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Abstract. We deal with multiple image warping, which computes defor-
mation fields between an image and a collection of images, as an exten-
sion of variational image registration. Using multiple image warping,
we develop a variational method for the computation of average images
of biological organs in three-dimensional Euclidean space. The average
shape of three-dimensional biological organs is an essential feature to dis-
criminate abnormal organs from normal organs. There are two kinds of
volumetric image sets in medical image analysis. The first one is a collec-
tion of static volumetric data of an organ and/or organs. The other is a
collection of temporal volumetric data of an organ and/or organs. A col-
lection of temporal volumetric beating hearts is an example of temporal
volumetric data. For spatiotemporal volumetric data, we can compute
(1) the temporal average, which is the average of a heart during a cycle,
(2) the frame average, which is the average of hearts at a frame, and
(3) the temporal average of frame averages.

1 Introduction

In this paper, we deal with multiple image warping, which computes deformation
fields between an image and a collection of images. This collection of multiple
deformation fields provides the average image and shape of a collection of volu-
metric images and objects.

In medical diagnosis, the average shape of individual organs provides essential
properties for the general expression of organs [20]. In computational anatomy,
the statistical average shape, which is computed using principal component
analysis of a shape descriptor, is well defined [12].

There are two kinds of volumetric image sets in medical image analysis.
The first one is a collection of static volumetric data of an organ. The other
is a collection of temporal volumetric data of an organ. A sequence of images
of beating volumetric hearts is an example of temporal volumetric data. For
spatiotemporal volumetric data, we can compute (1) the temporal average, which
is the average of a heart during a cycle, (2) the frame average, which is the
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average of hearts at a frame, and (3) the temporal average of frame averages.
The first, second and third averages derive the standard shape of the organ of a
human, the standard shape of a frame of beating hearts and the standard shape
of a collection of beating hearts, respectively. Therefore, the second average
detects abnormalities of a heart from a collection of hearts. Moreover, the third
average derives a standard static heart for computational anatomy.

2 Related Works

In both structure pattern recognition [9,19] and variational registration [20], the
average shape among a collection of given shapes is of interest. Some pioneering
works demonstrated a registration process achieved by pattern matching based
on dynamic programming [22,23], which is a fundamental idea in pattern recog-
nition. These approaches involve the matching and retrieval of occluded shapes,
and they are intended for the global alignment of planar shapes.

The shape-matching algorithm observes a collection of given shapes, detects
the contours and then computes (1) distances among them and (2) point cor-
respondences between the contours [10]. However, it tends to be less accurate
in the representation of local structures because the point correspondences are
computed without preserving the geometric local structure of the shapes. In
structure pattern recognition [9,19], the average of a collection of combinato-
rial structures such as strings and graphs is of interest. Multiple alignment of
strings, which is achieved by dynamic programing, is a fundamental tool for
motif search in bioinformatics. For multiple alignment of volumetric data, we
apply variational method, since these data are not expressed as strings.

Warping and morphing are fundamental techniques in computer graphics to
interpolate and generate shapes and objects. In medical applications, morph-
ing is used for the description of the deformation process of biological organs.
This process predicts the deformable motion of biological organs in the human
torso such as the beating heart, and the deformation of lungs during breath-
ing. In medical image diagnosis and retrieval [2,20], average images and shapes
of individual organs provide essential properties for the general expression of
organs. Shape retrieval categorises and classifies shapes, and finds shapes from
portions of shapes. In shape retrieval, the matching of shapes based on the dif-
feomorphism of shapes [5,6] and the descriptor of shape boundary contours [10]
are used. In the matching process for discrete shapes, the string edit distance
[7,9] computed by dynamic programming is a fundamental tool. Moreover, in
the matching process of images, the variational registration strategy [2,3,20] is
a typical tool. In computational anatomy, the statistical average shape, which
is computed using principal component analysis of the shape descriptor, is well
defined [11,12]. In both structure pattern recognition [7,8] and variation regis-
tration [4,20], the average shape of a collection of given shapes is of interest.

There are various methods for computing the average shape [4,21]. These
methods are based on the mathematical definition that shapes are the boundary
contours of physical objects [13,14]. This definition is suitable for dealing with
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highly nonlinear geometric variations. Furthermore, in the comparative reading
of medical images, image registration is the main method used to classify the
differences among the images. In particular, the establishment of local deforma-
tions between a collection of given shapes has attracted researchers of medical
image analysis for decades.

