain preservatives that can induce
concentration-dependent bronchospasm: sulfites,
benzalkonium chloride, or ethylenediaminete-
traacetic acid [55]. The critical care toxicologist
should keep drug-induced bronchospasm in the
differential in the ventilated patient who has a
change in oxygenation.

Drug Reaction with Eosinophilia
and Systemic Symptoms (DRESS)
Drug reaction with eosinophilia and systemic
symptoms (DRESS) is associated with high mor-
tality (47%) and is characterized by an
exanthema with facial edema, enlarged lymph
nodes, eosinophilia, and high-grade fever [56].
The severity depends on the organs involved
(hepatitis, acute renal failure, pneumonitis, myo-
carditis, hemophagocytic syndrome, encephali-
tis, and/or multi-organ failure) [57]. DRESS can
be easily missed as sometimes the eosinophilia is
delayed and skin manifestations vary in severity
from mild to severe [58]. Drugs associated with
DRESS will usually have been prescribed for
at least 2 weeks and include anticonvulsants
(e.g., carbamazepine and lamotrigine), sulfon-
amides, and antibiotics (e.g., amoxicillin, cipro-
floxacin, and minocycline) [59–61]. Discontinue
all suspected drugs and treat supportively for
organ failure and shock. Severe cases may
require corticosteroids, intravenous immuno-
globulins, and/or antiviral drugs (e.g., ganciclo-
vir) because DRESS can closely resemble herpes

virus reactivation with eosinophilia and systemic
symptoms (“VRESS”) [57, 58].

Dermatologic ADRs

Steven–Johnson Syndrome and Toxic
Epidermal Necrolysis
Steven–Johnson syndrome (SJS) and toxic epi-
dermal necrolysis (TEN) are severe and poten-
tially life-threatening systemic disorders
characterized by skin and mucous membrane
lesions, sometimes with necrosis. The extent of
the surface area involved as well as the pres-
ence of necrosis helps to differentiate them.
The lesions typically appear on extensor sur-
faces as well as the palms or the hands and
soles of the feet. If there is epidermal and
mucous membrane detachment and more
than 30% of the body surface area is involved,
TEN is implicated. Drugs implicated in SJS
and/or TEN are pharmacologically diverse.
Data mining implicates multiple pathways and
suggests metabolizing enzymes, and trans-
porters increase the intracellular tissue concen-
trations of reactive metabolites resulting in
oxidative stress and the immunologic response.
A disproportionate number of drugs associated
with SJS were metabolized by cytochrome
P450 3A4 and 2C9 and implicated transporters,
multidrug resistance protein 1 (MRP-1),
organic anion transporter 1 (OAT1), and
PEPT2 [62]. Drug targets highly associated
with SJS included cyclooxygenases 1 and
2, carbonic anhydrase 2, and sodium channel
2 alpha which overlaps with results of other
studies implicating antiepileptic drugs
[63]. See Table 7 for drugs identified by the
US Food and Drug Administration’s (FDA)
Adverse Event Reporting System (FAERS) as
being highly associated with SJS. The FDA
has issued post-marketing safety alerts for
acetaminophen (warning), phenytoin (modified
warning), and carbamazepine (boxed warning).
Critical care patients often require treatment
with drugs highly associated with SJS; treat-
ment involves discontinuing the suspected
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drug(s) and continuing care in facilities expe-
rienced in burn care.

Cardiovascular ADRs

Drug-Induced Arrhythmias
and Conduction Disturbances
Arrhythmias and conduction disturbances range
from bradycardia to tachycardia, can originate
anywhere from the atria to the ventricles, can be
regular or irregular, and can be mild or life threat-
ening. Many of the toxin-induced arrhythmias are
discussed throughout the medication chapters
including cardiovascular digitalis glycosides,
beta-receptor antagonists, cardiovascular calcium
channel blocking agents, cyclic antidepressants,
and lithium.

Drug-Induced QT Prolongation
This section discusses ADRs associated with QT
prolongation; for additional details, refer to
▶Chap. 22, “Toxicant-Induced Torsade de
Pointes.” QT prolongation is highly prevalent in
the ICU, and one prospective study found 24% of
patients in a mixed ICU had QTc > 500 ms
[64]. QT prolongation can result from hypokale-
mia, hypomagnesemia, hypocalcemia, genetic
predisposition (ion channel polymorphisms),

tissue hypoxia, and/or the presence of one or
more drugs with potassium-blocking properties.
A nomogram exists and should be used to correct
for heart rate [65]. For a reference list of QTc
prolonging medications, the Arizona Center for
Education and Research on Therapeutics
(AZCERT) continually updates their list (www.
crediblemeds.org). The concurrent use of drugs
inhibiting cytochrome 3A4 or 2D6 should also
be recognized in the setting of QT prolongation
[66–69].

Torsades de pointes (TdP), a potentially fatal
ventricular arrhythmia, is associated with QT pro-
longation but usually requires at least one other
risk factor before emerging. One review of QTc
prolongation and TdP found 92.2% of TdP cases
had at least one additional risk factor for QTc
prolongation [70]. In reviews of thorough QT
studies, while drug-associated QTc prolongation
is associated with and considered a surrogate for
predicting TdP, other intrinsic and extrinsic fac-
tors modify this risk. Bradycardia may be a major
risk factor for TdP; TdP rarely occurs when HR is
above 105 beats per minute [65]. A large case-
crossover study of more than 17,000 patients who
were prescribed with antipsychotic drugs found a
drug’s arrhythmogenic propensity was related to
dose, blockade of potassium channel, and short-
term usage [71]. For antipsychotic drugs, the
strength of potassium blockade from lowest to
highest was quetiapine, chlorpromazine and tri-
fluoperazine, clozapine, aripiprazole, prochlor-
perazine, olanzapine, zotepine, risperidone,
thioridazine, ziprasidone, and haloperidol
[71]. Beside potassium channel blockade, tachy-
cardia associated with muscarinic blockade may
be a risk factor for cardiotoxicity [72]; however,
another large retrospective review of antipsy-
chotic ingestions admitted to a medical toxicology
service demonstrated tachycardia may be protec-
tive [65]. ICU drugs associated with QTc as listed
by AZCERT are highlighted in Table 8.

The treatment for QT prolongation includes
discontinuing associated drugs and replacing
associated electrolyte deficiencies. Resolution of
prolongation will depend on the pharmacokinetics
of implicated drugs. Sodium bicarbonate and

Table 7 MASE and FAERS ICU drugs highly associated
with Steven–Johnson syndrome when PRR � 2 or EBGM
� 2 and N > 30

Analgesics: acetaminophen

Antiepileptics: carbamazepine, lamotrigine, phenytoin,
zonisamide

Antimicrobials: amoxicillin, ampicillin/sulbactam,
amphotericin B, azithromycin, cefdinir, cefepime,
ceftriaxone, cefotaxime, cefuroxime, cephalexin,
ciprofloxacin, clarithromycin, clindamycin,
erythromycin, fluconazole, meropenem, piperacillin/
tazobactam, rifampin, sulfamethoxazole, trimethoprim,
vancomycin

Barbiturates: phenobarbital

Diuretics: furosemide, torsemide

Mucolytics: acetylcysteine

Proton pump inhibitors: pantoprazole

Vitamins: phytonadione
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Table 8 ICU drugs associated with QTc prolongation as listed by Arizona Center for Education and Research (AZCERT)

Drug

AZCERT risk of TdP

Possible Known Conditional

Antiarrhythmics

Amiodarone X

Disopyramide X

Dofetilide X

Dronedarone X

Flecainide X

Ibutilide X

Procainamide X

Quinidine X

Sotalol X

Anticonvulsant

Felbamate X

Antidepressant: SARI, SSRI, tricyclic

Amitriptyline X

Citalopram X

Clomipramine X

Desipramine X

Doxepin X

Escitalopram X

Fluoxetine X

Imipramine X

Nortriptyline X

Paroxetine X

Sertraline X

Trimipramine X

Trazodone X

Antiemetics

Diphenhydramine X

Dolasetron X

Granisetron X

Hydroxyzine X

Metoclopramide X

Ondansetron X

Promethazine X

Antihypertensive and/or diuretic

Furosemide X

Hydrochlorothiazide X

Indapamide X

Isradipine X

Nicardipine X

Torsemide X

Antimicrobials

Azithromycin X

Bedaquiline X

Chloroquine X

Ciprofloxacin X

Clarithromycin X

(continued)
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Table 8 (continued)

Drug

AZCERT risk of TdP

Possible Known Conditional

Erythromycin X

Fluconazole X

Gemifloxacin X

Iloperidone X

Itraconazole X

Ketoconazole X

Levofloxacin X

Metronidazole X

Moxifloxacin X

Norfloxacin X

Pentamidine X

Posaconazole X

Telavancin X

Telithromycin X

Voriconazole X

Antipsychotics

Aripiprazole X

Clozapine X

Chlorpromazine X

Droperidol X

Haloperidol X

Iloperidone X

Mirtazapine X

Olanzapine X

Paliperidone X

Pimozide X

Quetiapine X

Risperidone X

Sulpiride X

Thioridazine X

Ziprasidone X

Drugs of abuse

Cocaine X

GI prophylaxis

Famotidine X

Pantoprazole X

Ranitidine

Immunosuppressant

Hydroxychloroquine X

Tacrolimus X

Muscle relaxant

Solifenacin X

Tizanidine X

Tolterodine X

Phosphodiesterase inhibitor

Anagrelide X

Cilostazol X

(continued)
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hyperventilation should be used in the setting of
concurrent QRS prolongation; sodium bicarbon-
ate is not known to change QTc [73, 74]; refer to
▶Chaps. 21, “Cardiac Conduction and Rate Dis-
turbances” and ▶ 22, “Toxicant-Induced Torsade
de Pointes” for further information on the man-
agement of these patients.

Drug-Induced Hypotension
This section discusses ADRs associatedwith hypo-
tension; for additional details, refer to ▶Chap. 14,
“The Assessment and Management of Hypoten-
sion and Shock in the Poisoned Patient” Drug-
induced hypotension can occur in up to 35% of
ICU patients, and the most prevalent medications
include cardiovascular medications, sedatives, and

analgesics [75]. Hypotension may be hypovolemic
(intravascular volume loss), distributive (vasodila-
tion or smooth muscle relaxation), cardiogenic
(decreased cardiac output via decreased conduction
velocity, contractility, and/or heart rate), and/or
obstructive (e.g., pulmonary embolism, cardiac
tamponade, or tension pneumothorax) [76]. Drug-
induced hypotension often involves a combina-
tion of hypovolemic, distributive, and/or cardio-
genic mechanisms. Table 9 is an overview of the
initial assessment of shock, and Table 10 lists
ICU drugs associated with hypotension with
their known mechanism. For details of the treat-
ment of hypotension, refer to ▶Chap. 14, “The
Assessment and Management of Hypotension
and Shock in the Poisoned Patient.”

