Skip to main content

Real-Time Predictive Modeling and Robust Avoidance of Pedestrians with Uncertain, Changing Intentions

  • Chapter
  • First Online:
Algorithmic Foundations of Robotics XI

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 107))

Abstract

To plan safe trajectories in urban environments, autonomous vehicles must be able to quickly assess the future intentions of dynamic agents. Pedestrians are particularly challenging to model, as their motion patterns are often uncertain and/or unknown a priori. This paper presents a novel changepoint detection and clustering algorithm that, when coupled with offline unsupervised learning of a Gaussian process mixture model (DPGP), enables quick detection of changes in intent and online learning of motion patterns not seen in prior training data. The resulting long-term movement predictions demonstrate improved accuracy relative to offline learning alone, in terms of both intent and trajectory prediction. By embedding these predictions within a chance-constrained motion planner, trajectories which are probabilistically safe to pedestrian motions can be identified in real-time. Hardware experiments demonstrate that this approach can accurately predict motion patterns from onboard sensor/perception data and facilitate robust navigation within a dynamic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aoude, G.S., Luders, B.D., Joseph, J.M., Roy, N., How, J.P.: Probabilistically safe motion planning to avoid dynamic obstacles with uncertain motion patterns. Auton. Robots 35(1), 51–76 (2013)

    Article  Google Scholar 

  2. Bandyopadhyay, T., Jie, C.Z., Hsu, D., Ang Jr, M.H., Rus, D., Frazzoli, E.: Intention-aware pedestrian avoidance. Experimental Robotics, pp. 963–977. Springer, New York (2013)

    Chapter  Google Scholar 

  3. Basseville, M., Nikiforov, I.V.: Detection of abrupt changes: theory and applications. J. R. Stat. Soc.-Ser. A Stat. Soc. 158(1), 185 (1995)

    Article  Google Scholar 

  4. Bennewitz, M., Burgard, W., Cielniak, G., Thrun, S.: Learning motion patterns of people for compliant robot motion. Int. J. Robot. Res. 24(1), 31–48 (2005)

    Article  Google Scholar 

  5. Deisenroth, M.P., Huber, M.F., Hanebeck, U.D.: Analytic moment-based Gaussian process filtering. In: Bouttou, L., Littman, M. (eds.) International Conference on Machine Learning (ICML), June 2009, pp. 225–232. Omnipress, Montreal, Canada (2009)

    Google Scholar 

  6. Ellis, D., Sommerlade, E., Reid, I.: Modelling pedestrian trajectory patterns with gaussian processes. In: IEEE International Conference on Computer Vision, pp. 1229–1234 (2009)

    Google Scholar 

  7. Fulgenzi, C., Tay, C., Spalanzani, A., Laugier, C.: Probabilistic navigation in dynamic environment using rapidly-exploring random trees and gaussian processes. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), September 2008, pp. 1056–1062. Nice, France (2008)

    Google Scholar 

  8. Girard, A., Rasmussen, C.E., Quintero-Candela, J., Murray-smith, R.: Gaussian process priors with uncertain inputs—application to multiple-step ahead time series forecasting. In: Advances in Neural Information Processing Systems, pp. 529–536. MIT Press, Cambridge (2003)

    Google Scholar 

  9. Grande, R.C.: Computationally efficient Gaussian process changepoint detection and regression. Master’s thesis, Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, Cambridge, MA, June 2014

    Google Scholar 

  10. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282 (1995)

    Article  Google Scholar 

  11. How, J.P., Bethke, B., Frank, A., Dale, D., Vian, J.: Real-time indoor autonomous vehicle test environment. IEEE Control Syst. Mag. 28(2), 51–64 (2008)

    Article  MathSciNet  Google Scholar 

  12. Ikeda, T., Chigodo, Y., Rea, D., Zanlungo, F., Shiomi, M., Kanda, T.: Modeling and prediction of pedestrian behavior based on the sub-goal concept. In: Robotics: Science and Systems (2012)

    Google Scholar 

  13. Joseph, J., Doshi-Velez, F., Huang, A.S., Roy, N.: A Bayesian nonparametric approach to modeling motion patterns. Auton. Robots 31(4), 383–400 (2011)

    Article  Google Scholar 

  14. Kelley, R., Nicolescu, M., Tavakkoli, A., King, C., Bebis, G.: Understanding human intentions via hidden markov models in autonomous mobile robots. In: ACM/IEEE International Conference on Human-Robot Interaction, pp. 367–374 (2008)

    Google Scholar 

  15. Kuwata, Y., Teo, J., Karaman, S., Fiore, G., Frazzoli, E., How, J.P.: Motion planning in complex environments using closed-loop prediction. In: AIAA Guidance, Navigation, and Control Conference (GNC), August 2008, Honolulu, HI (2008) (AIAA-2008-7166)

    Google Scholar 

  16. Luders, B., Kothari, M., How, J.P.: Chance constrained RRT for probabilistic robustness to environmental uncertainty. In: AIAA Guidance, Navigation, and Control Conference (GNC), August 2010, Toronto, Canada (2010) (AIAA-2010-8160)

    Google Scholar 

  17. Michini, B., Cutler, M., How, J.P.: Scalable reward learning from demonstration. In: IEEE International Conference on Robotics and Automation (ICRA) (2013)

    Google Scholar 

  18. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3 (2009)

    Google Scholar 

  19. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The MIT Press, Cambridge (2005)

    Google Scholar 

  20. Rusu, R.B., Cousins, S.: 3d is here: Point cloud library (PCL). In: IEEE International Conference on Robotics and Automation, pp. 1–4 (2011)

    Google Scholar 

  21. Vasquez, D., Fraichard, T., Laugier, C.: Incremental learning of statistical motion patterns with growing hidden markov models. IEEE Trans. Intell. Transp. Syst. 10(3), 403–416 (2009)

    Article  Google Scholar 

  22. Zhu, Q.: Hidden markov model for dynamic obstacle avoidance of mobile robot navigation. IEEE Trans. Robot. Autom. 7(3), 390–397 (1991)

    Article  Google Scholar 

Download references

Acknowledgments

Research supported by Ford Motor Company (James McBride, Ford Project Manager) and The Boeing Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Ferguson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ferguson, S., Luders, B., Grande, R.C., How, J.P. (2015). Real-Time Predictive Modeling and Robust Avoidance of Pedestrians with Uncertain, Changing Intentions. In: Akin, H., Amato, N., Isler, V., van der Stappen, A. (eds) Algorithmic Foundations of Robotics XI. Springer Tracts in Advanced Robotics, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-16595-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16595-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16594-3

  • Online ISBN: 978-3-319-16595-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics