
105

 Chapter 14
 We Can and Must
Understand Computers NOW

 Noah Wardrip-Fruin

14.1 Three Phrases

 From the endlessly quotable Ted Nelson—whose neologisms pepper the language
we use to understand the present, from “hypertext” to “visualization”—perhaps
no phrase is better known than, “You Can and Must Understand Computers
NOW.” It was emblazoned across the Computer Lib side of his 1974 Computer
Lib/Dream Machines (CL/DM), the most infl uential book in the history of compu-
tational media. 1

 Nelson’s call is not only memorable today, but still quite relevant. For example,
consider the recent revelations of massive government surveillance, as disclosed by
Edward Snowden and others. Without a deep understanding of computing, one
might debate whether the vision of Total Information Awareness is morally right, or
is instead sending us down a path to an “Orwellian,” 1984 -style future. However,
with a deep understanding of computing, one can not only raise the questions of
morality in more depth, but one can also see that Total Information Awareness is a
technically unworkable fantasy (like the Star Wars program pursued by the Reagan
administration in the non-fi ctional 1980s) providing a false rationale for treating
everyone as a suspect.

 In other words, one reason that we must understand computers now is so that we
can understand what is happening, and make informed choices, as members of a
computationally-steeped democracy. We need to understand computing so that we
can see past deceptions about what computers can do, and how computers work. As

1 For example, as Steve Wozniak said at Intertwingled, “At our computer club, the bible was
 Computer Lib ” — referring to the Homebrew Computer Club, from which Apple Computer and
other major elements of the turn to personal computers emerged [18].

 N. Wardrip-Fruin (*)
 Department of Computational Media , University of California, Santa Cruz ,
 1156 High Street, MS:SOE3 , Santa Cruz , CA 95064 , USA
 e-mail: nwf@soe.ucsc.edu

© The Author(s) 2015
D.R. Dechow, D.C. Struppa (eds.), Intertwingled, History of Computing,
DOI 10.1007/978-3-319-16925-5_14

mailto:nwf@soe.ucsc.edu

106

Nelson puts it colorfully, “Down with cybercrud!” However, that is not the only
reason we must understand computers.

 In thinking about the other reasons we must understand computers, and in con-
sidering a variety of projects and ideas that have sought to help an understanding of
computing become more widespread, I believe we should also attend to two further
phrases from CL/DM —neither as well known, but each extremely telling. The fi rst,
also from the 1974 edition, is, “presentation by computer is a branch of show biz
and writing, not of psychology, engineering or pedagogy” [10 , DM2]. The second,
added in the 1987 edition, is, “All Simulation is Political” [11 , CL149].

 I choose these two additional phrases, in part, because they point to ideas of
Nelson’s that have deeply shaped my own thinking and career—a career in compu-
tational media that came into focus after I found a copy of CL/DM in my college
bookstore. A piece like this one could be written about other facets of my thinking,
using a different selection of CL/DM phrases, and I believe the same is true for
many of the most insightful people I’ve met in the fi eld—that their thinking was
indelibly shaped by an early encounter with Nelson’s ideas. But for telling this
story, let me begin with “You Can and Must Understand Computers NOW.”

14.2 We Can and Must

 Nelson is certainly not alone in calling for broad understanding of computing, in
some form, and not the fi rst to do so. The earliest example I can fi nd is Alan Perlis’s
call—in 1961—for all university Frosh to take a programming class [12]. This is
pretty obscure. A much better known example is the Logo project (often remem-
bered for its “turtle” graphics) created by Seymour Papert, Wallace Feurzeig, Daniel
Bobrow, and collaborators beginning in 1966 [2]. A more recent example is
Jeannette Wing’s call for broad “computational thinking,” which she characterizes
as a set of conceptual tools for “solving problems, designing systems, and under-
standing human behavior” [17].