Table 8 (continued)

Drug

AZCERT risk of TdP

Possible Known Conditional

Vardenafil X

Sedative–analgesia–anesthetic

Dexmedetomidine X

Chloral hydrate X

Methadone X

Propofol X

Sevoflurane X

Others

Perflutren lipid microspheres X

Ranolazine X

Apomorphine X

Oxytocin X

Amantadine X

Table 9 Algorithm for the initial assessment of shock.
When there are signs of tissue hypoperfusion (altered men-
tal status, mottled/clammy skin, decreased urine output,
tachycardia, and/or elevated lactate), an assessment of the

type of circulatory shock begins with estimating CO or
SvO2. Echocardiography can be used to differentiate cir-
culatory shock

Type CO or SvO2 CVP

Echocardiograph

Cardiac chambers
Cardiac
contractility

Distributive Normal or high Normal Normal

Hypovolemic Low Low Small Normal or high

Cardiogenic Low High Large ventricles Poor

Obstructive Low High Small ventricle(s) depending
on location of obstruction

Modified from Vincent and Backer [76]Abbreviations: CO cardiac output, CVP central venous pressure, SvO2 mixed
venous oxygen saturation
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Table 10 ICU drugs associated with hypotension. Com-
mon ICU drug classes are listed with examples of generic
drugs implicated. Mechanism of hypotension included

hypovolemia, distributive (vasodilation), and/or cardio-
genic (decreased CO)

Classification Generic name

Mechanism

Hypovolemia Vasodilation
Decreased
CO

Beta-blockers Selective Atenolol, bisoprolol,
esmolol, and
metoprolol

B1B

Nonselective Carvedilol A1B, B2B B1B

Labetalol A1B, B2B B1B

Propranolol B2B B1B

Nadolol B2B B1B

Sotalol B2B B1B

CCB Dihydropyridine Amlodipine,
nicardipine, and
nifedipine

L-type CCB

Non-
dihydropyridine

Diltiazem and
verapamil

L-type CCB L-type CCB

Diuretics Thiazide Hydrochlorothiazide inh. Na/Cl
symporter

Thiazide-like Metolazone inh. Na/Cl
symporter

Potassium
sparing

Spironolactone inh. Na/K
exchanger and
competitive
aldosterone ant.

Loop Bumetanide and
furosemide

inh. Na-K-2Cl
symporter

Imidazolines Clonidine and
dexmedetomidine

A2A

Nitrates Isosorbide dinitrate
and nitroglycerine

NO

Opioids Morphine, codeine,
hydromorphone,
meperidine, fentanyl

Decrease
sympathetic
outflow, H2

Decreased
sympathetic
outflow

Renin–angiotensin
antagonists

ACEI Benazepril,
fosinopril, lisinopril,
and ramipril

Bradykinin
natriuresis

Bradykinin

ARBs Candesartan,
irbesartan, losartan,
and valsartan

ARB

Sedative/hypnotics Propofol Decreased
sympathetic
outflow

Decreased
sympathetic
outflow

Barbiturates Phenobarbital and
pentobarbital

Decreased
sympathetic
outflow

Decreased
sympathetic
outflow

Benzodiazepines Lorazepam and
midazolam

Decreased
sympathetic
outflow

Decreased
sympathetic
outflow

Vasodilators Hydralazine

Abbreviations: ACEI angiotensin-converting enzyme inhibitor, ant antagonist, ARB angiotensin II receptor blocker, A1B
alpha-1-adrenergic receptor blocker, A2A alpha-2-adrenergic receptor agonist, B1B beta-1-adrenergic receptor blocker,
B2B beta-2-adrenergic receptor blocker, CCB calcium channel blocker, Cl chloride, CO cardiac output, inh inhibitor,
K potassium, Na sodium, NO nitric oxide
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Drug-Induced Cardiogenic Shock
Drugs associated with cardiogenic shock include
β1-adrenergic antagonists, muscarinic agonists,
and L-type calcium channel antagonists. β1-
adrenergic antagonists decrease heart rate, con-
duction velocity, and contractility. Muscarinic
receptor subtype M2 agonists decrease heart rate
and cardiac conduction velocities [77, 78]. Cal-
cium channel blockers acting at L-type channels
decrease cardiac contractility, conduction veloc-
ity, and/or heart rate; dihydropyridine calcium
channel blockers are associated with vasodilation,
while nondihydropyridines are also associated
with decreased cardiac output [79]. Sedatives
and analgesics decrease sympathetic outflow that
decreases norepinephrine and epinephrine release
resulting in both vasodilation and decreased car-
diac output.

Drug-Induced Distributive Shock
Vasodilation can result from L-type calcium chan-
nel antagonists, angiotensin receptor blockers
(ARBs), α1-adrenergic antagonists, α2-adrenergic
agonists, β2-adrenergic antagonists, bradykinin
receptor agonists, histamine H2 receptor agonists,
muscarinic M3 antagonists, and/or prostaglandin
E2, D2, and I2 agonists [77, 78, 80–83]. Drugs
impacting NO signaling will cause vasodilation
when concentrations of either NO or cyclic-
guanosine monophosphate are increased. Hista-
mine release can occur proportionately to drug
dose and has been associated with drugs such as
opioid analgesia and antibiotics such as vancomy-
cin (see section on “Infusion Reactions” for addi-
tional drugs associated with histamine release). A
double-blind study found meperidine was most fre-
quently associated with histamine release, but mor-
phine and codeine have also been implicated
[84]. Opioids can also cause hypotension through
vasodilation and vagal activation [85].

Opioids
Opioid receptors are located peripherally and cen-
trally; they are involved in vascular regulation and
decrease sympathetic neural regulation
[86–88]. Mu-, delta-, and kappa-opioid receptors
participate in the complex vasoregulatory process
and when blocked centrally decrease hypotension

[89–93] and narrow the ability to autoregulate
blood flow [94].

Propofol
Propofol is an anticonvulsant and amnestic with
rapid onset and short duration of action [95]. Due
to its faster recovery time and return of spontaneous
respiration time, propofol has been favored by
some over benzodiazepines for procedural sedation
and for patients in the ICU [95–97]. Propofol is
structurally unrelated to other sedative-hypnotics
and produces its effects in a dose-dependent man-
ner. Propofol causes hypotension and bradycardia
with an average maximum mean arterial pressure
(MAP) reduction of 29% after initiation, and
severe hypotension develops in 26% of patients
[97, 98]. Hypotension occurs through centrally
mediated venodilation, sympatholysis and vago-
lysis [99, 100]. Pretreatment with ketamine, ephed-
rine, dopamine, or naloxone may decrease risk
[101–105], as does the use of the lowest effective
dose [106]. Intravenous fluid administration does
not appear to be an effective prevention [107, 108].

Propofol is a mitochondrial toxin and can
inhibit intracellular energy production resulting
in propofol-related infusion syndrome (PRIS)
[109]. Signs of PRIS include metabolic acidosis,
lipemic serum, rhabdomyolysis, cardiac arrhyth-
mias, acute renal failure, hepatomegaly, and car-
diac arrest [109]. PRIS has been associated with
longer duration of infusion (>48 h) and faster
infusion rates; other risk factors include increased
catecholamine and glucocorticoid serum levels,
head injury, and respiratory failure [109,
110]. An increase in triglyceride concentration is
the most widely accepted marker of PRIS andmay
be explained by the fat content of the propofol
emulsion [109, 110]. PRIS occurs in less than 5%
of critically ill patients receiving propofol [109,
111]. One large retrospective study found a mor-
tality of up to 40% in persons with PRIS; a review
of FDAMedWatch data found mortality increased
to 30% [109, 112]. A predictive tool was created
and assigns points based on the presence of six
factors: age �18, cardiac manifestations, meta-
bolic acidosis, renal failure, hypotension, and
rhabdomyolysis. Mortality increases with each
point from 24% to 83% [112]. If PRIS is
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suspected, propofol should be immediately
discontinued. If the patient continues to decline,
extracorporeal membrane oxygenation has suc-
cessful treated cardiac arrest [113, 114].

Treatment
The treatment for hypotension is based on the
identified cause. The “VIP” approach guides first
steps in therapy: ventilate (oxygenate), infuse
(fluid administration), and pump (administration
of vasoactive agents) [115]. Initially, resuscitation
should be done with crystalloid fluids (Level of
Evidence [LoE] I) followed by placement of a
central venous catheter if refractory hypotension
requires vasoactive agents. The end point for fluid
resuscitation is when cardiac output is preload
independent [76]. Measuring SvO2 (LoEI) and
serum lactate concentrations (LoE_I) can help
guide therapy although additional technologies
are evolving. Vasoactive agents include vasopres-
sors and inotropes and should be initiated on a
case by case basis, considering each drug’s poten-
tial adverse reaction profile. Vasopressors cause
vasoconstriction from agonism at the β2- and
α1-adrenergic receptors. Inotropes increase car-
diac output through agonism at the β1-adrenergic
receptor (increases heart rate, conduction velocity,
and contractility). Adverse effects are related to
dose, mechanism, potency, drug–drug, and/or
drug–disease interactions.

Inotropic Agents
β-adrenergic agonists increase the heart rate and
contractility which may increase the risk of myo-
cardial ischemia in some circumstances [116];
however, a double-blind study found no differ-
ence in troponin elevation for treated patients
with septic shock [117]. Dobutamine has predom-
inantly beta-adrenergic properties and increases
cardiac output and is a consideration when hypo-
tension is mediated by cardiac pump dysfunction.
Dobutamine has not demonstrated improved per-
fusion parameters in patients with septic shock
without cardiac failure [118].

Vasopressors
By definition, vasopressors cause vasoconstric-
tion, which can impair tissue perfusion.

Epinephrine’s range of effects is strongly dose
dependent. At low doses (usual dosing range
0.01–0.1 microgram/(kg*min)), epinephrine pre-
dominantly targets β-adrenergic receptors; how-
ever, as the dose increases, more significant
α-adrenergic effects appear [116]. Epinephrine
has been associated with arrhythmias, decreased
splanchnic blood flow, and increased blood lactate
concentrations [119, 120]. Dopamine is an imme-
diate precursor to norepinephrine in the synthetic
catecholamine pathway [116]. Dopamine is an
agonist at dopamine and β-adrenergic receptors
at lower doses (<10 μg/(kg*min)), but with
higher doses (10–20 μg/(kg*min)), α-adrenergic
effects predominate [76]. The predominant dopa-
minergic effects observed with low doses of dopa-
mine (<3 μg/kg/min) may preferentially dilate the
hepatosplanchnic and renal circulations, but con-
trolled trials have not shown clinically significant
protection from renal dysfunction [121]. “Renally
dosed” dopamine theoretically could worsen
vasodilation resulting in hypotension, and many
toxicology patients have minimal tolerance for
worsened blood pressure. Dopamine may increase
the incidence of arrhythmia when compared to
norepinephrine [122]. Beta doses of dopamine
(<10 μg/(kg*min)) may cause further vasodilata-
tion and worsen hypotension. Therefore, for crit-
ically ill patients, dopamine therapy should be
initiated at alpha receptor active doses (�10 μg/
kg/min).

