Chapter 10
Microplastics in the Marine Environment:
Distribution, Interactions and Effects

Amy Lusher

Abstract Microplastics are an emerging marine pollutant. It is important to
understand their distribution in the marine environment and their implications on
marine habitats and marine biota. Microplastics have been found in almost every
marine habitat around the world, with plastic composition and environmental con-
ditions significantly affecting their distribution. Marine biota interact with micro-
plastics including birds, fish, turtles, mammals and invertebrates. The biological
repercussions depend on to the size of microplastics encountered, with smaller
sizes having greater effects on organisms at the cellular level. In the micrometre
range plastics are readily ingested and egested, whereas nanometre-sized plastics
can pass through cell membranes. Despite concerns raised by ingestion, the effects
of microplastic ingestion in natural populations and the implications for food webs
are not understood. Without knowledge of retention and egestion rates of field
populations, it is difficult to deduce ecological consequences. There is evidence to
suggest that microplastics enter food chains and there is trophic transfer between
predators and prey. What is clear is that further research on a variety of marine
organisms is required to understand the environmental implications of microplas-
tics in more detail and to establish effects in natural populations.
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10.1 Introduction

With the increasing reliance on plastics as an everyday item, and rapid increase
in their production and subsequent disposal, the environmental implications of
plastics are a growing concern. The benefits of plastics, including their dura-
bility and resistance to degradation, inversely result in negative environmental
impacts. As user-plastics are primarily “single use” items they are generally
disposed of within one year of production, and whilst some plastic waste is
recycled, the majority ends up in land-fill. Concerns arise when plastics enter
the marine environment through indiscriminate disposal and it has been esti-
mated that up to 10 % of plastic debris produced will enter the sea (Thompson
20006). Interactions between litter and the marine environment are complex. The
impacts of larger plastic debris are discussed by Kiihn et al. (2015) and con-
sequences include aesthetic, social and economic issues (Newman et al. 2015),
and numerous environmental impacts on marine biota (Derraik 2002; Barnes
et al. 2009). However, with an ever increasing reliance on plastic products, and
as plastic production, use and disposal continue, microplastics are of increas-
ing concern (Sutherland et al. 2010). Microplastics enter the sea from a variety
of sources (Browne 2015) and distributed by oceans currents; these ubiquitous
contaminants are widespread (Cézar et al. 2014). The amount of microplastics
in the sea will continue to rise, leading to gradual but significant accumulation in
coastal and marine environments (Andrady and Neal 2009).

Increasing evidence of microplastics in the sea has led to a need to under-
stand its environmental impacts as a form of marine pollution. A recent review of
marine debris research found only 10 % of publications to focus on microplas-
tics, the majority of which were from the last decade (CBD 2012). Even though
plastic is the primary constituent of marine debris, microplastics are considered
under-researched due to difficulties in assessing their distribution and abundance
(Doyle et al. 2011). It has only been in recent years that international, national
and regional efforts were made to quantify microplastics in the sea. The Marine
Strategy Framework Directive (MSFD, 2008/56/EC) has highlighted concerns for
environmental implications of marine litter and one of the key attributes of the
MSED is to determine the ecological harm caused by microplastics and their asso-
ciated chemicals (Zarfl et al. 2011).

Microplastics were first described as microscopic particles in the region
of 20 um diameter (Thompson et al. 2004). For the purpose of this study,
microplastic refers to items <5 mm in size using the criteria developed by US
National Oceanic and Atmospheric Administration (NOAA) (Arthur et al. 2009).
The small size of microplastics makes them available for interaction with marine
biota in different trophic levels. By inhabiting different marine habitats, a range
of organisms are vulnerable to exposure (Wright et al. 2013a). At the millimetre
and micrometre scale, sorption of microplastics is dominated by bulk portion-
ing, with effects including blockages when fibres or fragments form aggregates.
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Whereas at smaller size ranges, specifically the nanometre scale, there is a poten-
tial for microplastics to cause harm to organisms (Galloway 2015; Koelmans
et al. 2015). Additionally, the consequences of exposure to chemicals associated
with plastics are being investigated (Rochman 2015). A widely cited hypothesis
explores how the large surface area to volume ratio of microplastics leaves them
prone to adsorbing waterborne organic pollutants and the potential for toxic plasti-
cisers to leach from polymer matrices into organisms tissues (Teuten et al. 2007).
It was further hypothesized that if subsequently ingested, microplastics may act
as a route for toxin introduction to the food chain (Teuten et al. 2009). Whether
microplastics act as vectors depends on the gradient between microplastics and
biota lipids (Koelmans 2015).

It is important to understand the transport and distribution of microplastics
before understanding their fate, including the physical and chemical effects
they could have on marine organisms. The objectives of this chapter are to
assess the environmental impact of microplastic in the sea by: (1) summarising
the distribution of marine microplastics, including the use of models to under-
stand the distribution; (2) determine the interaction of microplastics with marine
organisms.

10.2 The Global Distribution of Microplastics in the Sea

From strandlines on beaches to the deep seafloor and throughout the water col-
umn, microplastic research is dominated by studies monitoring microplastic dis-
tribution and abundance in the marine environment (Ivar du Sol and Costa 2014).
A recent estimate suggested there could be between 7000 and 35,000 tons of plas-
tic floating in the open ocean (Cozar et al. 2014). Another study estimated that
more than five trillion pieces of plastic and >250,000 t are currently floating in the
oceans (Eriksen et al. 2014). Once in the sea microplastics are transported around
the globe by ocean currents where they persist and accumulate. Microplastics are
suspended in the water column (e.g. Lattin et al. 2004), surface waters (e.g. Cdzar
et al. 2014), coastal waters (e.g. Ng and Obbard 2006), estuaries (e.g. Browne
et al. 2010), rivers (Sadri and Thompson 2014), beaches (e.g. Browne et al. 2011)
and deep-sea sediments (Van Cauwenberghe et al. 2013b; Woodall et al. 2014;
Fischer et al. 2015). Suspended in the water column, microplastics can become
trapped by ocean currents and accumulate in central ocean regions (e.g. Law et al.
2010). Ocean gyres and convergent zones are noteworthy areas of debris accumu-
lation, as the rotational pattern of currents cause high concentrations of plastics
to be captured and moved towards the centre of the region (Karl 1999). As gyres
are present in all of the world’s oceans, microplastic accumulation can occur at a
global scale and has been documented during the past four decades. Distribution
is further influenced by wind mixing, affecting the vertical movement of plastics



248 A. Lusher

(Kukulka et al. 2012). Physical characteristics of plastic polymers, including their
density, can influence their distribution in the water column and benthic habitats
(Murray and Cowie 2011). Buoyant plastics float at the surface, whereas more
dense microplastics or those fouled by biota sink to the sea floor. It has recently
been estimated that 50 % of the plastics from municipal waste have a higher
density than seawater such that it will readily sink to the seafloor (Engler 2012).
It is currently not economically feasible nor is it desirable to remove microplastics
from the ocean.

A number of concerns have been raised regarding the assessment of microplas-
tic distribution. There are multiple pathways for the introduction of microplastics
into the marine environment which do not have accurate timescales for the rate of
degradation (Ryan et al. 2009). Quantification is complicated by the size of the
oceans in relation to the size of plastics being assessed (Cole et al. 2011), which
are further confounded by ocean currents and seasonal patterns introducing spatial
and temporal variability (Doyle et al. 2011). As a result, there are various tech-
niques applied to the sampling of microplastics in the marine environment (Loder
and Gerdts 2015). Results of studies have been reported in different dimensions,
e.g. the number of microplastics in a known water volume (particles m~3) or area
measurements (particles km™2). This discrepancy presents a problem when com-
paring between studies, as it is not possible to compare results directly. For the
purpose of this review, which aims to carry out a critical assessment of the global
knowledge of microplastic distribution, a conversion was made to enable compari-
sons between the different dimensions of measurement. It is reasonable to assume
that surface samples are collected in the top 0.20 m of water and therefore by mak-
ing a simple calculation to add a third dimension (firstly converting particle km~2
to m~2, then multiplying by 0.20 m to convert to a volume measurement, m~>) we
are able to compare different sampling methods in a variety of geographical loca-
tions. However, because of current directions in relation to boats, and approximate
vessel speeds, it is difficult to calculate the amount of water passing through a net.
As nets can ride out of the water, the exact volume of water passing through is
unknown: the calculations have to be considered, at best, estimations.