 These sorts of undertakings are generally noble projects. But I would argue that,
at root, many aren’t actually about people understanding computers (it is closer to a
side effect) and they certainly aren’t about what Nelson is calling for. In “Logo: A
Project History” Anit Chakraborty, Randy Graebner, and Tom Stocky write, “the
original Logo developers were out to change mathematics by helping children
improve problem solving abilities” (1999). Similarly, as a 2012 report from the
UK’s Royal Society notes, computational thinking is primarily about thinking like
a computer scientist in a wide variety of contexts, rather than understanding com-
puters in Nelson’s sense. 2

2 “Computational thinking is the process of recognising aspects of computation in the world that
surrounds us, and applying tools and techniques from Computer Science to understand and reason
about both natural and artifi cial systems and processes” [5].

N. Wardrip-Fruin

107

14.3 Show Biz and Writing

 In the introductory pages of Dream Machines, Nelson makes it clear why CL/DM is
a book with two sides. He does not aim for broader understanding of computers,
through the information found in Computer Lib, simply because our society is
becoming more computational in general. Rather, as he writes:

 My special concern, all too tightly framed here, is the use of computers to help people write,
think, and show. But I think presentation by computer is a branch of show biz and writing,
not of psychology, engineering or pedagogy. This would be idle disputation if it did not
have far-reaching consequences for the designs of the systems we are all going to have to
live with. [10 , DM2]

 In other words, we all must understand computers not just because computers are
important, but because the media of the future (and now the present) are computa-
tional. We need people who are able to understand, work in, and invent computa-
tional media—media that, in Nelson’s words, continue the traditions of “literature,
fi lm and scholarship”—and are able to do so with, “art, zest, intelligence, and the
highest possible ideals” [10 , DM2]. This is very much not the same thing as thinking
mathematically, or thinking like a computer scientist.

 Luckily, there is a tradition of work that takes media and literacy more seriously.
The Smalltalk programming language was developed in the 1970s by Alan Kay, Dan
Ingalls, Adele Goldberg, and others [6]. Together with the vision of the Dynabook
personal computer, it presented an approach to computing that focused on reading
and writing (that is to say, computational literacy) and the creation of media and
media-making tools (including simulations). And a number of the descendants of
Smalltalk and Logo are concerned with media-making and broadening literacy, such
as the Processing language for artists and designers, the Scratch language that uses
snap-together tiles, and the games-focused Kodu language [7 , 13 , 14]. There is also
conceptual work that seems to foreground literacy issues, as seen in the “computa-
tional literacy” discussed in Andrea diSessa’s book Changing Minds [3].

 But here, as with much else in CL/DM, Nelson’s warning proves prescient. While
what we need is a convergence of computing with the arts and humanities, what we
get is more often “psychology, engineering or pedagogy.” diSessa’s book, for exam-
ple, is primarily concerned with science education, rather than literacy as understood
in the traditions of literature, fi lm, and scholarship. More broadly, much of the Human-
Computer Interaction community seems convinced that compelling computational
media forms can be discovered and designed through psychology-style experiments.
Attempts to move computational media forward through pure engineering approaches,
in areas such as computer graphics, give us awful “photorealistic” fi lms such as 2007’s
 Beowulf —while those few who understand that computing and art must work together
(that high-level technical goals cannot be set or evaluated apart from artistic goals)
create much stronger, more stylized animations such as 2008’s WALL-E . 3

3 “Computational Media” has recently emerged as a name for the type of work that performs this
interdisciplinary integration [15].

14 We Can and Must Understand Computers NOW

108

 Happily, some of the work that follows Logo and Smalltalk does come from
those who understand these issues, and are themselves media makers. Ben Fry and
Casey Reas, the initiators of Processing, are an accomplished artist and information
designer. Matt MacLaurin and Stephen Coy, key creators of Kodu, are both game
industry veterans. Projects like these succeed at creating media-centric environ-
ments that broaden the ability to understand computers and make computational
media—and they do so by embedding media-making knowledge from their creators
into computational structures.

 But that is not all that is embedded.

14.4 All Simulation Is Political

 In the 1987 edition of CL/DM, Nelson adds a section with the headline, “All
Simulation Is Political.” He writes below it:

 Every simulation program, and thus every simulation, has a point of view. Just like a state-
ment in words about the world, it is a model of how things are, with its own implicit empha-
ses: it highlights some things, omits others, and always simplifi es. The future projections
made by a simulation only project those views forward in time. [11 , CL149]

 In the kinds of media made with Kodu and Scratch (and many other related sys-
tems, such as Alice, Squeak, and AgentSheets) simulation is a primary form of
representation. The world is represented through rules and the interaction of (and
our interactions with) those rules over time, together with data that represents the
world state and constants.

