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Abstract. Implanted visual prostheses generate visual percepts by elec-
trically stimulating the human visual pathway using an array of elec-
trodes. The resulting bionic vision consists of a spatial-temporal pattern
of bright dots called phosphenes. This patient-specific phosphene pat-
tern has low resolution, limited dynamic range and is spatially irregular.
This paper presents a computer vision system designed to deal with
these limitations, especially spatial irregularity. The system uses a new
mapping called the Camera Map to decouple the flexible spatial layout of
image processing from the inflexible layout of phosphenes experienced by
a patient. Detailed simulations of a cortical prosthesis currently in pre-
clinical testing were performed to create phosphene patterns for testing.
The system was tested on a wearable prototype of the cortical prosthesis.
Despite having limited computational resources, the system operated in
real time, taking only a few milliseconds to perform image processing
and visualisations of simulated prosthetic vision.

Keywords: Visual prosthesis · Bionic eye · Cortical implant · Simu-
lated prosthetic vision · Wearable computer vision · Integral images ·
Irregular · Camera maps · Real time · Phosphene maps · Image process-
ing

1 Introduction

According to the World Health Organization, visual impairment and blindness
affect nearly 300 million people worldwide1. Some causes of vision loss, such as
cataracts, can already be treated using existing medical technology. Implanted
Visual Prostheses (IVP) attempt to address currently incurable diseases, such
as Retinitis Pigmentosa (RP), by electrically stimulating the still-healthy parts
of a patient’s visual pathway to produce prosthetic vision.

Prosthetic vision has many limitations, which are further detailed in Section 2.
These limitations severely restrict the bandwidth of visual information that can
be provided to a patient. Computer Vision provides a promising way to improve
the usefulness of prosthetic vision despite its limitations. This paper presents
a computer vision system for implanted visual prostheses. The system can be
1 http://www.who.int/mediacentre/factsheets/fs282/en/
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flexibly tailored in a patient-specific manner and operates in real time on a com-
putationally limited wearable prototype. The research contributions, design and
testing of the system are detailed in Section 3.

Ever since 1755, when LeRoy discharged a Leyden Jar to cause a blind patient
to see “flames passing rapidly downward” [15], numerous experiments have con-
firmed that electrical stimulation of the human visual pathway can result in
visual percepts. Modern implanted visual prosthesis (IVP) operate using the
same fundamental principle. Controlled electrical stimulation is applied using
small implanted electrodes to produce a bright visual percept called a phosphene.
By apply temporally varying stimuli using an array of electrodes, the patient sees
spatial-temporal patterns of phosphenes similar to a low resolution dot display.

In the late 1960’s, Brindley and Lewin [2] developed the first IVP. The system
used an array of electrodes on the visual cortex to elicit multiple phosphenes at
different locations of a patient’s visual field. However, the IVP was only suitable
for laboratory use as the stimulation electronics were not portable. The IVP also
did not include a portable camera.

From the 1970’s to the early 2000’s, Dobelle developed several IVP devices
that used implanted cortical electrode arrays, including systems that generate
electrical stimuli based on imagery captured with a headworn camera [9]. Despite
a range of problems including the heaviness of the portable electronics and the
use of wired transcranial connections, a patient’s biography suggests that the
device did provide useful vision [21].

Recent research and development have focused on IVP that electrically stim-
ulate either the retina or the visual cortex2. The reason for the focus on retinal
and cortical stimulation is that electrical stimulation at these two anatomical
locations can give reliable spatial patterns of phosphenes. Retinal prostheses,
such as the Argus II device from Second Sight, have already been implanted
into several tens of human patients in clinical trials [11]. Cortical implants, such
as the Monash Vision Group’s Gennaris device3, are still in the preclinical phase.
However, cortical implants may be able to treat additional causes of blindness
as the cortex is further downstream along the visual pathway. The cortex also
has a larger surface area than the retina, which may allow vision with higher
spatial resolution.

For a survey of IVP research and development, including many concepts in
this paper, please refer to the extensive book edited by Dagnelie [8].