It is important to understand the distribution of microplastics in the sea to grasp
their potential impacts. This section will present a number of studies document-
ing microplastics in geographical regions including the Pacific, Atlantic, European
Seas and the Mediterranean Sea, Indian Ocean and polar regions. It will introduce
modelling strategies that have been utilised to understand microplastic distribution
and accumulation around the globe.

10.2.1 Microplastics in the Pacific Ocean

Numerous studies on microplastics have been undertaken in the Pacific Ocean, the
world’s largest water basin (Table 10.1). One area which has received considerable
attention is the North Pacific Central Gyre (NPCG) located off the west coast of
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Table 10.1 Mean abundance (£SD, unless stated otherwise) of microplastic debris in the
surface waters of the Pacific Ocean

Location Equipment used | Amount (£SD) Particles Source
(m~)
North Pacific
Bering Sea Ring net 80 (£190) km 2 0.000016 Day and Shaw
(1987)
Bering Sea Ring/neuston net | 1.0 (+ 4.2) km~2 0.0000002 | Day et al. (1990)
Bering Sea Sameota sampler/ | Range: 0.004-0.19 | Doyle et al. (2011)
manta net 0.004-0.19 m—3
Subarctic N.P. Ring net 23 370 (+2,380) km—2 | 0.00067 Day and
Shaw (1987)

Subarctic N.P. Ring/neuston net | 61.4 (£225.5) km~2 |0.000012 Day et al. (1990)
Eastern North Pacific
Vancouver Island, | Underway 279 (£178) m 3 279 Desforges et al.
Canada sampling (2014)
Eastern North Plankton net Estimated 21,290 t / Law et al. (2014)
Pacific afloat
N.P. transitional | Ring/neuston 291.6 (£714.4) km~2|0.00012 Day et al. (1990)
water net
N.P. central gyre | Manta net 334,271 km~2 “2.23 Moore et al. (2001)
N.P. central gyre | Manta net 85,184 km 2 0.017 Carson et al. (2013)
N.P. subtropical | Plankton net/manta| Median: 0.116 m— | 0.12 Goldstein et al.
gyre 1999-2010 | net/neuston net (2012)
South Californian | Manta net Median: 0.011- Gilfillan et al.
current system 0.011-0.033 m™3 0.033 (2009)
Santa Monica Bay, Manta net 3.92m™3 3.92 Lattin et al. (2004)
California, USA
Santa Monica Bay, | Manta net 7.25m73 7.25 Moore et al. (2002)
California, USA
N.P. subtropical | Manta net Median: 0.0042- Goldstein et al.
gyre 0.02-0.45 m~—2 0.089 (2013)
South Equatorial | Neuston net 137 km—2 0.000027 Spear et al. (1995)
current
Equatorial counter 24 km—2 0.0000048
current
Western North Pacific
Subtropical N.P. | Ring net 496,100 0.019 Day and Shaw

(£780,000) km—2 (1987)
Subtropical N.P. | Ring/neuston 535.1 (£726.1) km~2 | 0.00011 Day et al. (1990)

net

Near-shore waters, | Ring/neuston net | 128.2 (+172.2) km~2 | 0.000026 Day et al. (1990)
Japan
Kuroshio current | Neuston net 174,000 0.034 Yamashita and

system

(£467,000) km—2

Tanimura (2007)

(continued)
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Table 10.1 (continued)

A. Lusher

Location Equipment used | Amount (£SD) Particles Source
(m~)
Yangtze estuary Neuston net 4,137.3 4137.3 Zhao et al. (2014)
system, East (£8.2 x 10 m™3
China Sea
Geoje Island, Bulk sampling, 16,000 16,000 Song et al. (2014)
South Korea hand-net, manta | (£14 x 10%) m—3
net
South Pacific
South Pacific Manta net 26,898 0.0054 Eriksen et al.
subtropical gyre (£60,818) km~2 (2013)
Australian coast | Neston net b4256.3 0.00085 Reisser et al. (2013)
Manta net (£757.8) km™>

If particles in m~3 were not reported, the values have been converted as follows: (1) km~2 to

m~2: by division by 1,000,000 followed by multiplication by 0.2 m; (2) m~2 to m~> carried out
by 0.2 multiplication

#Mean +95 % confidence intervals

"Mean = standard error

California, USA. The gyre contains possibly the most well publicised area of plas-
tic accumulation, known as the “Great Pacific Garbage Patch” (Kaiser 2010).
Microplastic concentrations in the NPCG have increased by two orders of magni-
tude in the last four decades (Goldstein et al. 2012). In comparison, microplastic
abundance in the North Pacific subtropical gyre (NPSG) is widespread and spa-
tially variable, but values are two orders of magnitude lower than in the NPCG
(Goldstein et al. 2013). Microplastic studies in the south Pacific are limited to the
subtropical gyre where an increasing trend of microplastics was found towards the
centre of the gyre (5.38 particles m—3 ! Eriksen et al. 2013). In a similar way to
macroplastic debris, oceanographic features strongly affect the distribution of
microplastics in open oceans and areas of upwelling create oceanographic conver-
gence zones for marine debris.

Coastal ecosystems of the Pacific appear to be impacted by microplastics in
areas of nutrient upwelling (Doyle et al. 2011) and influenced by local weather
systems (Moore et al. 2002; Lattin et al. 2004). Microplastic load increased fur-
ther inshore, reflecting the inputs from terrestrial runoff and particles re-suspended
from sediments following storms (Lattin et al. 2004). Microplastics are in turn
transported by ocean currents from populated coastal areas (Reisser et al. 2013).
This is also reflected in offshore subsurface waters which had 4-27 times less
plastics than coastal sites in the northeast Pacific (Desforges et al. 2014).

Pre-production plastic resin pellets and fragments wash up on coastlines world-
wide and have been recovered from several Pacific beaches (Table 10.2). Plastic
pellets, typically 3—5 mm in size, are made predominantly from the polymers pol-
yethylene and polypropylene (Endo et al. 2005; Ogata et al. 2009). The average

! Calculated from km~2
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Table 10.2 Mean microplastic abundance (+SD, unless otherwise stated) in sediments from the

Pacific

Location Types ‘ Amount (£SD) ‘ Source

North Pacific

Pacific beaches Fragments 10 mm / Hirai et al. (2011)

9 beaches, Hawaiian Fragments 1-15 mm 378 kg~! *McDermid and
islands Pellets 1-15 mm %4 9kg~! McMullen (2004)
Hawaiian islands Pellets and fragments / Rios et al. (2007)
Kauai, Hawaiian Fragments and pellets / Corcoran et al. (2009)
islands 0.8-6.5 mm

Kauai, Hawaiian Fragments <1 cm / Cooper and Corcoran
islands (2010)

Kamillo Beach, Pellets and fragments Total: 248 Carson et al. (2011)
Hawaii

Northeast Pacific

Los Angeles, Pellets and fragments / Rios et al. (2007)
California, USA

San Diego, California, | Pellets and fragments / Van et al. (2012)

USA <5 mm

Beaches, western USA | Pellets / Ogata et al. (2009)
Guadalupe Island, Pellets and fragments / Rios et al. (2007)
Mexico

Northwest Pacific

Coastal beaches, Fragments and pellets 529 m—2 Kusui and Noda (2003)
Russia

Tokyo, Japan Pellets >1,000 m~2 Kuriyama et al. (2002)
Coastal beaches, Japan | Pellets / Mato et al. (2001)
Coastal beaches, Japan | Pellets %0.52 m—2 Kusui and Noda (2003)

Fragments °1.1m—2
Coastal beaches, Japan | Pellets <5 mm >100 per beach | Endo et al. (2005)

Korean Strait

Heugnam Beach, South | PS spheres 874 (£377) m~2 | Heo et al. (2013)
Korea Fragments 25 (£10) m—2
Pellets 41 (£19) m—2
South China Sea
Ming Chau Island, Pellets / Ogata et al. (2009)
Vietnam
Hong Kong, China Pellets / Ogata et al. (2009)
South Pacific
Coastal beaches, New | Pellets <5 mm >1,000 m~! Gregory (1978)
Zealand
Coastal beaches, Chile | Fragments and pellets 30 m—2 Hidalgo-Riz and Thiel
1-10 mm (2013)
Easter Island, Chile Fragments and pellets 805 m~2 Hidalgo-Riz and Thiel

1-10 mm

(2013)

4Calculated from total plastic collected from an overall total of 440 L of beach sediment
bCalculated from total plastics found over total survey area
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abundance of plastic fragments on beaches in the southeast Pacific was greater
in isolated areas (Easter Island: >800 items m~2) than on beaches from conti-
nental Chile (30 items m~2) (Hidalgo-Ruz and Thiel 2013). This trend has been
seen in the Hawaiian archipelago, where the remotest beaches on Midway Atoll
and Moloka’l contained the highest quantity of plastic particles (McDermid and
McMullen 2004; Corcoran et al. 2009; Cooper and Corcoran 2010).

