
Chapter 19
Thermodynamics of Distinguishable Particles:
A Key to High-Energy Strong Interactions?

Rolf Hagedorn

Abstract A new kind of thermodynamical model for strong interactions at high
energies is proposed. We start from the fact that strong interactions produce so many
possible particle states (from   over its resonances to nucleons, strange particles
and their resonances, up to highly excited ‘fireballs’) that in an actual process each
of these states practically never occurs more than once. We use this in order to
treat the very first instant of a high-energy collision by statistical thermodynamics
of a system of an illimited number of distinguishable particles. The model shows
surprising properties: there exists a universal highest possible temperature T0 of
the order of 150–200 MeV (corresponding to �1012 K) which governs all high-
energy processes of strongly interacting particles, independently of the actual energy
and independently of the particle number, from cosmic ray jets down to elastic
scattering. If a Lorentz contracted volume is introduced, the transverse momentum
distribution in jets as well as in elastic scattering is described in agreement with
experimental results. Paradoxically, this distribution is independent of whether or
not ‘thermal equilibrium’ is reached. If it is not reached—in the majority of cases it
is not reached—then the jet structure for production processes is the consequence.
If the model turns out to be as good as present experiments indicated, then the
existence of a highest temperature is very likely; it implies that, from higher and
higher energy experiments, not much new can be learnt about the structure of strong
interactions, since the mode of excitation (which depends on the dynamical details
we would like to know) has no influence on what is finally observed. The situation
would then be similar to that in ordinary thermodynamics, where no experiment
could possibly reveal how a certain system was brought into its thermodynamical
state. In astrophysics, the method of thermodynamics of distinguishable particles
may have important consequences for the treatment of the highly compressed
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interior of heavy stars (‘neutron stars’) where Fermi statistics would have to be
replaced by the one used here.

19.1 Introduction

In the past 10–15 years, it has become a more and more established (and more
and more accepted) habit to publish conjectures, models, speculations—no matter
whether:

• the foundations are safe,
• or all features have been worked out and compared with experiments,
• or even the correct physical interpretation of the resulting formulas is understood.

The model presented here suffers from all these deficiencies—and so far it is in good
company. This is the first excuse to publish it. The second is that it shows some very
remarkable features agreeing with some experimental facts and that there is a hope
that it can be brought into a state where it becomes a theory. Whether it will survive
this development is an open question. The few striking features to be presented
below seem to make it interesting enough to publish it and initiate a discussion.

There are two roots of the present model:

1. Root one is a well-known observation already made by Fermi [1] in his first
paper on the statistical model: the statistical model of particle production starts
from expressions for channel probabilities (final channel fj with Nj particles):
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where
QNj

kD1 Ck and
QNj

kD1 ˝k stand for the mean values of the squared matrix
element with respect to the invariant or non-invariant phase space, respectively,
and Fstat takes into account spin and isospin weight and contains 1=niŠ when ni

particles of type i are present. It was then observed by Fermi that a statistical
model starting from Eq. (19.1) fits smoothly into a thermodynamical model
once the energy E and thus the particle number become large enough. Thus, in
discussing high-energy limits, one will use conveniently the methods of statistical
thermodynamics which are far easier to handle than the expressions in Eq. (19.1).
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2. The second root of the present model is the observation that a very particular
kind of statistical thermodynamics is necessary to fit the actual behaviour of the
statistical model of type (19.1): it was found by evaluating numerical calculations
made at CERN (1958–1962) at various c.m. energies (using the non-invariant
phase space) that the ratio of the probability P0 for the elastic channel to the sum
over all probabilities behaves like an exponential function of the c.m. energy over
a fairly large range [2] (3 � E � 7:6):

p0P
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D e�3:10.E�2/ ; (19.2)

with units such that „ D c D k D Mp D 1, k is Boltzmann’s constant. This, and
a similar result for  p collisions, was used to predict large angle elastic [2, 3] and
exchange scattering, i.e., p C p ! A C B, etc. [4]. The predictions for pp elastic
scattering at about 90ı fit the experiments qualitatively over a range where the
cross-section changes by 5 powers of ten.

It was natural to ask the question whether the exponential behaviour could be
understood analytically since Eq. (19.2), being the result of hundreds of hours of
computer time, is practically an empirical result. This question was attacked by
several authors [5–8]. Bialas and Weisskopf [6] obtained1
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starting directly from statistical thermodynamics. Satz [8] considered the asymptotic
behaviour for E ! 1 of

P
pj with pj in the form of Eq. (19.1) and found
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: (19.4)

Vandermeulen [7] considered a special case of Eq. (19.1), namely the one where all
masses are neglected (which can be justified), and found

p0P
pj

� e�bE : (19.5)

All the authors mentioned so far started from definite assumptions and obtained
definite results which do not all agree with Eq. (19.2), although in one case it could
be shown that, in the limited range where Eq. (19.2) was computed, expressions
Eqs. (19.2) and (19.3) deviate little numerically from each other (see Fig. 4 of Bialas
and Weisskopf [6]).

1Here and in the following quotations, we consistently neglect algebraic expressions in E as
compared to the exponential.
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For our present discussion, the most interesting paper is that by Auberson and
Escoubès [5], because these authors discuss various different assumptions and find
different forms, namely,
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according to what the assumptions are. In order to be close to the calculations
leading to Eq. (19.2), they work with the non-invariant phase space. An overall result
is, whatever the particular assumptions are, that the masses of the particles produced
can be neglected when E ! 1. (Except if the main contributions come from ever
new ‘particles’ with higher and higher mass values as E increases, such that Em
remains constant, m being the mean value of the masses produced. This is not at
all likely in view of the purely geometrical fact that the phase space for small or
negligible masses is so much bigger than for masses such that Em is constant; only
some very peculiar dynamical properties, which so far we have no reason to expect,
would be able to counteract this tendency of phase space.) A particular result is that
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tends asymptotically to ecE only if the factor of 1=nŠ is omitted, in other words, if
the particles are considered to be distinguishable.2

This is not as unreasonable as it first sounds. And since it is the main point
of the model which will be presented below, we must explain this more carefully.
Auberson and Escoubès seek an asymptotic formula for the statistical model which
fits the detailed numerical calculations at moderately high energies. In these detailed
calculations, many different particles were considered (Ξ�, Ξ0, ΣC, Σ0, Σ�, Λ, p, N,
N�

3=2, K0, KC, K�,  C,  0,  �, and in some calculations ρ, ω, and η). It turned
out that the calculated average particle numbers hardly exceeded the value one, and
even for the pions they remained below two (per charge state). Had we included all
the presently known resonances, then all average occupation numbers of the various
states of the particles would have remained below one. Now in those calculations the
factor 1=nŠ actually takes the form 1=n1Šn2Š : : :, where n1, n2, etc., are the numbers
of particles of type 1, type 2, etc.3 Since then hnii actually turns out to be .1, it
follows that mainly those channels contribute to

P
pj, where the ni are either 0 or

1, in other words, where the whole factor 1=n1Šn2Š : : : equals one.

2In fact, ˝ must also be kept independent of E, contrary to what was done in the numerical
calculations leading to Eq. (19.2). But there the masses were not neglected, and one sees easily
that at moderate energies this will have the effect of increasing the power of E in the exponential
(the details are difficult).
3Here,  C,  0, and  �, etc., are of course considered to be different particles.
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Since we presently know many more states of the fundamental particles, and
since it seems likely that higher and higher excited states may be found, we expect
that feeding them into the statistical model will have the effect that, even at very high
energies, the main contributions will come from channels in which the ni are zero or
one. If therefore a simplified model of the type given in Eq. (19.7) with particles of
equal masses is used to find out the asymptotic behaviour, then one should omit the
factor 1=nŠ in order to come as near as possible to reality. It is reassuring that just in
doing that one finds the exponential behaviour which is indicated by our numerical
result (19.2) and which fits the experiment [9].

As one should expect, statistical thermodynamics of massless particles—all
distinguishable from each other!—leads then to the same behaviour. The main
formulas for such a statistics were worked out by Escoubès and the present author
and included in the paper by Auberson and Escoubès [5].

In the following, we shall therefore discuss the model ‘statistical thermodynam-
ics of distinguishable particles’ in some detail and try to understand its physical
meaning. It should be clear from our considerations that the mechanism, which we
imagine to take place, is the following. In the first instant of the collision, a certain
number of particles—ranging from pions over kaons, nucleons, hyperons and their
resonances to highly excited ‘fireballs’—is produced according to the statistics
of distinguishable particles. Then resonances decay according to their mode and
‘fireballs’ decay again according to the statistics of distinguishable particles, each
one forming such a system. At the end of this chain of decays we arrive at pions,
kaons, nucleons, and hyperons, where now the number of pions may be much larger
than one without invalidating our treating the particles as distinguishable.

In Sect. 19.2, we present the simplest possible model of this kind. In Sect. 19.3,
we speculate on its physical interpretation which, sometimes, is rather obscure. In
Sect. 19.4, we discuss its weak points and possible improvements, and in Sect. 19.5,
we sum up and draw a few general conclusions.

19.2 Statistical Thermodynamics of Distinguishable Particles

We write down the assumptions:

1. We consider a system of particles enclosed in a volume V in a temperature bath
T. [We put the Boltzmann constant k D 1, the temperature T is then measured in
nucleon masses: T D 1 (D 939 MeV) in those units corresponds to 1:1�1013 K.]

2. The number of particles is not limited.
3. All particles are distinguishable, i.e., can be labelled.
4. All particles have mass zero (we shall later consider massive particles) and no

internal (mechanical) degrees of freedom (the 2s C 1 possible orientations of a
particle with spin s are considered as 2s C 1 different particles).