3 Variational Average Computation

We define a variational average image g of volumetric images { f; }/, in the three-
dimensional Euclidean space R? as the minimiser of the variational problem

ug } e :m x —uy) — fr(x))ide 2da
i) =3 [ (oo —w) s o2 [ 9P

m m 2
—l—uZ/ |Vuk‘2dw+a/ Zuk dx (1)
k):l R3 R3 k}:l
where

m
I = / \Vg|?dx, U, = / VuyPda, S = uy, (2)
R? R? i1
are regularisers for g and deformation fields {u}}}_,. The constraints I" and Uy,
imply that the average g and the deformation fields are smooth, respectively.
The constraint S implies that the average image exists at the median point of
the deformation fields. We set the solution of the variational problem of eq. (1)
as
9= VA({fr}itr): 3)
For a collection of spatiotemporal functions {h;(x, )}, defined in the inter-
val 0 <t < T, we define a collection of temporally sampled data as

hij(w) =hi(z,(j —1)A),i=1,2,--- ;m,j=1,--,n (4)
for (n —1)A =T. For {h;;};"%,_;, we define a pair of collections of averages as

{gi(@)Fi2y = VA;({h; Y21 j=1), {9(@.0)} =1 = VA({hs Y21 =1).  (5)
Here, g;(x) and g(x, jo) are the temporal average of a sequence h;(x,t) and the

frame average of h;(x, joA) for a fixed jy such that 1 < j < n, respectively.
Moreover, these two averages derive

9(x) = VA;({g:}iZ1), g(@) = VA;({g(z, 5)}j=0)- (6)
Here, g and g is the spatial average of the temporal averages and the temporal
average of the spatial averages, respectivly. Figure 1 shows the relations among
these four averages for temporal volumetric image data. For these two averages
g and g, we have the following property.

Property 1. The spatial average of the temporal averages g and the temporal
average of the spatial averages g generally satisfy the irequality g(x) # g(x).

This property implies that the order of operations for average computation
affects the results.
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Fig. 1. Average image. (a) The average shape of usual organs is computed by the
uni-step method. (b) The average shape of temporal organs, such as beating hearts, is
computed by the bi-step method. First, we compute the temporal average of an organ.
Then, the spatial average is computed from individual temporal averages.

4 Fast Numerical Computation

We derive a numerical method for solving eq. (1). From eq. (1), for the varia-
tional average image g and deformation fields u; we derive the Euler-Lagrange
equations

aAg(x) — G =0, pAug(x)—U,=0, (7)
where

m

G =) (9(z) = fule —up)), (8)
Ue =Y wi + (9(@) — fiu(@ — un))V(g(@) — fr(e —w))). (9)
k=1

Next, we convert the elliptic partial differential equations in eq. (7) to the diffu-
sion equations

dg 1 Ouy, 1
—Z=A - = —=A — = 1
ot g(x) aG7 Y up(x) ﬁUk, (10)
and discretise them as
(n+1) _ 4(n)
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where L is the discrete Laplacian operation. Therefore, we obtain the iteration
forms [18]

(I = rL)g"+h) = gt — 2™, (13)
«
(I - TL)u,(an) = u,(en) — %U,E"). (14)
For three-dimensional problems, L are described as
L=DII+IDI+I1I®I®D, (15)
for

-11 0 00 O

1 -2 1 00 O

01 -2---00 0

: (16)
000--1-21
000--01-1

where A ® B is the Kronecker product of matrices A and B, assuming the von-

Neumann condition on the boundary. The eigenvalues of D are \;, = —4sin® %
for the M x M matrix [17], and the eigenmatrix [16] of D, is
25+ 1)i 1 ifj=0
P = ECOSMWM , €=14 1 ng=" (17)
o7 7 otherwise.

@ is the matrix of the DCT-II transform. Therefore, the matrix L is decomposed
as

L=@200B) (ARIRI+IRARI+IQIRA)(Pd2P)
=UxU' (18)

and the eigenvalues of L are A\; + A\; + .

In each step of the iteration, the results are expressed on the Euler frame.
Images sampled by the Lagrange frame do not guarantee correspondence between
points. Therefore, we resample the results using the Lagrange frame ®. In the
Lagrange-frame-sampled images, we use Delaunay-triangle-based interpolation
[1] since the method satisfies the minimum gradient property.

Setting g™ to be the vector expression of the sampled ¢(™, we have the
iteration form

gm+n:lHW”UTﬂf—%;ma)+bm% (19)

where b(") = Yoy = fu(x — uén))). For sufficiently large n, we can replace b(™)
with a constant vector c. Therefore, we analyse the convergence condition of

gt —uMrUT (1 - %)g(l) + e, (20)

! There are two reference frames, the Euler frame and Lagrange frame [3]. When
we have an image B and an invertible transform ¢, the frames are described as
BLO/QTanqe(@(Z7j7 k)) = B(i7j7 k) and BEuleT‘(Z7j7 k) = B(@_l(l7j7 k’l))'
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where ¢ is a constant vector with the property |c—bV)| < ¢ < 1 for a sufficiently
large integer V.

