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Abstract
General (global) circulation models (GCMs) are a useful tool for studying how climate may
change in the future. Although GCMs have high temporal resolution, their spatial resolution is
low. To simulate the future climate of the Baltic Sea region, it is necessary to downscale GCM
data. This chapter describes the two conceptually different ways of downscaling: regional
climate models (RCMs) nested in GCMs and using empirical and/or statistical relations
between large-scale variables from GCMs and small-scale variables. There are many
uncertainties in climate models, including uncertainty related to future land use and
atmospheric greenhouse gas concentrations, limits on the amount of input data and their
accuracy, and the chaotic nature of weather. The skill of methods for describing regional
climate futures is also limited by natural climate variability. For the Baltic Sea area, the lack of
an oceanic component in RCMs and poor representation of forcing by aerosols and changes in
land use are major limitations.

10.1 Introduction

The development of general circulation models (GCMs) has
created a useful tool for projecting how climate may change
in the future. Such models describe the climate at a set of
grid points, regularly distributed in space and time and with
the same density over land and ocean. Their temporal res-
olution is relatively high, but their spatial resolution is lim-
ited by computing power. Many important processes, such
as cloud formation, convection, and precipitation, occur at
spatial scales much smaller than the distance between grid
points. This means that these so-called sub-grid processes
are not explicitly simulated by the models, but must be
approximated with simplifying algorithms referred to as
parameterisations. The low spatial resolution also means that
the topography, coastline, and processes at the land–air,
ocean–air, and land–ocean boundaries are coarsely repre-
sented in GCMs.
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The resolution of present-day GCMs, defined as a dis-
tance between two neighbouring points, is of the order of
100–300 km. However, the skilful scale (i.e. the scale at
which the climate models are able to capture climate fea-
tures) is larger, at about 8 grid point distances (Grotch and
MacCracken 1991; von Storch et al. 1993), so about 1000–
2500 km. This means that GCMs are well able to simulate
the atmospheric state at scales greater than the skilful scale
in spite of providing values within a grid scale (von Storch
et al. 1993). However, the work of Grotch and MacCracken
(1991) was based on old models with a small number of
vertical levels and simple ocean–atmosphere coupling. A
more comprehensive discussion about the skilful scale issue
was given by Benestad et al. (2008).

To generate estimates of regional climate, that is, at a
scale smaller than the skilful scale, it is necessary to
downscale GCM results. Downscaling is understood as a
process linking large-scale variables with small-scale vari-
ables. There are two conceptually different ways of down-
scaling. The first uses regional climate models (RCMs)
nested in GCMs. RCMs have much higher resolution and
can describe local features better, but are still able to simu-
late the atmospheric state in a realistic manner in their skilful
scales. The second uses empirical and/or statistical relations
between the large-scale results from GCMs and small-scale
variables that describe regional and/or local climate
conditions.

Climate projections differ significantly from weather
forecasting. Forecasts cannot predict weather with high
accuracy beyond a few days. Numericalweather forecasts take
observations as a starting point. The number of observations is
limited as is the accuracy with which they are made. Small
disturbances in the data can cause a large effect on weather
after some time. Lorenz (1963) referred to this as the ‘butterfly
effect’. Climate models are not concerned with weather on a
particular day or month or even year but with the statistical
features of states of the atmosphere over long periods.

There are also other differences between weather and
climate. Weather is forecast for a relatively short time—a
few days, generally less than two weeks. This is because
changes in weather are caused mainly by changes in the
atmosphere. Even changes in oceanic processes have only a
very limited influence on the weather because of the longer
timescales of typical processes occurring in the oceans. In
the case of climate, however, other factors must be taken into
account. Climate variations are also caused by changes in the
environment: ocean, vegetation, ice, sun, and the composi-
tion of the atmosphere. Some of these can be predicted with
high accuracy, while others cannot. Among those that cannot
are land-use change and the composition of the atmosphere,
especially in relation to greenhouse gases (GHGs) and
aerosols. As future climate change is to a high degree related

to the extent of change in these environmental variables,
predicting the future climate requires reliable estimates of
the future composition of the atmosphere and land use. As
the concentration of GHGs and aerosols in the future
atmosphere is so difficult to predict because of the many
influencing factors, scenarios are developed based on pro-
jections of the future evolution of the world population and
economy (see Chap. 11, Sect. 11.2) and it is these scenarios
that are used as the basis for projections of future climate.

Beside the uncertainty related to the limited information
on land use, and the atmospheric concentrations of GHGs
and aerosols, there are also other sources of uncertainty in
models. These include limited amounts of input data and
their limited accuracy. Due to the chaotic nature of the cli-
mate system, a very small difference in initial conditions can
generate different climate features, as each simulation gen-
erates a different set of realisations. If this were the only
source of uncertainty, the differences between simulations
should remain within the range of typical climate variability.
However, this is not the case. Many sub-grid-scale processes
must be simulated in models in a more or less complex form
and are not well described by the models. For example,
simulations of cloud formation, their optical and radiative
features, and the creation of precipitation still carry consid-
erable model error.

For climate models to be useful, they need to be evalu-
ated. As future climate predictions cannot be evaluated by
direct comparison with observations, models are evaluated
by comparing simulations with observations of the past
climate. In theory, this should make it possible to select the
best model, but this is not the case in practice. One model
can usually describe a particular parameter better than
another model, while the second model better describes a
different variable or even the same variable, but in another
part of the world. There are no objective ways to choose the
best model, because none are able to exactly reproduce the
observed mean climate and its variability. Differences
between simulations and real climate data can be estimated
on the basis of a so-called reference period (in the past) for
which observational data are available. The differences,
usually referred to as ‘biases’, vary in space and typically
also in daily and annual cycles.