2 Limitations of Implanted Visual Prostheses

At a fundamental level, implanted visual prostheses operate by converting imag-
ery from a headworn camera into spatial-temporal patterns of electrical stimu-
lation applied to a patient’s visual pathway. This is true for both cortical and
retinal prostheses. The conversion process is usually performed on portable com-
putational hardware, which is externally worn by the patient.
2 http://www.eye-tuebingen.de/zrenner/retimplantlist/
3 http://www.monash.edu.au/bioniceye/resources.html (Annual report 2013)

http://www.eye-tuebingen.de/zrenner/retimplantlist/
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Figure 1 is a system overview of Monash Vision Group’s cortical visual
prosthesis [17], which contains stereotypical sub-systems shared by many other
prostheses. Images are captured by a headworn camera and sent to a portable
computer, the Pocket Processor. In real time, the pocket processor converts cam-
era images into spatial-temporal patterns of electrical stimulation, which are
conveyed over a wireless link. The implanted electrodes receives electrical power
and signal from the wireless coil, which it uses to apply electrical stimulation to
the visual cortex. A conceptual walkthrough of how the MVG device operates is
available online: http://youtu.be/v9Ip8j3eca8.

Fig. 1. Overview of the Monash Vision Group (MVG) Cortical Visual Prosthesis

2.1 Limited Spatial and Intensity Resolutions

The conversion from headworn sensor imagery to electrical stimuli is an ongo-
ing research problem. While state-of-the-art stimulation regimes are able to reli-
ably elicit phosphenes (bright visual percepts), the elicited phosphenes have poor
dynamic range and can only be packed at low spatial resolutions. Figure 2 illus-
trates this using Simulated Prosthetic Vision (SPV), a technique pioneered in the
early 1990’s to simulate what an implanted patient may see [4]. The input image
is converted into prosthetic vision using an adaptive thresholding approach [22]
where a corresponding phosphene is enabled for bright regions of the input image.
The SPV assumes the ability to generate 625 binary phosphenes, which is similar
to the expected capabilities of the Monash Vision Group prosthesis [16].

The SPV image in Figure 2b clearly illustrates the severe information loss due
to the limited spatial and intensity resolution of prosthetic vision. As the number
of phosphenes generally corresponds to the number of implanted electrodes4, the
spatial resolution of prosthetic vision is limited by the factors such as the spread
4 Coordinated activation of many electrodes may increase future phosphenes counts.

http://youtu.be/v9Ip8j3eca8
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(a) Input (b) SPV

Fig. 2. Simulated Prosthetic Vision (SPV) from an implanted visual prostheses

of electrical charge, surgical safety of implantation and electrode fabrication
technology. Improvement in these areas are slow as they often require lengthy
preclinical and clinical trials.

Clinical studies of retinal prostheses [10] suggest that multiple levels of phos-
phene brightness can be achieved but brightness ratings are likely to vary
substantially across sessions and across subjects. There is also evidence that
phosphenes of multiple levels of intensity can be produced by varying stimula-
tion currents [20], but changes in phosphene brightness may be coupled with
changes in phosphene shape and size. There is little evidence that phosphene
brightness can be varied consistently with a cortical prosthesis. As such, the
work presented below assumes the worst case of binary phosphenes.

Arguably, Dobelle was the first to consider the use of computer vision to
improve the usefulness of prosthetic vision [9]. More recently, simple IVP com-
puter vision algorithms were developed to run on wearable devices with embed-
ded processors [23,29]. More sophisticated IVP vision algorithms have also been
investigated using less portable computers. Transformative Reality [18] uses mul-
tiple sensing modalities to better render a pattern of phosphenes representing
models of the world. The substantial body of work on Vision Processing for
prosthetic vision [1] applies computer vision algorithms to improve simulated
multi-intensity phosphene patterns for reading text, navigation and other tasks.

2.2 Irregular Phosphene Maps

A patient’s Phosphene Map contains all the phosphenes that can be elicited by
electrical stimulation. Older IVP research, including work on image processing
and computer vision, generally assumes regular phosphene maps similar to the
map shown in Figure 3a. However, there is strong clinical and biological evidence
to suggest that phosphene maps are irregular and patient-specific [3,19,27]. An
example of an irregular phosphene map is shown in Figure 3b.