Let "1, "2, . . . , "˛, . . . , be the possible energy levels of one particle in the volume
V . If we give a set of numbers .n/ D .n1; n2; : : : ; n˛; : : :/ indicating by n˛ how
many particles of energy "˛ are present, then, in the usual case of indistinguishable
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particles, .n/ would completely specify a quantum state of our gas. But as we
consider the particles to be distinguishable, .n/ stands for

NŠ

n1Šn2Š : : : n˛Š : : :

different states of the same energy E D P
˛ n˛"˛ , with N D P

˛ n˛. For N particles,
the partition function will then be
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We shall use the shorthand notations
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We calculate z for a massless particle (p D ") in the usual way:
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We now drop the assumption that N is fixed and find
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for the partition function of our system. We observe here the striking feature, which
will be of fundamental importance and indeed the very heart of our model, namely,
that the partition function of our gas exists only if the temperature

T < T0 D
�

�2

V

�1=3

: (19.12)

We now calculate the expectation values of the energy E and particle number N of
our system (as the system is in thermal contact with a temperature bath T, its energy
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is not fixed: our system is a member of a canonical, not microcanonical ensemble).
We find from Eq. (19.11) that
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(Note that ordinary Bose statistics would give
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per internal degree of freedom, i.e., the Stefan–Boltzmann law. Our gas would, for
T ! 0 thus behave like a light quantum gas with a slightly changed radiation
constant.) We thus see that E diverges when T ! T0.

The average occupation number of the energy level "˛ becomes with Eq. (19.11)
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This also determines the energy (= momentum) spectrum (see below). The expecta-
tion value of the particle number is
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and the average energy (= momentum) of a particle is

" D E

N
D 3T : (19.16)

We observe that, in Eqs. (19.13)–(19.15), the relevant quantities all contain Z and
therefore diverge when T ! T0. Since we will be concerned throughout this paper
with large energies, we consider the behaviour near T D T0. Then in the slowly
varying factors, T may be replaced by T0 and we obtain the simple expressions

E ! 3T0
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Let us draw E (or Z) as a function of T, or better, T as a function of E. We obtain the
behaviour shown in Fig. 19.1, where we omit the unphysical temperatures T > T0

which lead to negative E. This figure has obviously to be intepreted as follows: as
soon as T comes very near T0, we may achieve any (large) values of E, N, Z by only
infinitesimal changes in the temperature. Consequently, as the mean values E and
N suffer enormous changes for infinitesimal changes in T, we no longer expect the
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Fig. 19.1 Temperature T=T0 as a function of the energy E=3T0 for particles of zero mass

distributions of E and N over our canonical ensemble to have the sharp peaks we are
used to in statistical thermodynamics. On the contrary, these distributions become
flat and tend to a constant when T ! T0. Indeed, as follows from the definition of
Z [see Eqs. (19.8) and (19.11)], we have

T2 dE

dT
D E2 � E2 ; z

dN

dz
D N2 � N2 ; (19.18)

which gives, when evaluated for T ! T0 and z ! 1,
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It is easily seen that the distribution of N becomes a constant. Writing

N D
P

NzNP
zN

gives at once the probability of finding N particles as

W.N/ D zNP
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Z
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Since z ! 1 and Z ! 1 when T ! T0, we obtain W.N/ ! 0. In other
words, when T ! T0, the energy and particle number of our system become
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undetermined.4 Thus, from the point of view we have adopted so far, namely
to consider our system as a member of a canonical ensemble (or as being in a
temperature bath), we have failed to achieve anything and would be obliged to stop
here. We shall see, however, in the next section, that just those circumstances which
make it impossible to follow further the lines of the usual interpretation will serve
to allow a new interpretation, if only by brute force.

19.3 The Interpretation of the Model

If, in statistical thermodynamics, we encountered a case where the mean energy of
a system in a temperature bath T were undetermined, we would say that the system
considered were not suited for a statistical treatment. A similarly unfavourable
situation would, for instance, arise if a system contained, say, only two atoms: their
total energy would be rather badly determined—or, if we fixed its energy in an ad
hoc manner and considered it as a member of a microcanonical ensemble, we could
hardly speak of its temperature.

In our present model, however, the situation is different: the very fact that for
T ! T0 the system can have any energy and that E becomes very large can be
reinterpreted as follows. Whenever a system is given—whose energy E is fixed and
sufficiently large, namely E � T0—then we may think of it as a former member
of (and now isolated from) the canonical ensemble embedded in a temperature bath
T ! T0. We may then forget about the canonical ensemble and simply postulate that
we can ascribe to any system of sufficiently large energy the temperature T0, even
if the system chooses to have a small number of particles. By inverting Eq. (19.17),
we have T as a function of E :

T D T0

�
1 � T0

E
C 	 	 	

�
; (19.21)

so that T � T0 whenever E � T0. Although this holds for the dependence of T
on E and although we have seen that for T ! T0 we might expect any, even small,
energies, we play safe when we say that we ascribe to the system the temperature T0

if it has an actual energy E � T0; if the energy is small, it still could have belonged
to the ensemble of temperature T0, but it could as well have belonged to a lower
temperature.

Next we observe that only E and N are (via T) coupled to each other, but not
the actual energy E and particle number N of a system. Thus, once we have fixed
E � T0 and ascribed the temperature T0 to the system, we may still expect any
number N of particles; indeed, all N values become equally likely for T ! T0.

4The relative fluctuations of the occupation probabilities W˛ D .n˛=N/ vanish, however. Hence,
W˛ becomes ‘sharp’ when T ! T0 (see Appendix 1).
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By the reinterpretation of our model, we have of course abandoned the point of
view of the canonical ensemble of temperature T and have obtained the description
of a single system of given energy E. This system must no longer be thought of as
being in contact with its surroundings—which would be hard to imagine for a high-
energy collision—but, thanks to the peculiar behaviour of E.T/, it has a temperature
T ! T0 in its own right.

As for the value of T0 D .�2=V/1=3, it must be chosen such that, at least,
the system itself conserves the main features of a thermodynamical system: the
particles must be able to interact with each other. As we wish to describe high-
energy collisions of strongly interacting particles, where the particles produced will
escape radially from the region of interaction, they will cease to interact once their
mutual distances become much larger than the range of forces, i.e., the Compton
wavelength of the pion. Thus the volume V is to be taken as

V D 4�

3

�
a

m 

�3

; (19.22)

where a � 1 is an adjustable parameter. With Eq. (19.12), we obtain
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a
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where b D 1:35=a is again of order one.
We now formulate the new interpretation in the following postulate.

Postulate To every high-energy collision of strongly interacting particles (hadrons) of total centre-
of-mass (kinetic) energy E � m , and also to every highly excited hadron (‘fireball’) with
excitation �E � m , we ascribe the temperature T ! T0 D bm  with b � 1. (19.24)

We can consider this temperature T � 140 MeV (corresponding roughly to 1012 K)
as the ‘highest possible temperature’ which, as a fundamental constant, governs all
high-energy processes of strongly interacting particles. [Of course, this goes as far
as the present simplified model is valid—introduction of masses and of a particular
shape of the volume of interaction and other refinements may change this conclusion
somewhat (see below).] Apart from such, we hope, minor changes, we would predict
on this basis that T0 will come into play whenever at least one strongly interacting
particle takes part in a collision. Therefore high-energy reactions with initial states
like e C p, ” C p, � C p, and those in which p is replaced by any other hadron, will
show certain features similar to p C p collisions at high energies. The reason is that,
whenever a sufficient amount of excitation energy (�E � T0) is transferred to a
hadron, the excited hadron falls under the above postulate. This holds even for such
reactions as e C e ! e C eC hadrons. For two reasons, this does not apply to the
weakly or electromagnetically interacting partners of the reaction:

• They have no reason to feel the temperature T0 which has its origin in the range
of strong interactions.
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• They do not interact strongly enough to produce the many resonances required
for a statistics of distinguishable particles. For indistinguishable particles, no T0

exists.

It is interesting to compare these immediate consequences of our model (and of the
above postulate) with recent speculations by Wu and Yang [10]. They assume that
the sharp decrease with energy of differential cross-sections at large angles is due to
a mechanism independent of the method of excitation and discuss the consequences
of such a possibility. Our present model provides a natural basis for their assumption
and leads to the same consequences (which were also partly drawn by the present
author [4]).

We shall now draw some quantitative conclusions of our postulate and try to see
how our system will behave experimentally. First we remark that, since we now
consider the energy E to be given, and work in the centre-of-mass frame, we have
to impose energy–momentum conservation, at least when the number of particles is
small. In particular, we should extend the summation Z D P

zN from N D 1 to 1
and not—as we did above—from N D 0 to 1. We shall keep this point in mind. It
does, however, not change our conclusions about the gross features of the system.
Since we work at T D T0, the partition function diverges and it does not matter, in
general, whether or not the first term is included.

Secondly, we remark that, putting all masses equal to zero is an oversimplifica-
tion in some cases. For instance, the total energy E has then often to be interpreted as
kinetic energy. Our assumption that the particles be distinguishable is based on the
experimental fact that so many particle states (resonances, charge, hypercharge) are
known and that the list of them grows steadily. Of course, the newly added particles
have a tendency to have higher and higher mass values—it may well be that the
‘fireballs’ of cosmic ray events are the asymptotic form of them where the widths of
the resonances are larger than their spacing. We shall consider here everything from
a pion over kaon, nucleon, hyperon, and resonances up to the fireballs, as possible
‘particles’ appearing in our system, and this would force us to take the mass of such
a particle into account. But presently, we shall simply put m D 0 and T D T0 (if
necessary, limT!T0 is understood).

We shall consider:

• the number of particles produced (first generation),5

• the momentum spectrum of the particles (first generation).