10.2.2 Microplastics in the Atlantic Ocean

Research on microplastic distribution in the Atlantic is less extensive than in the
Pacific (Table 10.3), but includes a number of long-term studies. A time-series
conducted in the north Atlantic and Caribbean Sea identified microplastics in 62 %
of the trawls conducted with densities reaching 580,000 particles km~2 (Law et al.
2010). Distinct patterns emerged with the highest concentration (83 % of plas-
tics) in subtropical latitudes, 22°N and 88°N, of the north Atlantic gyre marking
the presence of a large-scale convergence zone (Law et al. 2010; Morét-Ferguson
et al. 2010) similar to the south Pacific (Eriksen et al. 2013). Converging surface
currents driven by winds are assumed to be the driving force of this accumula-
tion. To assess long-term trends in abundance, a time-series data set of continu-
ous plankton recorder (CPR) samples from north Atlantic shipping routes were
re-examined and microplastics were identified from the 1960s with a signifi-
cant increase over time (Thompson et al. 2004). Regular sampling schemes have
begun to monitor the spatial and temporal trends of microplastics in the northeast
Atlantic and found microplastics to be widespread and abundant (Lusher et al.
2014).

Microplastics accumulate in the coastal pelagic zones of the Atlantic
(Table 10.3). Water samples from the Portuguese coast identified microplas-
tics in 61 % of the samples with higher concentrations found in Costa Vicentina
and Lisbon (0.036 and 0.033 particles m~3, respectively) than in the Algarve and
Aveiro (0.014 and 0.002 particles m~3, respectively). These results are probably
related to the proximity to urban areas and river runoff (Frias et al. 2014), which is
similar to the trend seen in the Pacific. Following a MARMAP cruise in the south
Atlantic, microplastic beads were present in 14.6-34.2 % of tows conducted (van
Dolah et al. 1980). Pelagic subsurface plankton samples from a geographically
isolated archipelago, Saint Peter and Saint Paul, were not free of microplastic frag-
ments. Modelling studies suggested that oceanographic mechanisms promote the
topographic trapping of zooplankton and therefore microplastics might be retained
by small-scale circulation patterns (Ivar do Sul et al. 2013). Additionally, research
in the Firth of Clyde (U.K.) indicated that intense environmental sampling regimes
are necessary to encompass the small-scale and temporal variation in coastal
microplastic abundance (Welden, pers. comm.).

Microplastic granules and pellets have been identified on Atlantic beaches
since the 1980s (Table 10.4). It was hypothesised that pre-production pellets are
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Table 10.3 Mean abundance (£SD, unless stated otherwise) of microplastic debris in the sur-
face waters of the Atlantic Ocean

Location ‘ Equipment used ‘ Amount (£ SD) ‘ Particles (m—?) ‘ Source
North Atlantic
North Atlantic Plankton net 20,328 0.0041 Law et al. (2010)
gyre (29-31°N) (£2,324) km 2
North Atlantic Continuous 1960-1980: 0.01 Thompson et al.
plankton 0.0l m™3 (2004)
recorder (CPR) | 1980-2000: 0.04
0.04 m~3
Northwest Atlantic
Northwest Neuston net 2490 km > 0.00098 Wilber (1987)
Atlantic
Block Island Plankton net Range: 14-543 Austin and
Sound, USA 14-543 m~—3 Stoops-Glass
1977)
Gulf of Maine Plankton net 1534 0.00031 Law et al. (2010)
(£200) km—2
New England, Plankton net Mean ranges: 0.00-2.58 Carpenter et al.
USA 0.00-2.58 m~3 (1972)
Continental Neuston net 2,773 km™2 0.00056 Colton et al.
shelf, west coast (1974)
USA
Western Neuston net 3,537 km~2 0.00071 Carpenter and
Sargasso Sea Smith (1972)
Caribbean Sea
Caribbean Neuston net 60.6-180 km~2 | 0.000012— Colton et al.
0.000036 (1974)
Caribbean Plankton net 1,414 0.00028 Law et al. (2010)
(£112) km™2
Northeast Atlantic
Offshore, Ireland | Underway 246 m3 2.46 Lusher et al.
sampling (2014)
English Channel, | Plankton net 0.27 m~3 0.27 Cole et al.
U.K. (2014a)
Bristol Channel, | Lowestoft Range: 0—>100 Morris and
UK. plankton 0-100 m—3 Hamilton (1974)
sampler
Severn Estuary, Kartar et al.
UK. (1973, 1976)
Portuguese coast | Neuston net/ 0.02-0.036 m™ | 0.02-0.036 Frias et al. (2014)
CPR
Equatorial Atlantic
St. Peter Plankton net 0.0l m—3 0.01 Ivar do Sul et al.
and St. Paul (2013)
Archipelago,
Brazil

(continued)
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Table 10.3 (continued)
Location ‘ Equipment used ‘ Amount (£ SD) ‘ Particles (m ) ‘ Source
South Atlantic
South Atlantic Neuston net Mean weight: van Dolah et al.
Bight 0.03-0.08 mgm—2 (1980)
Cape Basin, Neuston sledge | 1,874.3 km—? 0.00037 Morris (1980)
South Atlantic
Cape Province, Neuston net 3,640 km—2 0.00073 Ryan (1988)
South Africa
Fernando Manta net 0.03m™3 0.03 Ivar do Sul et al.
de Noronha, (2014)
Abrolhos and
Trindade, Brazil
Gioana estuary, | Conical 26.04-100m=3 0.26 Lima et al.
Brazil plankton net (2014)

If particles in m~3

were not reported, the values have been converted as follows: (1) km~2 to

m~2: by division by 1,000 000, followed by multiplication by 0.2 m; (2) m~2 to m~> carried out

multiplication by 0.2

2This value is for pellets only, although fragments >5 mm were also reported

Table 10.4 Mean microplastic abundance (£SD, unless stated otherwise) in sediments from the

Atlantic
Location Types ‘ Amount ‘ Source
North Atlantic
Nova Scotia, Canada | Pellets Max: <10 m™~! Gregory (1983)
Nova Scotia, Canada | Fibres 200-800 fibres kg~! | Mathalon and Hill
(2014)
Beaches, eastern USA | Pellets Ogata et al. (2009)
Factory beaches, New | Spheres Hays and Cormons
York, USA (1974)
“Maine, USA Pellets and fragments | 105 kg™! Graham and
Thompson (2009)
“Florida, USA Pellets and fragments | 214 kg~! Graham and
Thompson (2009)
Florida Keys, USA Pellets and fragments | 100-1,000 m~2 Wilber (1987)
Cape Cod, USA Pellets and fragments | 100—1,000 m—2 Wilber (1987)

North Carolina, USA

Fragments <5 cm

60 % of debris in size
class

Viehman et al. (2011)

Bermuda

Pellets

>5,000 m~!