Apart from irregular locations and sizes, there is also evidence that phos-
phenes can exhibit irregular shapes. Studies from Bionic Vision Australia5 and
Second Sight [19] show that the shape of phosphenes can be anisotropic and the
shape of phosphenes may vary depending on electrical stimulation.
5 http://goo.gl/LwcGwO

http://goo.gl/LwcGwO


690 W.H. Li

(a) Regular (b) Irregular

Fig. 3. Example of Regular and Irregular phosphene maps

The computer vision system presented in this paper has the potential to
accommodate all three aspects of phosphene map irregularity: location, size and
shape. However, as the MVG device is still in the preclinical stage, the system
is only tested on phosphene maps simulated based on electrical, surgical and
cortical models. These models only generate irregularities in phosphene locations
and sizes. The simulation assumes that phosphenes appear as isotropic Gaussians
as recommended by the survey of simulated prosthetic vision by Chen et al [5].
Details of the simulation are available in Section 3.1.

3 Computer Vision System for IVP

Despite the reality that Implanted Visual Prostheses (IVP) produce irregular
phosphene maps, very little research has been done to address the problem in
full. Research that attempts to deal with irregular phosphene maps generally
only do so for near-regular mappings where small spatial shifts in phosphene
locations and electrode dropouts are modelled [25] or only irregular phosphene
shapes are considered over a regular grid [14].

More importantly, many systems do not run in real time on an embed-
ded processor suitable for a wearable medical device. Clinical trials of retinal
implants [28] and cortical implants [21] suggest that prosthetic vision may have
refresh rates as high as 10Hz. Simulated Prosthetic Vision trials show that
low refresh rates may reduce task performance [13]. Therefore, a practical IVP
requires a fast and flexible computer vision system.
Given the background above, this paper provides the following contributions:

1. Section 3.1 describes a detailed simulation of a cortical IVP device
2. Section 3.2 details a computer vision system that deals with irregular phos-

phene maps using a second mapping called the Camera Map to provide
flexibility.

3. Section 3.3 details a fast image processing method for the vision system.
4. Section 3.4 details a simulated prosthetic vision visualisation that shows the

phosphenes seen by a patient in real time.
5. Section 3.5 summarises the real time performance of the system.
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3.1 Simulating a Cortical Implanted Visual Prosthesis

Phosphene maps were simulated in order to test the computer vision system.
The simulation is based on the Monash Vision Group (MVG) cortical Implanted
Visual Prothesis (IVP), which is currently undergoing preclinical trials. Param-
eters of the MVG IVP system were obtained from published sources [16,17].

The main components of the simulation are detailed on the left of Figure 4
(in red). The simulation starts with the definition of the spatial layout of an
implanted electrode array. The array is also known as a tile. The MVG IVP
uses multiple identical tiles. A tile contains 43 active electrodes. The MVG Tile
Layout is shown at the top left of Figure 4 with blue dots representing electrodes.

Next, the simulation places multiple tiles onto the surface of the visual cor-
tex. Coordinates on the visual cortex are defined on a Cortical Plane, which
represents a flattened cortical surface. Tile Locations are defined using 2D affine
transforms. This results in a list of Ideal Electrode Locations on the cortical plane.
A surgical scenario proposed by a MVG Neurosurgeon is shown at the middle-
left of Figure 4. The four-tile wedge-shaped arrangement avoids the Calcarine
Sulcus, which is a large crevice on the visual cortex.

The simulation then applies two sources of irregularities that simulate real
world issues: Electrode dropouts and the imprecise placement of electrodes. The
Dropout Rate models implanted electrodes that fail to elicit a phosphene when
stimulated electrically. For example, a dropout rate of 50% means that half of all
implanted electrodes cannot be used to elicit a phosphene. Electrode dropouts
have been reported in multiple IVP clinical trials [11,32], but generally at rates
lower than 50%.