The models describe climate at a set of grid points.
Because of numerical constraints in GCMs and RCMs,
model results at neighbouring grid points are more correlated
than actual measurements from two observation points at the
same distance (Déqué 2007). This is one reason why the
distributions of simulated variables are usually smoothed in
comparison with measured station data. Simulations tend to
underestimate the highest values and overestimate the lowest
(Déqué 2007). This means that the bias is different in dif-
ferent parts of the distribution.
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There are a number of sources of uncertainty in climate
projections, and thus, preparing scenarios for future change
in climate variables is a big challenge. No single method can
be used for all variables and all regions.

Natural variability is an important source of uncertainty in
climate projections (Deser et al. 2012a). The term ‘natural
climate variability’ refers to variations in climate unrelated
to human influences (BACC Author Team 2008). Deser
et al. (2012a) analysed how the amplitude of natural vari-
ability varies with location in North America. There has
been no similar study for the Baltic Sea basin, but these
results are also relevant for this region. The analysis showed
that natural variability is generally smaller in summer than
that in winter and at lower latitudes rather than at higher
latitudes. Also, that regional averaging does not always
reduce the uncertainty in climate projections (Deser et al.
2012a). Natural climate variability cannot be reduced by
better models, downscaling techniques or improved GHG
emission scenarios and as a result limits climate predict-
ability. However, natural climate variability can be described
and to some extent quantified in an ensemble approach (see
Deser et al. 2012a).

10.2 Dynamical Downscaling

The methodology used to achieve climate simulations in
high resolution for a specific region by applying RCMs is
referred to as ‘dynamical downscaling’. RCMs are based on
atmospheric limited-area models used in numerical weather
prediction. The first application of RCMs for long-term
simulations goes back to the work of Dickinson et al. (1989)
and Giorgi and Bates (1989). Today, RCMs are used by
many institutions and have been applied for a large number
of studies, and RCM climate change projections have been
undertaken for regions on all continents. There are several
recent reviews of RCM methodology and their application
(e.g. Giorgi 2006; Foley 2010; Rummukainen 2010).

10.2.1 Methodology for Dynamical
Downscaling

Owing to limitations in computational power, the spatial and
temporal resolution of GCMs covering the whole globe
cannot be refined arbitrarily. For long-term climate change
simulations, state-of-the-art GCMs can go down to nominal
horizontal resolutions of about 100 km on current super-
computing systems. As atmospheric systems can be resolved
only within several grid boxes, their effective resolution is
much coarser, however. Therefore, GCMs can simulate
large-scale climate features (i.e. synoptic lows), but not
mesoscale atmospheric features (e.g. regional winds

generated by mountains), which are necessary for a realistic
simulation of regional climate.

Consequently, the principal concept of RCMs is to per-
form long-term climate change projections with an increased
spatial resolution (down to about 50–10 km) for a specific
region of interest only. RCMs are limited-area versions of
three-dimensional atmospheric circulation models, which in
principle use the same set of dynamic equations and physical
parameterisations as GCMs. Like GCMs, they include for
land grid points a model describing the thermodynamic
properties of the upper soil levels. The main difference
between RCMs and GCMs (apart from sometimes different
parameterisation schemes) is their lateral boundary, as they
do not work globally. Because the RCM does not have any
information outside its modelling domain, it needs to be
provided with information about the atmospheric state at its
lateral boundaries, the so-called lateral boundary conditions
(LBC). In contrast to GCMs, the solution of an RCM con-
sequently transforms from an initial-value problem into a
lateral boundary value problem for longer integration times.
The information at the lateral boundaries is taken from the
output of the ‘driving model’, which can be a GCM, a global
(re-) analysis, or—when using a ‘double nesting’ technique
—from RCM output simulated on a larger domain in coarser
resolution. In order to provide a smooth transition and to
avoid numerical problems, a careful LBC treatment is
essential for RCM integrations. In the early 1970s, Davies
(1976) invented the ‘sponge zone’, a zone of around 5–10
grid boxes at all lateral boundaries, in which the LBC and
the internal solution of the RCM are merged with decreasing
weight of the LBC from the boundary towards the centre of
the domain. This kind of treatment of the lateral boundaries
is still used in most RCM simulations. Additionally, at the
lower boundary over sea areas, values for sea-surface tem-
perature (SST) and ice coverage have to be prescribed during
the integration. This information is mostly extracted from the
driving model like the LBC, as most RCMs are still pure
atmospheric models without a coupled ocean component.

10.2.2 Performance of RCMs
in Reproducing Recent Climate

A benchmark test for RCMs is that they can reproduce the
main features of the climate of the past few decades when
forced with realistic boundary conditions. In this respect, it is
common to evaluate simulations in which RCMs have been
downscaling reanalysis data. Extensive model evaluation has
been undertaken for single RCMs (e.g. Samuelsson et al.
2011) or for a large number of models (e.g. Christensen et al.
2010). However, studies on RCM performance focusing on
the Baltic Sea region remain few (e.g. Lind and Kjellström
2009). This section therefore presents results from a range of
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RCMs from the ENSEMBLES project (Christensen et al.
2010) to illustrate the degree to which current RCMs can
reproduce the recent past climate. The nine RCMs are listed
in Chap. 11 and Table 11.1, and this section presents the
results for their forcing by ERA-40 reanalysis data (Uppala
et al. 2005) rather than GCM output at their lateral bound-
aries. As example of model performance, this section shows
comparisons of how the ensemble of ERA-40-driven simu-
lations reproduces seasonal mean temperature (Fig. 10.1)
and precipitation (Fig. 10.2) for the Baltic Sea region with
respect to the daily gridded observational data set based on
European Climate Assessment & Dataset information (E-
OBS) (Haylock et al. 2008). Nine RCMs were used:
C4IRCA3, KNMI-RACMO2, DMI-HIRHAM5, ETHZ-
CLM, HadRM3Q0, HadRM3Q16, MPI-REMO, Had-
RM3Q3, and SMHIRCA (for documentation on the indi-
vidual models, see Christensen et al. 2010; data are available
from http://ensemblesrt3.dmi.dk/). The maps show grid-
point-wise model performance, and as an estimate of the
spread, the nine sets of results for each grid point are sorted
resulting in an approximate 5th percentile corresponding to
the lowest value, a median, and an approximate 95th per-
centile corresponding to the largest value.