Gregory (1983)

Bermuda

Pellets and fragments

2,000-10,000 m~2

Wilber (1987)

Bahamas

Pellets and fragments

Windward:
500-1,000 m—2

Wilber (1987)

Leeward:
200-500 m—2

Lesser Antilles

Pellets and fragments

Windward:
100-5,000 m—2

Wilber (1987)

Leeward:
50-100 m~2

(continued)
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Location Types Amount Source

Le Havre, France Pellets Endo et al. (2013)

Costa Nova, Portugal | Pellets Ogata et al. (2009)

Lisbon, Portugal Fibres and pellets Frias et al. (2010)

Portuguese coast Pellets and fragments | 185.1 m~2 Martins and Sobral
(2011)

Portuguese coast Pellets 3—-6 mm 1,289 m~2 Antunes et al. (2013)

*Porcupine abyssal Fragments 40 item m > Van Cauwenberghe

plain et al. (2013b)

Canary Islands, Spain | Pellets and fragments | <1 g kg~ l- Baztan et al. (2014)

<5 mm >40 gkg~!

English Channel

Estuarine sediment,

Fragments and fibres

Maximum: 31 kg~!

Thompson et al.

U.K. (2004)
*Subtidal sediments, | Fragments and fibres | Maximum: 86 kg~! Thompson et al.
U.K. (2004)

Plymouth, U.K.

Pellets

Ogata et al. (2009)

South Devon, U.K.

Pellets

~100

Ashton et al. (2010)

Tamar estuary, U.K.

Fragments <1 mm

65 % of total debris

Browne et al. (2010)

Southwest England,
UK.

Pellets

~100 at each location

Holmes et al. (2012)

South Atlantic

Fernando de Pellets 23 % b3 5kg~! Ivar do Sul et al.
Noronha, Brazil Fragments 65 % 59.63 kg~! (2009)
Nylon monofilament | °0.73 kg~
5%
Recife, Brazil Fragments 96.7 % 300,000 m—3 Costa et al. (2010)
Pellets 3.3 %
Northeast Brazil Fragments 1-10 mm | 59 items m—> Costa et al. (2011)
*Southern Atlantic Fragments 340 items m~2 Van Cauwenberghe
etal. (2013b)
Santos Bay, Brazil Pellets 0-2,500 m—3 Turra et al. (2014)

All sediments are beach sediments unless annotated with *, which refers to benthic or subtidal
sediment. d.w. is dry weight of sediment. When originally reported in 1, values were converted to kg
3Estimated from 1 item 25 cm ™2

bCalculated from total weight of sand (13,708 g)

¢Calculated from 0.3 items cm ™

transported by trans-oceanic currents before being washed ashore in areas such
as the mid-Atlantic Archipelago, Fernando de Noronha (Ivar do Sul et al. 2009).
Fragments make up a considerable proportion of marine debris on saltmarsh
beaches in North Carolina (Viehman et al. 2011), the Canary Islands (Baztan
et al. 2014) and beaches and intertidal plains in Brazil (Costa et al. 2010, 2011).
Whereas, fibres were primarily identified in sediment samples from an intertidal
ecosystem in Nova Scotia, Canada (Mathalon and Hill 2014).
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Table 10.5 Mean microplastic abundance in surface waters of the Mediterranean and European seas

Location Equipment used | Amount Particles Source
(m~)

West coast, Manta net Range: 150-2400 Norén (2007)
Sweden (80 pm) 150-2,400 m~>

Manta net Range: 0.01-0.14

(450 pm) 0.01-0.14 m—3
Skagerrak, Submersible Maximum: 102,000 Norén and
Sweden in situ pump 102,000 m—3 Naustvoll (2011)
Northwest Manta net 1.33 m™2 0.27 Collignon et al.
Mediterranean (2012)
Bay of Calvi, wp2 net 0.062 m~2 0.012 Collignon et al.
Corsica, France (2014)
Gulf of Oristano, | Manta net 0.15m™3 0.15 de Lucia et al.
Sardinia, Italy (2014)
North Sea, Manta net Range: 0-0.74 0-0.74 Magnusson (2014)
Finland m3

If particles in m—> were not reported, the values have been converted as follows: (1) km~2 to

m~2 by division by 1,000,000 followed by multiplication by 0.2 m; (2) m~2 to m~3 carried out
multiplication by 0.2

10.2.3 Microplastics in European Seas
and the Mediterranean Sea

Marine litter including microplastic is a serious concern in the Mediterranean, with
plastics accounting for 70-80 % of litter identified (Fossi et al. 2014). This
enclosed water basin is not free of microplastic contamination (Table 10.5). Levels
of microplastics in surface waters of the northwest Mediterranean were similar to
those reported for the NPCG, (0.27 particles m—> 2 Collignon et al. 2012), and
areas far away from point sources of pollution have high microplastic abundance
(0.15 particles m~3; de Lucia et al. 2014). Interestingly, fewer particles were
recorded from surface waters from coastal Corsica (0.012 particles m3 3
Collignon et al. 2014). Microplastic distribution is strongly influenced by wind
stress, which may redistribute particles in the upper layers of the water column and
preclude sampling by surface tows (Collignon et al. 2012). Oceanographic influ-
ences may affect the distribution of microplastics in the Mediterranean. Further
research will help to clarify if the new hypothesis by de Lucia et al. (2014) holds,
which suggests that upwelling dilutes the amount of plastic in the surface waters.
Microplastics, including beads and pellets, have been widely reported for sedimen-
tary habitats and beaches in European Seas and the Mediterranean Sea (Table 10.6).
Microplastics have been extracted from sediments from Norderney, in the North
Sea (Dekiff et al. 2014; Fries et al. 2013) and samples taken at the East Frisian

2Calculated from 1.334 particles m~2.
3Calculated from 0.062 particles m~2,
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Table 10.6 Mean microplastic abundance (+SD, unless stated otherwise) in sediments from the

Mediterranean and European seas

Location ‘ Types ‘ Amount ‘ Source

North Sea

Harbor sediment, Fragments 420 and 50 kg_l Norén (2007)

Sweden

Industrial harbor Pellets 23320 kg~! Norén (2007)

sediment, Sweden

Industrial coastal Pellets 4340 kg’1 Norén (2007)

sediment, Sweden

Spiekeroog, Germany Fibres and granules 53,800 kg~! d.w. Liebezeit and Dubaish

(2012)

Jade System, Germany Fibres 88 (£82) kg_1 Dubaish and Liebezeit
Granules 64 (£194) kg™! (2013)

Norderney, Germany Fragments / Fries et al. (2013)

Norderney, Germany Fragments 1.3,1.7,23 kg_1 d.w. Dekiff et al. (2014)

Zandervoord, Pellets / Ogata et al. (2009)

Netherlands

*Harbor, Belgium

Fibres, granules, films,
spheres

116.7 (£92.1)
kg~'d.w.

Claessens et al. (2011)

*Continental shelf,
Belgium

Fibres, granules, films

97.2 (+18.6) kg~ ! d.w.

Claessens et al. (2011)

Beach, Belgium

Fibres, granules, films

92.8 (£37.2) kg~ d.w.

Claessens et al. (2011)

Beach, Belgium

Pellets and fragments

17 (£11) kg™ !

Van Cauwenberghe et al.
(2013a)

Forth estuary, U.K. Pellets / Ogata et al. (2009)

Mediterranean Sea

8 beaches, Malta Pellets 0.7-167 m™2 Turner and Holmes
(2011)

Sicily, Italy Pellets / Ogata et al. (2009)

Venice lagoon, Italy Fragments and fibres 672-2,175 kg~ d.w. Vianello et al. (2013)

*Nile deep sea fan, Fragments °40 items m—2 Van Cauwenberghe et al.

Mediterranean (2013b)

Lesvos, Greece Pellets / Karapangioti and Klontza
(2007)

Kato Achaia, Greece Pellets / Ogata et al. (2009)

Beaches, Greece Pellets / Karapanagioti et al.
(2011)

Kea Island, Greece Pellets 10, 43, 218, 575 m 2 Kaberi et al. (2013)

Tripoli-Tyre, Lebanon Pellets and fragments / Shiber (1979)

Costa del Sol, Spain Pellets / Shiber (1982)

18 beaches, western Pellets / Shiber (1987)

Spain

Izmir, Turkey Pellets / Ogata et al. (2009)

All sediments are beach sediments unless annotated with *, which refers to benthic or subtidal
sediment. d.w. is dry weight of sediment. When originally reported in 1, values were converted to kg
4Calculated from 100 ml sediment
bCalculated from 10 g sediment

CEstimated from 1 item 25 cm™

2
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Islands, where tidal flats were more contaminated than sandy beaches (Liebezeit and
Dubaish 2012). Areas of low hydrodynamics appear to have high microplastic abun-
dance, such as the Venice lagoon (Vianello et al. 2013). Reduced water movement
could also be attributed to the difference between concentrations of microplastics in
Belgium: higher concentrations of microplastics were identified in sediments from
Belgium harbors (Claessens et al. 2011) than in beach samples (Van Cauwenberghe
et al. 2013a). Lastly, microplastics were recorded in deep offshore sediments (Van
Cauwenberghe et al. 2013b; Fischer et al. 2015), which shows that microplastics sink
to the deep seafloor. In fact, the deep seafloor may be considered a major sink for
microplastic debris (Woodall et al. 2014) and explain the current mismatch between
estimated global inputs of plastic debris to the oceans (Jambeck et al. 2015) and field
data (Cézar et al. 2014; Eriksen et al. 2014), which refer largely to floating litter.