Norepinephrine should be considered as the
first-line vasopressor. Several studies demonstrate
no advantage of dopamine over norepinephrine,
and dopamine is associated with increased rates of
arrhythmias and 28-daymortality for patients with
cardiogenic and/or septic shock [122, 123]. For
tricyclic antidepressant poisoned patients with
hypotension refractory to intravenous fluid and
serum alkalinization, norepinephrine appeared
superior to dopamine as a first-line vasopressor
agent [124] (LoE II-3). Norepinephrine may be
associated with greater risk for peripheral ische-
mia and necrosis; however, these effects can occur
with other vasopressors including vasopressin,
dopamine, and epinephrine; preexisting vascular
disease, sepsis, and DIC may be risk factors [116,
125–131].
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Hematologic ADRs

Drug-Induced Thrombocytopenia
Thrombocytopenia is a commonly encountered
abnormality in the critically ill, occurring in up
to 44% of patients. Between 10% and 25% of
these cases are thought to be drug induced. Poten-
tial mechanisms for this are platelet consumption
or destruction, impaired platelet production, and
hemodilution [132]. Multifactorial etiology is
usually suspected when drug-induced thrombocy-
topenia (DITP) has occurred; however, single
agents are not excluded. Platelets become targeted
for destruction when a drug causes an antibody
response. Depending on the molecular weight of
the drug, this could be hapten dependent (e.g.,
penicillin) via covalent bonds to platelet glyco-
proteins or drug dependent (e.g., sulfonamide
antibiotics), forming a complex or conformational
change [133]. Sometimes autoantibodies are pro-
duced that can persist long after drug exposure
and result in chronic autoimmune
destruction [133].

DITP typically occurs 1–2 weeks after begin-
ning a new drug or suddenly after a single dose of
a drug which has previously been taken [134,
135]. Exceptions include first doses of
antithrombotic agents such as tirofiban
[136–139]. Table 11 contains a list of ICU drugs
associated with thrombocytopenia. Antibiotics
are associated with thrombocytopenia and,
because of their prevalent use in ICU patients,
are commonly implicated. Case–control studies
have associated quinolones and trimethoprim/sul-
famethoxazole with thrombocytopenia [140,
141]. Sample size, exposure rates, and the poten-
tial effect of drug combinations likely limited their
findings to only these drugs as there are over a
thousand case reports of DITP. A database can be
found online at http://www.ouhsc.edu/platelets/
ditp.html. Other drugs to consider for ICU
patients include antifungals, antivirals, anticon-
vulsants, and glycoprotein IIb/IIIA inhibitors and
anticoagulants [141].

Heparin or low-molecular-weight heparin is
frequently used in immobile ICU patients.
These drugs require careful consideration when
evaluating a patient for thrombocytopenia.

Heparin-induced thrombocytopenia (HIT) type
2 occurs in 0.5–5% of patients receiving heparin
products [142]. Typically this syndrome is char-
acterized by a 50% or greater thrombocytopenia
from baseline, occurring 5–15 days after initial
heparin therapy. It can occur sooner if there was
a prior exposure to heparin. Physiologically,
IgG antibodies bind heparin and platelet factor
4 (PF4), forming complexes. These complexes
bind platelets and result in thrombocytopenia. If
thrombin is activated, thrombosis can occur. If
HIT is considered, an HIT score should be cal-
culated to guide therapy. If the HIT score is low
(0–3 points), heparin therapy should be contin-
ued. For moderate or high scores, further testing
is recommended, and the patient started on alter-
native anticoagulation until the diagnosis can be
conclusively excluded. The absence of PF4 IgG
antibodies has a high negative predictive
value and rules out HIT; specificity is poor so
positive tests require additional analysis
[142–145]. Serotonin release assay has high
specificity (95–100%) and positive predictive
value for HIT; however, the availability is lim-
ited. Several days are often required for results.
Once HIT has been confirmed, duration of ther-
apy should be for 4 weeks or until baseline
platelet counts are restored. In the presence of
thrombosis, treatment should be continued for
4 months.

When other drugs are suspected, they should
be discontinued and platelets monitored for
recovery. Recovery time will depend on the phar-
macokinetics of the offending drug and the impli-
cated mechanism. Usually, recovery begins
1–2 days after the offending drug has been
discontinued and is complete within 1 week
[134]. Drug-dependent antibodies can persist
for years; patients should be counseled to avoid
the implicated drug. See ▶Chap. 30, “Toxicant-
Induced Hematologic Syndromes” for more
detail.

Drug-Induced Methemoglobinemia
Methemoglobinemia is discussed in ▶Chap. 30,
“Toxicant-Induced Hematologic Syndromes.”
Methemoglobinemia can be caused by dapsone
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or local anesthetics placed into the pharynx before
nasogastric or orogastric tube placement or other
procedures [146–157]. Local anesthetics associ-
ated with methemoglobinemia include benzo-
caine, cocaine, lidocaine, and prilocaine [146,
148, 149, 152, 154–157]. Benzocaine treatment
may produce more methemoglobin than lidocaine
[158]. Methylene blue is the antidote, but should
be dosed carefully as logarithmic dosing errors or
very high doses could worsen methemoglobine-
mia [159, 160].

Pulmonary ADRs

Drug-Induced Respiratory Disease
This section discusses ADRs associated with
respiratory disease. For additional reference, see
▶Chaps. 100, “Irritant and Toxic Pulmonary
Injuries” and ▶ 16, “Treatment of Acute Respira-
tory Distress Syndrome in the Poisoned Patient.”
Respiration requires the integration of multiple
systems. Respiratory failure occurs when any
part of this process becomes dysfunctional and is

Table 11 ICU drug-induced thrombocytopenia (DITP).
Drugs are grouped by drug class and mechanism with
number of reports and probability score and if an antibody
has been detected. University of Oklahoma Health Sci-
ences Center’s DITP database was referenced on May

6, 2015, for number of cases from individual and group
patient reports. Drugs were added from recently published
literature. Additional drugs, in parentheses, were added
from recently published literature

Classification Generic name Na Probability scoreb Ab

Antibiotics

Beta-lactamases Amoxicillin 1 5 +

Ampicillin 5 2 +

Penicillin 6 1

Piperacillin/tazobactam 14 1 +

Carbapenems Imipenem 4 2

Meropenem 11 2

Cephalosporins Cefazolin 1 5 +

(Cefepime) (1) (2) +

Ceftriaxone 6 2 +

Cefuroxime 1 3

Dihydrofolate reductase inhibitor/sulfonamide Trimethoprim/
sulfamethoxazole

65 1 +/+

Fluoroquinolones Ciprofloxacin 6 1 +

Levofloxacin 2 2 +

Moxifloxacin 2 2

Glycopeptide Vancomycin 27 1 +

Lincosamide (Clindamycin) (1) (3) +

Macrolide Clarithromycin 3 2

Oxazolidinone Linezolid 221 5

Antifungals Amphotericin 3 1

Fluconazole 5 2

Itraconazole 1 2

Antivirals Acyclovir 2 2

Ganciclovir 23 4

Anticonvulsants Levetiracetam 35 2

Valproic acid 231 5 +

Glycoprotein IIb/IIIa inhibitor Tirofiban 125 1 +

Anticoagulant (Heparin) (1) +
aNumber of total patients with DITP based on individual and group reports when specifiedbHighest probability score from
case reports: 1-thrombocytopenia definitely caused by drug, 2-probably, 3-possibly, 4-unlikely, 5-excluded (reasons
included insufficient data and/or agents that cause thrombocytopenia due to marrow suppression)
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unable to maintain normal pH and/or adequate
tissue oxygenation. Types of drug-induced
respiratory disease can be subdivided based on
location: airway (small and/or large), parenchy-
mal/interstitial/pleural lung disease, pulmonary
vasculopathy (e.g., noncardiogenic pulmonary
edema or pulmonary arterial hypertension),
neuromuscular respiratory disease (e.g.,
decreased respiratory drive), and/or circulation
(e.g., methemoglobinemia) [161–164]. Neuro-
logic drug-induced respiratory disease is com-
mon in the ICU due to the number of sedatives
and analgesics administered. When evaluating
for drug-induced respiratory disease, initial
attention to oxygenation, respiratory rate, and
end tidal CO2 is helpful to determine if respira-
tory depression is present. Hypercarbia is more
sensitive than hypoxia for early respiratory
depression, and occasionally respiratory depres-
sion occurs in the absence of moderate to
severe neurologic abnormality; naloxone
and/or other antidote(s) administered can con-
firm and treat. If cyanosis and low pulse oxim-
etry (90%) are present, arterial co-oximetry
should be performed to evaluate for
methemoglobinemia.

After excluding hemoglobinopathies and
drug-induced respiratory suppression, further
evaluation may include white blood cell differ-
ential, bronchial-alveolar lavage, chest radio-
graph, and/or high-resolution computed
tomography (HRCT). Eosinophilia on peripheral
blood smear or bronchial-alveolar lavage may
suggest a drug-induced eosinophilic pneumonia.
HRCT can further characterize the pathology
[162–164]. Some diagnoses require an echocar-
diography, right-heart catheterization, and/or
biopsy for diagnosis or to exclude other diagno-
ses. Echocardiography can exclude left-sided
congestive heart and evaluate for cardiac
comorbidities. A list of drugs associated with
respiratory disease is maintained online by the
Department of Pulmonary and Intensive Care at a
University Hospital in Dijon, France (www.
pneumotox.com). Table 12 contains a list of
ICU drugs associated with more than 50 reports
of respiratory disease.

Drug-Induced Airway Dysfunction
Refer to allergic/hypersensitivity ADRs section
within this chapter where drug-induced broncho-
spasm and angioedema are discussed in detail.

Drug-Induced Parenchymal
and Interstitial Lung Disease (ILD)
Parenchymal lung disease includes many sub-
types, but commonly associated ICU drugs
include amiodarone, antibiotics, nonsteroidal
anti-inflammatory drugs (NSAIDs), and drugs of
abuse (before ICU admission). Frequently
encountered conditions include acute ILD, sub-
acute ILD, eosinophilic pneumonia, diffuse alve-
olar damage, and ILD with a granulomatous
component. Patients who previously received
chemotherapy can have ADRs based on their pre-
vious outpatient treatment regimens. Many che-
motherapeutic drugs are associated with ILD. For
example, ILD is emerging as a class effect of
tyrosine kinase inhibitors (TKIs), inhibiting onco-
logic drugs that inhibit the vascular endothelial
growth factor (VEGF) receptor. Diffuse alveolar
damage (DAD) may be the most common mani-
festation, although other etiologies occur [165].

Amiodarone-induced respiratory disease has a
wide spectrum of manifestations that can develop
acutely or after many years [166–168]. The
elderly may have higher risk. Peak onset occurs
after 6–12 months of therapy [169]. Higher doses
may be associated with increased risk although
toxicity can develop with any dose [167,
170]. Typical presentation includes malaise,
cough, fever, and pleuritic chest pain, with imag-
ing demonstrating patchy opacities and/or acute
respiratory distress syndrome (ARDS). Some-
times only pulmonary fibrosis is present, but path-
ological manifestations can include eosinophilic
pneumonia, bronchiolitis obliterans organizing
pneumonia, or diffuse alveolar damage (DAD)
[166]. DAD is a severe respiratory failure involv-
ing alveolar fibrin, hyaline membranes, reactive
epithelial cells, and diffuse ground-glass opacities
[166, 171]. If amiodarone-associated respiratory
disease is suspected, the drug should be
discontinued and alternative medications titrated
to control heart rate.
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Nitrofurantoin is associated with acute or sub-
acute pneumonitis (ILD) characterized generally
with bilateral and symmetric pulmonary opacities.
Pulmonary fibrosis, eosinophilic pneumonia, or
pleuropathy (discussed later) may be present
with restrictive lung dysfunction and hypoxemia,
which usually resolve after the drug is
discontinued [172–174].

Eosinophilic pneumonias (EP) have been asso-
ciated with a significant number of drugs; antibi-
otics and NSAIDS are the most commonly
reported [175–184]. Historically, there have been
epidemics of EP associated with exposure to a
toxic–oil spill in 1981 and L-tryptophan ingestion
in 1989. Minocycline was the antibiotic most

commonly reported by www.pneumotox.com
(between 50 and 100 cases reported); daptomycin,
nitrofurantoin, and sulfasalazine followed with
10–50 reported cases. The FDA has issued a
warning regarding daptomycin and risk for eosin-
ophilic pneumonia. Signs and symptoms of EP
include fever, fatigue, dyspnea, wheezes with pul-
monary infiltrates, and eosinophilia in blood,
bronchial–alveolar lavage, and/or tissue
[182]. Symptoms usually resolve after the impli-
cated drug is discontinued; however, sometimes
steroids are required.

ILD with a granulomatous component has been
associated with drugs of abuse and mimics pulmo-
nary and/or systemic sarcoidosis [185, 186].

Table 12 ICU drug-induced respiratory disease. Drugs from www.pneumotox.com were included if�50 cases reported
for a drug–disease pattern. Pneumotox was referenced on May 17, 2015

Generic drug
Airway
disease

Interstitial/parenchymal
disease Pleural disease

Pulmonary
vasculopathy

Drugs of abuse
(IV/inhaled)

Granulomatous ILD, mass(s),
pneumoconiosis

PTX PAH

Amiodarone Acute/subacute ILD, PF, lung
nodule(s), DAD

Fibrothorax,
pleuritic chest
pain

ARDS

Beta-2 agonists
(parenteral)

NCPE

Beta-blockers Bronchospasm NCPE

Crack cocaine Bronchospasm

Dopamine agonists Fibrothorax

Ethanol ARDS

Excipients (vehicle) PAH

Hemotherapy (blood or
platelet transfusion)

NCPE, ARDS,
TRALI, TACO

Heroin (inhaled,
insufflated, snorted)

Bronchospasm

Heroin (injected) Bronchospasm PTX NCPE, flash
pulmonary
edema

Hydrochlorothiazide NCPE

Latex Bronchospasm

Minocycline EP

Nitrofurantoin Acute pneumonitis/ILD,
subacute pneumonitis/ILD, PF

Acute pleuritis

NSAIDS Bronchospasm EP

Salicylate Bronchospasm NCPE

Key: acute respiratory distress syndrome (ARDS), diffuse alveolar damage (DAD), dopamine (DA), eosinophilic pneu-
monia (EP), inhaled (INH), interstitial lung disease or pneumonitis (ILD), intravenous (IV), noncardiogenic pulmonary
edema (NCPE), parenchymal lung disease (PLD), pneumothorax (PTX), pulmonary arterial hypertension (PAH), pulmo-
nary fibrosis (PF), transfusion-associated circulatory overload (TACO), transfusion-related lung injury (TRALI)
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The culprit could be a cutting agent such as
levamisole or talc since the primary drug of
abuse is more likely to cause other drug-induced
respiratory disease (see Table 11). Heroin has been
associated with bronchospasm, noncardiogenic
pulmonary edema (NCPE), flash (fulminate)
pulmonary edema, and/or pneumothorax [187,
188]. Crack cocaine has been associated with
bronchospasm [189]. Other cutting agents such
as clenbuterol, a beta-agonist, have been associ-
ated with NCPE [190], and topical anesthetics
have been associated with methemoglobinemia
[191]. Characteristically, ILD with a granuloma-
tous component appears radiographically as ster-
ile non-necrotizing granulomas and/or with a
miliary appearance; lymphadenopathy may also
be present [185, 186]. Patients may have granulo-
matous skin lesions.

Drug-Induced Pulmonary Edema
and Vasculopathy
The lungs have an extensive vascular surface used
for oxygenation and gas exchange, but this
increases the risk for significant morbidity and
mortality when endothelial and/or vascular injury
occurs [192]. ARDS and noncardiogenic pulmo-
nary edema (NCPE) are common clinical mani-
festations of drug-induced respiratory disease.
Their clinical and radiographic features are diffi-
cult to distinguish from other causes of pulmonary
edema; therefore, timing is an important consid-
eration to determine etiology [193]. Patients may
present with dyspnea, chest pain, tachypnea, and
hypoxemia [193]. Chest imaging will demonstrate
bilateral opacities not fully explained by effu-
sions, atelectasis or nodules, and the absence of
cardiomegaly and pulmonary vascular redistribu-
tion. Echocardiography or wedge pressure may be
used to exclude cardiogenic causes, a requirement
for the diagnosis of NCPE.

ARDS is defined and graded based on gas
exchange abnormalities. The diagnosis is used
interchangeably for mixed pathology but morpho-
logically best characterized by DAD. ARDS is an
acute, diffuse, inflammatory lung injury that
increases pulmonary vascular permeability, hyp-
oxemia, shunting, and pulmonary dead space.
Using the Berlin definition, ARDS is defined

based on the degree of hypoxemia as mild
(PaO2/FIO2 � 300 mmHg or P/F � 300), moder-
ate (100 < P/F � 200), and severe (P/F � 100)
[194]. Mortality increased for each stage, 27%,
32%, and 45%, respectively [194]. Duration of
mechanical ventilation in survivors increased for
each stage: 5, 7, and 9 days, respectively
[194]. When an ADR is suspected, the drug
should be immediately discontinued.

NCPE, or permeability edema, is associated
with opioids [187, 188, 195–197]; the mechanism
may involve histamine release with capillary leak
[198]. These effects usually occur within hours of
opioid use and may persist. Decreasing the doses
of opioids and/or changing to less histaminergic
opioids may be helpful. When pulmonary edema
develops within minutes of drug administration, it
is called flash (fulminate) pulmonary edema.

Transfusion-related acute lung injury (TRALI)
is a type of drug-induced pulmonary edema asso-
ciated with hemotherapy and should be differen-
tiated from transfusion-associated circulatory
overload (TACO). TRALI can occur with transfu-
sion of blood, platelets, plasma, IVIG, or any
blood product. TRALI has an incidence rate of
22.5 per 100,000 hospital stays; risk factors
include continued platelet and plasma transfu-
sions, amount transfused, female gender, white
ethnicity, and 6-month histories of pulmonary
fibrosis and/or tobacco use [199, 200]. Decreasing
female donation of blood products significantly
reduced the incidence but suggests there is both an
immune and nonimmune mechanism [199,
201]. Symptoms of TRALI develop within 8 h
of infusion and can be difficult to differentiate
from TACO, a type of overload pulmonary
edema. TACO can occur when the rate or amount
of fluid infused is more than the circulatory sys-
tem can accommodate. Assessing fluid balance
and measurement of brain natriuretic peptide
may suggest an etiology as TRALI and/or
TACO [202].

Pulmonary Arterial Hypertension
Drugs increasing serotonin and/or norepinephrine
levels may cause pulmonary arterial hypertension
(PAH) because of the vasoconstrictive and
growth-modulating effects on smooth muscle
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cells, resulting in an increased pulmonary vascu-
lar resistance, right cardiac failure, and death.
Another proposed mechanism includes endothe-
lial dysfunction [203]. PAH associated with ICU
drugs could occur through excipients (vehicle), as
reported by Pneumotox. Other considerations
include drugs of abuse such as amphetamines
and cocaine, anorexic or appetite suppressants,
and other over-the-counter drugs such as nasal
decongestants [203–205]. Fenfluramine, an appe-
tite suppressant, was withdrawn from the market
and had been associated with PAH. Phenylpropa-
nolamine, a nasal decongestant, was withdrawn
because of an increased risk of hemorrhagic
stroke and may have been a risk factor for PAH.

Drug-Induced Neuromuscular
Respiratory Disease
Respiratory pump function is dependent on cen-
tral respiratory drive, peripheral nerves, neuro-
muscular junctions, and respiratory muscles.
Drug-induced neuromuscular respiratory disease
is discussed in the neurologic ADR section.

Gastrointestinal ADRs

Drug-Induced Constipation/Ileus
Constipation is the irregular and/or infrequent
evacuation of the bowels. Multiple causes have
been identified including poor nutritional intake
(low dietary fiber); emotional disturbances; sys-
temic, structural, and infectious conditions; and
drugs. Drug-induced constipation has been asso-
ciated with drugs affecting muscarinic, opioid,
and gamma-aminobutyric-acid (GABA) recep-
tors. Opioids are the drug class most frequently
associated with constipation, which occurs in up
to 71% of patients with chronic non-cancer pain
whom are prescribed with opioids [206].

Opioid-induced constipation has significant
economic ramifications as it is associated with
longer inpatient stays (3–5 days vs. 1–2 days)
and higher costs (US$16923–US$23631
vs. US$11117–US$12652) [206]. For ICU
patients, the costs could be even higher, and
patients should be prescribed with bowel regi-
mens to promote daily motility. When

conservative measures have failed, opioid antag-
onists may be considered (LoE_I). Cost is preclu-
sive to widespread implementation. Naloxone,
naltrexone, and nalmefene are opioid antagonists
with low systemic bioavailability because of first-
pass metabolism [61]. If given in sufficient doses,
naloxone crosses the blood–brain barrier to
reverse opioid analgesia; naloxone has a narrow
therapeutic window when administered to treat
opioid-induced constipation. Quaternary ana-
logues of the opioid antagonists such as
methylnaltrexone and alvimopan have greater
polarity and lower lipid solubility; these ana-
logues poorly cross the blood barrier.
Methylnaltrexone is administered parenterally
(0.15–0.3 mg/kg every other day) and alvimopan
orally (0.5 or 1 mg once daily).

Delayed Absorption
Critically ill patients may already be at increased
risk for delayed absorption of enteral medications.
Some ICU drugs delay gastric emptying or slow
motility and can interfere with the absorption of
other drugs. Common drugs include anticholiner-
gic, opioid agonists, anesthetics, and other seda-
tives. In the setting of overdose, absorption can
continue longer than predicted by pharmacokinet-
ics, especially for enteric coated or extended
release medications, anticholinergics, and/or opi-
oids [207–219].

Diarrhea
Many of the withdrawal states can be associated
with diarrhea as can many antibiotics. Twenty-
nine percent of 743 prospectively treated patients
prescribed with inpatient antibiotics developed
diarrhea during hospitalization, and four cases
were confirmed of Clostridium difficile infection
(CDI) [220]. Diarrhea started between 1 and
16 days after initiation with median onset on day
4. Potentially any antibiotic is associated with
diarrhea, but cephalosporins, clindamycin, peni-
cillins, and quinolones may carry a higher risk,
especially for CDI [221]. Antibiotic-associated
diarrhea was associated with increased age, pro-
ton pump inhibitor use, and being critically ill.
The prevalence of CDI for ICU patients pre-
scribed with antibiotics may be higher than other

33 Adverse Drug Reactions in the Intensive Care Unit 711



hospitalized patients and has been reported as
25% in patients with antibiotic-associated diar-
rhea [222]. CDI-associated mortality rate may be
as high as 9% [223], and for ICU patients, the
unadjusted rate may be as high as 23–37% [222,
224, 225]; however, other literature suggests early
recognition and treatment of ICU-acquired CDI
decreases the risk for mortality [226].

The development of antibiotic-induced diar-
rhea results in an additional hour of nursing care
per day which decreases nurse time spent with
other critically ill patients [220]. Patients who
develop CDI have a longer length of stay of 2.2
ICU days, 4.5 hospital days [224]. Probiotics have
been studied for the prevention of antibiotic-
associated diarrhea and/or Clostridium difficile
diarrhea; in older hospitalized patients, they may
not be as helpful when compared to other age
groups [227–229]. Decreasing hospital use of
quinolones may decrease the overall incidence of
Clostridium difficile [230–233]. Antimotility
agents should be avoided until CDI is ruled out
with a rapid screening ELISA test.

Drug-Induced Hepatotoxicity
This section briefly discusses ADRs associated
with hepatotoxicity; for additional information
refer to ▶Chap. 17, “Toxicant-Induced Hepatic
Injury.” Drug-induced liver injury (DILI) is the
major reason for drug removal or restriction by
regulatory agencies and is estimated to occur in
1 in 1,000,000 patient-years or 35 cases in
100,000 using EMR data [5, 234]. Fewer than

10% of DILI cases progress to drug-induced
acute liver failure and up to 80% of these will
die or require transplantation [235, 236].

DILI mimics many forms of liver disease and is
usually a diagnosis of exclusion. Complicating the
diagnosis is the latency period or the time from first
dose of a new drug to the onset of hepatotoxicity.
For hepatotoxic ADRs, the latency period is usu-
ally days to weeks after starting a new medication,
but there are exceptions. The clinical signs and
symptoms are usually nonspecific but temporally
can be used to guide the differential. A good refer-
ence to published case reports is Livertox (http://
livertox.nlm.nih.gov), which is continuously
updated (Table 13) [234, 237]. Patterns of hepatic
enzyme elevation can suggest hepatocellular, cho-
lestatic, or mixed injury patterns (Table 14). These
patterns of elevation also guide workup for alter-
native explanations (e.g., hepatocellular or mixed
DILI should be tested for acute viral hepatitis,
while a cholestatic pattern should be evaluated for
biliary tract pathology).

The most common phenotype is serum enzyme
elevation without jaundice or other symptoms.
The most characteristic phenotype suggesting
DILI is cholestatic and/or mixed hepatitis.
Between 30% and 50% of DILI cases are
described as acute hepatitis and resemble acute
viral hepatitis. The most concerning phenotype
is acute hepatic necrosis, characterized by many-
fold elevations of ALT within days of drug expo-
sure; however, the most likely phenotype to result
in DIALF is acute hepatitis.

Table 13 Clinical phenotypes for DILI associated with
ICU drugs. Clinical phenotypes associated with ICU drugs
with latency, initial bilirubin, and R value. R is calculated:

(ALT/ULN)/(ALP/ULN) (Source: http://livertox.nlm.nih.
gov (Accessed 5/18/2015))

Clinical
phenotype Latency

Bilirubin
(mg/dL) R Drugs

Acute hepatic
necrosis

<2
weeks

<10 >5 Acetaminophen, amiodarone, aspirin, cocaine,
methylenedioxymethamphetamine (MDMA, ecstasy), niacin

Acute
hepatitis

2–24
weeks

>2.5 >5 Disulfiram, isoniazid (INH), nitrofurantoin, sulfonamides

Cholestatic
hepatitis

2–12
weeks

>2.5 <2 Ceftriaxone, clavulanate, fluoroquinolones (ciprofloxacin,
levofloxacin), macrolides, penicillins, rifampin, sulfonamides,
sulfonylureas

Mixed
hepatitis

4–24
weeks

>2.5 2–5 Aromatic antipsychotics (e.g., carbamazepine, phenytoin),
lamotrigine, NSAIDS, sulfonamides

Abbreviations: alanine aminotransferase (ALT), alkaline phosphatase (ALP), bilirubin (BILI), upper limit of normal (ULN)
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Drug properties and certain host factors
increase risk for DILI. High lipophilicity (LogP
�3) and high daily dose (�100 mg) predict DILI
[238]. Patients with fatal outcomes are more likely
to have chronic liver disease and satisfy Hy’s Law
(ALT or AST >3� ULN and bilirubin >2�ULN
with no initial findings of elevated serum ALP or
other reason for abnormal liver biochemistries)
[239]. Mechanisms for DILI include the forma-
tion of toxic metabolites (e.g., N-acetyl-p-
benzoquinone imine from metabolism of acet-
aminophen), mitochondrial dysfunction [240],
modification of allergic mediators [242] and
altered bile acid homeostasis [241]. Minocycline
can induce an allergic or autoimmune injury with
antinuclear antibodies (ANA) and perinuclear
antineutrophil cytoplasmic antibodies, pANCA.
Nitrofurantoin autoimmune hepatitis is associated
with antinuclear and smooth muscle antibodies
[243, 244]. DILI associated with amoxicillin–cla-
vulanate has been associated with the HLA
alleles A*02:01, DRB1*15:01-DQB1*06:02
[245]. Some drugs may cause DILI through hypo-
tension and/or increased metabolic demand.
Drugs that can cause hypoxia or hypotension, or
increase metabolic demands, may worsen acute
liver failure because each of these conditions by
itself can cause ALF.

Causality can be difficult to determine, but the
suspected drug(s) should be immediately
discontinued and the liver biochemistries moni-
tored; the liver has an amazing capacity to recover
from injury [246]. Rechallenge is dangerous and
should be avoided. Currently available bio-
markers [247–252] (Table 15) are not specific
enough and/or not widely available; a liver biopsy
should be considered if signs of liver function

continue to decline or if peak ALT level has not
fallen by >50% at 30–60 or 180 days, respec-
tively, for hepatocellular and cholestatic DILI
[253]. Exceptions, or drugs to consider restarting,
may include an immunomodulatory drug if no
alternatives are available.

Drug-Induced Pancreatitis
Acute pancreatitis is a sudden inflammation of the
pancreas and can be fatal; however, drug-induced
acute pancreatitis is usually mild or moderate in
intensity. The most commonly identified cause of
acute pancreatitis is gallstone followed by etha-
nol, drugs, and cannabis [254]. Drug-induced
acute pancreatitis (DIAP) occurs for less than
5% of patients with acute pancreatitis, and drugs
with stronger causality are listed in Table 16 [255,
256]. Mechanisms for DIAP include pancreatic
duct constriction, cytotoxic and metabolic effects,
accumulation of a toxic metabolite, or intermedi-
ary and/or hypersensitivity reactions [257, 258].

There are many drugs possibly associated with
pancreatitis but causality is not definitively
established. There have been numerous reports
of adverse effects with drugs such as the antipsy-
chotics clozapine, olanzapine, and risperidone,
but when a cause–effect relationship is scruti-
nized, the data is questionable [10, 259]. For
glucagon-like peptide-1 drugs such as exenatide,
pancreatitis was seen in the clinical trials but
other studies have demonstrated mixed results
[260]. Class labeling warnings have been added
to the FDA labels. ICU drugs associated with
acute pancreatitis with stronger causality
(positive rechallenge and other causes excluded)
include ace inhibitors (ACEI; enalapril), antiepi-
leptics (divalproate), antimicrobials (dapsone,

Table 14 Laboratory criteria for diagnosing and classify-
ing drug-induced liver injury (DILI). DILI can be diag-
nosed when either ALT or ALP is elevated or when both

BILI and ALT are elevated. R is calculated (ALT/ULN)/
(ALP/ULN) and patterned based on earliest identified liver
chemistry available that qualifies as DILI

DILI diagnosis ALT �5� ULN ALP �2� ULN Bilirubin �2� ULN and

ALT �3�ULN

DILI classification R

Hepatocellular �5

Mixed 2 < R < 5

Cholestatic �2

Abbreviations: alanine aminotransferase (ALT), alkaline phosphatase (ALP), upper limit of normal (ULN)
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metronidazole, tetracycline), cannabis, diuretics
(furosemide), and statins (pravastatin, simva-
statin) [256]. Drugs with positive rechallenge but
without other causes excluded include
amiodarone, antimicrobials (sulfamethoxazole/
tazobactam), ARBs (losartan), and proton pump
inhibitors (omeprazole) [256]. ICU drugs with
more than four case reports of acute pancreatitis
include acetaminophen, erythromycin, and
propofol [256].