In summer, the temperature climate is reproduced to
within ±3 °C in all models in most of the region (Fig. 10.1).
An exception is the southernmost part where maximum
errors are greater than 5 °C in the warmest (95th percentile)
model. Another exception is the relatively large local neg-
ative biases found over the big Russian lakes: Lake Ladoga

and Lake Onega. These biases are unlikely to be real but
probably reflect that the E-OBS data build on land-based
observations, while some of the RCMs include lake models.
Such a lake model has the effect of delaying the summertime
maximum temperature by about one month, implying that
the June–July–August average is lower compared to the
surrounding land areas (Samuelsson et al. 2010). In the
north, on the other hand, no models overestimate the tem-
peratures indicating a systematic cold bias in most models in
that area. In winter, most models tend to be too warm in
parts of the northern basin indicating a too weak annual
cycle, while in the south, there are both models over- and
underestimating temperature. An interesting feature is the
local cold bias in eastern Latvia. As Christensen et al. (2010)
pointed out, there is no reason why the RCMs should have a
local bias like this and it may therefore indicate that it is in
fact the E-OBS data that are biased.

Precipitation seems to be overestimated in the Baltic Sea
region in most RCMs, both in winter and summer. An
exception is again the southern part of the basin where there
are models with a dry bias in summer. The driest model is
also the model with the largest positive bias in temperature,
indicating a possible feedback between precipitation, soil
moisture, and temperature. The biases in wintertime pre-
cipitation are apparently large, in the wettest models more
than 50 % in most of the region. However, it should be noted
that the wintertime observations of precipitation in this area
may be biased due to undercatch related to snow and wind
(e.g. Rubel and Hantel 2001). A local overestimation
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Fig. 10.1 Simulated mean
temperature bias with respect to
the daily gridded observational
data set based on European
Climate Assessment & Dataset
information (E-OBS) for 1961–
2000. The maps show the
pointwise smallest (left), median
(middle), and largest (right)
biases from an ensemble of nine
RCMs with lateral boundary
conditions from ERA-40
reanalysis data. Upper row shows
summer (JJA) biases and lower
row winter (DJF)
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appears over large parts of Poland (Fig. 10.2). But, as dis-
cussed by Christensen et al. (2010), this could also be the
result of a bias in the observations as there is no reason why
the RCMs should show such a strong local deviation from
the surrounding areas (see Chap. 11).

10.2.3 Developing and Extending RCMs

In global climate projections, coupled atmosphere–ocean
models are state of the art (Meehl et al. 2007). However,
RCM climate change projections are in general still carried
out for the atmosphere only, prescribing SST data taken
from the driving model (Christensen et al. 2007; Kjellström
et al. 2013). Consequently, the quality of the prescribed SST/
sea ice data depends on the quality of the global modelling

system. In particular, for a relatively small and semi-
enclosed sea like the Baltic Sea, data quality might be lim-
ited by the coarse resolution of the global ocean component.
Figure 10.3 shows the land–sea mask of the global ocean
model MPI-OM in grid resolution 1.5° (GR15), as used as
one of the main coupled atmosphere–ocean GCMs
(AOGCMs) for driving the RCM model suite within the EU
project ENSEMBLES (www.ensembles-eu.org). A better
representation of the water body of such oceans can be
generated by the use of high-resolution regional ocean
components, which can be coupled to the atmospheric RCM
(analogue to global coupled model systems).

Pioneering work in this area has been done for the Baltic
Sea region. This includes establishing atmosphere–ocean–
sea ice models (e.g. RCAO, Döscher et al. 2002), some
including additional river routing schemes allowing the

Summer precip bias 5th percentile (%)

-56

-40

-24

-8

8

24

40

56

Summer precip bias 50th percentile (%)

-56

-40

-24

-8

8

24

40

56

Summer precip bias 95th percentile (%)

-56

-40

-24

-8

8

24

40

56

Winter precip bias 5th percentile (%)

-56

-40

-24

-8

8

24

40

56

Winter precip bias 50th percentile (%)

-56

-40

-24

-8

8

24

40

56

Winter precip bias 95th percentile (%)

-56

-40

-24

-8

8

24

40

56

Fig. 10.2 Simulated
precipitation bias with respect to
the daily gridded observational
data set based on European
Climate Assessment & Dataset
information (E-OBS) for 1961–
2000. The maps show the
pointwise smallest (left), median
(middle), and largest (right)
biases from an ensemble of nine
RCMs with lateral boundary
conditions from ERA-40
reanalysis data. Upper row shows
summer (JJA) biases and lower
row winter (DJF)

Fig. 10.3 Land–sea mask of the
global ocean model MPIOM in
resolution GR15 (courtesy of M.
Böttinger, DKRZ)
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modelling of the complete hydrological cycle (e.g. BALTI-
MOS, Lehmann et al. 2004). Recently, Meier et al. (2011)
showed that a coupled RCM of this type (RCAO) has the
potential to improve the results in downscaling experiments
driven by GCMs considerably because SSTs and sea ice
concentrations are more realistic than those taken directly
from the driving GCM. This adds a major caveat to the
utility of other downscaling methods relying on SSTs from
GCMs in the area, for example the RCM simulations from
the ENSEMBLES project.