Spatial Error models several issues by approximating their combined effect
as a normally distributed 2D random offset defined on the cortical plane. For
example, electrode deformation during surgical insertion and variations in cor-
tical anatomy are both factors that can be approximated as spatial error. The
application of dropouts and spatial error results in Irregular Electrode Locations,
an example of which can be seen at the bottom-left of Figure 4.

Finally, a Cortical Model is applied to estimate the locations of phosphenes
in the visual field. The cortical model, also known as a visuotopic map or retino-
topy, relates spatial regions on the cortical plane to corresponding regions in the
visual field. For the MVG IVP, the cortical model exhibits a log-polar relation-
ship, where regions in central vision are mapped to larger cortical regions than
regions in peripheral vision. This phenomenon is known as cortical magnification.
Detailed illustrations of cortical models showing magnification and retinotopy
can be found in [26].

As the MVG IVP uses multiple electrode tiles implanted near the occipital
lobe, the electrodes will electrically stimulate regions of the primary visual cortex
(V1) primarily corresponding to central vision. As such, the simulation uses the
Monopole cortical model [24]:

z = exp(
w

k
) − a (1) m =

E + a

k
(2)
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The variable w is a complex variable representing the 2D spatial location
of an electrode on the cortical plane as w = x + iy. z is a complex variable
representing the corresponding spatial location of phosphenes in the visual field.
E is the Eccentricity, which is an angle radiating from the center of the visual
field. m is the cortical magnification, which increases the size of phosphenes
further from the center of the visual field. k and a are constants that model the
cortical magnification and the location of central vision. The values of k = 15
and a = 0.7 were selected based on typical values used in human models.

Figure 5 contains Simulated Prosthetic Vision (SPV) visualisations of sim-
ulated phosphene maps generated assuming four MVG tiles implanted on the
left primary visual cortex (See middle-left of Figure 4). The locations and sizes
of phosphenes in the visual field are governed by Equations 1 and 2. The SPV
visualisation covers around 10 degrees of the visual field. The phosphenes are on
the right visual hemisphere as the left visual cortex is being stimulated.

(a) Four Tiles (b) 50% Dropout

(c) Spatial Error σ = 0.5mm (d) Spatial & Dropout

Fig. 5. SPV visualisations of phosphene maps for the MVG IVP

3.2 Dealing with Irregular Phosphene Maps Using Camera Maps

A key innovation of the proposed IVP computer vision system is the use of two
mappings: A Phosphene Map and a Camera Map.

Phosphene Map
A mapping between Stimuli and Phosphene.

Camera Map
A mapping between Stimuli and Regions in the Camera Image.
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Stimuli is defined as electrical stimulation that elicits phosphenes. For the
sake of simplicity, the work in this paper assumes that a single electrode can trig-
ger a stimulus which in turn produces only one phosphene. In other words, it is
assumed that one working electrode can produce one phosphene. This assump-
tion is the norm in current IVP research. For reasons detailed in Section 2.1,
only binary phosphenes are considered. Note however that the proposed system
can be extended to deal with more complex assumptions, such as multi-level
phosphenes or many-to-many mappings between stimuli and phosphenes.

An irregular phosphene map is visualised on the middle-right of Figure 4. In
practice, a phosphene map is either obtained by simulation or psychophysics
measurements performed on the implanted patient. The latter is commonly
referred to as Phosphene Mapping, which involves the adjustment of electrical
stimulation while obtaining patient feedback regarding phosphene appearance.
Phosphene mapping dates back to the pioneering work of Brindley and Lewin [2].
A patient’s phosphene map is expected to be nearly constant over time, but fac-
tors such as electrode dropouts may lead to small changes.

Existing IVP computer vision systems usually assume near-regular phosphene
maps and also uses the phosphene map as the spatial layout for image process-
ing. For example, Figure 2 shows a down sampling operation carried out using
a spatial layout based on a regular phosphene map. Irregular phosphene maps
have also been used to directly specify image processing regions [30].