The proposed mechanism for pancreatitis
caused by statins is via accumulation of a toxic
metabolite or drug interactions through cyto-
chrome P450 3A4 [261]. Valproic acid may
cause pancreatitis by a direct toxic effect of free

radicals and depletion of superoxide dismutase,
catalase, and glutathione peroxidase
[261]. When drug-induced pancreatitis is
suspected, the implicated agent should be
discontinued [255].

Renal ADRs

Drug-Induced Acute Renal Failure
This section discusses ADRs associated with
acute renal failure. For additional details, refer
to▶Chap. 18, “Toxicant-Induced Renal Injury.”
Drugs are a common cause of renal insufficiency
because a major route for drug excretion occurs

Table 15 Liver biochemical and function tests. Most of these biomarkers are located intracellularly and released after
hepatocyte injury

Biomarker Clinical significance

Hepatocellular injury

ALT Remains elevated longer than AST (longer half-life)

AST Less specific than ALT

APAP-
CYS

Early and specific marker for APAP hepatotoxicity; remains elevated for days

GSTA Centrilobular injury; more rapid assessment because of shorter half-life than ALT/AST

HMGB1 Associated with immune activation followed by apoptotic and necrotic hepatocytes; earlier marker of
hepatotoxicity than ALT; prognostic marker

K18 Necrotic hepatocytes; prognostic marker

K18,
cleaved

Apoptotic hepatocytes; prognostic marker

miR-122 Earlier marker of hepatotoxicity than ALT; can be used to predict injury

SDH Earlier marker of hepatotoxicity than ALT

Biliary injury

ALP Nonspecific and can be elevated with bile duct obstruction, cholestasis, and hepatocellular injury as well
as released from bone and placental tissue

GGT More sensitive and specific marker of biliary injury than ALP

Mitochondrial injury

GLDH Earlier marker of hepatotoxicity than ALT, released from mitochondria

Hepatic biosynthetic capacity

Albumin Produced by the liver and decreased in chronic liver disease; decreased in nephrotic syndrome

Ammonia Released by intestines and metabolized by liver

PT Decreased production of hepatic coagulation factors increases PT

Hepatic regeneration

AFP May have value as prognostic marker

LECT2 May have value as prognostic marker; inversely proportional to ALT

Abbreviations: acetaminophen (APAP), acetaminophen–cysteine adducts (APAP-CYS), alanine aminotransferase (ALT),
alkaline phosphatase (ALP), alpha-fetoprotein (AFP), alpha-glutathione-S-transferase (GSTA), aspartate aminotransferase
(AST), gamma glutamyl-transpeptidase (GGT), glutamate dehydrogenase (GLDH), high-mobility group box-1 (HMGB1),
keratin 18 full length (K18), leukocyte cell-derived chemotaxin-2 (LECT2), microRNA-122 (MiR-122), prothrombin time
(protime, PT), sorbitol dehydrogenase (SDH)
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renally. During this process, drugs concentrate in
nephric tissues which increase the potential for
local tissue toxicity [262]. The high renal rate of
blood flow increases nephric tissue exposure to
drugs when compared to tissue in organs with
lower rates of blood flow.

Drug-induced nephrotoxicity should be con-
sidered when the serum concentration of creati-
nine rises temporally in relation to drug
administration. Good ICU care noting a
diminishing urine output should avoid this com-
plication. Drug toxicity in the kidney can manifest
through the same clinical syndromes associated
with other kidney diseases (refer to Table 17 for
common clinical syndromes matched with associ-
ated drugs). Antibiotics are the most common
cause of drug-induced renal failure;
aminoglycosides are the most common cause of
acute tubular necrosis (ATN), with an incidence of
at least 10% of all cases of acute renal failure
[263]. Penicillins and sulfonamides are more
commonly associated with acute interstitial
nephritis (AIN). Some drugs such as cephalospo-
rins, cocaine, and NSAIDs can be associated with
multiple renal syndromes [264–267]. When con-
sidering drug-induced nephrotoxicity, consider
the dose, timing, duration of exposure, concurrent
use of nephrotoxic drugs, and individual patient

risk factors (age, chronic kidney disease, sepsis,
etc.) [262, 263, 268–271].

Prerenal Nephrotoxicity
Prerenal azotemia is a hemodynamically mediated
renal insufficiency associated with low urine
sodium excretion and is usually reversible when
the offending agent is discontinued early. Some
drugs, such as radiocontrast agents, cause vaso-
constriction through increased production of
endothelin and/or thromboxane A2 which reduces
renal blood flow and glomerular perfusion
[272]. Radiocontrast agents can impair renal
blood flow by both vasodilation and vasoconstric-
tion; contrast nephropathy usually develops
within 24 h after administration [272]. Risk fac-
tors include preexisting renal impairment, severe
congestive heart failure, volume depletion, age,
dose, and concurrent use of other nephrotoxins;
there was no statistical difference in the compli-
cation rate when changing the type of contrast
prescribed (high/low osmolarity or ionic/non-
ionic) [272, 273].

NSAIDs inhibit cyclooxygenase and decrease
the synthesis of vasodilating prostaglandins,
which in patients with chronic renal disease can
impair glomerular perfusion [270, 274]. ACEIs

Table 16 Drug-induced pancreatitis. Drugs are grouped
by drug class and listed when stronger causality has been
documented

Class Drug(s)

ACEI/ARBs Enalapril and losartan

Antiarrhythmics Amiodarone

Antiepileptics Divalproate

Antimicrobials Dapsone, metronidazole,
sulfamethoxazole/
tazobactam, and
tetracycline

Cannabis

Diuretics Furosemide

Ethanol

Glucagon-like peptide-1
(GLP1) receptor agonists

Exenatide, liraglutide,
albiglutide, dulaglutide

Proton pump inhibitors Omeprazole

Statins Pravastatin and simvastatin

Table 17 Nephrotoxicity associated with ICU drugs

Clinical
syndrome Drug

Acute renal
failure

Prerenal/
hemodynamic

Contrast, amphotericin B, ACEI,
NSAIDs

Intrarenal

ATN Acetaminophen, aminoglycosides,
amphotericin B, cephalosporins,
cocaine

AIN Penicillins, cephalosporins,
cocaine, sulfonamides, NSAIDs

Postrenal/
obstructive

Acyclovir, analgesic abuse

Nephrotic
syndrome

NSAIDs

Chronic renal
failure

Lithium, analgesic abuse

Abbreviations: acute tubular necrosis (ATN), acute intersti-
tial nephritis (AIN)
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inhibit the conversion of angiotensin I to II; angio-
tensin II is a potent vasoconstrictor which helps to
maintain glomerular perfusion at the efferent arte-
riole when renal blood flow is compromised
[274]. Azotemia initially occurred for 25% of
patients receiving vancomycin, but when the
impurities were addressed, the incidence of neph-
rotoxicity decreased to less than 7% and was
associated with a significantly elevated vancomy-
cin trough [275].

Intrarenal Nephrotoxicity
Drug-induced nephrotoxicity from intrarenal
mechanisms occurs through ATN or AIN [262,
265, 276]. ATN is often a result of direct drug
toxicity on the renal tubular cells; the urinalysis
can demonstrate proteinuria, tubular epithelial
cells, and noncellular casts. ATN outcomes may
be predicted based on the number of cells and
casts visualized on the urinalysis
[277]. Aminoglycosides accumulate within the
renal cortex tubular cells with nephrotoxicity
occurring 5–7 days into the antibiotic course;
rank order for nephrotoxicity from greatest to
least includes gentamicin, amikacin, and
tobramycin [278]. Acetaminophen has been asso-
ciated with ATN with therapeutic doses or follow-
ing overdose [279–281]. Cephalosporins can
cause ATN and/or AIN; a rank order for potential
tubular toxicity from animal studies suggests
cephazolin has increased risk compared to cepha-
lexin and ceftazidime [276, 282, 283]. AIN is a
result of intrarenal inflammation and often has
systemic signs of hypersensitivity such as fever
or rash; urinalysis can contain proteinuria, red
and/or white cells, and/or cellular casts [265].

Postrenal Nephrotoxicity and Nephrotic
Syndrome
Postrenal or obstructive nephrotoxicity associated
with ICU drugs can occur when insoluble drugs
such as acyclovir precipitate into the renal tubular
lumen [284]. Acyclovir has been associated with
nephrotoxicity when administered intravenously
and at high doses [284]. Urine sediment can con-
tain red and/or white cells with needle-shaped
birefringent crystals. Drug-induced nephrotic syn-
drome has occurred with NSAIDS and is

diagnosed when proteinuria, hypoalbuminemia,
and edema are present [266, 285–287].

Treatment
Modalities such as therapeutic drug monitoring
programs may decrease risk for nephrotoxicity
[288]. Drugs such as vancomycin and gentamicin
can be monitored with trough and/or peak blood
concentrations; risk for nephrotoxicity is avoided
with shorter courses of treatment and the use of
the lowest effective drug concentration [275,
278]. Once nephrotoxicity has occurred, treat-
ment is based on identifying potential
nephrotoxins and avoidance of concurrent use of
other nephrotoxic drugs [274, 289]. Intravenous
hydration is beneficial in some circumstances, as
are diuretics [271]. After the nephrotoxicity has
resolved, the drug can be resumed with renal
dosing in some circumstances, but in the setting
of nephrotic syndrome or AIN, the drug should
not be restarted.

Neurologic ADRs

Drug-Induced Delirium
This section discusses ADRs associated with
delirium. For additional reference, see
▶Chap. 19, “Toxicant-Induced Alterations in
Consciousness.” ICU delirium has been referred
to as ICU psychosis, acute brain dysfunction or
failure, and acute encephalopathy, among other
terms. ICU delirium can prolong mechanical ven-
tilation and is associated with a threefold higher
rate of re-intubation, an increased rate of
ventilator-associated infections, prolonged hospi-
tal stays, and increased 1-year mortality [290,
291]. Delirium is defined as a fluctuating change
in attention, cognition, consciousness, and/or per-
ception and can be further categorized as hyper-
active, hypoactive, and mixed [290,
292]. Vanderbilt University Medical Center main-
tains the website www.icudelirium.org as a
resource for delirium and includes screening and
management tools for emergency department,
ICU and non-ICU patients. When assessing delir-
ium, workup for toxicologic or pharmacologic
causes should occur simultaneously with
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evaluation for other causes as delirium is often
multifactorial [293]. Table 18 discusses drugs
associated with delirium by class.