In conventional RCM simulations, the driving model data
are used only in the lateral boundary zone, while in the inner
model domain, the RCM is not forced to the driving model.
This causes an ill-posed boundary value problem and can
lead to a different large-scale flow in the RCM simulation
with respect to the driving model. In a perfect boundary
setting, this ‘freedom’ of the RCM may lead to considerable
deviations between the real and simulated local climate state
(e.g. Winterfeldt and Weisse 2009). With a nudging tech-
nique, the solution of the driving model can be prescribed for
the whole RCM domain. However, by a scale-independent
nudging method, the desired small-scale circulation features
generated by the RCM would also be suppressed. In order to
circumvent this clear disadvantage, the method of ‘spectral
nudging’ was introduced (von Storch et al. 2000; Feser et al.
2001), in which just the large-scale circulation is relaxed
towards the driving model in the inner RCM domain, while
the small-scale circulation remains untouched (large-scale
constrained RCM simulation). This method leads to a system
where empirical data (i.e. large-scale flow and surface details)
are systematically combined with the theoretical under-
standing (i.e. the RCM). While the spectral nudging tech-
nique is now becoming more popular (e.g. Miguez-Macho
et al. 2004; Castro et al. 2005), a debate on this technique is
still ongoing; however, improvements through the applica-
tion of spectral nudging are evident when the driving model
represents a realistic large-scale flow, such as using reanal-
ysis data as the driving model (Winterfeldt andWeisse 2009).
In contrast, in the situation with a coarse GCM having an
unrealistic large-scale circulation (caused by poorly repre-
sented topography due to the coarse resolution) as the driving
model, even an RCM using spectral nudging could not alter
the prescribed large-scale flow. In regions with complex
terrain, the simulated flow in the reanalysis data and therefore
the nudging constraints might themselves be biased. In such
situations, spectral nudging might lead to unrealistic local-
scale flow (Radu et al. 2008). The ability of a non-nudged
RCM to improve the large-scale climate inside its domain can
be evaluated using the ‘Big Brother’ approach (Denis et al.
2002). In this approach, a reference climate is established by
performing a large-domain high-resolution RCM simulation

termed ‘the Big Brother’. Here, the short scales are filtered
out and this filtered reference is used to drive the same nested
RCM (the ‘Little Brother’) integrated in the smaller domain
but with the same resolution. Differences between climate
statistics of both can be attributed to errors associated with
the nesting and downscaling technique, allowing them to be
distinguished from model errors. This ability is model and
region dependent.

At present, most RCMs still use the hydrostatic approx-
imation, assuming the vertical structure to be in hydrostatic
equilibrium, and consequently neglecting vertical accelera-
tion. This assumption is valid for nominal horizontal reso-
lutions roughly above *10 km. Most current RCM climate
change projections still use coarser nominal horizontal res-
olutions, between 50 and 20 km (e.g. PRUDENCE and
ENSEMBLES), but due to increasing computer power, the
resolution of some RCM climate change simulations is
increasing to about 10 km. The expected further increase in
computational resources will presumably mean a further
increase in RCM resolution, leading to the use of non-
hydrostatic RCMs. Kendon et al. (2012) reported on a recent
study showing results from dynamical downscaling with a
non-hydrostatic RCM at 1.5 km grid spacing.

To date, climate change projections have been carried out
in a one-way nesting mode, meaning that the RCM does not
give information back to the driving model. The first studies
of two-way nesting, allowing feedback from the RCM to the
GCM (Lorenz and Jacob 2005; Inatsu and Kimoto 2009),
indicate the potential for improving the driving global sim-
ulation, even in regions far from the two-way nested RCM
domain (there are no examples demonstrating the two-way
nesting approach for the Baltic Sea region available yet).

In addition to ocean models, lake models have also been
coupled to RCMs. This is an important development for the
Baltic Sea basin where a large number of lakes exist and a
large fraction of the land area is covered by lakes. In a study
with an RCM coupled to a lake model, Samuelsson et al.
(2010) found that including lakes warmed the climate and
that the largest warming occurred in autumn and winter in
southern Finland and western Russia where differences of
more than 1 °C were obtained.

In recent years, RCMs have begun to incorporate more
processes. One example is the work of Wramneby et al.
(2010) where a process-based model of vegetation dynamics
and biogeochemistry has been coupled to an RCM. They
showed that including dynamic vegetation that responds to
climate change has an impact on the climate simulated. For
the Baltic Sea region in particular, they found reduced
albedo resulting from the snow-masking effect of forest
expansion when dynamic vegetation is included. This leads
to an enhancement of the winter warming trend.
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10.3 Statistical Downscaling

Statistical downscaling is an approach that bridges the gap
between model output (GCMs or RCMs) and regional or
local-scale climate. Rummukainen (1997) distinguished
between the model output statistics (MOS) methods and the
perfect prognosis (PP) methods. The MOS methods find
relationships between model simulations and observations in
the historical (reference) period and then use them in future
climate simulations (Wilby and Wigley 1997; Maraun et al.
2010). The PP methods identify empirical relationships
linking large-scale atmospheric predictors and local/regional
predictands. This relationship is assessed on the base of
observations in the historical (reference) period and is then
used in simulations of future climate.