 As Nelson observes, all the simulations created with these systems embed
assumptions about the world that derive from viewpoints—they are political.
Similarly, systems for creating simulations are also based on assumptions, derived
from viewpoints.

 In an individual simulation we see the politics in the rules and data. In a system
for creating simulations we see the politics in the available elements and process of
creation. In both cases, the politics are often implicit and unconscious.

 Consider the Kodu system. 4 Kodu focuses on making games, and has a model of
agent-oriented programming (using robotics-style sensors and actions) that can be
carried out with an Xbox controller. Almost everything is menu driven, and many
problems that plague beginning programmers (such as syntax errors) are effectively
eliminated by the system’s approach. By programming different agents to interact
with each other and the environment, an autonomous simulation can be created. But
Kodu’s tutorials focus instead on game projects, leaving one or more agent(s) under
the control of a player. Everything created is rendered in smooth 3D, often using
professional models and textures included with Kodu—creating a sense of polish

4 Kodu is both an infl uential system itself and the basis of Microsoft’s Project Spark, launched in
October 2014.

N. Wardrip-Fruin

109

for even the simplest project, and making even the sculpting of the environments in
which agents interact an appealing activity for many in the target age group (roughly
7–14, though with an emphasis on the upper end of the range).

 In a menu-based system such as Kodu, perhaps the simplest way to surface some
of its assumptions, and therefore its politics, is to look at the menu structure. Kodu’s
menus are hierarchical, with the elements on the top level the fastest to discover and
use, presumably refl ecting assumptions about what will be most useful. Here are
some observations about Kodu’s menus:

• Shooting is one of a handful of actions in the top-level menu.
• Being shot is one of a handful of sensors in the top-level menu.
• Saying something is in a sub-menu.
• No menu items support an internal life for characters, or social relationships

between characters.

 We might ask ourselves, does this really refl ect the range of what a diverse group
of early teenagers would care about, and want to represent about the world? Of
course not. It refl ects particular interests—and the male-dominated subgroup most
interested in them is not one underrepresented in computing. In other words, despite
the nobility of the project, the implicit politics of Kodu’s menus of actions and sen-
sors is the politics of the status quo—shaping what can be said, and who can say it,
along familiar lines. In this it is far from alone.

14.5 Understand Computers How?

 While in theory we could create computational media about anything that we could
write about, or make a fi lm about, in practice our tools and established genres gener-
ally support a much narrower range. In a sense we live in the world Nelson warned
about, in which the designs of the systems we live with do not support broad think-
ing, expression, and innovation.

 But I write about Kodu in this chapter because, when I was part of a group that
approached the Kodu team, we found a genuine interest in shifting its expressive
range. We worked primarily with Matt MacLaurin, Brad Gibson, and Kent Foster at
Microsoft (Kodu emerged from Microsoft’s FUSE Labs and Microsoft Research).
Our team included Teale Fristoe, Jill Denner, Michael Mateas, Brandon Tearse,
Larry LeBron, Eric Kaltman, and Gina Lepore (all from UC Santa Cruz or ETR
Associates). 5

 We did some simple things, like adding an easy way for characters to listen for
language (not just speak it) which became part of the main Kodu distribution. But

5 The fi rst stage of our work is described in “Say it With Systems” [4]. The project was supported
in part by the National Science Foundation (under Grant No. DRL-1042944). However, any opin-
ions, fi ndings, and conclusions or recommendations expressed in this material are those of the
author and do not necessarily refl ect the views of the National Science Foundation.

14 We Can and Must Understand Computers NOW

110

we also experimented with more complex changes, such as giving characters differ-
ent levels of friendship, and creating sensors and actions that made it possible for
agents to alter and respond to these levels. We worked to make these almost as
simple to use as those for shooting and being shot, and we rearranged the menus so
that they were at the same level. We created new curricula, introducing Kodu in new
ways, and new sample games, emphasizing our new sensors and actions. We did all
this in the context of talking with early teens from a variety of socio-economic back-
grounds, and we ran after-school programs in a variety of middle schools, using
versions of Kodu iterated between each program.