These two are related to each other and treated together. From Eq. (19.14), we have
for the expectation value of the number of particles with energy "˛ ,

n˛ D Ze�"˛=T0 ;

5‘First generation’ means the distinguishable particles (produced in the first instant) which later,
by a chain of further ‘generations’, decay into the observed pions, nucleons, etc.
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and from this

N D
X

n˛ :

Now, however, we must insist on energy conservation, that is, these formulas are
subject to the condition

X
"˛n˛ D E : (19.25)

The usual definition of E, which we used in Eq. (19.13), namely

E D T2 @

@T
log Z ;

can be derived from the requirement
P

"˛n˛ D E with n˛ defined by Eq. (19.14).
We are thus forced, if we insist on energy conservation which leads to Eq. (19.25),
to identify the expectation value E of the old interpretation (canonical ensemble)
with the given sharp value E of the energy in our new interpretation. Consequently,
wherever Z and E appear explicitly, we shall replace them by

E �! E ; Z �! E
�2

3VT4
0

D E

3T0

; (19.26)

as suggested by Eqs. (19.10), (19.12), (19.13), and (19.25). Then with (19.21), the
temperature T becomes

T D T0

�
1 � T0

E
C 	 	 	

�
� T0 ; (19.27)

and the number of particles with energy "˛ is

n˛ D E

3T0

e�"˛=T0 ; N D
X

n˛ D E

3T0

: (19.28)

Our conclusion that the distribution of N values becomes constant remains true. We
can even see how it tends to the constant z D VT3=�2 and T from Eq. (19.27) gives
z.Z/ ' 1 � 3T0=E (E � T0). Hence, for the probability W.N/ of finding just N
particles, Eq. (19.20) yields

W.N/ Š 3T0

E

�
1 � 3T0

E

�N

� 3T0

E
exp

�
�N

3T0

E

�
� 1

N
e�N=N �! 0 :

(19.29)

Now this seems to be in spectacular disagreement with experiments: neither—as
we know from cosmic ray evidence—does the number N of particles produced
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increase proportionally to E, nor is the distribution of the observed particle number
constant. The way out of this apparent disagreement is again provided by the model
itself: the N particles found in a particular case are by no means the final particles
observed in photographic emulsions (mainly pions)—speaking of distinguishable
particles, we have to consider them to be anything between a pion and a ‘fireball’.
Equation (19.29) gives us the probability of just finding N such not further specified
objects. It states that all values of N are (for N � N) practically equally likely. The
question how probable is it to find N specified particles is quite another one, as we
shall see in a moment when we discuss large angle elastic scattering. Presently, we
note that, interpreting the N particles as ‘fireballs’ of unspecified excitation energy,
Eq. (19.29) tells us that a ‘two-fireball model’ would never work,6 as there will be
contributions of almost the same weight from 3, 4, 5, . . . , fireballs, a situation similar
to that in the multiperipheral model of Amati et al. [12] and in considerations by
Wilson [13].

But if this is so, then the number of pions and other final particles observed
in experiments should even be larger than N D E=3T0, since these particles are
produced in a chain of decays starting from the first N ‘fireballs’ and going into
smaller and smaller ones. Here the answer is that introducing the masses and a
contracted volume will bring that in order: we shall come back to this problem in
Sect. 19.4, where it will be shown that N, the number of ‘fireballs’, tends to �5 and
becomes energy independent for E ! 1.

Let us now consider the energy spectrum of our particles. First we treat the
case where the question of how many particles we expect and the question of what
their energies might be are intimately connected: large angle elastic and exchange
scattering. In that case, we have two definite final particles, each with energy E=2,
and from Eq. (19.28), we conclude that the probability of finding a particle in the
energy level "˛ D E=2 is given by

w˛ D n˛

N
D e�"˛=T0 D e�E=2T0 : (19.30)

This is then also the probability of finding two specified particles. They may be
the initial (elastic scattering) or some definite other ones, e.g., p C p ! A C B.
Between Eq. (19.30) and the differential cross-section come, of course, some further
considerations (flux factors, centrality condition, influence of the actual masses of
A and B), which have been treated in another paper [4]. The main point is that,
if we compare Eq. (19.30) with the numerical result of Eq. (19.2) which fits the
observed large angle scattering well [4], we find that T0 should have a value such
that 1=T0 D 6:2. Thus in this case,

T0 D 1:1m  D 151 MeV : (19.31)

6This is in fact the experimental situation [11].
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This agrees well with our postulate Eq. (19.24). One could argue that this is a lucky
accident, but then it will be hard to explain how this accident leads to a formula
which fits the experiment well in a region where the observed cross-section varies
over five orders of magnitude [4]. There are in fact not many formulas of physics
which cover such a range.

The probability of finding two specified particles [see Eq. (19.30)] is indeed
very different from that of finding any two particles: W.2/ D .3T0=E/e�6T0=E. The
obvious interpretation is that there is a large number of two-body final states, each
with a probability of order e�2T0=E, ranging from elastic scattering to two heavy
fireballs, all contributing to W.2/. One can even estimate the number of two-body
final states. It is of the order

n.2/ � eE=2T0W.2/ D 3T0

E
eE=2T0�6T0=E : (19.32)

Putting E D 5:6, i.e., the c.m. energy minus 2 in a 25 GeV p p collision, one finds
n.2/ � 3 � 106. This would mean that between the pion7 and the heaviest (here
possible) fireball (�E � 5:4) lie some 3 � 106 different states. (The question of the
mass spectrum of fireballs is treated below see page p. 200.) Similar considerations
will apply to other few-particle channels, and seen from this angle, it no longer
seems surprising that W.2/ � W.3/ � W.4/ � : : :.

We now turn to the energy spectrum in general. The density of states in the
volume V was, in our units,

g."/ D V"2

2�2
D "2

2T2
0

;

and the number of particles to be expected in the level "˛ was given in Eq. (19.28).
The number of particles between " and " C d" then becomes

w."/d" D E

6T4
0

"2e�"=T0 d" :

We do not believe that the normalization factor E=6T4
0 , which makes

R
w."/d" D

N D E=3T0, is very meaningful because N itself is to be rather different in a more
realistic model. We simply write

w."/d" � "2e�"=T0 d" : (19.33)

Remembering that we put m D 0, we may as well replace " by p, the momentum.
Then Eq. (19.33) reads

w.p/d p � p2e�p=T0 d p ; (19.34)

7Since p C p ! fireball C   leads to the smallest mass (m ) of one of the final particles.
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or, if we assume an isotropic distribution (as, so far, we are obliged to), we obtain

w.p/d3p � e�jpj=T0 d3p : (19.35)

It is a remarkable fact that a formula of this type applies apparently to all high-
energy processes, if only we replace jpj by the transverse momentum p? D jpj sin � .
Let us simply do that and leave the question of how to justify it and get rid of the
isotropy to later speculations. Then, if we write

w.p?/ � e�p?=T0 ; (19.36)

conservation of total energy could be left to the longitudinal component. Thus
Eq. (19.36) would hold true whatever the actual number of particles is. We would
expect such a law to govern, not only processes like p C p ! A C B, but also
the transverse momentum distribution of the many particles produced in cosmic ray
jets. Our model would thus explain the hitherto obscure fact that experimentally the
transverse momentum distribution in high-energy events is independent not only of
the primary energy, but even of the number of particles involved. Since T0 depends
only on the range of interaction, cosmic ray jets and large angle scattering must
show the same behaviour There might, of course, be some slowly varying factors
(powers of p and/or E) in front of the exponential which differ from case to case,
but the asymptotic behaviour should be dominated by Eq. (19.36). Orear [14] points
out that Eq. (19.36) is a rather good fit to many processes. He quotes experimental
results on p p elastic scattering, p C p !   C d,   C p !   C p, and finds that
they are all well fitted [the   C p data are rather meagre and can only be said not
to disagree with Eq. (19.36)] by our Eq. (19.36) if one takes T0 D 158 MeV (p p
elastic), 160 MeV (p C p !   C d).

Figure 19.2 may illustrate how good the fit actually is. Orear (from whose paper
[14] the figure is taken) plots E2d�el=d!

ˇ̌
pp as a function of p? D p sin � . The fit

E2 d�

d!

ˇ̌
ˇ̌
pp

D const: � e�p?=T0 ; T0 D 158 MeV ;

is really excellent if one keeps in mind that it covers a range of the primary (lab)
momentum between p0 D 1:7 GeV/c and p0 D 30:7 GeV/c and a range of d�=d!

of eight powers of 10. As an aside, we mention that the factor E2, which seems
necessary to make the fit so good, is predicted from a simple ‘centrality condition’
and is contained in the formula for large angle elastic and exchange scattering
recently proposed by the present author [4].

The above values of T0 agree well with our postulate T � m� . Furthermore,
Cocconi, Koester, and Perkins [15] and Fowler and Perkins [11] find from high
energy nucleon–nucleon collisions that the transverse momentum distribution of
pions is given by Eq. (19.36) with an apparent value of T0 � 170 MeV, a somewhat
broader distribution than the one with T0 � 150 MeV. This broadening is to



198 R. Hagedorn

Fig. 19.2 E2d�el=d!
ˇ̌
pp as a function of the transverse momentum. Taken from [14]

be expected if we remember that the pions observed experimentally are not the
particles produced in the first instant: they are the end-products of a chain of decays,
each of which is governed by a law like Eq. (19.36), and the broadening is simply a
kinematical effect. If one wishes to calculate this effect quantitatively, then one must
no longer put the masses equal to zero. A very simple example is carried through
in Appendix 2. We assume that a fireball of mass m� � T0 emits a particle of
mass m` (not � T0) and we consider only one-dimensional (transverse) motion:
the momentum distribution of m� in the c.m. system is w.p�/ D exp.�"�=T0/,
while that of m` in the rest frame of the fireball is w.p`/ D exp.�"`=T0/. Then the
momentum distribution of the emitted lighter particle in the c.m. frame becomes
W.p/ � const: � ." C m�/�1=2 exp.�"=Teff/, where Teff increases monotonically
and slowly with " : for " D m`, it equals T0 and for " ! 1, it reaches 2T0. For a
fireball of mass m� D 1 and for " � p D 1 GeV, one finds Teff � 4T0=3, and a
fireball with m� D 2 would, for the same ", lead to Teff � 6T0=5.