10.3.1 Model Output Statistics

The biggest disadvantage of the RCM methodology is
probably the occurrence of systematic biases in the present
climate simulations. These systematic biases, also seen in
GCMs, are because dynamic climate simulations carried out
with GCMs and RCMs are bound only to changing atmo-
spheric GHG concentrations. Due to their coarse resolution
and parameterisations, GCMs and RCMs are not perfect; so
even the mean climatological values produced by these
models deviate from the corresponding observations. In
RCM climate projections, the systematic biases are nonlinear
combinations of the systematic errors of the driving GCM
and the systematic errors of the RCM itself. Another limi-
tation is that there is still the need to downscale area aver-
ages given as grid values in model output to point values
necessary for impact studies (Xu et al. 2005). Given the
discrepancies between observations and model results for
present-day climate, a method is needed to cope with the
biases. Given that good observation data sets exist, more
realistic data sets of forcing fields incorporating the projected
changes can be created and used for impact studies (Piani
et al. 2010). This can be achieved through the methods
known as MOS. These are statistical models linking simu-
lated variables to observations. There are generally two
groups of MOS methods: one is known as the bias correction
method (Déqué et al. 2007; Piani et al. 2010), while the other
is known as the perturbation of observed data (POD) or the
delta change (DC) method (Hay et al. 2000; Lenderink et al.
2007a; van Roosmalen et al. 2011). A review of MOS
methods was reported by Maraun et al. (2010).

10.3.1.1 Bias Correction Method
Validating models by comparison with observations makes
it possible to quantify model biases, defined as differences in
the mean as well as higher order statistical moments. An

assessment of bias is the first step before using the model
output to force impact models. Unfortunately, model bias is
not uniform in space or time and so its identification needs
long and homogenised data sets with high spatial resolution.
A bias has a seasonal cycle, so its correction often means
applying it to individual months or seasons separately.
Because GCM and RCM outputs are given in a set of grid
points, they are usually volume averages and cannot be
directly compared with observations as these are point val-
ues. Volume averaging is a type of smoothing that makes
high values lower and low values higher, so the range of
volume averages is usually much lower than the range of
point values. It means that the bias can vary also within
different parts of the distribution.

Bias correction or scaling is based on the assumption that
the statistical relationship between observations and RCM
simulations for the present-day climate is the same as that
between the future climate and RCM simulations of the
future climate, which may not be true (Christensen et al.
2007; Boberg and Christensen 2012). The bias correction
values are calculated by comparing observations with RCM
simulations for the same period. Since two climates are
compared—the real one and a simulated one—the study
period should be relatively long, covering at least 30 years.
The corrections can be additive or multiplicative, depending
on the variable.

In some cases, the impact models need only seasonal or
monthly mean values. Then, it is enough to compare long-
term means of observations and RCM simulations for the
present-day climate (Schmidli et al. 2006; Graham et al.
2007b). The corrections calculated for RCM simulations
under the present-day climate are then applied to the RCM
simulations for the future climate to generate more accurate
future scenarios. In many cases, the bias correction factors
are considered individually for different intensities (i.e. parts
of the variable distribution). This is sometimes referred to as
distribution-based scaling (DBS; Yang et al. 2010; van
Roosmalen et al. 2011). Déqué (2007) and Piani et al. (2010)
gave a detailed description of the method. It is generally a
quantile mapping approach, where quantiles are empirical
cumulative distribution functions or statistical distributions
fitted to simulated and observed data.

10.3.1.2 Perturbation of Observed Data
The second MOS method is the DC or POD method (Hay
et al. 2000; van Roosmalen et al. 2011). In this approach, the
long-term mean additive or multiplicative change factor is
calculated on the basis of an RCM projection of the future
and present-day (reference) climate and applied to the
observation record (Yang et al. 2010; van Roosmalen et al.
2011). These factors can differ seasonally and for different
part of the frequency distribution (Olsson et al. 2009). In the
DC method, there is no need to identify the bias. Instead, the
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absolute or relative delta change factors (DCF) are assessed
by comparing the climate model outputs representing pres-
ent-day and future climate (Semadeni-Davies et al. 2008;
Olsson et al. 2009). The observed variable is then rescaled
and used as input for impact models.

One of the differences between MOS and other statis-
tical downscaling methods is that MOS calibration is spe-
cific to the numerical model for which it has been
developed and cannot be used with other numerical models
(Maraun et al. 2010). Calibrations can be based on RCM
driven by reanalysis or GCM climate simulation forced by
external factors. In the first case, there is a direct corre-
spondence between simulated and observed variables; in
the second, only statistics of simulated and observed vari-
able distributions can be compared. Because, in this second
case, the simulated climate is one randomly selected from
many possible choices it is always a risk that the bias
determined is an artefact generated by this random choice.
On the other hand, calibrating with a reanalysis-driven
RCM is of little use, because no reanalysis of the future is
available.

10.3.2 The ‘Perfect Prognosis’ Approach

The PP approaches establish the statistical relationship
between large-scale predictors and regional or local-scale
predictands. The local variable of interest, denoted by y,
depends not only on the large-scale predictors X, but also on

the local geographic parameters denoted by g. Mathemati-
cally, this can be expressed as follows:

y ¼ f X; gð Þ þ g;

where η means a residual noise term.
Figure 10.4 illustrates how the local conditions depend on

both the geography and the large-scale situation. In this case,
the snow only stays where the temperature is below freezing,
which is only above a certain altitude. Furthermore, the large
coherent extent of the snow shows that the local temperature
is part of a larger pattern. Although the exact value of y may
vary from location to location (small-scale noise η), it is
possible to say from this photograph that the temperature in
the snow-covered region shown is mainly below freezing. In
this example, the large-scale condition X is the snow cover,
but it is better to use a predictor with a more direct physical
relationship to the predictand. X can often be the mean sea-
level pressure (SLP) or the large-scale temperature pattern.

Two steps can be distinguished in the downscaling pro-
cedure: the identification of large-scale predictors and the
development of a statistical model linking the local pre-
dictand with the large-scale predictors.

There are four requirements that the predictors should
fulfil. Most important is the existence of a strong statistical
relationship between predictors and predictand, typically
manifest by high-correlation coefficients. The relationship
between predictors and predictand needs to be stable over
time. Suitable predictors should also be reasonably well

Fig. 10.4 The Rondane
mountain range in Norway during
autumn, illustrating how local
conditions such as snow cover
depend on both geography and
large-scale weather (photograph
R.E. Benestad)
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simulated by GCMs. For climate change analysis, it is
important that predictors capture the global warming signal
(Wilby et al. 2000).

