Skip to main content

Network Dynamics as an Inverse Problem

  • Conference paper
Mathematical Technology of Networks

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 128))

Abstract

Power grids, transportation systems, neural circuits and gene regulatory networks are just some of the many examples of networks in action. To understand mechanisms underlying collective network dynamics, typically a forward perspective is taken and mathematical models of given systems are explored as a function of their parameters. One question, for instance, might be how the collective dynamics undergoes a bifurcation when the network connectivity is changed. Here, we propose an inverse perspective on. We determine, based on the units’ time series, the set of all networks that generate a given collective dynamics. In particular, we show how the dynamics of a network may be parametrized in the phase portrait. Interestingly, even networks with very different connection topologies may generate identical dynamics. As an example, we rewire networks of Kuramoto-like oscillators with random network topologies into different networks that display the same collective time evolution. The results offer an alternative view on studying the interplay between the structure and dynamics of complex networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    W may be easily extracted from the singular value decomposition of Y T, cf. [18, 2023].

  2. 2.

    The dimension of the space of solutions for \(\boldsymbol{\zeta }_{i}\) depends on the number of conditions (15). By imposing more conditions, one may reduce the dimensionality of the solution space.

References

  1. Newman, M.: Networks: An Introduction. Oxford University Press, New York (2010)

    Book  Google Scholar 

  2. Strogatz, S.H., Nature 410(6825), 268–276 (2001)

    Google Scholar 

  3. Timme, M., Casadiego, J.: J. Phys. A Math. Theor. 47(34), 343001 (2014)

    Article  MathSciNet  Google Scholar 

  4. Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Phys. Rev. Lett. 109(6), 064101 (2012)

    Article  Google Scholar 

  5. Filatrella, G., Nielsen, A.H., Pedersen, N.F.: Eur. Phys. J. B 61(4), 485–491 (2008)

    Article  Google Scholar 

  6. Guimerà, R., Mossa, S., Turtschi, A., Amaral, L.A.N.: Proc. Natl. Acad. Sci. U.S.A. 102(22), 7794-7799 (2005)

    Article  MATH  Google Scholar 

  7. Mirollo, R.E., Strogatz, S.H.: SIAM J. Appl. Math. 50(6), 1645–1662 (1990)

    MathSciNet  MATH  Google Scholar 

  8. Gardner, T.S., di Bernardo, D., Lorenz, D., Collins, J.J.: Science 301(5629), 102-105 (2003)

    Google Scholar 

  9. Braess, D.: Unternehmensforschung 12, 258–268 (1968)

    MathSciNet  MATH  Google Scholar 

  10. Youn, H., Gastner, M., Jeong, H.; Phys. Rev. Lett. 101(12), 128701 (2008)

    Article  Google Scholar 

  11. Witthaut, D., Timme, M.: New J. Phys. 14(8), 083036 (2012)

    Article  Google Scholar 

  12. Deco, G., Jirsa, V.K., McIntosh, A.R.: Nat. Rev. Neurosci. 12(1), 43–56 (2011)

    Article  Google Scholar 

  13. Bullmore, E., Sporns, O.: Nat. Rev. Neurosci. 13(5), 336–349 (2012)

    Google Scholar 

  14. Prinz, A.A., Bucher, D., Marder, E.: Nat. Neurosci. 7(12), 1345–1352 (2004)

    Article  Google Scholar 

  15. Makarov, V.A., Panetsos, F., de Feo, O.; J. Neurosci. Methods 144(2), 265–279 (2005)

    Google Scholar 

  16. Memmesheimer, R.M., Timme, M.: Phys. Rev. Lett. 97(18), 188101 (2006)

    Article  Google Scholar 

  17. Memmesheimer, R.M., Timme, M.: Phys. D 224, 182–201 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Van Bussel, F., Kriener, B., Timme, M.: Front. Comput. Neurosci. 5, 3 (2011)

    Google Scholar 

  19. Strogatz, S.H.: Phys. D Nonlinear Phenom. 143(1–4), 1–20 (2000)

    Google Scholar 

  20. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. Society for Industrial and Applied Mathematics, Philadelphia, PA (2000)

    Book  MATH  Google Scholar 

  21. Yeung, M.K.S., Tegnér, J., Collins, J.J.: Proc. Natl. Acad. Sci. U.S.A. 99(9), 6163–6168 (2002)

    Article  Google Scholar 

  22. Timme, M.; Phys. Rev. Lett. 98(22), 224101 (2007)

    Article  Google Scholar 

  23. Shandilya, S.G., Timme, M.: New J. Phys. 13(1), 013004 (2011)

    Article  Google Scholar 

  24. Hansel, D., Mato, G., Meunier, C.: Phys. Rev. E 48(5), 3470–3477 (1993)

    Article  Google Scholar 

  25. Bandyopadhyay, S., Mehta, M., Kuo, D., Sung, M.K., Chuang, R., Jaehnig, E.J., Bodenmiller, B., Licon, K., Copeland, W., Shales, M., Fiedler, D., Dutkowski, J., Guénolé, A., van Attikum, H., Shokat, K.M., Kolodner, R.D., Huh, W.K., Aebersold, R., Keogh, M.C., Krogan, N.J., Ideker, T.: Science 330(6009), 1385–1389 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Benedict Lünsmann, Fabio Schittler-Neves and Sarah Hallerberg for valuable discussions and constructive comments. Partially supported by the International Max Planck Research School (IMPRS) Physics of Biological and Complex Systems (JC), the Ministry for Education and Science (BMBF), Germany, through the Bernstein Center for Computational Neuroscience, grant no. 01GQ1005B (MT) as well as by a grant by the Max Planck Society to MT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Casadiego .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Casadiego, J., Timme, M. (2015). Network Dynamics as an Inverse Problem. In: Mugnolo, D. (eds) Mathematical Technology of Networks. Springer Proceedings in Mathematics & Statistics, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-319-16619-3_4

Download citation

Publish with us

Policies and ethics