Consider the timing and progression of neu-
rological symptoms in relation to all prescribed
hospital drugs. Consider previous medications
(prescribed or non-prescribed) that have been
abruptly discontinued and their propensity to
cause withdrawal (for additional information,
refer to ▶Chap. 27, “Withdrawal Syndromes”).
Certain withdrawal states not normally associ-
ated with delirium, when occurring concur-
rently with certain pathologies, may be

considered. Examples include nicotine, opioid,
and cannabis withdrawal. Nicotine withdrawal
in the setting of brain injury has been associated
with delirium [294]; however, larger review
studies have not clearly implicated nicotine
withdrawal with delirium in hospitalized
patients [295]. Opioid withdrawal is not nor-
mally associated with delirium but in the ICU
should be considered as a contributor, as opioid
withdrawal can occur after only 5 days of con-
tinuous opioid analgesia and by day 9 occurred
in 100% of patients [296]. Cannabis withdrawal
is associated with anger, aggression, and

Table 18 ICU drugs associated with delirium by class.
ICU delirium can prolong mechanical ventilation and is
associated with increased risk of infection, prolonged hos-
pital stay, and 1-year mortality. Workup for toxicologic or
pharmacologic causes should occur simultaneously with
evaluation for other causes as delirium is often multifacto-
rial. Some conditions not normally associated with delir-
ium when occurring concurrently with other pathologies

may be considered. Consider drug or withdrawal states
resulting in disturbances in the production, release, and/or
effects of acetylcholine, endorphins, GABA, glutamate,
5HT, and dopamine neurotransmitters. Substance-induced
psychosis is associated with the longer duration use of
alcohol, amphetamines, cannabimimetic agonists, cocaine,
and hallucinogens. Drug withdrawal delirium occurs clas-
sically with alcohol, benzodiazepine, and barbiturates

Class Generic name Mechanism

Analgesic –
opioid

Fentanyl 5HT, kappa-opioid agonist

Meperidine 5HT, MAOI

Hydromorphine kappa-opioid agonist

Analgesic –
dissociative
hypnotic

Cyclohexanone–ketamine NMDA antagonist

Antibiotic –
aminoglycoside

Gentamicin NMDA agonist, decrease ACh release and effect. Iron
complexes inhibit mitochondria resulting in lipid
peroxidation

Antibiotic –
penicillins

Penicillin GABA-A antagonism

Antibiotic –
cephalosporin

Cefepime GABA-A antagonism

Antibiotic –
carbapenem

Imipenem GABA-A antagonism

Antibiotic –
fluoroquinolones

Moxifloxacin or levofloxacin GABA-A antagonism and NMDA agonist

Antibiotic –
oxazolidinones

Linezolid MAOI

Anticholinergics Some antiemetics, antihistamines,
antipsychotics, and muscle
relaxants

Muscarinic acetylcholine antagonist

Antiemetics Diphenhydramine Muscarinic acetylcholine antagonist

Antipsychotics Haloperidol Dopamine antagonism

Olanzapine or quetiapine Muscarinic acetylcholine antagonist

Benzodiazepines Midazolam or lorazepam GABA-A agonist

Corticosteroids Solumedrol Disturbances in the hypothalamo–pituitary–adrenal axis

Abbreviations: gamma-aminobutyric acid (GABA), monoamine oxidase inhibitor (MAOI), serotonin (5HT)
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irritability; performing urine drug screens at
admission could help to identify patients at
risk since this is the most common illicit drug
used in the USA and withdrawal symptoms can
persist for 3 or more weeks [297–301]. Syn-
thetic cannabinoid withdrawal has been
reported, but the propensity for delirium is not
yet clear [302].

Consider previous medications (prescribed or
non-prescribed) that may interact with currently
prescribed ICU drugs; commonly implicated
drugs include serotonergic, anticholinergic, and
N-methyl-D-aspartate (NMDA) receptor antago-
nists [303–305]. Previous substance misuse
should be considered, especially for dopaminergic
drugs, as these drugs are associated with
substance-induced psychosis and may be a func-
tion of the severity of use and dependence and
persist for months after last use. Drugs implicated
include alcohol, amphetamines, cannabimimetic
agonists, cocaine, hallucinogens (e.g., methylene-
dioxymethamphetamine MDMA), and NMDA
antagonists (e.g., phencyclidine and ketamine)
[306]. Independent precipitating factors for delir-
ium such as bladder catheters, fecal management
systems, immobilizing therapies, and restraints
should be avoided [290, 307, 308]. Major groups
of ICU drugs associated with delirium that may be
evaluated by a medical toxicologist include anal-
gesics, antibiotics, antipsychotics, and sedative-
hypnotics.

Analgesics
Analgesic-induced delirium could occur by inter-
action with other medications, opioids with seroto-
nergic properties, and/or kappa-opioid agonism
[309]. Fentanyl and/or methadone may interact
with linezolid or other monoamine oxidase inhibi-
tors (MAOI) or serotonergic medication resulting
in serotonin syndrome [310–316]. A retrospective
review of 4538 patients treated with fentanyl and
concurrent serotonergic agents suggests the inci-
dence of serotonin syndrome was low [311], but
prospective studies are needed before ignoring this
ADR as there are many case reports suggesting a
higher incidence [310–312, 317–322].

Furthermore, the hospital stay and mortality
among patients prescribed with serotonin

reuptake inhibitors prior to ICU admission are
higher and may be related to an analgesic reaction
[323]. Serotonin reuptake inhibitors may also
increase risks secondary to platelet serotonin inhi-
bition and increased bleeding risk or other mech-
anisms [324–328]. Propensity for kappa-opioid
agonism may be another factor to consider when
evaluating delirium after opioid administration;
fentanyl and hydromorphone may have higher
risk in animal studies [309].

When delirium is suspected to be drug medi-
ated, the implicated drug(s) should be
discontinued. If opioid-induced delirium is
suspected, opioid avoidance or lower doses are
recommended by one large prospective study
[329]. If a patient has a history of prescription or
illicit serotonergic substance use, consider
avoiding serotonergic drugs such as fentanyl
until more prospective data is available. For opi-
oid withdrawal, initiating a long-acting full or
partial opioid agonist may be best until the patient
has been extubated and then further tapered and/or
provided with symptomatic treatment.

Antibiotics
Major groups of antibiotics associated with delir-
ium include aminoglycosides, beta-lactams
(penicillins, cephalosporins, and carbapenems),
fluoroquinolones, oxazolidinones (linezolid), and
trimethoprim/sulfamethoxazole. Aminoglycosides
activate NMDA receptors, inhibit presynaptic
release of acetylcholine, and bind postsynaptic
receptors. Chronic toxicity (increased trough
levels) occurs when iron complexes inhibit mito-
chondria and cause lipid peroxidation.
Aminoglycosides are associated with peripheral
neuropathy and neuromuscular blockade; case
reports have linked gentamicin to encephalopathy
[330] (Table 19).

The beta-lactam ring itself is known to be
neurotoxic and drugs containing this structure
cause neurotoxicity by GABA-A antagonism.
For beta-lactams, symptoms of neurotoxicity
usually present 12–72 h after initial administra-
tion, but can occur later after increased dosing or
when metabolic and/or elimination pathways are
inhibited. Previous case reports have identified
the following risk factors: being critically ill,
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reduced creatinine clearance, preexisting CNS
conditions and/or damage to the blood–brain
barrier, concurrent use of other neurotoxic
drugs, and dosing errors [330–335]. Symptoms
of beta-lactam neurotoxicity are secondary to
impaired GABA-A transmission [335]. Cephalo-
sporins with higher affinity for GABA-A recep-
tors and those with higher CNS penetrance are
more neurotoxic. Resulting clinical effects range
from coma to agitation and can fluctuate with
delirium, aphasia, myoclonus, seizures, and
nonconvulsive status epilepticus. Cefazolin,
cefepime, and ceftazidime may have higher risk
for neurotoxicity, while cephalexin and ceftriax-
one may be lower. A retrospective review of
100 patients prescribed with cefepime found
the incidence of encephalopathy was 15% [336].

Fluoroquinolone’s mechanism of toxicity
includes inhibition of GABA-A receptors and
activation of NMDA receptors. CNS reactions
occurred for 3% of patients prescribed with
gemifloxacin, but other quinolone derivatives
implicated include gatifloxacin, moxifloxacin,
ofloxacin, and, its levo-stereoisomer,
levofloxacin. Neurotoxicity can be manifested as
delirium associated with psychotic features
including delusions and hallucinations as well as
restlessness and seizures.

Antipsychotics
Literature suggests that quetiapine decreases the
incidence of ICU delirium although other antipsy-
chotics can be used to effectively treat ICU

delirium after it has occurred [337–340] (LoE 1).
As with the initiation of any medication, the anti-
psychotic side-effect profile should be considered
when prescribing an antipsychotic for delirium;
haloperidol may be associated with extrapyrami-
dal symptoms, while olanzapine was found to be
the most sedating [341]. Combining the critical
care and toxicology literature, antipsychotics with
anticholinergic properties should be used at low
doses when treating delirium not suspected to be
anticholinergic; some antipsychotics such as
olanzapine and quetiapine cause agitation because
of anticholinergic mechanism. Anticholinergic
toxicity from olanzapine and/or quetiapine
(or any other anticholinergic medication) can be
diagnosed and treated with appropriately dosed
physostigmine [342–344].

Benzodiazepines
Benzodiazepine use increases the risk of delirium
[308, 345–347]. This could be through a paradox-
ical reaction, after prolonged ICU use, or benzo-
diazepine withdrawal [348]. If benzodiazepine
delirium is suspected, appropriately dosed
flumazenil can diagnose and treat patients follow-
ing intubation or after benzodiazepine overuse
and following alcohol withdrawal with little if
any risk for seizures or precipitating withdrawal
[346, 349–355]. Historically, patients with benzo-
diazepine dependence has been used as a contra-
indication to flumazenil, and a meta-analysis
warns against the use of flumazenil, but when
patients who received an initial flumazenil dose

Table 19 Major antibiotic classes associated with neurotoxicity. The beta-lactam ring is epileptogenic with variability
depending on side chains and other substitutions

Drug or class Mechanism Onset Signs/symptoms

Penicillins and
cephalosporins

Inhibit GABA binding to GABA-A
receptor, blocks GABA-A chloride
channel

12–72 h Confusion, dysarthria/aphasia, agitation,
lethargy/coma, myoclonus, seizures,
and/or NCSE

Carbapenems Affinity for GABA-A receptor
complex

3–7 days Focal and generalized seizures

Fluoroquinolones Inhibit GABA binding to GABA-A
receptor, NMDA agonist

1–4 days brief tonic–clonic, sustained generalized
myoclonus

Isoniazid Inhibit pyridoxine kinase 30 min–2 h Recurrent, generalized tonic–clonic
seizures

Metronidazole Increased hydroxy and 1-acetic acid
metabolites

5–7 days Seizures, peripheral neuropathy

Abbreviations: gamma-aminobutyric acid (GABA), nonconvulsive status epilepticus (NCSE)
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of 1 mg or more were excluded, there were no
significant adverse events in either the placebo or
flumazenil groups [356]. Benzodiazepine depen-
dence is not an absolute contraindication to
flumazenil (LoE II-1). Flumazenil, therefore,
should be dosed at 0.2–0.3 mg if there are con-
cerns about rapid awakening or, otherwise,
0.5 mg; if improvement is observed, discontinue
benzodiazepines and repeat flumazenil as needed
when symptoms recur (LoE II-1) [346]. If benzo-
diazepine withdrawal is suspected, replace with a
longer-acting benzodiazepine such as diazepam or
with phenobarbital (LoE III) [357]. Another
option for patients at risk for benzodiazepine
withdrawal is a phenobarbital taper [358]; this
may be beneficial for patients who received ben-
zodiazepines with extended duration while
mechanically ventilated.