The predictor, being a large-scale variable, is defined at a
huge number of grid points. It is therefore convenient to
reduce this dimensionality, because there is usually a high
correlation between values at neighbouring grid points. One
way of doing this is to decompose the field variable into a
smaller number of modes of variability. The large-scale
variability can be described in terms of orthogonal empirical
functions (EOFs) (Lorenz 1956; North et al. 1982; Benestad
2001). The spatial structures of EOFs describe a set of
spatially coherent ‘modes’ that describe the variations in the
gridded data. The leading modes describe the structures that
are most pronounced and have the greatest spatial scales, and
the higher order modes are associated with less variance and
smaller spatial scales.

Often, only a small number of leading EOFs describe the
major part of field variability (Wilks 1995). It is therefore
possible to describe the main features of the gridded data in
terms of a relatively small number of EOFs. Each spatial
EOF pattern is associated with a vector of weights,
describing how strongly this pattern is present at any time of
the record. This time series is often referred to as a ‘principal
component’ (PC). The PCs are the basis for the downscaling
model calibration, for instance a multiple regression against
the predictand. The benefit of using EOFs is that they are
orthogonal and make the model calibration easier and more
robust (no co-linearity).

The reduction in dimensionality can also be obtained by a
transformation of field values into other indices. In the case
of SLP fields, these can be the indices of zonal and merid-
ional flow, vorticity, or other indices, such as the North
Atlantic Oscillation index (Conway and Jones 1998; Wilby
and Wigley 2000). Weather types represent another type of
transformation. Here, the large-scale field, usually SLP or
geopotential height, is mapped into a set of categories—
weather types—by a clustering algorithm like k-means.

The transformation procedure should generate a predictor
that has high predictive power, that is, explains a high per-
centage of the variability of the predictand. Some methods,
such as canonical correlation analysis (CCA) or the singular
value decomposition (SVD) method, directly seek the modes
having the highest correlation or covariance with the pre-
dictand field, while others do not.

10.3.2.1 A Brand of Calibration Strategies
The brand ‘PP methods’ describe a class of empirical–sta-
tistical downscaling models that involve a specific strategy
for model calibration (Wilks 1995). These use observations
[raw and gridded data, or re-analyses (Kalnay et al. 1996;
Simmons and Gibson 2000)] to calibrate against an observed

predictand. First, a predictor is taken from historical data,
and then, a relation is found with the predictand (down-
scaling model calibration). Then, the climate model results
are compared with the predictors used to calibrate the
downscaling model, and steps are taken to ensure that the
model results correspond with the calibration data (e.g.
through a regression analysis). The PP method may involve
linear and nonlinear methods.

10.3.2.2 Regression Methods
Regression models include linear and nonlinear relationships
between predictors and the predictand (Benestad et al. 2008).
Among them are the multiple regression (Murphy 1999), the
CCA method (Busuioc et al. 1999), and the SVD method
(Bretherton et al. 1992). The difference between these
approaches is that the multiple regression minimises the
root-mean-square errors (distance between predictions and
observations), the CCA maximises the correlation, and the
SVD maximises the covariance between two fields. Artificial
neural networks also represent nonlinear regression models
(Crane and Hewitson 1998).

10.3.2.3 Weather Classification Methods
The weather classification methods involve various strate-
gies, such as analogues (Zorita and von Storch 1999; Timbal
et al. 2008), circulation classification schemes (Bárdossy and
Caspary 1990; Jones et al. 1993), cluster analysis (Corte-
Real et al. 1999; Huth 2000), and neural nets. The analogue
model involves searching the record of past events and
taking the day that most closely matches the situation
wanted to predict. Cluster analysis bases the predictions on a
number of closest states (Wilks 1995), either by taking the
mean of the days with close matches or by using the
observed values for all days that match the predicted state,
and constructing a statistical distribution (histogram). From
this sample, or a fitted probability density distribution, a
random value may be drawn. Neural nets involve various
adaptive learning algorithms, such as ‘artificial intelligence’
(Wilby et al. 1998; Hewitson and Crane 2002). The analogue
model, circulation classification schemes, and cluster anal-
ysis all involve a re-sampling of past measurements. These
re-sampling techniques suffer from one caveat that the tails
of the distributions will be distorted because the sampling
cannot produce new record-breaking values (Benestad
2008). Even stationary series are expected to produce new
record-breaking events, given sufficiently long intervals for
observations. Theory of independent and identically dis-
tributed (iid) series shows that the expected occurrence of
new record-breaking events will converge towards zero, but
never actually become zero. Nevertheless, this implies that
the upper and lower tails of the distribution of the results
from the re-sampling methods may be distorted and that the
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results may have to be re-calibrated. A re-calibration can be
performed once the theoretical probability distribution
function is known through local quantile mapping.

10.3.2.4 Weather Generators
Stochastic weather generators are statistical models pro-
ducing high-resolution local-scale time series of a suite of
elements such as temperature and precipitation among oth-
ers, whose large-scale statistics follow the required criteria
(Richardson 1981; Wilks and Wilby 1999; Olsson et al.
2009; Willems and Vrac 2011). Among many applications,
they can serve as a computationally effective tool to produce
site-specific data sets at the required time resolution
(Semenov et al. 1998).