 What we found, perhaps unsurprisingly, is that by the end we were seeing a much
wider variety of games. There were more types of play, and a broader range of sub-
ject matters. In fact, what we eventually found was that Kodu’s visual polish—an
important part of its initial appeal—became one of the barriers. Its models and ani-
mations were created for a system that made shooting and racing gameplay easy.
When teens started considering making a broader set of games, they saw a mis-
match between their potential game systems and the ways the games could appear
on screen. But in a sense, when teens observed this it was also positive. It was the
beginning of a critique of the assumptions built into Kodu’s available elements,
opened by shifting the available rules without shifting the data.

 To my knowledge, what we did with Kodu has not been done with any other tool.
Current tools and ideas may aim to broaden understanding of computing, they may
focus on computational media literacy, and they may embody lessons learned from
media making. But they are divorced from critical thinking about their representa-
tions—from point of view, from politics. They haven’t been critiqued regarding the
way their technical specifi cs connect to ideas of the world, much less reshaped in
response to critique.

 When this is how we do work in our fi eld, we run a signifi cant risk. We run the
risk that all these well-intentioned projects end up solving precisely the wrong prob-
lem. Nelson did not say that we can and must understand computers because the IT
sector (or the surveillance state, or Walmart) has an urgent need for more computing-
literate worker bees. Nelson’s challenge is only answered if we educate people who
are prepared to disrupt business as usual—and to invent the broad, thoughtful media
of the future.

14.6 Reading and Writing

 Putting Nelson’s three statements together, we see an urgent call for a creative and
critical literacy of computing broadly, and computational media in particular. This
call is as pressing today as it was when CL/DM was fi rst published.

 Thinking in terms of critical literacy also reveals something rather odd about
most attempts to broaden understanding of computing. They are almost entirely
focused on writing, on the construction of computational artifacts (whether through
textual code, Kodu menus, Scratch blocks, or some other means). But this is not the

N. Wardrip-Fruin

111

approach we use with other forms of critical literacy. We don’t assume, for example,
that someone who is going to “read and write” the language of cinema should be
concerned solely with shooting and editing their own fi lms, never watching and
critically interpreting existing fi lms.

 Of course, there are those who have addressed, or at least identifi ed, this gap.
Michael Mateas’s call for “procedural literacy” is an early call for a critical literacy
for computational media makers [8]. Ian Bogost’s “procedural rhetoric” draws on
the history of rhetoric for a model of critically understanding and making processes
[1].

 And in recent years work on critical interpretation of computing, taking the tech-
nical level seriously, has blossomed. The MIT Press has been one of the leading
supporters of this, initiating new book series in both software studies and platform
studies. However, this critical reading generally still remains divorced from writing.
I know of no educational institution that teaches them together (e.g., no introductory
programming course that includes introductory software studies content) and I
know of only one published scholarly book that includes the writing of software as
one of the critical methods it uses in analyzing software (the unusually-titled 10
PRINT CHR$(205.5 + RND(1)); : GOTO 10 [9]).

 Of course, while undertakings such as software studies seem new to many, for
those of us who read Nelson’s work it is simply the continuation of his tradition. CL/
DM contains much that is clearly the critical interpretation of software, connecting
the technical level to the cultural one—ranging from discussing the “drill and prac-
tice” assumptions built into the TUTOR programming language to exposing the
simple workings of Eliza and other systems used to market artifi cial intelligence
ideas [10 , DM27, DM14]. It is heartening to see the continuation of this work fi nally
being taken up by a wider group, and we can only hope that it is increasingly brought
together with attempts to broaden the writing side of a creative and critical compu-
tational literacy.

14.7 Conclusion

 I’m deeply honored to have the opportunity to contribute to this volume, just as I
was honored to have the opportunity to help bring Nelson’s writing to a new genera-
tion when he gave permission for sections of CL/DM and other texts to be reprinted
in The New Media Reader [16]. While Nelson’s work is certainly of historical
importance, it also has much to tell us in the present—providing a necessary per-
spective for evaluating what we are doing in the fi eld, and pointing in directions of
great importance for us to pursue. I hope that this chapter provides a useful example
of one way this has been done.