Since the matrix U is a unitary matrix, the convergence property of the algo-
rithm depends on the spectral radius of the matrix M. Therefore, (") converges
if the relation

max(‘l_T(AiiAjJ”\k) (1—";7)’)<1, (21)

is satisfied for 0 < o, 0 < 7 and 0 < m. The inequality —12 < (A\; + X + ) <0
implies that the value of m becomes maximum for A\; +A; + Ay = 0.
Therefore, from the inequality

max (‘(1 - %)D <1, (22)

2a
m

for -1 <1-2% <1,if 7 <
unique solution.

is satisfied, the iteration form converges to the

For the computation of wg, setting |d — 5 (v DI ik ugN))| <e<k1fora

sufficiently large N, we have the relation
n 1 n
ul™! = ( _ At ;”T> UM"U u” +d, (23)

where € is a small perturbation caused by warping of data in each step of the
iteration. The spectral radius of the matrix (1 — %) UM"U" derives the

convergence condition,

1 T(1+€)y
max 1————— < 1. 24
(‘1T(>\z‘+>\j+>\k)( B @)
Equation (24) leads to the convergence condition 7 < %

5 Numerical Examples

For numerical examples we computed averages of seven hearts with 20 frames.
These images show renders surfaces of volumetric grey valued images in the three
dimensional Euclidean space. The numerical results show the rendered surfaces.
The resolution of each volumetric heart is Grey-value x Horizontal x Vertical x
Depth = 256 x 128 x 128 x 15. In total, the size of data is 256 x 128 x 128 x 15 x
20 x 7. Figures 2 and 3 show 20 frames of temporal volumetric images a couple
of beating heart sequences. These figures show that shapes f heart depend on
the frames and individuals.
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We evaluate the warp image error WIE, the total deformation norm FNS,
the volume V; and the deformation energy DFE) which are defined as

WIB(e) = | lo(a) = file — w)lada. (25)
FNS(e) = | Yl (26)

Ve= | [fil®—up)de, (27)
R3

pB = [ lju(a)|da. (28)

For the numerical computation, we adopt the regularisation parameters o =
1071, B =102 and v = 10%.

Figures 4 (a), (b) and (c) show rendered shapes of the spatial average of the
temporal averages, the eigenorgan of the temporal averages and the arithmetic
average with respect to time, respectively. For the eigenorgan, see Appendix.
Figures 4 (b), (d) and (f) show radar charts of the total deformation norms of
cycle of a volumetric beating-heart for the variational temporal average, the tem-
poral eigenorgan and the arithmetic average with respect to time, respectively.

In the radar charts, 20 frames of a volumetric beating-heart sequence are
shown on the circle and the arrow from the origin of the circle is the defor-
mation energy required to deform the temporal average, which is shown in the
centre of the chart, to the volumetric image at each frame. The arrows show the
total difference between the average and each shape on the circle. These charts
show that the variational average is a stable shape with respect to the cyclic
deformation because the deformations on the chart are symmetric. However,
the eigenorgan of the beating volumetric heart is unstable against cyclic motion
because the deformation on the chart is asymmetric.

Figures 5(a) and (b) show the total of deformation norms and the warp image
errors, respectively for the three averages.

Figures 6(a) and (b) show the spatial average of the temporal averages of the
seven beating hearts. and the eigenorgan of the temporal averages of the seven
beating volumetric hearts, respectively. The boundary of the spatial average of
the temporal averages is smooth, although that of the eigenorgan contains small
vibrations. These results show the variational average of the variational temporal
averages is suitable for the construction of the model of the stationary heart of a
human. Figure 6(c) shows the graphical expression of multidimensional scaling of
7 hearts. Figure 6(c) shows the graphical expression of multidimensional scaling
of 7 hearts. This graph clarifies that both averages exist in a neighbour area of
the median shape.

6 Validation of the Results

Tables 1 and 2 evaluate the WIE and FN, respectively, of temporal average
of a volumetric beating-heart sequence. Tables 3 and 4 evaluate the WIE and
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Fig. 2. Sequence of volumetric beating-heart images I. (a)-(t) are a sequence of 20
input temporal images. These images show renders surfaces of volumetric grey valued
images in the three dimensional Euclidean space.