The distribution used is usually different for different
climate variables. For temperature, the normal distribution is
the most popular (Semenov et al. 1998). More complicated
is the generation of precipitation data, and different functions
are used. Among the most popular are the Markov chain, the
semi-empirical, and the Neyman–Scott rectangular pulse
(NSRP) weather generator. In the Markov chain generator,
precipitation occurrence and totals are produced separately
(Sunyer et al. 2012). Two states are possible: wet or dry
days. The amount of precipitation on a rainy (wet) day is
most often generated using a gamma or exponential distri-
bution (Benestad 2007). In the semi-empirical generator, a
few distributions can be defined, for instance for wet and dry
spell lengths and precipitation amount. In the NSRP weather
generator, Kilsby et al. (2007) proposed four different steps.
A storm origin is described by the Poisson process. Separate
rain cells within a storm are separated by time intervals taken
from exponential distribution. The duration and intensity of
each rain cell are also described by exponential distributions,
and their sum gives a rainfall total.

Weather generators can be used when the observation
records are relatively short. They can also supply many
weather ‘realisations’ having the same overall statistics. A
wide suite of statistics can be used to fit the model: mean,
variance, skewness, autocorrelation, and many others.
Weather generators can also serve to produce data for loca-
tions where there is information about the statistical distri-
bution and time structure. For places with only short records
of high-temporal-resolution data but longer series with data of
low resolution, it is possible to use information from the
longer records to make inferences about the distributions, and
it is in principle possible to produce projections for temporal
scales higher than those usually produced by RCMs (6 h).

10.3.2.5 Randomisation
Models generally underestimate the local-scale variance. To
resolve this, Karl et al. (1990) proposed the use of a scaling
factor to ensure that the variance of the projected surface
values will match the observed variance. But this could

increase the error of the estimates, a phenomenon called
‘inflation’. Von Storch (1999) argued that this was not a good
method because of the need to relate the variance of the pre-
dictor to the variance of the predictand. Instead, this author
proposed a randomisationmethod that relied on adding a noise
(not necessarily a white one, a random signal with a constant
power spectral density was adequate). Another method of
resolving the issue of underestimating local-scale variance
was developed by Bürger (1996) and called the ‘variance-
optimised’ version of expanded downscaling. Bürger and
Chen (2005) compared all these methods. They found that
inflation for multi-site downscaling did not describe spatial
correlation. Randomisation has a problem with simulating
variance in a future climate. The Bürger (1996)method is very
sensitive to the quality of normalisation.

10.4 Ensembles, How to Use Them
and How to Assess an Error
of Projection

All techniques developed to derive regional-scale climate
information are associated with uncertainties. This is true
both for the direct use of global climate model output and for
information emanating from dynamic or statistical down-
scaling techniques. Uncertainties related to forcing, climate
sensitivity, and natural variability can, at least to some
degree, be treated by utilising climate change information
from ensembles including a large number of climate change
experiments (Benestad 2011).

10.4.1 Different Types of Ensembles

Ensembles of climate change simulations can be constructed
such that they sample different GCMs with different climate
sensitivity under different GHG emission scenarios starting
from different initial conditions. Such climate change
experiments could be performed by the use of multi-model
ensembles (e.g. van der Linden and Mitchell 2009). Under a
given forcing scenario, the spread between the different
model results can then be taken as an indicator of uncertainty
related to structural differences between models, differences
in parameterisations, and different initial conditions. In total,
there are around 20–30 different coupled AOGCMs world-
wide that can constitute such a multi-model ensemble (status
as of 2012).

A problem in the context of uncertainty is that different
climate models are not totally independent of each other but
rather share parts of the code. This means that any multi-
model ensemble will contain members that are related to
each other. Furthermore, the degree of freedom in a GCM is
very large, implying that even if all different GCMs are used,
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the full range of model uncertainty will not be sampled by a
multi-model ensemble. As an alternative, perturbed physics
ensembles with a much larger number of ensemble members
have been developed (e.g. Murphy et al. 2007). In these
ensembles, one model is used as a reference. In addition to
the reference simulation, a large number of simulations with
the same model are performed where one or more of the
model parameters have been altered within their uncertainty
bounds. In this way, the parametric uncertainty can be
addressed along with the uncertainty related to initial
conditions.

Even if the number of simulations is much larger in a
perturbed physics ensemble compared to that in multi-model
ensembles, this type of experiment will not sample the
structural differences between different GCMs, and there-
fore, the full model uncertainty is not sampled by perturbed
physics ensembles, either. Recently, comparisons have been
performed between perturbed physics ensembles based on
different GCMs (Yokohata et al. 2010) and between per-
turbed physics ensembles based on one GCM and multi-
model ensembles (Collins et al. 2011). In the ENSEMBLES
project (van der Linden and Mitchell 2009), uncertainties
due to structural effects as determined from the multi-model
CMIP3 GCM ensemble were added to the parametric
uncertainties from the HadCM3 perturbed physics ensemble
to yield a total uncertainty that could be used in the pro-
duction of probabilistic climate change projections. In both
multi-model ensembles and perturbed physics ensembles, it
is not possible to distinguish between uncertainty related to
model formulation and that related to initial conditions
unless several ensemble members sampling also initial
conditions are performed for each multi-model or perturbed
physics ensemble member.

10.4.2 Are Ensemble Projections Better
Than Those Based on Single
Climate Projections?

The multi-model ensemble means have been shown to out-
perform the single model simulations. This has been shown
to result from the fact that models are overconfident, that is,
they have a too small spread in the ensemble, centred at the
wrong value (Weigel et al. 2008). The good performance of
the multi-model ensemble means holds true in a general
sense, although for individual variables, seasons, and
regions, it is possible to find single models that are better
than the ensemble mean. This has been shown in a number
of studies at the European scale based on RCMs down-
scaling reanalysis data in the ENSEMBLES project (e.g.
Kjellström et al. 2010; Lenderink 2010; Lorenz and Jacob
2010). This is also illustrated for the Baltic Sea region in
Figs. 10.1 and 10.2. There is no reason why the ensemble

mean (or median in this case) should systematically show the
smallest biases. For instance, the warmest model is better at
reproducing the temperature in the far north in summer and
the coldest model is better in the north in winter. Similarly,
the driest model appears to outperform the ensemble average
in summertime precipitation in the far north. A practical
problem here is that different models perform best for dif-
ferent aspects; no one model performs best for everything
(e.g. Christensen et al. 2010). This makes it difficult to know
which model to choose and favours the use of the multi-
model ensemble mean over the results of any single model.