10.2.4 Microplastics in the Indian Ocean and Marginal Seas

To date there are few large-scale reports on microplastics from the Indian Ocean.
Reddy et al. (2006) reported microplastic fragments from a ship-breaking yard in
the Arabian Sea, and microplastics accounted for 20 % of the plastics recorded
on sandy beaches in Mumbai (Jayasiri et al. 2013). Pellets were also recorded on

Table 10.7 Mean microplastic abundance (+SD, unless stated otherwise) in sediments from the
Indian Ocean and marginal seas

Location Types ‘ Amount ‘ Source

Arabian Sea

Ship-breaking yard, Fragments 81 mg kg~! Reddy et al. (2006)

Alang-Sosiya, India

Mumbai, Chennai and | Pellets / Ogata et al. (2009)

Sunderbans, India

Mumbai, India Fragments 41.85 % of total plastics | Jayasiri et al. (2013)

East Asian Marginal Seas

Coastline, Singapore | Fragments / Ng and Obbard (2006)

Coastline, Singapore | Fibres, grains, 36.8 £23.6 kg~ Mohamed Nor and
fragments Obbard (2014)

Selangor, Malaysia Pellets <18 m~2 Ismail et al. (2009)

Lang Kawi, Penang Pellets / Ogata et al. (2009)

and Borneo, Malaysia

Rayong, Thailand Pellets / Ogata et al. (2009)

Jakarta Bay, Indonesia | Pellets / Ogata et al. (2009)

Southern Indian Ocean | Pellets / Ogata et al. (2009)

Mozambique Pellets / Ogata et al. (2009)

Gulf of Oman Pellets >50-200 m~2 Khordagui and Abu-

Arabian Gulf Pellets >50-80,000 m 2 Hilal (1994)

All sediments are beach sediments
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Malaysian beaches (Ismail et al. 2009). Most of the studies shown in Table 10.7
are part of the “International Pellet Watch” (Takada 2006; Ogata et al. 2009).
Shoreline surveys conducted in surface waters and sediments on Singapore’s
coasts identified microplastics >2 um (Ng and Obbard 2006). This highlights an
area that requires further investigation to obtain a wider picture of microplastic
distribution around the globe.

10.2.5 Microplastics in Polar Regions

Prior to 2014, there had been no direct studies of microplastics in either the Arctic
or Antarctica; the plastic flux into the Arctic Ocean has been calculated to range
between 62,000 and 105,000 tons per year, with variation due to spatial heterogene-
ity, temporal variability and different sampling methods (Zarfl and Matthies 2010).
With the estimated value four to six orders of magnitude below the atmospheric
transport and ocean current fluxes, the study concluded that plastic transport levels
to the Arctic are negligible and that plastics are not a likely vector for organic pol-
lutants to the Arctic. However, Obbard et al. (2014) published results from ice cores
collected from remote locations in the Arctic Ocean. The levels of microplastics
observed (range: 38-234 particles m~3) were two orders of magnitude greater than
previously reported in the Pacific gyre (Goldstein et al. 2012). Macroplastics have
been identified floating in surface waters of Antarctica. However, trawls for micro-
plastics did not catch any particles (Barnes et al. 2010). Dietary studies of birds from
the Canadian Arctic have reported ingested plastics (Mallory et al. 2006; Provencher
et al. 2009, 2010), and macroplastics were observed on the deep Arctic seafloor
(Bergmann and Klages 2012). This indirect evidence suggests that microplastics
have already entered polar regions. A modelling study even suggests the presence or
formation of a sixth garbage patch in the Barents Sea (van Sebille et al. 2012).

10.2.6 Modelling the Distribution of Microplastics

Studies have highlighted the interaction of oceanographic and environmental
variables on the distribution of microplastics (e.g. Eriksen et al. 2013). As poly-
mer densities affect the distribution of plastics in the water column, it is impor-
tant to understand how microplastics are transported at the surface and at depths.
Knowledge of point-source pollution, including riverine input and sewage drain-
age into marine and coastal environments, can be useful in understanding the
extent to which certain ecosystems are affected. Furthermore, knowledge of plastic
accumulation on beaches will benefit the study of microplastics. For example, a
study of plastic litter washed onto beaches developed a particle tracking model,
which indicated that, if levels of plastic outflow remain constant over the com-
ing decade, plastic litter quantity on beaches would continue to increase, and in
some cases (3 % of all east Asian beaches) could see a 250-fold increase in plastic
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litter (Kako et al. 2014). If not removed, these larger items of plastic litter will
break down into microplastics over time.

The fate of plastics in the marine environment is affected by poorly understood
geophysical processes, including ocean mixing of the sea-surface boundary layer,
re-suspension from sediments, and sinking rates plastics denser than seawater.
Modelling approaches are required to further understand, and accurately estimate
the global distribution, residence time, convergence zones, and ecological conse-
quences of microplastics (Ballent et al. 2013). Models predicting the breakdown,
fragmentation, and subsequent mixing and re-suspension of microplastics in sedi-
ments and seawater could provide an estimation of microplastic accumulation over
short and long time scales; as well as an estimation of the dispersal patterns of
microplastics in the marine environment. Generalized linear models have indicated
that oceanographic mechanisms may promote topographic trapping of zooplank-
ton and microplastics, which may be retained by small-scale circulation patterns
in the Equatorial Atlantic, suggesting there is an outward gradient of microplastics
moving offshore (Ivar do Sul et al. 2013). The recovery of plastic from surface
seawater is dependent on wind speeds: stronger winds resulted in the capture of
fewer plastics because wind-induced mixing of the surface layer vertically distrib-
utes plastics (Kulkula et al. 2012). Furthermore, by integrating the effect of verti-
cal wind mixing on the concentrations of plastics in Australian waters, researchers
estimated depth-integrated plastic concentrations, with high concentrations
expected at low wind speeds. Thus, with the inverse relationship between wind
force and plastic concentration, net tow concentrations of microplastics increased
by a factor of 2.8 (Reisser et al. 2013).

Ballent et al. (2013) used the MOHID modelling system to predict the disper-
sal of non-buoyant pellets in Portugal using their density, settling velocity and
re-suspension characteristics. Researchers simulated the transport of microplastic
pellets over time using oceanographic processes, scales and systems. Model pre-
dictions suggest that the bottom topography restricts pellet movement at the head
of the Nazaré Canyon with a potential area of accumulation of plastics pellets on
the seafloor, implying long-term exposure of benthic ecosystems to microplastics.
Tidal forces, as well as large-scale oceanographic circulation patterns are likely
to transport microplastics up and down the Nazaré Canyon, which may be greatly
increased during mass transport of waters linked to storms (Ballent et al. 2013) or
deep-water cascading events (Durrieu de Madron et al. 2013).

With residence times from decades to centuries predicted for microplastics in the
benthic environment (Ballent et al. 2013), future studies should assess the degrada-
tion of microplastics on the seafloor to be able to estimate residence times in those
potential sink environments. Coupled with observations of microplastics in surface
waters, the total oceanic plastic concentrations might be underestimated because
of limited but growing knowledge of the geophysical and oceanographic processes
in the surface waters. Furthermore, as microplastics degrade towards a nanome-
tre scale, transport properties may be affected, and as a result, long-term transport
models will need to be corrected. Modelling should be adapted to bring in ecologi-
cal consequences of microplastics in benthic environments and the water column.
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Research should focus on critical areas such as biodiversity hotspots and
socio-economic hotspots that could affect vulnerable marine biota and coastal
communities.