FN, respectively, of spatial average of volumetric beating-hearts of a frame 20
sequences. These results show that our method achieves multiple alignment of
temporal volumetric data for the computation of the average of a beating-heart
image sequence and the temporal average of beating-heart sequence occupies the
mean region of a volumetric beating-heart sequence, respectively.

Figure 8 shows the distance between the average heart and each frame of
seven hearts for arithmetic average, eigenorgan and variational average com-
puted by the proposed method, respectively. For the distance between a pair of
volumetric images, see Appendix. In this figure, the top, middle and bottom rows
are the temporal arithmetic average, the temporal eigenorgan and the temporal
variational average, respectively. Figures 9(a) and 9(b) show radar charts of the
spatial temporal averages and the temporal spatial averages of a collection of
heart sequences, respectively. In these evaluations, the volumetric centroids of
the average and each frame are aligned as the pre-processing

Fig. 3. Sequence of volumetric beating-heart images II. (a)-(t) are a sequence of 20
input temporal images. These images show renders surfaces of volumetric grey valued
images in the three dimensional Euclidean space.
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Table 1. WIE of each heart

data number [[1[2[3[4[5[6[7‘
arithmetic average| average ||1.326(1.950(|2.111|2.699(3.250(2.284|1.505
variance||0.045/0.160/0.142|0.191{0.322|0.139|0.036
eigenorgan average ||1.522|2.434|2.706|3.236(4.102(2.826|1.774
variance||0.507|1.368|1.047|1.000{4.296(1.172|0.966
variational average|average [[0.622]1.090|{1.069(1.555(1.891|0.529(0.631
variance||0.008|0.050/0.027|0.095(0.133|0.010{0.008

Table 2. FIN of individual heart

data number “1‘2‘3\4‘5‘6\7‘
average of deformation vector norms |{0.014]0.022{0.031|0.028|0.043|0.146|0.015
variance of deformation vector norms||0.000{0.000{0.000/0.000|0.000{0.001{0.000
deformation energy 0.000{0.001{0.001{0.001|0.001|0.002{0.000

Fig. 4. Comparison of the three averages of a beating heart. (a) Arithmetic average of
a beating-heart sequence. (b) Radar chart of the total deformation norms for the arith-
metic average. (¢) Eigenorgan of a beating-heart sequence. (d) Radar chart of the total
deformation norms for the eigenorgan of a sequence of a beating heart. (e) Variational
average of a beating-heart sequence. (f) Radar chart of the total deformation norms
for the variational temporal average of a beating heart. In the radar charts, 20 frames
of a volumetric beating-heart sequence are shown on the circle and the arrow from the
origin of the circle is the deformation energy required to deform the temporal average,
which is shown in the centre of the chart, to the volumetric image at each frame. The
arrows show the total difference between the average and each shape on the circle.

In the radar charts, the arrows show the volumetric difference between the
average at the centre and each frame of motion. The variational temporal aver-
age processes geometrical properties that the difference between the average
and each frame expresses the geometrical and volumetric differences caused by
deformation in a beating-heart sequence.
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Table 3. WIE for frames

\ data number [t T 23T 456 [ 7[8 ]9 10|
arithmetic average | average || 6.251 | 6.092 | 5.975 | 5.502 | 5.085 | 4.736 | 4.252 | 4.223 | 4.051 | 4.351
variance|| 1.575 | 1.433 | 0.785 | 0.431 | 0.396 | 0.336 | 0.356 | 0.607 | 0.759 | 1.141
eigenorgan average |[10.700{10.488|10.125| 9.303 | 8.626 | 8.006 | 7.182 | 6.869 | 6.802 | 7.247
variance||14.230|13.814(13.104|11.065|10.178| 7.922 | 4.868 | 5.429 | 6.220 | 8.269
variational average| average || 2.672 | 2.671 | 2.576 | 2.331 | 2.180 | 2.111 | 1.999 | 1.900 | 1.876 | 1.996
variance|| 0.264 | 0.300 | 0.249 | 0.163 | 0.174 | 0.143 | 0.136 | 0.150 | 0.150 | 0.188
\ data number [ 11 [ 12 [ 13 [ 14 [ 15 [ 16 [ 17 [ 18 [ 19 [ 20 |
arithmetic average | average || 4.762 | 5.109 | 5.309 | 5.461 | 6.058 | 6.318 | 6.433 | 6.620 | 6.627 | 6.496
variance|| 1.329 | 1.483 | 1.523 | 1.326 | 1.344 | 1.544 | 1.978 | 2.103 | 1.795 | 1.496
eigenorgan average || 8.124 | 9.670 | 9.060 | 9.591 |10.227|10.804|11.197|11.226|10.979(10.679
variance|| 9.639 | 8.846 [12.372|13.613|14.197|15.423|16.549|17.201|15.505|14.022
variational average| average || 2.166 | 2.357 | 2.368 | 2.402 | 2.527 | 2.565 | 2.697 | 2.778 | 2.795 | 2.750
variance|| 0.208 | 0.238 | 0.244 | 0.221 | 0.205 | 0.252 | 0.347 | 0.375 | 0.327 | 0.239
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Fig. 5. Comparison of the three averages for a beating-heart sequence. (a) Total defor-
mation norms FNS(x) = || >3-, will2. (b) Warp errors WIE(x) = [|g(x) — fi(x —w:)||2.