We stress once more (see Appendix 1) that, although the relative fluctuation .N2�
N2/=N2 tends to one, this is not so for .w2�w2/=w2. In other words, notwithstanding
the flatness of the distribution of multiplicities, we should find a sharp distribution
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Fig. 19.3 Relation between the mass m� and the temperature T0
?

Fig. 19.4 Experimental distribution of multiplicities in 64 events at primary energies 6 � 103 �
Ep � 4 � 104 GeV. Taken from [11]

about the predicted momentum spectrum. It is instructive to look at the experimental
Figs. 19.3 and 19.4. They show the sharp distribution about the predicted spectrum
and the flat distribution of multiplicities.

We conclude this section by admitting that our reinterpretation of the original
model was not always very convincing. In particular, the step from the energy dis-
tribution n D e�"˛=T0 to the transverse momentum distribution w.p?/ � e�p?=T0 is
mainly suggested by the experimental evidence. But even with these inconsistencies
in mind, we believe that the model contains some truth. We shall now try to
strengthen this optimism by some speculations about possible improvements.
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19.4 Speculations on a More Realistic Model

Our model of massless distinguishable particles in an energy independent volume V
was worked out in such detail because of its simplicity. We shall now try to improve
the model. Convincing improvements have not yet been carried through. Only an
essay will be given. We discuss in turn:

• Angular distribution and multiplicity, see p. 200
• The case of nonzero masses, see p. 206
• A speculation on the mass spectrum of fireballs, see p. 209
• Elastic (and exchange) scattering, see p. 210
• A logical difficulty of the model, see p. 213

Angular Distribution and Multiplicity

Fermi, in his paper initiating the statistical model [1], consider the possibility
of a Lorentz contracted interaction volume. Assuming such a volume, we would
already obtain from the uncertainty relation a suggestion of the character of
the momentum distribution: the spherical volume V D .4�=3/.1=m /3 would
become a flat rotational ellipsoid with a transverse half-axis of length 1=m  and
a longitudinal (with respect to the collision axis) half-axis of length 1=�m , where
� D .1 � ˇ2

cm/�1=2 (D E=2 for p p collisions). The uncertainty relation requires
a particle which has been kept in such a volume and which is suddenly set free
to have momenta of the order of p? � m =2, p? � �m =2. We would expect a
similar effect for our model. However, one sees immediately that merely Lorentz
contracting this interaction volume will have no other result than to replace V in all
our formulas by V=� and consequently T0 by T0�

1=3. In such a contracted volume,
the energy levels will be of the type

"˛ D c
q

˛2
2 C ˛2

1 C �2˛2
3 ; ˛1;2;3 D 0; ˙1; ˙2; : : : ; (19.37)

where c D m .6�2/1=3 for a rectangular box of volume

l1l2
l3
�

D 1

�

4�

3

�
1

m 

�3

;

and our z D P
e�"˛=T becomes as usual

z.�; T/D
Z

d˛1d˛2d˛3 exp

�
� C

T

q
˛2

2 C ˛2
1 C �2˛2

3

�
D V0

��2
T3 ; (19.38)
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where V0 D 4�=.3m3
 /. From here, all the machinery of Sect. 19.2 runs as before,

only V0=� replaces V everywhere. Therefore, not only is nothing gained from the
angular distribution, but we even have to accept the unpleasant fact (in view of the
experimental findings) that T0 would no longer be constant �150 MeV, but instead
would increase with energy:

T0 D
�

E

2

�1=3 �
�2

V0

�1=3

�
�

E

2

�1=3

� 150 MeV :

In order to overcome this difficulty, we now make the drastic assumption that
the longitudinal and transverse motion can be treated independently (we shall try
afterwards to give it a shade of justification). In that case, we again consider a
rectangular box with volume V0=� , where V0 � .4�=3/.1=m /3 is our old V . We
choose the sides to be

l1 D l2 D V1=3
0 ; l3 D 1

�
V1=3

0 : (19.39)

Then we have two independent problems of statistical thermodynamics, viz.,

• in a one-dimensional volume Vk D V1=3
0 =� (longitudinal),

• in a two-dimensional volume V? D V2=3
0 (transverse).

The densities of the energy levels become in our units

gk.pk/d pk D Vkd pk
h

D V1=3
0

2��
d pk ;

g?.p?/d p? D V?2�p?d p?
h2

D V2=3
0

2�
p?d p? ;

(19.40)

and with

z D
X

˛

e�"˛=T �!
Z

g.p/e�p=Td p ;

we obtain

zk D V1=3
0 Tk
2��

; Zk D 1

1 � zk
diverges for T0

k D 2��

V1=3
0

D 2��1=3T0 ;

z? D V2=3
0 T2

?
2�

; Z? D 1

1 � z?
diverges for T0? D

p
2�

V1=3
0

D
p

2��1=3T0 :

(19.41)

As we decided to treat the longitudinal and the transverse motion independently,
there is no reason to insist that the two temperatures associated with these motions
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should be equal. Since our old T0 equals .�2=V0/
1=3, we see that T0

? � T0 and
Tk � �3T0. To every high energy collision in which both energies Ek and E? are
large (i.e., where total c.m. energy and momentum transfer are � m ), we would
again ascribe a temperature � T0. We would, however, associate this temperature
with the transverse motion only and provide another temperature � 3�T0 for the
longitudinal one.

Is this picture justified? It is well known (see, e.g., [16]) that a consistent
description of scattering should employ wave packets—aimed at each other—rather
than plane wave states. A plane wave state would be non-localized and T would be
zero (it would be zero for every completely non-localized state, whether or not p is
sharp), but a scattering experiment is equivalent to a position measurement of the
colliding particles with the high precision of the linear dimensions of the order of
1=m . In that case we could ascribe a temperature T . T0 to the localized wave
packets before the collision. Let us then make the rather unconventional speculation
and imagine that we could—on the basis of our considerations in Sect. 19.3—
ascribe to the (localized) incoming particle (in its rest system) a temperature T . T0,
which depends, as we saw, neither on the number of particles in a volume nor
on the energy, but only on the volume. The (localized) hadron would then have a
‘temperature’ T . T0 and only the conservation laws forbid it to radiate off mesons
and nucleon–antinucleon pairs, etc. We may think of T . T0 being the temperature
of the cloud of virtual particles. The conservation laws would play the role of a box
with rather rigid walls in which the virtual particles are enclosed and which they
cannot leave. In the rest system of the nucleon, the energy spectrum of these virtual
particles is isotropic; for the momentum distribution in the forward direction of the
incoming nucleon, one has

w.p�
k / � e�jp�

k
j=T0 ;

where the star indicates the rest system of the nucleon. [This distribution is very
different from that in a Newton–Wigner localized state [17]. This is not surprising
as we are dealing with the localized state of a physical particle, whereas the Newton–
Wigner state describes a bare localized (Klein–Gordon) particle. It may be possible
to relate our philosophy to the ‘bootstrap’ model of hadrons.] Consider those virtual
particles which go in the forward half-space. The p�

k will appear in the c.m. system
with momentum pk D �.p�

k CˇE�/, where ˇ is the velocity of the nucleon seen from
the c.m. system of the collision. As ˇ � 1 and E� & p�

k (still neglecting masses),
we have pk � 2�p�

k . Seen from the c.m. system, the momentum distribution of the
virtual particles around the incoming nucleons with then be roughly

wk.pk/ � e�pk=2�T0 C contribution from backward going particles ;

w?.p?/ � e�p?=T0 .unchanged/ :
(19.42)

The collision, which now takes place, will ‘carry out the position measurement’
and loosen the constraints imposed by the conservation laws. In other words, the
collision breaks the rigid walls of the volume V and the virtual particles can become
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real. They would escape with momentum spectra of the type (19.42), where wk.pk/

contributes e�pk=2�T0 to the forward and backward directions—each nucleon to
one of these directions. [The contributions from the particles which were emitted
backward in the nucleon rest frame have low average momenta and do not follow
the distribution wk.pk/.]

We see that such a picture would rather naturally lead to an effective longitudinal
temperature Tk being about � times larger than T? (and indeed the two Lorentz
contracted incoming particles will, when they get into touch with each other, look
like one Lorentz contracted volume at rest in the c.m. system). We only have to
assume that, in most cases, the collision time is so short that a thermal equilibrium
(Tk � T?) cannot be reached. The simple model described in [4] shows that the
fraction of collisions in which thermal equilibrium may be reached, is about 1=�2

of all inelastic ones.8 That means that in roughly 1 � 1=�2 D ˇ2 � 1, i.e., in
nearly all collisions, the thermal equilibrium is not reached and the longitudinal and
transverse temperatures can be different and the volume of interaction looks Lorentz
contracted. Then our above treatment would be justified. If, however, in the very few
remaining collisions (� � �inel=�2) thermal equilibrium is (more or less) reached,
then we would come back to our model of Sect. 19.2 and we would obtain the unique
temperature Tk � T? � T0 in a volume which is no longer Lorentz contracted. The
emission of particles would have a tendency to become isotropic. The interesting
point is, however, that then again the transverse (and, incidentally, the longitudinal)
momentum distribution would be described by � e�p?=T0 , since T0 does not depend
on the amount of energy transferred to the transverse degree of freedom. We thus
come to the following conclusion:

Conclusion Whenever in a collision—no matter whether central or not—total
energy and momentum transfer are both much larger than m , we expect the
transverse momentum distribution to be independent of the total energy, of the
momentum transfer, and of the particle number, and to be approximately of the form
w.p?/ � exp.p?=T0/. The longitudinal momentum distribution will be roughly of
the form w.pk/ � exp.pk=˛�T0/, ˛ � 1, except for very central collisions, where it
becomes similar to the transverse distribution.
Having succeeded or failed (as the reader may decide) to justify the independent
treatment of longitudinal and transverse motion, we go back to Eq. (19.41) and draw
a few further conclusions.