 I also hope that the broader implications of the lessons I draw from selecting the
three highlighted CL/DM phrases are clear. To put them another way: If we educate
everyone to think creatively and critically about and with computational media, we
will also be educating them to think critically about computing—to read simula-

14 We Can and Must Understand Computers NOW

112

tions for their biased assumptions, to know that warrantless wiretapping of every
citizen is not only wrong, but pointless, and more. And that, I believe, is the way in
which we can and must understand computers now.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

 References

 1. Bogost I (2007) Persuasive games: the expressive power of videogames. MIT Press, Cambridge,
MA

 2. Chakraborty A, Graebner R, Stocky T (1999) “LOGO: a project history.” Website for the struc-
ture of engineering revolutions, Mindell DA (ed). December 1999. http://web.mit.edu/6.933/
www/LogoFinalPaper.pdf

 3. DiSessa AA (2001) Changing minds: computers, learning, and literacy. MIT Press, Cambridge,
MA

 4. Fristoe T, Denner J, MacLaurin M, Mateas M (2011) Say it with systems: expanding Kodu’s
expressive power through gender-inclusive mechanics. In: Proceedings of the 6th international
conference on foundations of digital games, ACM, pp 227–234

 5. Furber S (2012) Shut down or restart? The way forward for computing in UK schools. The
Royal Society, London

 6. Kay AC (1996) The early history of Smalltalk. In: History of programming languages—
II. ACM, pp 511–598

 7. MacLaurin, MB (2011) The design of Kodu: a tiny visual programming language for children
on the Xbox 360. ACM Sigplan Notices 46(1):241–246. ACM

 8. Mateas M (2005) Procedural literacy: educating the new media practitioner. On Horiz
13(2):101–111

 9. Montfort N, Baudoin P, Bell J, Bogost I, Douglass J, Marino MC, Mateas M, Reas C Sample
M, Vawter N (2012) 10 PRINT CHR $(205.5+ RND (1));: GOTO 10. The MIT Press,
Cambridge, MA

 10. Nelson TH (1974) Computer lib: dream machines. Self published
 11. Nelson TH (1987) Computer lib: dream machines. Tempus Books of Microsoft Press,

Redmond
 12. Perlis AJ (1961) The role of the digital computer in the university. Comput Autom 10(4

&4B):10–15
 13. Reas C, Fry B (2006) Processing: programming for the media arts. AI Soc 20(4):526–538
 14. Resnick M, Maloney J, Monroy-Hernández A, Rusk N, Eastmond E, Brennan K, Millner A

et al (2009) Scratch: programming for all. Commun ACM 52(11):60–67
 15. Wardrip-Fruin N, Mateas M (2014) Envisioning the future of computational media: the fi nal

report of the media systems project. Center for Games and Playable Media, UC, Santa Cruz
 16. Wardrip-Fruin N, Montfort N (eds) (2003) The new media reader. MIT Press, Cambridge, MA
 17. Wing JM (2006) Computational thinking. Commun ACM 49(3)
 18. Wozniak S (2014) In “Intertwingled: afternoon session #2.” Chapman University, Orange,

California. Video timecode: 58:14. http://ibc.chapman.edu/Mediasite/Play/52694e57c4b546f0
ba8814ec5d9223ae1d

N. Wardrip-Fruin

http://web.mit.edu/6.933/www/LogoFinalPaper.pdf
http://web.mit.edu/6.933/www/LogoFinalPaper.pdf
http://ibc.chapman.edu/Mediasite/Play/52694e57c4b546f0ba8814ec5d9223ae1d
http://ibc.chapman.edu/Mediasite/Play/52694e57c4b546f0ba8814ec5d9223ae1d

	Chapter 14: We Can and Must Understand Computers NOW
	14.1 Three Phrases
	14.2 We Can and Must
	14.3 Show Biz and Writing
	14.4 All Simulation Is Political
	14.5 Understand Computers How?
	14.6 Reading and Writing
	14.7 Conclusion
	References