However, the phosphene map is a measurement that approximates the true
phosphenes experienced by the patient during stimulation by implanted elec-
trodes. It basically represents the state of the patient-electrode interface. To
modify how image processing is performed spatially, existing systems have to
modify the phosphene map. This one-map approach confuses the inflexible phos-
phene map with the relatively flexible and arbitrary spatial mappings that can
be used for image processing operations.

Unlike existing approaches, the proposed IVP computer vision system does
not use the phosphene map to perform image processing operations. Instead, the
phosphene map is only used by the system to perform real time visualisations,
as detailed in Section 3.4. Image processing is performed using a Camera Map,
which contains a set of mappings between stimuli and regions in the camera
image. Figure 6 explains the relationship between a camera map and phosphene
map. Essentially, the stimuli relates both maps by acting as an index into the
phosphene map and the camera map.

The motivation of having two separate maps is to decouple the state of the
patient-electrode interface from how image processing is performed. The system
treats the phosphene map as a constant mapping measured by clinicians while
the camera map can be continually redesigned by engineers. The camera map can
also be modified according to patient preferences and clinician recommendations.

The bottom right of Figure 4 shows a camera map generated from the
phosphene map above it. Each rectangle represents a camera image region that
is processed to determine whether to activate the corresponding phosphene.
Regions in the camera map can be manually moved, scaled, reshaped and even
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Fig. 6. Relationship between Phosphene Map and Camera Map

removed if needed; the latter can be used to disable a camera region in response
to electrode dropouts. Also note that while this paper only considers rectangular
regions, this two-map approach can be extended to irregularly shaped regions.

Another benefit of using a two-map approach is that while there is only one
true phosphene map for an individual patient, there can be many possible corre-
sponding camera maps. Figure 7 shows 3 camera maps for a two-tile phosphene
map. The Standard camera map has image regions based on the size and location
of corresponding phosphenes. The Zoomed camera map only covers the center
of the camera image, which acts as a zoom function. The smaller regions may
also be useful for the patient when viewing finer detail while panning the camera
over a scene. Finally, the Large camera map shows the use of overlapping regions
that mimic retinal receptive fields when processed using a Laplacian filter.

Image processing is performed with a camera map according to the process
in Figure 8. Each region Ci in the camera map is processed independently. The
results of the processing is used to decide whether to activate the corresponding
phosphene Pi. For example, a system that shows bright objects can be built
using a binary thresholding operation, where a phosphene is activated when the
corresponding region has a mean intensity above a threshold value.

3.3 Fast Image Processing Using Integral Images

This section describes a fast thresholding method that quickly processes regions
of a camera map. The method was implemented using C++ and platform-specific
SIMD intrinsics for the MVG Wearable Prototype (Pocket Processor) shown in
Figure 10. The thresholding method is described by Algorithm 3.1.

The inputs of the method are a gray sub-image (Region-of-Interest from
headworn camera image), threshold value (“thVal”), threshold mode (“thMode”)
and a Stimuli Buffer where each element represents a Stimuli Si corresponding to
camera map region Ci (see Figure 6). The threshold mode can be Manual, where
a threshold value is chosen by the patient via key presses, or Auto, where Otsu’s
method [22] is used to find a threshold automatically. The method outputs a
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Fig. 7. Several Camera Maps for a Two-Tile Phosphene Map

stimuli buffer where a high value in element Si will produce electrical stimulation
that elicits the corresponding phosphene Pi. It also outputs the threshold value
(“thValUsed”) when operating in automatic threshold mode.

The integral() function computes an integral image. Integral Images came
from the Summed Area Table concept in Computer Graphics, which was first
described by Crow [7]. The concept was later popularized by the work of Viola
and Jones [31], who used integral images to rapidly compute the sum of pixel
regions to calculate Haar-like features. The fastmean() function in the algorithm
uses integral images to quickly calculate the mean of a region (sum/count).

Note that the integral image only has to be calculated once for an input image
in order to allow fast mean computation for practically any number of rectan-
gular regions. As the majority of computational time rests with the integral()
function instead of the fastMean() function, the method has a predictable run-
ning time that is independent of the camera map. This is true even for Camera
Maps with many overlapping regions such as the one shown in Figure 7d.