First of all, the distributions of particles with pk and p? become

nk.pk/ D N

T0
k

e�pk=T0
k ; T0

k � 3�T0 ;

n?.p?/ D N

T0?
2

p?e�p?=T0
? ; T0? � T0 � m  ;

(19.43)

8There is of course a continuous range of intermediate situations between ‘central’ and ‘periph-
eral’.
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which is just what we said in the above conclusion. Of course, we cannot expect
these two independent distributions to be exact in cases of low multiplicity,
where energy–momentum conservation imposes severe restrictions. In particular, in
large angle elastic and exchange scattering, the transverse momentum distribution
uniquely fixes the longitudinal one. It remains to explain why, when at most one
of the two given distributions can hold, nature apparently chooses the transverse
one (for evidence, see Fig. 19.2). In cases of large multiplicity, the two distributions
describe a ‘jet’. It is most interesting to learn from experiments [11, 15] that our
formula actually fits9 the transverse momentum distribution in jets up to at least
p? � 1:2 GeV/c and for primary energies between 25 GeV and 106 GeV with the
one constant T0 value of �160 MeV.

Although we decoupled the two directions of motion, we should require that the
mean particle number be the same in both systems since we wish after all to describe
actual events (in which of course the particles having longitudinal momentum
components are just the same as those which have transverse ones). Since from
Eq. (19.15) we have N D z=.1 � z/, it follows that

N D zk
1 � zk

D z?
1 � z?

; zk D z? ; (19.44)

and consequently, the relation between the temperatures is

Tk D �V1=3
0 T2

? ; (19.45)

which (only) for T ! T0 can be written

T0
k D �

p
2�T0? : (19.46)

Next let us consider energy conservation. We can write down the energies contained
in the longitudinal and transverse motion, respectively (remembering that m D 0):

Ek D
Z

pknk.pk/d pk D NT0
k � 3N�m  ;

E? D
Z

p?n?.p?/d p? D 2NT0? � 2Nm  :
(19.47)

But is the total energy E the sum of these two? We might say so if the two belonged
to two really independent systems—but it is just energy–momentum conservation
which makes them not completely independent. We could think of defining the total
energy by

1

N

Z q
p2? C p2

kn?.p?/nk.pk/d p?d pk ; (19.48)

9An apparent slow increase in T0 with primary energy can be understood as a kinematical effect
(see Appendix 2).
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where the correct energy for a particle with p D .p?; pk/ is now summed up. But
again, multiplying the two, supposedly independent, distributions does not yield the
correct distribution n.p?; pk/ of the particles: it may only tend to the correct one for
large multiplicities. We may leave the details and use the fact that, for large E (in
p p collisions � D E=2), Eq. (19.42) shows that almost all energy is contained in
the longitudinal component, which contains � times more than the transverse one.
We thus identify Ek with E for E very large (� � 1 means E � 1, that is, much
more than our usual condition E � m ). We obtain

E � 3N�m  ;

and therefore,

N � E

3�m 

�
D 2

3m 

� 5 for p p collision

�
: (19.49)

This low and energy independent multiplicity does not of course concern the final
one of pions, etc. In fact, N is the average number of more or less excited particles
formed in the first instant (resonances and/or fireballs) which afterwards decay.
The actual increase in multiplicities, which is experimentally observed, must be
interpreted as an increase in the excitation of the fireballs. The energy independence
of N and T0? implies immediately [by Eq. (19.47)] that the average kinetic energy
stored in the transverse motion is itself independent of the primary energy [although
strongly fluctuating from event to event, see Eq. (19.19)].

Since the probability of finding just N particles is

W.N/ D zNP
zN

; z D zk D z? ; (19.50)

and since zk ! 1 for Tk ! T0
k , it follows that here also all N values become equally

probable in the limit (in such a way, however, that N ! �5). Although the average
number of fireballs is � 5, the actual number can therefore hardly be predicted. The
introduction of masses will, of course, suppress very large N values. Nevertheless,
even then we have to expect enormous fluctuations in the multiplicities of final
particles produced in collisions at (fixed!) high energy.10

Although the present treatment of the problem of the angular distribution is
certainly not yet fully correct, it may indicate the direction in which one has to
go. Nevertheless, we find quite satisfying results:

• The transverse momentum distribution is independent of:

10This is actually found [11] at cosmic ray energies: the r.m.s. fluctuation in multiplicity is � ns

(where ns is the charged multiplicity) (see Fig. 19.4). From the experimental angular distribution
follow large fluctuations in the number of fireballs.
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– the total energy,
– the number of particles,
– the centrality of the collision,

and always has the form � exp.�p?=T0/, T0 � m� (vanishing fluctuations).
This holds whenever the total energy and momentum transfer are both � m . In
that case, thermal equilibrium may or may not be attained. It is irrelevant.

• Almost all the energy is contained as kinetic energy in the longitudinal com-
ponent (jet) and the (strongly fluctuating) transverse energy is on average
independent of the primary energy.

• The multiplicity of the first generation of particles (fireballs) fluctuates strongly
but is not large. The average value is of order 5 and independent of the primary
energy. The strongly fluctuating multiplicity of the last generation (final pions,
nucleons, hyperons) will on average increase very slowly, as most of the total
energy is contained in the kinetic energy of the fireballs and only a little in their
excitation.

These rather—for a statistical model—unusual features explain also in a most
natural way why the conventional (Fermi) statistical model of particle produc-
tion works so much better than one could (in view of the rareness of central
collisions) reasonably expect: the mere existence of the ‘highest temperature’ T0

guarantees, so to speak, an everlasting pre-established thermal equilibrium inside
the incoming (localized) particles—the collision itself has only to break off the
volumes (= conservation laws) in which the clouds were enclosed. Even in non-
central collisions, this pre-established thermal distribution reveals itself, namely in
the transverse momenta. Central collisions only help to transfer longitudinal energy
into the transverse motion, without effect for the latter, except for an increase in
multiplicity. Only in most central collisions can a thermal equilibrium be obtained
in the usual sense, and then T0

k � T0?.

The Case of Nonzero Mass

We return to Eq. (19.41) and remark that with � D 1, i.e., for a cubic box, we
obtain T0

k D �1=32T0 and T0? D p
2=�1=3T0, where T0 is the value for the three-

dimensional problem in the same volume. Since
p

2=�1=3 D 1:17, we see that
T0

? � T0. We also expect the two temperatures to be nearly equal in the case m ¤ 0.
We shall therefore discuss mainly T0

?.
We first consider briefly T0

k and then in more detail T0
?, assuming now that all

particles have the same mass m� (to be thought of as the average mass):

1. For the longitudinal component, we have

z.m�; T/ D
X

˛

e�"˛=T �!
Z

g.p/e�
p

p2Cm�2=Td p :
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Then gk.pk/ taken from Eq. (19.40) gives

zk.m�; T/ D V1=3
0

2��

Z 1

0

e�
p

p2Cm�2=Td p

D V1=3
0 m�

2��

Z 1

0

e�m�
p

1Cx2=Tdx (put x D sinh y)

D V1=3
0 m�

2��

�
�dK0.	/

d	

�
	Dm�=T

: (19.51)

The condition that Zk diverges is that zk D". Hence

2�

m�V1=2
0

� D � dK0.	/

d	

ˇ̌
ˇ̌
	Dm�=T0

k

D K1.m�=T0
k/ : (19.52)

Now the Bessel function K1.x/ is a smooth, steadily decreasing function of x,
with the asymptotic behaviour

K1.x/ �!

8̂
ˆ̂<
ˆ̂̂:

r
2

�x
e�x ; x ! 1 ;

1

x
; x ! 0 :

(19.53)

Since the left-hand side of Eq. (19.52) goes to 1 when E ! 1, we conclude
that x ! 0. Then we use the second line of Eq. (19.53) to obtain, for E ! 1,

2�

m�V1=3
0

� D T0
k

m� ; T0
k D 2��1=3T0 : (19.54)

This agrees with the value found for m� D 0, as expected. In the longitudinal
component, the mass of a fireball is practically always negligible compared to its
momentum.

2. The transverse component is treated similarly. We arrive at

z?.m�; T/ D V2=3
0

2�

Z 1

0

pe�
p

p2Cm�2=Td p

D V2=3
0 m�2

2�

Z 1

0

xe�m�
p

1Cx2=Tdx (19.55)

D V2=3
0 T2

2�

�
1 C m�

T

�
e�m�=T ;
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and the highest temperature T0? is defined implicitly by

1 D V2=3
0 T0`

?
2�

�
1 C m�

T0
?

�
e�m�=T0

? : (19.56)

The numerical value of T0? is not very relevant, because we are largely uncertain
about the value of m� [= average of masses produced at the given energy = very
slowly varying function of the energy (?)] to be put in. Indeed, we should not use
a single value for m� but rather a mass spectrum (see below). What is relevant is
that the m� ¤ 0 case does not change the basic fact that a highest temperature
exists. Therefore, all our conclusions drawn so far remain at least qualitatively
valid.