(a) (b)

Fig. 6. Comparison of the averages of a beating heart. (a) Spatial average of the
temporal averages of 7 beating hearts. (b) Eigenorgan of the temporal averages of 7
beating hearts. (¢) The graphical MDS of two types of variational averages.
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Table 4. FEN of the spatial averages

frame number “1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘
average of deformation vector norms ||0.162(0.164/0.158(0.149]0.136/0.119|0.108|0.107|0.104|0.115
variance of deformation vector norms||0.002]0.001/0.001|0.000{0.000|0.000|0.000{0.001{0.001{0.001
deformation energy 0.002|0.002|0.002|0.002|0.002{0.002{0.002|0.002|0.002|0.002

frame number [11 [ 1213 [ 14 [ 15 [ 16 [ 17 | 18 [ 19 [ 20 |

average of deformation vector norms [{0.129]0.141|0.150{0.148]0.164|0.172{0.173|0.175|0.174|0.169
variance of deformation vector norms||{0.001]0.001/0.001|0.001|0.001|0.001|0.002{0.002{0.002{0.001
deformation energy 0.002(0.002{0.002|0.002|0.003]0.003]0.003|0.003|0.003 |0.003

(a) (b) (c) (d) (e) () (8)
heartl heart2 heart3 heart4 heartb heart6 heart7

Fig. 7. Distances between arithmetic average heart and inputs

(a) (b) (c) (d) () (f) (8)

heartl heart2 heart3 heart4 heartb heart6 heart7

(h) (i) Q) (k) (1) (m) (n)

heartl heart2 heart3 heart4 heartb heart6 heart7

(0) (p) (@) (r) (s) (t) (u)

heart1 heart2 heart3 heart4 heartb heart6 heart7

Fig. 8. Distance between the average heart and inputs. Top, middle and bottom rows
are the temporal arithmetic average, the temporal eigenorgan and the temporal varia-
tional average, respectively.
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Fig. 9. Spatial temporal averages and temporal spatial averages of a collection of heart
sequences

7 Conclusions

Using multiple image warping, which computes deformation fields between an
image and a collection of images, we developed a variational method for the
computation of the average images and the average shapes of both static and
temporal biological organs in three-dimensional Euclidean space. We combined
the diffusion registration technique and optical-flow computation for the compu-
tation of spatial deformation field between the average image and input organs.

For spatiotemporal volumetric data, (1) the temporal average is the average
of a heart during a cycle, (2) the frame average is the average of hearts at a
frame, and (3) the temporal average of frame averages. The first, second and
third averages derive the standard shape of the organ of a human, the standard
shape of a frame of beating hearts and the standard shape of a collection of
beating hearts, respectively.

This research was supported by the “Computational Anatomy for Computer-
Aided Diagnosis and Therapy: Frontiers of Medical Image Sciences” and “Mul-
tidisciplinary Computational Anatomy and Its Application to Highly Intelli-
gent Diagnosis and Therapy” projects funded by a Grant-in-Aid for Scientific
Research on Innovative Areas from MEXT, Japan, and by Grants-in-Aid for
Scientific Research funded by the Japan Society for the Promotion of Science.

Appendix

Let

fPdx < 0o
R3
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for a function f(z) defined on R?. Since
flx+6)=f(x)+6'Vf

and

/Rgffmd:czo, /Rsfzfyd:czo, /Rsffyd:czo,
[ ftas=o. [ stn=o, [ fpimo

in the neighbourhood of the point x, the local dimension of the volumetric-
image space is four. Therefore, using the local orthogonal base, the volumetric
eigenimage is expressed as

fla) =) apuy(w),
k=1

where {u;}?_; are the first four principal components of the covariance kernel

K(z,y) =321, f()f(y).
Setting

ful@) =2 Y fle-a). g =5 [ )
=1

the volumetric distance is computed as

D(f? g) = m.l;n‘/Rg |fa(x) - ga(R:I:)|2d:c
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