The threshold() function in Algorithm 3.1 takes “thSrc” as input and outputs
into “thDst”, both of which are small arrays with size equal to the number of
enabled regions in the camera map. Regions in the camera map can be disabled
in response to electrode dropouts, patient or clinician requests or algorithm-
specific reasons. Elements in “thDst” are set to high if the corresponding element
in “thSrc” is above the threshold value. Otherwise the element is set to zero.

The method described above operates within the pocket processor sub-system
of the MVG device in Figure 1. The pocket processor also generates audio
cues, accepts user inputs, provides a clinician interface for the modification of
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Fig. 8. Image processing using a Camera Map

Algorithm 3.1 Fast Threshold using Integral Images
Input: graySubImage, thV al, thMode, stimuliBuffer
Output: stimuliBuffer ← array(int), thV alUsed

stimuliBuffer ← 0, e ← 0
integralImage ← integral(graySubImage)
for all i ← {0, rect.length() − 1} do

if enable[i] then
thSrc[e] ← fastMean(integralImage, rect[i])
e ← e + 1

thV alUsed ← threshold(thSrc, thDst, thV al, thMode)
j ← 0
for all i ← {0, numEnabled − 1} do

if enable[i] then
stimuliBuffer[i] ← thDst[j]
j ← j + 1

stimulation parameters and outputs stimulation commands to the wireless sys-
tem. Details of these additional functionalities are outside the scope of this paper.

3.4 Real Time SPV Visualisation Using Phosphene Map

A fast Simulated Prosthetic Vision (SPV) visualisation algorithm was also imple-
mented in C++ for the MVG pocket processor. It uses the patient’s phosphene
map and the stimuli buffer output of the fast image processing method to render
a 640×480 image of activated phosphenes. This provides a real time visualisation
of the prosthetic vision experienced by a patient, which is useful for engineers
making adjustments to image processing parameters and for clinicians modify-
ing stimulation parameters or guiding patients through psychophysics activities.
The visualisation is disabled during daily use to reduce computational and power
costs as the vision impaired patient do not need this functionality.
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SPV visualisations captured during system testing are shown in Figures 9a
and 9b. The left side of the visualisation contains the camera image overlaid
with regions defined in the camera map. The results of image processing, the
activated phosphenes, are shown on the right. The phosphene map is the same
as the four-tile map in Figure 5a.

(a) Images from wearable camera

(b) Offline testing with synthetic images

Fig. 9. Real Time SPV visualisations

Phosphenes are drawn using template images that are pre-generated by the
simulation described in Section 3.1. A pixel texture is copied to a region of
interest in the SPV visualisation image in a similar way as the blit operation
available in many graphics libraries.

3.5 System Testing and Results

The computer vision system was tested on the MVG wearable prototype in
Figure 10. As the MVG device is still in the preclinical phase, system testing
was performed using the simulated phosphene map from Figure 5a. The camera
map used for testing can be seen in the SPV visualisations in Figures 9. Real
time system operation and SPV visualisations for different mappings can be seen
in the videos accompanying the paper6.
6 http://goo.gl/fBKpWT

http://goo.gl/fBKpWT
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Fig. 10. Wearable Hardware Prototype for Software Development and Testing

Processing times measured over 400 images from the camera module (640×480):
Mean (ms) STD (ms) Min (ms) Max (ms)

Image Processing 2.53 0.14 2.41 2.69
SPV Visualisation 1.98 0.37 1.03 2.87

4 Discussion and Conclusions

This paper presented a real time computer vision system for implanted visual
prostheses. The system uses a novel second mapping called the Camera Map,
decoupling the invariant patient-electrode interface from the highly flexible pixel
regions used for image processing. The system is fast, taking only several mil-
liseconds to perform image processing and visualisation.

Future work will focus on two aspects. Firstly, the computer vision system will
be integrated into ongoing psychophysics trials measuring task performance [12]
and evaluating thresholding approaches [6]. Secondly, additional image process-
ing modes will be implemented for the computer vision system.
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