Let us nevertheless make a little numerical analysis of Eq. (19.56). For the average
mass of ‘fireballs’, we may expect a value of perhaps the nucleon mass. This
is in accordance with our observation that most of all energy in jets must be
contained in the kinetic energy of the longitudinal component and only a little in
the excitation (= mass) of fireballs. We rewrite Eq. (19.56), putting x0 D m�=T0?
and V0 D .4�=3/.a=m /3:

1

2�

�
4�

3

�2=3 �m�a

m 

�2

D x2
0

1 C x0

ex0 : (19.57)

In Fig. 19.3 we plot

m�a

m 

D p
2�

�
3

4�

�1=3 x0ex0=2

p
1 C x0

(19.58)

as a function of x0.
Put m� D 1 and T0? D 170 MeV so that x0 � 6. We read off

m�a

m 

D a

m 

� 60 ;

or a � 9. This is certainly disappointing. It would mean that the volume in which
interaction still takes place would have linear dimensions of the order of nine times
the pion Compton wavelength.

It seems, however, that there is a way out, maybe even two ways. The value
T0? which we inserted is taken from the fit of e�p?=T0

? to experiments. Taking
the masses to be nonzero, one should not expect p? in the Boltzmann law, but

rather
q

p2
? C m2. Let p? be of the order m  and consider the pion transverse

momentum (m D m  in the Boltzmann law). Then roughly
q

p2? C m2
  � p

2p?.

If one fitted the experiments with exp.�
q

p2? C m2
 =T/ instead of with e�p?=T0

? ,
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one would expect a T value which is roughly
p

2 times larger than the old one.
Thus, for consistency, we should put T0? � 240 MeV � 0:25. Then x0 � 4 and
am�=m  � 20, a � 3 for m� D 1. Actually, if m� were somewhat smaller than the
nucleon mass, say �0:75, we would arrive at x0 � 3 and am�=m  D 10, a � 2.
This is already quite reasonable.

The other way out of the difficulty may lie in introducing a mass spectrum of
excited states.

A Speculation on the Mass Spectrum of ‘Fireballs’

If 
.m�; T/dm� is the mass spectrum, the true z.T/ would be given by [see
Eq. (19.55)]

z?.T/ D
Z 1

0


.m�; T/z?.m�; T/dm�D V2=3
0 T2

2�

Z 1

0


.m�; T/

�
1 C m�

T

�
e�m�=Tdm� :

(19.59)

Since under no circumstances can z?.T/ become large than one, the integral must
converge. This puts a limit on the asymptotic behaviour of 
.m�; T/:

The mass spectrum of highly excited hadrons (fireballs) must grow less than em�=T , where
T is of the order of m .

That it will indeed grow almost that fast is seen when we consider that

.m�; T/dm� is the total number of states between m� and m� C dm� of a ‘fireball’.
But such a fireball itself is again described by our model—an unspecified number
of distinguishable particles in a volume Vc with a total energy E D m�. The density
of states of such a system is roughly eS, where S.E; V/ is the entropy. Since the
temperature of the system (at sufficiently high energy) becomes T0 D const:, it
follows that asymptotically [namely when .log m�/=m� ! 0],

S.E; V0/ �! E

T0

; 
.m�; T/ �! em�=T0 : (19.60)

We may then put


.m�; T/ � 1

T
f .m�=T/em�=T ; (19.61)

and obtain for z? D 1,

2�

V2=3
0

D T0?
2
Z 1

0

f .x/.1 C x/dx : (19.62)
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As experimental evidence shows that T0? is of the order of m , it is required that

Z 1

0

f .m�=T0/

�
1 C m�

T0

�
d.m�=T0/ � 1 ; f .m�=T0/ � T0
.m�; T0/e�m�=T0 :

(19.63)

It is not clear whether Eq. (19.63), which puts a condition on the mass spectrum,
is compatible with the fact that the mass spectrum should follow from the theory
itself. It could be that this leads to an interesting self-consistency problem with
further consequences (a kind of ‘bootstrap’ at high temperature).

In any case, we see that the introduction of a mass spectrum 
.m�; T/ may
resolve the apparent difficulty in reconciling the numerical value of T0?, as found
experimentally, with the requirement m� ¤ 0 (and not too small). We may presently
at least hope that the value of the integral in Eq. (19.63) is near to one and
consequently neither T0? nor V0 have to have unreasonable values.

Elastic and Exchange Scattering

Whatever the actual value of T0 may turn out to be, we know that it exists. Let us
then assume that it is indeed of the order of m . Taking the masses seriously and
still treating the transverse and longitudinal motion as independent, we expect the
transverse momentum distribution to have the form [see Eq. (19.43)]

w.p?/ � p?e�
p

p2
?

Cm�2=T0 ; (19.64)

where strictly speaking m� is the mass of that type of fireball whose distribution we
wish to describe. Since actually mostly pions are observed, and these come from a
chain of decays, the observed distribution will be somewhat different, and in fact
broader (see Appendix 2). But, experimentally [11, 14, 15], it definitely is of the
form given in Eq. (19.64) with T0 � 160 MeV. Experimentally, the T0 used to fit the
distribution by p?e�p?=T0 , seems to increase (very slowly) with the primary energy
[11]. This can be due to the slowly increasing mean excitation of the fireballs which
then, on average, decay in a number of steps into the final particles. This number of
steps will increase with the mass m� of the fireball. Each of these steps will broaden
the spectrum resulting from the preceding decay. If one tries nevertheless to fit with
p?e�p?=T0 , then T0 must obviously increase somewhat (see Appendix 2).

The situation is different if we apply this formula to elastic scattering of nucleons,
for instance. There m� really means the nucleon mass and then the differential
elastic cross-section should obey

d�el

dw
� e�

p
p2

?
Cm2=T0 : (19.65)
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There will be kinematical factors in front of this expression, which are not too easily
worked out, because conceptually w.p?/ and d�=dw are somewhat different: d�=dw
applies to a system with fixed total energy, whereas w.p?/ applies to a system where
the energy of a single particle is not fixed. Indeed, w.p?/d p? shows how many there
might be in the interval given by d p?. If we applied this w.p?/ literally to elastic
scattering, we would then have

d p? D d.p sin �/ D sin � d p C p cos � d� D p cos � d� ; (19.66)

because d p D 0 for fixed total energy. We see then that, for geometrical reasons,
w.p?/d p? D 0 for � D �=2 and hence that at 90ı,

d�el

dw
2� sin � d� ¤ w.p?/d p? ; (19.67)

since the left-hand side is nonzero. However, for smaller angles such a formula looks
most natural. We may then tentatively simply replace d p? by pd� , which somehow
compensates for our disregarding the strong correlations between longitudinal and
transverse distributions in a two-body case. Then, using

w.p?/ D const: � p?e�p
p2

?
Cm2=T0 ;

the result is11

d�el

dw
D const: � p2e�

p
p2

?
Cm2=T0 (angles not near �=2) ; (19.68)

whereas for angles near 90ı, some other factor should replace p2.
This other factor may involve an extra condition: centrality. The point is this:

the distribution w.p?/ is, as we saw, independent of the extent to which thermal
equilibrium (between longitudinal and transverse motion) is reached. This holds
certainly only for systems of many particles where a large value of p? does not then
require the collision to have been central. In the two-body case a large value p? !
p implies a central collision and consequently we expect this further condition to
modify w.p?/. As shown in [4], the centrality condition can be taken into account
by multiplying the relevant total inelastic cross-section by 1=�2 D 4=E2. Then, for
larger angles, we should expect

d�el

dw
� const: � e�p

p2
?

Cm2=T0 �!
near 90ı

const: � e�p?=T0 : (19.69)

11Note that d�=dw is a function of the two independent variables E and � . Our formulas (19.68)
and (19.69) claim to describe the differential elastic cross-section as a function of both of these
variables.



212 R. Hagedorn

Perhaps the ‘constant’ still varies with E. In fact, the best fit is obtained by putting
it equal to 1=E2 (see Fig. 19.2).

The most interesting property of our new formula is that, for p? ! 0 (forward
direction), it gives

d�el

dw
� const: � p2 exp

�
� 1

T0

p2?
2m

�
�!

near 0ı
const: � p2 ; (19.70)

which is required by the optical theorem together with the empirical facts that the
scattering amplitude tends to become purely imaginary and �tot ! const: Even
the functional form coincides with that of the observed diffraction peak—for small
angles, p2 ! �t (invariant square of the momentum transfer) and Eq. (19.70) reads

d�

dt

ˇ̌
ˇ̌
t!0

D const: � et=2mT0 : (19.71)

Experimentally, it is of the form eCbt with b � 10 GeV�2. However, if T0 were of
the order of m  � m=6:8, this would give b � 3:4=m2 D 3:9 GeV�2. This value is
much too small. Conversely, in our present model, it would mean that, as p? ! 0,
a temperature of

T�
0 � 0:4T0 (19.72)

would be needed to fit the data. Now our model by no means excludes a temperature
lower than T0 and indeed we cannot even justly require that T0 should be reached
when the momentum transfer is extremely small. [Remember the conclusion on
p. 203.] This may be interpreted as saying that the temperature of that cloud of
virtual particles, which constitutes what we call a localized nucleon, is here about
one half of T0, because at this small momentum transfer, it was not so well localized.
The temperature reaches T0 only if a sufficient amount of energy is transferred to the
transverse motion. (It would be interesting to see what our model has to say about
peripheral collisions p C p ! N� C N ! N C N C  , etc.)