10.2.7 Summary

Microplastics have been documented in almost every habitat of the open oceans
and enclosed seas, including beaches, surface waters, water column and the
deep seafloor. Although most water bodies have been investigated, there is a lack
of published work from polar regions and the Indian Ocean. Further research is
required to accurately estimate the amount of different types of microplastics in
benthic environments around the globe. Distribution of microplastics depends on
environmental conditions including ocean currents, horizontal and vertical mixing,
wind mixing and biofilm formation, as well as the properties of individual plastic
polymers. A number of modelling approaches have been considered in the recent
literature, which highlighted the effect of wind on the distribution of microplastics
in the ocean. Oceanographic modelling of floating debris has shown accumula-
tion in ocean gyres, and the distribution of microplastics within the water column
appears to be dependent on the composition, density and shape of plastic poly-
mers affecting their buoyancy. Further modelling studies may help to identify and
predict regions with ecological communities and fisheries more vulnerable to the
potential consequences of plastic contamination. The distribution of microplas-
tic plays a significant role in terms of which organisms and habitats are affected.
Widespread accumulation and distribution of microplastics raises concerns regard-
ing the interaction and potential effects on marine organisms.

10.3 Interactions of Microplastics with Marine Organisms

Recently, Wright et al. (2013a) discussed the biological factors, which could
enhance microplastic bioavailability to marine organisms: the varying density of
microplastics allows them to occupy different areas of the water column and ben-
thic sediments. As microplastics interact with plankton and sediment particles, both
suspension and deposit feeders may be at risk of accidentally or selectively ingest-
ing marine debris. However, the relative impacts are likely to vary across the size
spectrum of microplastic in relation to the organisms affected, which is depend-
ent on the size of the microplastic particles encountered. Microplastics in the upper
end of the size spectrum (1-5 mm) may compromise feeding and digestion. For
example, Codina-Garcia et al. (2013) isolated such pellets and fragments from
the stomachs of seabirds. Particles <20 um are actively ingested by small inverte-
brates (e.g. Thompson et al. 2004) but they are also egested (e.g. Lee et al. 2013).
Studies have shown that nanoparticles can translocate (e.g. Wegner et al. 2012)
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and model simulations have indicated that nano-sized polystyrene (PS) particles
may permeate into the lipid membranes of organisms, altering the membrane struc-
ture, membrane protein activity, and therefore cellular function (Rossi et al. 2013).
The following section deals with incidences of ingestion, trophic transfer and pro-
vision of new habitat by the presence of microplastics in the marine environment.
Although the sections contain examples, comprehensive lists of microplastics
ingestion are included in the corresponding tables.

10.3.1 Ingestion

Ingestion is the most likely interaction between marine organisms and microplas-
tics. Microplastics’ small size gives them the potential to be ingested by a wide
range of biota in benthic and pelagic ecosystems. In some cases, organisms feed-
ing mechanisms do not allow for discrimination between prey and anthropogenic
items (Moore et al. 2001). Secondly, organisms might feed directly on micro-
plastics, mistaking them for prey or selectively feed on microplastics in place of
food (Moore 2008). If there is a predominance of microplastic particles associated
with planktonic prey items, organisms could be unable to differentiate or prevent
ingestion. A number of studies have reported microplastics from the stomachs and
intestines of marine organisms, including fish and invertebrates. Watts et al. (2014)
showed that shore crabs (Carcinus maenas) will not only ingest microplastics
along with food (evidence in the foregut) but also draw plastics into the gill cav-
ity because of their ventilation mechanism: this highlights that it is important to
consider all sorts of routes of exposure to microplastics. If organisms ingest micro-
plastics they could have adverse effects on individuals by disrupting feeding and
digestion (GESAMP 2010). Laboratory (Table 10.8) and field (Table 10.9) studies
highlighted that microplastics are mistaken for food by a wide variety of animals
including birds, fish, turtles, mammals and invertebrates. Despite concerns raised
regarding microplastic ingestion, few studies specifically examined the occurrence
of microplastic in natural, in situ, populations as it is methodologically challeng-
ing to assess microplastic ingestion in the field (Browne et al. 2008).

10.3.1.1 Planktonic Invertebrates

Microplastics can enter the very base of the marine food web via absorption.
Such was observed when charged nano-polystyrene beads were absorbed into
the cellulose of a marine alga (Scenedesmus spp.), which inhibited photosynthe-
sis and caused oxidative stress (Bhattacharya et al. 2010). Microplastics can also
affect the function and health of marine zooplankton (Cole et al. 2013; Lee et al.
2013). Decreased feeding was observed following ingestion of polystyrene beads
by zooplankton (Cole et al. 2013). Furthermore, adult females and nauplius lar-
vae of the copepod (Tigriopus japonicus) survived acute exposure, but increased
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mortality rates were observed following a two-generation chronic toxicity test
(12.5 ug mL~!) (Lee et al. 2013). Although a third of gooseneck barnacle (Lepas
spp.) stomachs examined contained microplastics, no adverse effect was reported
for these filter feeders (Goldstein and Goodwin 2013). Interestingly, the stom-
achs of mass stranded Humboldt squids (Dosidicus gigas) contained plastic pel-
lets (Braid et al. 2012). This large predatory cephalopod usually feeds at depth
between 200 and 700 m. The route of uptake is unclear; the squid may have fed
directly on sunken pellets, or on organisms with pellets in their digestive system.

10.3.1.2 Benthic Invertebrates

A number of benthic invertebrates have been studied under laboratory conditions
to investigate the consequences of microplastic ingestion (Table 10.8). Laboratory
feeding and retention trials have focused on direct exposure of invertebrates to
microplastic particles (as summarised by Cole et al. 2011; Wright et al. 2013a).
Exposure studies demonstrated that benthic invertebrates including lugworms
(Arenicola marina), amphipods (Orchestia gammarellus) and blue mussels
(Mytilus edulis) feed directly on microplastics (Thompson et al. 2004; Wegner
et al. 2012), and deposit-feeding sea cucumbers even selectively ingested micro-
plastic particles (Graham and Thompson 2009).

Although microplastic uptake was recorded for a number of species, organ-
isms appear to reject microplastics before digestion and excrete microplastics
after digestion. Pseudofaeces production is a form of rejection before diges-
tion but requires additional energetic cost. Furthermore, prolonged pseudofae-
ces production could lead to starvation (Wegner et al. 2012). On the other hand,
polychaete worms, sea cucumbers and sea urchins are able to excrete unwanted
materials through their intestinal tract without suffering obvious harm (Thompson
et al. 2004; Graham and Thompson 2009; Kaposi et al. 2014). Adverse effects of
microplastic ingestion were reported for lugworms: weight loss was positively
correlated with concentration of spiked sediments (40-1300 pm polystyrene)
(Besseling et al. 2013). Similarly, Wright et al. (2013b) recorded significantly
reduced feeding activity and significantly decreased energy reserves in lugworm
exposed to 5 % un-plasticised polyvinyl chloride (U-PVC). Supressed feeding
reduced energy assimilation, compromising fitness. At the chronic exposure level,
either fewer particles were ingested overall or a lack of protein coating on the
U-PVC may have weakened particle adhesion to the worm's feeding apparatus.

Several studies have raised concern for microplastic retention and transfer-
ence between organisms’ tissues. For example, microplastics were retained in
the digestive tract of mussels, and transferred to the haemolymph system after
three days (Browne et al. 2008). However, negative effects on individuals were
not detected. Von Moos et al. (2012) tracked particles of high density polyethyl-
ene (HDPE) into the lysosomal system of mussels after three hours of exposure;
particles were taken up by the gills and transferred to the digestive tract and lyso-
somal system, again triggering an inflammatory immune response. It should be
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noted, however, that while these studies succeeded in determining the pathways
of microplastics in organisms the exposure concentrations used to achieve this
goal exceeded those expected in the field, such that the results have to be treated
with care.

