Skip to main content

Lack of Ground State for NLSE on Bridge-Type Graphs

  • Conference paper
Mathematical Technology of Networks

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 128))

Abstract

We prove the nonexistence of ground states for NLSE on bridge-like graphs, i.e. graphs with two halflines and four vertices, of which two at infinity, with Kirchhoff matching conditions. By ground state we mean any minimizer of the energy functional among all functions with the same mass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Contribution for the proceedings of the Workshop on “Mathematical Technology of Networks”, ZiF Bielefeld, 4-7 December 2013.

References

  1. Adami, R., Cacciapuoti, C., Finco, D., Noja, D.: On the structure of critical energy levels for the cubic focusing NLS on star graphs. J. Phys. A Math. Theor. 45, 192001, 7 pp. (2012)

    Google Scholar 

  2. Adami, R., Serra, E., Tilli, P.: NLS ground states on graphs. arXiv:1406.4036 to appear in Calc. var. PDE

    Google Scholar 

  3. Ali Mehmeti, F.: Nonlinear Waves in Networks. Akademie Verlag, Berlin (1994)

    Google Scholar 

  4. Banica, V., Ignat, L.: Dispersion for the Schrödinger equation on networks. J. Math. Phys. 52, 083703 (2011)

    Article  MathSciNet  Google Scholar 

  5. Banica, V., Ignat, L.: Dispersion for the Schrödinger equation on the line with multiple Dirac’s delta potentials and on delta trees. Anal. PDE. 7(4), pp. 903–927

    Google Scholar 

  6. von Below, J.: A maximum principle for semilinear parabolic network equations. Lect. Notes Pure Appl. Math. 133, 37–45 (1991)

    MathSciNet  Google Scholar 

  7. von Below, J.: An existence result for semilinear parabolic network equations with dynamical node conditions. In: Pitman Research Notes in Mathematics Series, vol. 266, pp. 274–283. Longman, Harlow Essex (1992)

    Google Scholar 

  8. Bona, J., Cascaval, R.C.: Nonlinear dispersive waves on trees. Can. J. Appl. Math. 16, 1–18 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Berkolaiko, G., Carlson, R., Fulling, S., Kuchment, P.: Quantum Graphs and Their Applications. Contemporary Mathematics, vol. 415, American Mathematical Society, Providence, RI (2006)

    Google Scholar 

  10. Blank, J., Exner, P., Havlicek, M.: Hilbert Spaces Operators in Quantum Physics. Springer, New York (2008)

    MATH  Google Scholar 

  11. Camilli, F., Marchi, C., Schieborn, D.: The vanishing viscosity limit for Hamilton-Jacobi equations on networks. J. Differ. Equ. 254(10), 4122–4143 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cardanobile, S., Mugnolo, D.: Analysis of FitzHugh-Nagumo-Rall model of a neuronal network. Math. Methods Appl. Sci. 30, 2281–2308 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cascaval, R.C., Hunter, C.T.: Linear and nonlinear Schrödinger equations on simple networks. Libertas Math. 30, 85–98 (2010)

    MathSciNet  Google Scholar 

  14. Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10. American Mathematical Society, Providence, RI (2003)

    Google Scholar 

  15. Cazenave, T., Lions, P.-L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85, 549–561 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Exner, P., Keating, J.P., Kuchment, P., Sunada, T., Teplyaev, A.: Analysis on Graphs and Its Applications. Proceedings of Symposia in Pure Mathematics, vol. 77. American Mathematical Society, Providence, RI (2008)

    Google Scholar 

  17. Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry I. J. Funct. Anal. 74, 160–197 (1987)

    Article  MathSciNet  Google Scholar 

  18. Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry II. J. Funct. Anal. 94, 308–348 (1990)

    Article  MathSciNet  Google Scholar 

  19. Kostrykin, V., Schrader, R.: Kirchhoff’s rule for quantum wires. J. Phys. A Math. Gen. 32(4), 595–630 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kuchment, P.: Quantum graphs. I. Some basic structures. Waves Random Media 14(1), S107–S128 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kuchment, P.: Quantum graphs. II. Some spectral properties of quantum and combinatorial graphs. J. Phys. A Math. Gen. 38(22), 4887–4900 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Nicaise, S.: Some results on spectral theory over networks, applied to nerve impulse transmission. Lect. Notes Math. 1171, 532–541 (1985)

    Article  MathSciNet  Google Scholar 

  23. Sobirov, Z., Matrasulov, D., Sabirov, K., Sawada, S., Nakamura, K.: Integrable nonlinear Schrödinger equation on simple networks: connection formula at vertices. Phys. Rev. E 81, 066602 (2010)

    Article  MathSciNet  Google Scholar 

  24. Weinstein, M.: Lyapunov stability of ground states of nonlinear dispersive evolution equations. Commun. Pure Appl. Math 39, 51–68 (1986)

    Article  Google Scholar 

Download references

Acknowledgements

R.A. and E.S. are partially supported by the PRIN 2012 project “Aspetti variazionali e perturbativi nei problemi differenziali nonlineari”. R.A. is partially supported by the FIRB 2012 project “Dispersive dynamics: Fourier Analysis and Variational Methods”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Adami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Adami, R., Serra, E., Tilli, P. (2015). Lack of Ground State for NLSE on Bridge-Type Graphs. In: Mugnolo, D. (eds) Mathematical Technology of Networks. Springer Proceedings in Mathematics & Statistics, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-319-16619-3_1

Download citation

Publish with us

Policies and ethics