Whatever the reason, as a matter of fact (Orear, private communication),

d�el

dw
� e�

p
p2

?
Cm2=T0

seems to fit the experimental data with T0 � 50 MeV in the diffraction region and
with T0 � 150 MeV outside the diffraction region. The temperature required for the
fit changes rather rapidly from one value to the other. If one puts

�E? D
q

p2? C m2 � m ;
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then �E? is the energy transferred to the transverse motion. It then happens that, in
the diffraction region, �E? < 0:3, and in the region where T0 � 150 MeV gives a
good fit, �E? > 0:7. Tentatively using Fig. 19.1 with E � �E?, one sees that, in
the diffraction region, T < 0:75T0, and in the other region, T > 0:9T0 would result.
This is not of course to be taken too seriously, because in Fig. 19.1 it was supposed
that the masses could be neglected. Anyway, the tendency is right.

It is probably not just to demand from our model that it should give even the
numerical behaviour in the diffraction region correctly. Indeed, in that region the
neglected strong geometrical correlation between the longitudinal and transverse
momenta should again become as important as near 90ı.

The present remarks are largely just guesswork. It remains to clear up the relation
of our model to elastic scattering and peripheral collisions.

A Logical Difficulty of the Model

We have employed statistical thermodynamics of distinguishable particles. This is
strictly speaking inconsistent, since nature certainly does not work this way. Indeed,
even if we are right in saying that most contributions come from states in which all
particles (resonances, fireballs) are different, there are certainly states in which, for
instance, five  C are already present in the first generation.

To be really consistent, we should have worked out a statistics of, say, M different
species of particles. Particles of the same species must then be considered to be
indistinguishable (and a statistics, Bose or Fermi, to be prescribed) and the number
Ni of particles of each kind, as well as the total number N D P

Ni of particles, has
to be left open as before. Finally, one lets M ! 1. One sees immediately that the
number of particles of each single kind would then tend to zero and we should come
back to our model.

In the case of zero masses one finds, however, that this does not work.
One simply obtains

�
Z.V; T/

�M
, where Z.V; T/ is the usual partition function of

indistinguishable particles, and in fact that of a massless Fermi or Bose gas, as the
case may be. With M ! 1, everything diverges at any temperature. That is easily
understood if one realizes that, for M ! 1, there is an infinity of states of our
gas even if the total number N of particles in it is kept fixed: each single particle
may be removed from the gas and be replaced by one of another species. From that
operation, a new state with the same energy results, whence the sum over states is
infinite.

The situation becomes different if the particles have a mass. Then replacing a
particle by one of another species means changing the energy of the system, and
one cannot generate an infinity of different states of the same energy. Again, with the
number M of kinds of particles going to infinity, one would find that the number of
particles of a given kind tends to zero. It is hoped that such a statistics will become
equivalent to our present model. This, however, has not yet been worked out. It
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seems to be an urgent problem in view of the success of the present model. Work is
in progress.

19.5 Summary and Conclusions

Our model uses only three basic experimental facts:

1. The strong interactions are strong enough to produce many resonances and even
fireballs. We assume that the latter are only an ‘extrapolation’ of the resonances
to very high energies.

2. The strong interactions have a range of the order of the Compton wavelength of
the pion.

3. In high-energy collisions, the duration of contact is in general so short that a
thermodynamical equilibrium (in the sense of Fermi’s statistical theory) cannot
be reached.

From (1) it follows that particles are to be considered as (quasi) distinguishable,
while (2) determines the volume in which the system is enclosed, and (3) allows one
to treat the longitudinal and transverse motion as (nearly) independent. All the rest is
straightforward and simple statistical thermodynamics with the following results:

• A universal highest temperature T0 � m  (corresponding to �1012 K) governs all
high-energy processes involving strong interactions (and only these; no highest
temperature exists for gravitational, weak, and electromagnetic interactions
since they do not produce the many resonances which make the particles
distinguishable).

• The transverse momentum distribution in high-energy collisions of hadrons is a
Boltzmann distribution with constant temperature T0 � m  independent

– of the primary energy (1 � Elab � 106 GeV),
– of the number of particles involved—for two particles it gives elastic scatter-

ing, for many particles the jets,
– of the centrality (= degree of thermal equilibrium) of the collision.

• Almost all energy is contained in the longitudinal component as kinetic energy.
Only a small fraction is used for the excitation of fireballs. The total transverse
energy fluctuates strongly but is on average practically independent of the
primary energy.

• The multiplicities of particles produced fluctuate strongly (dispersion of order
1) about a slowly increasing mean value, whereas the fluctuations about the
Boltzmann law for transverse momenta tend to zero for high primary energies.

• An apparent increase with primary energy of the temperature T0 needed to fit
the experimental distributions of transverse momenta between 1 and 106 GeV is
qualitatively explained to be a kinematical effect due to a chain of decays leading
from the fireballs of the ‘first generation’ to the observed pions and others.
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• Taking the masses into account, the Boltzmann law becomes e�p
p2

?
Cm2=T0 . For

elastic scattering at high energies and outside the diffraction region, this fits
the experimental differential cross-section well. If one stresses the formula, one
gets into the diffraction region, where the form e�p2

?
=2mT0 is correct, but where

T0 � m  should be replaced by � 0:4T0. If one accepts that, the fit of the
diffraction peak is also good. This lower temperature is not inconsistent with
the present theory.

These are the results of our paper.
Let us now add some speculations (= wishful thinking). It is possible that the

most interesting consequences of our model lie not in explaining so simply the
well known but so far completely obscure characteristics of high-energy interactions
above 1 GeV—it is possible that the most interesting consequences are to be found
in astrophysics and in elementary particle physics. For astrophysics, it is rather
obvious: whenever under the influence of gravitational pressure, strong interactions
and kinetic energies per particle of the order of m  come into play in the centre
of a star, the appropriate statistics for a thermodynamical treatment is not Fermi
statistics, but the statistics of distinguishable particles. The picture of a ‘neutron
star’ would be inadequate. No work on this question has been done, however. (I
thank Dr. G. Cocconi for drawing my attention to this point.)

For elementary particle physics, the following possibility arises. We have seen

that the Boltzmann distribution e�p
p2

?
Cm2=T fits even the diffraction peak if we

have T � 0:4m . Since this holds down to p? ! 0, where no energy is transferred
to the transverse motion and where the collision constitutes a very bad ‘position
measurement’, we feel tempted to conjecture that the incoming particles might
already have an ‘a priori temperature’ (of the order of 0:4m  for protons) T . T0

and only a sufficient energy transfer would raise the temperature (for the transverse
motion in the c.m. of the collisions) to T0. Since the differential elastic cross-section
and the total cross-section are related by the optical theorem and since all total
cross-sections of hadrons are of the same order at high energies, we would conclude
that they all have an ‘a priori temperature’ of the same order. Then the pion, kaon,
nucleon, and hyperons would be thermodynamical systems with a temperature
� m =2. The immediate question is why, if they are hot, they do not radiate. Why
are they all stable against strong decay and the proton even against electromagnetic
and weak decay? There are the conservation laws, of course, but they merely state
the known facts. They do not explain them. That the proton is stable is not the result
of any theory. It has been built in as a postulate in all theories from the beginning.
Considering the family of all states with nucleon number 1 and charge 1, the proton
is the ground state of that family not because the results of field theory teach us
so, but because we put it in by defining the operators of asymptotic fields that way.
Therefore, whether the nucleon is hot or cold, we do not understand why it is stable.
Let us therefore ignore this difficulty, which is not typical to the picture which we
wish to try.
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We would then have a sequence of different states  , K, pion resonances, K
resonances, N, nucleon resonances, hyperons and their resonances, and so on,
leading with ever increasing mass into a continuum called ‘fireballs’. All of these
systems are more or less well described by thermodynamics of distinguishable
particles with temperatures between roughly 0:5m  and m . For the lowest tem-
peratures, we obtain the stable particles (‘strongly’ stable) and some new unknown
principle is necessary to explain why these states are stable. The missing new
principle is analogous to Bohr’s quantum condition, which ‘explained’ why the
electrodynamical system called the hydrogen atom had a stable ground state in
which the rapidly circulating electron did not radiate—in contradiction to all
the then known laws. What we need would be a ‘quantum condition’ which
‘explains’ similarly why the thermodynamical system called the proton does not—in
contradiction to all the now known laws of the present quantum mechanics—
radiated off the rapidly moving particles of which it consists. Maybe the statement
that the proton is stable is already the proper form of that postulate, but maybe it
could be stated in a more illuminating form as deep as Bohr’s

H
p'd' D nh. In

any case we cannot be content with that postulate. Bohr’s quantum condition for the
stability of the proton may later be explained by some generalization of quantum
mechanics. It is clear that this condition should give us the mass spectrum of the
hadrons, whether the condition itself can be derived from present quantum theory
(which is not likely) or from a future generalization of it. It is rather puzzling that not
only the spectrum of masses is known to us, but even what corresponds to Wigner’s
classification of states by group theory, namely, the symmetry schemes SU3, etc.,
of strong interactions—and in this respect we are far beyond Bohr’s

H
p'd' D nh

—but the quantum condition proper is still unknown.
The proton, if our picture should turn out to be true, would then seem to be

a straightforward extrapolation of ideas which have been familiar for quite some
time. In the early days of renormalization theory, Welton [18] proposed a very
intuitive picture of how the vacuum fluctuations shuttle the electron and lead to
the observable Lamb shift. It was there considered to be essentially the result of
statistical vacuum fluctuations. The interaction, however, is not strong and the ”

quanta have no mass—the same result could be calculated more exactly with the
first few orders of perturbation theory.