Studies of microplastic ingestion by benthic invertebrates in the field are less
common than laboratory studies. Murray and Cowie (2011) identified fibres of
monofilament plastics that could be sourced to fibres of trawls and fragments
of plastic bags in the intestines of the commercially valuable Norway lobster
(Nephrops norvegicus). These results indicated that normal digestive processes do
not eliminate some of the filaments as they cannot pass through the gastric mill
system. Norway lobsters have various feeding modes, including scavenging and
predation, and are not adapted to cut flexible filamentous materials (Murray and
Cowie 2011). The identification of microplastics in organisms that are caught for
commercial purposes and subsequently consumed whole (including guts) high-
lights the potential human health implications. For example, field-caught brown
shrimps (Crangon crangon) (Pott 2014) and farmed and store-brought bivalves
(De Witte et al. 2014; Van Cauwenberghe and Janssen 2014) had microplastics in
their digestive system.

Invertebrates could be used as indicator species for environmental contamina-
tion. Species such as Nephrops are able to integrate seasonal variation in micro-
plastic abundance, providing an accurate measure of environmental contamination
(Welden, pers. comm.). Additional studies are required to understand the flux of
microplastic within benthic sediments and the interaction between different spe-
cies of benthic infauna feeding in/or manipulating the sediment, such as bivalves
and worms. Benthic infauna could ingest and/or excrete microplastics, the individ-
uals or their faecal pellets may in turn be ingested by secondary consumers, thus
affecting higher trophic levels.

10.3.1.3 Fish

Some of the earliest studies noting ingestion of microplastics by wild-caught fish
include coastal species from the USA (Carpenter et al. 1972) and the U.K. (Kartar
et al. 1973, 1976). More recent studies from the NPCG reported microplastic
(fibres, fragments and films) ingestion by mesopelagic fish (Boerger et al. 2010;
Davison and Asch 2011; Choy and Drazen 2013). Estuarine environments and
their inhabitants are also prone to plastic contamination, which is hardly surprising
given the riverine input (e.g. Morritt et al. 2014). Estuarine fish affected include
catfish, Ariidae, (23 % of individuals examined) and estuarine drums, Scianenidae,
(7.9 % of individuals examined), which spend their entire life cycle in estuaries
(Possatto et al. 2011; Dantas et al. 2012). Similarly, 13.4 % of bottom-feeding fish
(Gerreidae) from a tropical estuary in northeast Brazil contained microplastics in
their stomachs (Ramos et al. 2012). The authors suggested that ingestion occurred
during suction feeding on biofilms.
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Lusher et al. (2013) reported microplastic polymers from 10 fish species from
the English Channel. Of the 504 fish examined, 37 % had ingested a variety of
microplastics, the most common being polyamide and the semi-synthetic material
rayon. Similarly, Boerger et al. (2010) recorded microplastics in 35 % planktivo-
rous fish examined from the NPCG (94 % of which were plastic fragments). Fish
from the northern North Sea ingested microplastics at significantly lower levels
(1.2 %) compared to those from the southern North Sea (5.4 %) (Foekema et al.
2013). All the studies cited suggest direct ingestion as the prime route of exposure,
either targeted as food or mistaken for prey items. No adverse effects of ingestion
were reported. Consequently, studies are required to follow the route of microplas-
tic ingestion in fish, to assess if microplastics are egested in faecal pellets as seen
in invertebrates. Dos Santos and Jobling (1992) showed that microplastic beads
(2 mm) were excreted quickly following ingestion, whereas larger beads (5 mm)
were held for prolonged periods of time. This implies that larger items of plastic
might pose a greater risk following ingestion whereas smaller microplastics are
likely to be excreted along with natural faeces.

10.3.1.4 Sea Birds

Numerous studies have dealt with the ingestion of marine debris by sea birds (see
Kiihn et al. 2015). Microplastics and small plastic items have been isolated from
birds targeted deliberately for dietary studies, dead cadavers, regurgitated samples
and faeces (Table 10.10). Nearly 50 species of Procellariiformes (fulmars, petrels,
shearwaters, albatrosses), known to feed opportunistically at the sea surface had
microplastics in their stomachs. Ingested microplastics appeared to comprise pri-
marily of pellets and user-fragments (Ryan 1987; Robards et al. 1995) although
there was a decrease in the proportion of pellets ingested by birds from the south
Atlantic between the 1980s and 2006 (Ryan 2008). This trend is also true for short-
tailed shearwater (Puffinus tenuirostris) from the North Sea (Vlietstra and Parga
2002). In this case however, the mass of industrial plastics (pellets) have decreased
by half and the mass of plastic fragments has tripled (van Franeker et al. 2011).
It is possible that the shift in the type of plastic consumed may be explained by
fragmentation of larger user-plastics into smaller microplastics, the accumulation
of user-plastic over time and a decreased disposal of industrial plastics (Thompson
et al. 2004), or simply by a stronger awareness of the presence of microplastics.
Seabirds appear to be able to remove microplastics from their digestive tracts
as regurgitation has been observed in the boluses of glaucous-winged gulls (Larus
glaucescens) (Lindborg et al. 2012). However, this suggests that parents expose
their offspring to plastics during feeding. Juveniles of northern fulmars (Fulmarus
glacialis) had more plastic in their intestines than adults (Kiihn and van Franeker
2012), with higher quantities in areas of higher fishing and shipping traffic (van
Franeker et al. 2011). Still, as the majority of birds examined did not die as a
direct result of microplastic uptake, it can be concluded that microplastic ingestion
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does not affect seabirds as severely as macroplastic ingestion. To date, there have
been no studies demonstrating nanometre-sized microplastics in sea birds. This
could be because it is extremely difficult to control laboratory conditions in terms
of contamination.

10.3.1.5 Marine Mammals

Only one study on microplastic ingestion by marine mammals has been published
to date. Bravo Rebolledo et al. (2013) recorded microplastics in stomachs (11 %,
n = 100) and intestines (1 %, n = 107) of harbour seals (Phoca vitulina). Direct
microplastic ingestion by other species of marine mammals has not been observed.
However, larger plastics items were identified in the stomachs of numerous ceta-
ceans (46 % of all species; Baulch and Perry 2014, see also Kiihn et al. 2015).
The frequency of microplastic uptake by marine mammals is hitherto unknown,
but could occur through filter feeding, inhalation at the water-air interface, or
via trophic transfer from prey items. As baleen whales (Mysticetes) strain water
between baleen plates, to trap planktonic organisms and small fish (Nemoto 1970),
they may incidentally trap microplastics. Thus, their feeding mode may ren-
der baleen whales more susceptible to direct microplastic ingestion than toothed
(Odotocetes) or beaked whales (Ziphiids) which are active predators of squid
and fish (Pauly et al. 1998). It is also likely that marine mammals are exposed
to microplastic via trophic transfer from prey species. For example, microplastics
were recorded from the scats of fur seals (Arctocephalus spp.) believed to origi-
nate from lantern fish (Electrona subaspera) (Eriksson and Burton 2003).

Cetaceans were suggested as sentinels for microplastic pollution (Fossi et al.
2012a; Galgani et al. 2014). However, it is notoriously difficult to extract and sub-
sequently assess microplastics from cetacean stomachs, the often large size and
decomposition rate of stomachs make sampling almost impossible. Furthermore,
strandings are infrequent and unpredictable. Although adaption of sampling meth-
ods for smaller organisms such as fish and birds have the potential to be imple-
mented, further work is necessary. The assessment of phthalate concentrations in
the blubber of stranded fin whales (Balaenoptera physalus) (Fossi et al. 2012b,
2014) could serve as an indicator for the uptake of microplastics, but this raises
other concerns as it is not possible to distinguish the origin of the phthalates.
Exposure routes could be via micro- or macroplastics or simply from direct uptake
of chemicals from the surrounding seawater into the blubber. Further work is
essential to assess if microplastics significantly affect marine mammals.