Steroids
Neuropsychiatric effects including agitation occur
in about 6% of patients who receive steroids; dose
is the most significant risk factor [359]. ICU
patients may experience agitation, delirium,
and/or failure to wean [360–364]. Treatment
includes reducing or avoiding steroids; however,
some studies have suggested steroid switching
(LoE III) and treatment with antipsychotics such
as risperidone [360, 362, 365–369] (LoE_III).

Disturbances in Circadian Rhythm
ICU delirium is often multifactorial, and distur-
bances in circadian rhythm and sleep deprivation
can contribute to hypoxia, infectious, metabolic,
and ADRs. Risk factors may include age and
existing dementia or cognitive impairment. Circa-
dian rhythm disturbance is a diagnosis of exclu-
sion. Melatonin can be used to facilitate circadian
rhythm and can decrease need for sedation
improving neurologic indicators although further
study is needed [370, 371] (LoE1).

Treatment
Pharmacologic sedation should be titrated to the
least effective dose with at least daily sedation
holidays to minimize the incidence of delirium.
Avoiding infusions is one method for titrating
sedation to the least effective dose. Once delirium

has occurred, treatment is based on identifying
and discontinuing potential causative medica-
tions. Consider previous medications (prescribed
or non-prescribed) that have been abruptly
discontinued and their propensity to cause with-
drawal. Also, consider previous medications (pre-
scribed or non-prescribed) that may interact with
currently prescribed ICU drugs.

If benzodiazepine or anticholinergic delirium
is high on the differential, flumazenil and/or phy-
sostigmine can be administered safely; positive
results may avoid costly and unnecessary radio-
graphic testing that place the patient at increased
risk for morbidity and mortality (e.g., during
transport and while outside of the ICU setting
[372]). If opioid withdrawal is a suspected con-
tributor, the administration of a long-acting opioid
will ameliorate the delirium. The patient can later
be treated symptomatically for opioid withdrawal
if not a candidate for outpatient opioid mainte-
nance therapy.

Dexmedetomidine is an imidazole alpha-2
agonist that increases days alive without delirium
or coma while in the ICU when compared to
lorazepam [373]. The incidence of delirium was
54% in dexmedetomidine vs 77% in midazolam-
treated patients (P <0.001). There was no signif-
icant difference in time at targeted sedation level
for 375 patients located in 68 centers in five coun-
tries who were treated in a double-blind, random-
ized trial [374]. Dexmedetomidine has caused
hypotension during the initial bolus in between
25% and 56% of patients and, compared to ben-
zodiazepines, may be more likely to cause brady-
cardia, which is the most significant ADR [373,
374]. Since dexmedetomidine is not usually asso-
ciated with respiratory depression, it can be used
to treat withdrawal syndromes in non-ventilated
patients [374–376]. Cost is a consideration when
considering dexmedetomidine; compared to
midazolam, dexmedetomidine lowered total ICU
costs and decreased ventilator time and ICU
length of stay [377]. However, for moderate to
severe anticholinergic delirium, physostigmine
would be expected to be a more cost-effective
primary therapy; dexmedetomidine could be
used as an adjunct to avoid higher doses of ben-
zodiazepines, but additional studies are needed.
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An alternative to dexmedetomidine for pharma-
cies who restrict its use may be clonidine, and one
study proposed the use of a short course of
dexmedetomidine before transitioning to sublin-
gual or orally administered clonidine [378]. The
mechanism of these drugs differs such that the
ratio of alpha-1 to alpha-2 may predispose cloni-
dine to more hypotension and bradycardia and
less sedation compared to dexmedetomidine, but
the cost savings are difficult to ignore.

Drug-Induced Seizures
This section discusses ADRs associated with sei-
zures. For additional details refer to ▶Chap. 20,
“Toxicant-Induced Seizures.” Six percent of
new-onset seizures and 9% of status epilepsy
may be drug related [379]. Major classes of
drugs associated with seizures include antidepres-
sants, anticholinergics/antihistamines, and stimu-
lants, but the clinician should also consider
NSAIDS, beta-lactams, quinolones, and drug
withdrawal [336, 380–385]. Consider drugs pre-
viously prescribed that have not been continued in
the ICU such as baclofen, gabapentin, pregabalin,
zolpidem, and zopiclone; any drug acting at the
GABA complex should be considered
[386–391]. ICU drugs cause seizures by inade-
quate inhibitory neurotransmitters (e.g., GABA),
excessive excitatory neurotransmitters (e.g., glu-
tamate), and/or interfering with sodium channels
[385, 392]. Antimicrobials impair GABA-A
transmission [335, 393]. Magnesium homeostasis
may be associated with seizures as diuretics, pro-
ton pump inhibitor, and antimicrobials may
decrease the seizure threshold [335, 393].

Seizures are treated with either benzodiaze-
pines or barbiturates; generally barbiturates are
considered to be a second-line therapy [385]. Anti-
epileptics are ineffective when the mechanism of
toxicity is caused by metabolic abnormalities or
drugs impairing GABA-A transmission. Antiepi-
leptics could be considered if seizures persist
despite first- and second-line treatment.

Strategies to Decrease ICU ADRs
Patients admitted to the ICU have a higher mor-
tality compared to hospitalized patients; 30-day
mortality ranges from 12% to 44% depending on

the ICU patient subtype [394]. Thirty-four to
forty-five percent of ADRs are preventable and
represent an opportunity for risk reduction and
improved patient safety [5, 7, 395]. Prior studies
have demonstrated that technology,
multispecialty care teams, specialized treatment
centers, and standardized treatment algorithms
can assist with these goals.

Technology has facilitated the development of
medication databases and systems to identify
potential drug–drug interactions, and one study
identified that 11% of ICU admissions have
potential drug–drug interactions [396]. As with
any technology with an alarm, there is potential
for alarm fatigue and technology should be
curtailed to the ICU population to minimize this
[397]. Conversely, when an ICU ADR has been
identified, technology can be used to identify
medications potentially causing the condition,
medications to avoid, and the appropriate medi-
cations to use.

Multispecialty care teams consist of admitting
physicians, consulting physicians, pharmacists,
nurses, specialty therapists, care coordinators,
and social workers. In the ICU, the value of the
pharmacist is especially important. Pharmacists
obtain medication histories; develop and manage
policies and protocols for optimal patient care,
drug expenditures, and cost avoidance (i.e., anal-
gesia, anticoagulation, delirium, pharmacoki-
netic, sedation, and transfusion guidelines);
optimize antimicrobial stewardship; respond to
resuscitation events; verify accuracy of computer-
ized order entry; educate other ICU personal;
assist in discussing treatment modalities with
patients and/or families; prospectively evaluate
drug therapy; and monitor and identify ADRs
[398–410]. The impact of the clinical pharmacist
in the ICU has significantly decreased ADRs,
antimicrobial resistance, medication costs, trans-
fusions, hemorrhage, ventilator days, and length
of stay. Unfortunately, pharmacist services are not
directly reimbursable; pharmacy departments
receive funds from a hospital’s general operating
budget. Pharmacy departments are penalized
when they increase the ratio of clinical pharma-
cists to occupied beds from 1/100 to 1/20, an
increased expenditure which was shown to
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decrease ADRs by 48% [410]. The optimal phar-
macist to patient ratio is unclear, but considering
the services of a medical toxicologist are reim-
bursable, could a medical toxicologist enable a
group of clinical pharmacists, thereby increasing
the reimbursement of the pharmacy? Medical tox-
icologists, when available, are experts in pharma-
cokinetics and toxicokinetics and should develop
relationships with multidisciplinary teams to aid
in the reduction of the incidence of ADRs, length
of stay, and mortality.

In addition to pharmacist to patient ratio and
their impact on ADRs and mortality, patient to
physician and/or nurse ratios should be consid-
ered. When nurse to patient ratio was greater than
2.5, the risk of death increased by 3.5. When the
physician to ICU patient ratio exceeded 14, the
risk of death increased by two [411]. High patient
turnover and a high volume of life-sustaining pro-
cedures were also predictive of increased mortal-
ity. Admissions during weekday rounds did not
increase mortality [412]. High-intensity daytime
staffing reduced mortality [413].

Specialized treatment centers have been shown
to improve care, especially for ICUs. Medical
toxicology admitting services are not widely
available, but there is great need as demonstrated
by one large study of 3581 patients cared for
primarily by toxicologists and non-toxicologists
within the same hospital system as well as a third
group of patients cared for by non-toxicologists
outside of the hospital system. During the 2-year
study period, there was a median savings of 1483
hospital days and $4.3 million dollars, as well as a
significant decrease in mortality for patients cared
for by toxicologists [414]. Extrapolating from
other specialty data, when only specialists are
allowed to admit and care for critically ill patients,
length of stay and mortality in the ICU were
shortened [413, 415]. All things considered,
patients cared for by non-specialists have
increased risk for extended length of stay and
mortality, which suggests that medical toxicolo-
gists and critical care intensivists should remain
involved in patient care potentially until hospital

discharge. On admission, general recommenda-
tions may include holding any nonessential med-
ication potentially resulting in drug–drug or
disease–drug interactions; for example, many
ICU patients may be started on antimicrobials,
calcium channel blockers, and/or amiodarone,
and these drugs increase concentration of simva-
statin by inhibiting CYP3A4, thereby increasing
drug levels resulting in an increased risk for rhab-
domyolysis, renal failure, and hepatotoxicity
[416–424]. Medical toxicologists may also pro-
vide daily recommendations for restarting or mod-
ifying home medications, as well as querying
potential medication interactions, substance use
disorders, and drug withdrawal. Until there are
more admitting toxicology physicians, consul-
tants should provide daily recommendations
directly to the care team until the day of patient
discharge. Interactive audio–video telemedicine
consultation may be an alternative when tradi-
tional bedside care is not possible as this service
has been useful for other specialties [425].
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