In the case of strong interactions, ordinary perturbation theory would not suffice.
The large manifold of resonances and fireballs and the short range cause the proton
(and all other hadrons) to behave like a thermodynamical system of a rather high
(almost the maximal possible) temperature. The ‘bootstrap’ mechanism would then
correspond to a new type of perturbation treatment, in which only the few lowest
masses of the unlimited number of interaction ‘fireballs’ constituting the hadrons
are taken into account. It would be a ‘first approximation to thermodynamics’.

It is, of course, possible that the picture drawn here is wrong and that the circum-
stance that our model works even in the diffraction region is purely accidental. But
if it is not wrong, then it would follow that we have basically all the information
we can hope for in our hands: the mass spectrum, the selection rules (SU3, etc.), the
decay modes of the lower unstable states (ρ, ω, etc.), and that going to higher and
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higher collisions energies would be comparable to attempting to learn something
about the structure of the hydrogen atom by studying the properties of a highly
ionized H gas at higher and higher temperatures.

This latter remark has a good chance to hold even if the above picture of ‘a priori
hot’ hadrons is wrong. The good agreement of our results with experiments indicates
that, at least in all collisions with a momentum transfer above � m , the colliding
particles are heated up to the maximal temperature T0 � m . We have therefore
little chance of learning much more about the structure of hadrons and about the
details of their interaction than we could learn about the structure and interaction
of atoms from high-temperature thermodynamics (ideal gases). On the contrary,
when we have learnt such things from thermodynamics, it was at low temperatures
(condensation, frozen degrees of freedom, superconductivity). If we draw a parallel,
we would think that our present laboratory energies below 100 GeV would be the
most interesting ones for strong interactions. (We stress once more that not a single
one of our conclusions applies to weak and electromagnetic interactions.) One
extremely interesting question, however, remains to be answered by high-energy
experiments, namely, whether basic triplets for SU3 exist. None of our arguments
excludes their being found, e.g., in a p p collision with several 100 GeV in the centre
of mass.
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Appendix 1

In the main text [Eqs. (19.18) and (19.19)], it was shown that the relative fluctuations
in the number of ‘fireballs’ tend to one:

N2 � N2

N2
�! 1 for T ! T0 : (19.73)

If one defines

w˛ D n˛

N
; (19.74)

then w˛ is the probability that a given particle has energy "˛. We wish to show here
that

w2
˛ � w˛

2

w˛
2

�! 1 for T ! T0 : (19.75)
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First we note without proof (it is simple) that, if we considered the fluctuations
in n˛, they would tend to one. This is not due to the fluctuations with respect
to the Boltzmann law, but to the large fluctuations in their normalizing factor N.
Therefore, we have to consider the fluctuations in w˛ . It is these latter fluctuations
which indicate how much we should expect experimental points to scatter about the
Boltzmann distribution of transverse momenta.

We write [see Eq. (19.9)]

z D
X

x˛ ; Z D
X

N

( X
P

nDN

NŠ

n1Š : : :

Y
˛

xn˛
˛

)
�
X

N

zN : (19.76)

In order to get nˇ in front of
Q

˛ xn˛ , we should multiply by xˇ@=@xˇ . This operator
can be written outside Z. Thus .nˇ=N/ is given by

�nˇ

N

	
D 1

Z
xˇ

@

@xˇ

X
n

zN

N
D xˇ

z
; (19.77)

where @=@xˇ D @=@z has been used. Similarly,
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(19.78)

Here the first term in the round bracket is .log Z/=z and the second tends to xˇZ=z2.
For T ! T0, we can neglect .log Z/=Z to obtain

�nˇ

N

	2 �!
�

xˇ

z

�2

: (19.79)

This, together with Eq. (19.77), proves Eq. (19.75).
A glance at Figs. 19.3 and 19.4 shows that our result agrees with experiment:

large fluctuations about the mean multiplicities and small ones about the Boltzmann
distribution of transverse momenta.

Appendix 2

We wish to consider here the broadening of the spectrum due to the decay of a
fireball. The problem is straightforward as far as kinematics is concerned. Its general
treatment offers, however, great computational difficulties. We therefore treat a
simple one-dimensional model case.
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We suppose a fireball with mass m� � T0 moving along the x axis with a
(positive or negative) ‘four-velocity’12 V D .�; ˇ�/. This fireball can emit another
particle with mass m`, again only in the ˙x direction, with a ‘four-momentum’
which is described by P` D ."`; p`/ in the fireball’s rest frame F�, by P D ."; p/ in
the c.m. frame.

We suppose that the momentum distributions of m� in the c.m. frame and the
momentum distribution of m` in F� are of our standard form for one-dimensional
motion [masses fully taken into account, see Eq. (19.51)]:

w.p�/d p� D e�"�=T0d p� (in c.m. frame) ;

w.p`/d p` D e�"`=T0d p` (in F� frame) :
(19.80)

The four-velocity of the mass m� is given by

V D .u0; u/ D .�; ˇ�/ D ."�=m�; p�=m�/ ; u0 D
p

u2 C 1 : (19.81)

To the momentum distribution of m� corresponds a velocity distribution

v.u/ D w.p�/
d p�

dm
D m�e�m�

p
u2C1=T0 :

We normalize this distribution to
R1

0
v.u/du D 1 and obtain

v.u/ D 1

K1.m�=T0/
e�m�

p
u2C1=T0 ; (19.82)

where K1 is as before a Bessel (modified Hankel) function. For m� � T, we have

K1.m�=T0/ �!
r

2T0

�m� e�m�=T0 :

Hence v.u/ behaves for small u like e�m�u2=2T0 and for large u like e�m�u=T0 . Since
m� � T0 was supposed, v.u/ drops very fast. Its maximum at u D 0 increases
roughly as .m�=T/1=2.

Now let u be fixed for a moment. Then the number of m` particles with positive
momentum fp; d pg in the c.m. frame is given by

Wu.p/d p D w.p`/d p` ; (19.83)

where p` has to be chosen accordingly:

p` D p
p

u2 C 1 � "u ; "` D "
p

u2 C 1 � pu : (19.84)

12Strictly speaking, we should say ‘two-velocity’.
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Hence, with d p=d p` D "`=",

"Wu.p/ D "`.u/e�"`.u/=T0 : (19.85)

This has now to be multiplied by v.u/du and integrated from �1 to 1 (the negative
u values take care of the cases in which the fireball moves in the �x direction and
emits a ‘meson’ in the Cx direction with sufficient energy to overcompensate the
velocity in the �x direction and to obtain a positive direction of flight). Disregarding
the normalization factors, we obtain

"W.p/ D
Z 1

�1
du
h
e�m�

p
u2C1=T0e�."

p
u2C1�up/=T0



"
p

u2 C 1 � up
�i

: (19.86)

We know that the first exponential drops first like a Gaussian, later simply
exponentially. The exponent in the second exponential is "`.u/ with the following
behaviour:13

"`.u/ �!

8̂
<̂
ˆ̂:

juj." C p/ for u ! �1 ;

" � up for u � 0 ;

m` .minimal/ for u D p=m` ;

u." � p/ for u ! C1 :

Therefore expŒ�"`.u/=T� has a maximum at u D p=m` and drops exponentially
on both sides. We shall assume that m� is large enough to ensure that the term
exp


 � m�p
u2 C 1=T

�
can be considered to vary more rapidly than expŒ�"`.u/=T�,

whence the main contributions to the integral will come from u � 0. Then in
the algebraic factor "`.u/ which multiplies the exponentials, we put u D 0. We
expand the square roots in the exponentials and integrate these expressions since
the resulting error for large juj is negligible. Thus omitting all constant factors,

"W.p/ � "e�"=T0

Z 1

�1
exp

�
�u2 " C m�

2T0

C u
p

T0

�
du

and

W.p/ �
r

2�T0

" C m� e�"=T0 ep2=2T0."Cm�/ ;

or again,

W.p/ � const:p
" C m� exp

�
� "

T0

2." C m�/ � p2="

2." C m�/

�
:

13"`.u/ has the maximum possible value m�=2, namely, when m� ! m` C m`. In general, "` is
much smaller. In the integral, we forget about this fact, since large u values contribute nothing.
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We may then write

W.p/ � const:p
" C m� e�"=Teff ; (19.87)

where

Teff."/ D T0

2." C m�/

2." C m�/ � p2="
; p2 D "2 � m2

` : (19.88)

When " varies between m` and 1, Teff."/ varies between T0 and 2T0, the latter value
is approached only for " values � m�.

In cosmic ray jets, transverse momenta of pions up to the order p D " D 1 to
1.2 have been reliably measured [11]. Assume then p D " D 1 and m� D 1. Then
Teff D 4T0=3 and with m� D 2, we find Teff D 6T0=5. This is at the upper end of
the measured spectrum. At the lower end, Teff ! T0.

The present analysis is very rough and incomplete. It illustrates only the
mechanism. It is not inconsistent with the assumption that nothing serious would
happen in reality (the two-dimensional case). If that turned out to be so and if the
general case gave a similar result, then it would allow one to conclude from the
transverse momentum distribution [namely, the deviations from a pure exp.�"=T0/]
something about the average or most frequent mass m� of fireballs. The heavier
the fireballs, the less the actual distribution will deviate from an exponential. On
the other hand, the chain of decays will then contain more members and this may
increase the deviations again. In any case it will at least cause a larger effective
temperature. Actually, the T which is needed to fit the spectra seems to increase
somewhat with the primary energy, although not more than by a factor of two, when
the primary energy varies by a factor of one million.

In spite of this very crude analysis, we believe that it is sufficient to make it very
likely that the apparent increase in the temperature is entirely due to kinematics and
that our T0 is indeed independent of the primary energy.

A more careful and more realistic (two-dimensional) discussion of this problem
is highly desirable.

Open Access This book is distributed under the terms of the Creative Commons Attribution Non-
commercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source and credited.
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