10.3.1.6 Sea Turtles

Although all species of marine turtle ingest macroplastics (Derraik 2002; Schuyler
et al. 2014; Kiihn et al. 2015), only one study reported plastic pellets in the stom-
achs of the herbivorous green turtles (Chelonia mydas) (Tourinho et al. 2010).
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It is highly likely that other species of sea turtle also ingest microplastics
incidentally or directly, depending on their feeding habits (Schuyler et al. 2014).
Neonatal and oceanic post-hatchlings are generalist feeders (Bjorndal 1997),
targeting plankton from surface waters and microplastic uptake may occur.
Trophic transfer from prey items could be a pathway to larger individuals; log-
gerhead (Caretta caretta) and Kemp’s Ridley (Lepidochelys kempii) turtles are
carnivores, feeding on crustaceans and bivalves (Bjorndal 1997), which ingest
microplastics (e.g. Browne et al. 2008). Flatbacks (Natator depressa) are also
carnivores but feed on soft bodied invertebrates (Bjorndal 1997), including sea
cucumbers, which again, ingest microplastics (Graham and Thompson 2009).
Leatherbacks (Dermochelys coriacea) feed on gelatinous organisms (Bjorndal
1997) and are thus more likely to ingest macroplastics because of their size and
similarity to prey items. If microplastics are ingested they could affect sea turtle
growth and development if they are not egested. Additional work is required to
understand whether turtles actively ingest microplastics, and if so, the extent of
the harm caused.

10.3.2 Trophic Transfer

Absorption and ingestion of microplastics by organisms from the primary trophic
level, e.g. phytoplankton and zooplankton, could be a pathway into the food
chain (Bhattacharya et al. 2010). Many species of zooplankton undergo a diur-
nal migration. Migrating zooplankton could be considered a vector of micro-
plastic contamination to greater depths of the water column and its inhabitants,
either through predation or the production of faecal pellets sinking to the seafloor
(Wright et al. 2013a). Only a few studies deal with the potential for microplas-
tics to be transferred between trophic levels following ingestion. Field observation
highlighted the presence of microplastics in the scat of fur seals (Arctocephalus
spp.) and Eriksson and Burton (2003) suggested that microplastics had initially
been ingested by the fur seals’ prey, the plankton feeding Mycophiids. In feed-
ing experiments, Farrell and Nelson (2013) identified microplastic in the gut and
haemolymph of the shore crab (Carcinus maenas), which had previously been
ingested by blue mussels (Mytilus edulis). There was large variability in the num-
ber of microspheres in tissues samples, and the results have to be treated with cau-
tion as the number of individuals was low and the exposure levels used exceeded
those from the field. Similarly, Nephrops-ted fish, which had been seeded with
microplastic strands of polypropylene rope were found to ingest but not to excrete
the strands (Murray and Cowie 2011), again implying potential trophic transfer.
As mentioned above, microplastics were also detected in cod, whiting, haddock,
bivalves and brown shrimp, which are consumed by humans and raises concerns
about trophic transfer to humans and human exposure (see Galloway 2015).
Further studies are required to increase our understanding of trophic transfer.
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10.3.3 Microplastic Effect on Habitats

Surfaces of buoyant microplastics provide habitats for rafting organisms. For
example, pelagic insects (Halobates micans and H. sericeus) utilize microplastic
pellets for oviposition (Goldstein et al. 2012; Majer et al. 2012). Indeed, Goldstein
et al. (2012) attributed an overall increase in H. sericeus and egg densities in the
NPCG to high concentrations of microplastics. Likewise, plastics serve as a float-
ing habitat for bacterial colonisation (Lobelle and Cunliffe 2011). Microorganisms
including Bacillus bacteria (mean: 1664 + 247 individuals mm~2) and pennate
diatoms (mean: 1097 & 154 individuals mm~2) were identified on plastic items
from the North Pacific gyre (Carson et al. 2013). These studies suggest that micro-
plastics affect the distribution and dispersal of marine organisms and may repre-
sent vectors to alien invasion. Plastics colonised by pathogenic viruses or bacteria
may spread the potential for disease, but there is currently no evidence to support
this hypothesis.

Microplastic buried in sediments could have fundamental impacts on marine
biota as they increase the permeability of sediment and decrease thermal diffusiv-
ity (Carson et al. 2011). This may affect temperature-dependent processes. For
example, altered temperatures during incubation can bias the sex ratios of sea tur-
tle eggs. At 30 °C, equal numbers of males and female embryos develop, whereas
at temperatures <28 °C all embryos become male (Yntema and Mrosovsky 1982).
With microplastics in sediments it will take longer to reach maximum tempera-
tures because of its increased permeability. Therefore, eggs may require a longer
incubation period, with more male hatchlings because of the insulating effect.
Microplastic concentrations as low as 1.5 can decrease maximum temperatures
by 0.75 °C (Carson et al. 2011), which has important implications for sexual bias
in sea turtles including loggerhead turtles (Caretta caretta) and hawksbill turtles
(Eretmochelys imbricata) (Yntema and Mrosovsky 1982; Mrosovsky et al. 1992).
Changes in the sediment temperatures could also affect infaunal organisms as it
may affect enzymatic and other physiological processes, feeding and growth rates,
locomotory speeds, reproduction and ultimately population dynamics. However,
this remains speculative until further researched.

10.3.4 Summary

Microplastic ingestion has been documented for a range of marine vertebrates and
invertebrates (Fig. 10.1). Interactions were recorded primarily during controlled
laboratory studies, but results from field sampling of wild populations also indicate
microplastic ingestion. In the case of some invertebrates, adverse physiological and
biological effects were reported. The biological repercussions depend on to the size
of microplastics with smaller sizes having greater effects on organisms at the cellu-
lar level. In the micrometre range, plastics are readily ingested and egested whereas
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nanometre-sized plastics can pass through cell membranes. Acute exposure experi-
ments demonstrated significant biological effects including weight loss, reduced
feeding activity, increased phagocytic activity and transference to the lysosomal
(storage) system. Larger microplastics (2—5 mm) may take longer to pass from the
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stomachs of organisms and could be retained in the digestive system, potentially
increasing the exposure time to adsorbed toxins (see Rochman 2015).

It is important to determine the ecological effects of microplastic ingestion.
Studies are required to assess the contamination of more species of fish, marine
mammals and sea turtles, as well as consequences of microplastic uptake and
retention. Further research is necessary to determine the limits of microplastic
translocation between tissues, and assess the differences between multiple pol-
ymer types and shapes. It is likely that additional species of invertebrate ingest
microplastics in wild populations, as fibres and fragments found in the field are
actively selected in experiments. Although some organisms appear to be able to
differentiate between microplastics and prey, and microplastic excretion has been
recorded. Without knowledge of retention and egestion rates of field populations,
it is difficult to deduce ecological consequences. There is some evidence to sug-
gest that microplastics enter the food chain and transfer of microplastics between
trophic levels implies bioaccumulation and biomagnification. Despite concerns
raised by ingestion in the marine environment, the effects of microplastic inges-
tion in natural populations and the implications for food webs are not understood.
Such knowledge is crucial in order to be able to develop and implement effective
management strategies (Thompson et al. 2009). Additional studies are required to
understand the flux of microplastic from benthic sediments to the infauna. Lastly,
microplastics provide open ocean habitats for colonisation by invertebrates, bac-
teria and viruses. As a result, these organisms can be transported over large dis-
tances by ocean currents and/or through the water column (Kiessling et al. 2015).

10.4 Conclusion

Microplastics have been found in almost every marine habitat around the world,
and plastic density along with ocean currents appears to have a significant effect
on their distribution. Modelling studies suggest that floating debris accumulates
in ocean gyres but this is dependent on the composition and shape of individual
polymers. The widespread distribution and accumulation of microplastics raises
concerns regarding the interaction and potential effects of microplastics on marine
organisms. As microplastics interact with plankton and sediments, both suspen-
sion and deposit feeders may accidentally or selectively ingest microplastics.
Despite concerns regarding ingestion, only a limited number of studies examined
microplastic ingestion in the field. Knowledge of the retention rates of microplas-
tics would enable estimations of the impacts of microplastic uptake. If rejection
occurs before digestion, microplastics might pose less of a threat to organisms
than initially assumed. However, there could be energetic costs associated with
the production of pseudofaeces. Laboratory studies can be used to determine
the end point of microplastic ingestion, and would benefit from using multiple
types of microplastics to simulate field conditions. Unfortunately, it is difficult to
establish a direct link between microplastics and adverse effects on marine biota
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experimentally. Furthermore, due to the difficult nature of field studies, it will be
harder to understand effects on natural populations.

As microplastic research is still in its infancy, there are many more unanswered
questions, the answers to which are required to build on current knowledge to
develop a clearer picture of the impact of microplastics in the sea.
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