10.4.3 Performance-Based Weighting
of Ensembles

Climate models differ in their agreement with observations.
The idea of performance-based weighting of ensembles is to
utilise these differences to derive weights that can be applied
when results from different models are to be combined in a
common climate change signal. The rationale would be to
give models with a better agreement to observations greater
weight than those with less good agreement. However, there
are a number of issues. For example, a model can have a
good agreement for one variable but not for others, for one
season but not for others, and the agreement can be due to
compensating errors, etc. Furthermore, any performance-
based weights will need to be calculated based on agreement
in past decades and so are not necessarily applicable to
future climate conditions. Also, regardless of how objective
the methods used to derive weights are, there is a high
degree of subjectivity as to which metrics to use and what
observational data should be used in the analysis (e.g.
Christensen et al. 2010).

In the ENSEMBLES project, a weighting system was
designed and tested. It consists of a combination of a series
of weights derived from evaluating different aspects of RCM
performance. These aspects include reproduction of large-
scale atmospheric circulation patterns, mesoscale patterns,
daily temperature and precipitation distributions and
extremes, trends, and the annual cycle (Christensen et al.
2010). Christensen and co-workers found no compelling
evidence of an improved description of mean climate states
when the weights were used. Furthermore, they concluded
that using model weights added another level of uncertainty
to the generation of ensemble-based projections. A particular
problem related to RCM ensembles was that the underlying
GCM simulation largely governed the results. Application of
weights that are determined for RCMs in reanalysis-driven
simulations (Christensen et al. 2010) on GCM-driven
simulations with the same RCMs may therefore not lead to
an improvement in the overall ensemble skill (Déqué and
Somot 2010).
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10.4.4 Design and Use of GCM-RCM
Ensemble Regional Climate
Projections

Traditionally, climate change ensembles are ‘ensembles of
opportunity’, that is, they are the result of a compilation of
more or less coordinated climate change experiments. This
means that there have not been any deliberate attempts to
design the ensemble so as to sample uncertainty in any
specific way. Recently, however, there have been some
attempts to design GCM-RCM ensembles in order to sample
various kinds of uncertainty in a more systematic way. The
PRUDENCE project mainly addressed uncertainty related to
RCM formulation with 11 RCMs downscaling one and the
same GCM under the same GHG emission scenario, but
there were also other GCMs and emission scenarios included
in that project (Christensen and Christensen 2007). Based on
these results, Déqué et al. (2007) concluded that uncertainty
in future European climate change is generally more asso-
ciated with the choice of GCM than with which RCM is
used, particularly for temperature. Consequently, in the
ENSEMBLES project, there was an emphasis on having a
larger ensemble with more GCMs involved (van der Linden
and Mitchell 2009). In a recent study, Déqué et al. (2012)
investigated sources of uncertainty in the ENSEMBLES
GCM-RCM ensemble. This new study confirmed the results
of Déqué et al. (2007) in that the choice of GCM is the
dominant source of uncertainty. But there are exceptions,
such as for summertime precipitation, when it is RCM for-
mulation that may be the dominant source of uncertainty.
Other examples of GCM-RCM ensembles involve ensem-
bles with the Norwegian RCM sampling several GCMs
(Haugen and Iversen 2008) or the Swedish RCM sampling a
range of different GCMs under different GHG emission
scenarios and in some cases with different initial conditions
(Kjellström et al. 2011). Based on the results from the
ENSEMBLES simulations and the Swedish model, Kendon
et al. (2010) also concluded that sampling GCM uncertainty
is most important, but RCM uncertainty also needs to be
sampled, at least for some regions and seasons.

10.5 Validation Techniques

Any downscaled simulation of present-day climate or a
future climate scenario is a more or less simplified repre-
sentation of reality. A validation against observational data is
therefore crucial to assess the quality of the simulation, in
particular for a further use in impact studies. To this end, a
set of indices is usually derived to describe the properties of
interest from the reference data set and the model simulation
to be validated. Agreement between the reference and the
model is quantified by suitably chosen measures. As

discussed in Sect. 10.4, the errors and uncertainties of
downscaled climate simulations arise from an imperfect
model formulation, uncertain future concentrations of
GHGs, and internally generated climate variability. In a
downscaling context, the uncertainty due to imperfect model
formulation originates from three parts: errors of the driving
GCM, errors inherent in the downscaling approach, and
errors in observations themselves. The first two types of
error are of interest in the validation.

When validating a downscaling system with boundaries
from a GCM against observational data, the combined
GCM/downscaling error can be evaluated. The influence of
the driving GCM on the downscaled simulation can be
assessed by combining a single downscaling method with
different GCMs and then comparing the different results (e.g.
Nikulin et al. 2011). In such a control run setting, care must
be taken not to mix the model error and internal climate
variability on long timescales. In particular, the estimation of
extreme properties requires long time series and the typical
30-year period might not be long enough to gain robust
estimates (Kendon et al. 2008). The downscaling error can
be separated from the GCM error by driving the downscal-
ing method with ‘perfect boundary conditions’ (Frei et al.
2003), that is, observational data or—as a proxy—reanalysis
data. In a perfect boundary setting, the simulated and ref-
erence weather sequences are more or less synchronised,
allowing for relatively short validation periods (although
care should be taken not to be dominated by individual
events). The nesting procedure for RCMs into large-scale
low-resolution data at the lateral boundaries of the RCM
domain is often supported by a spectral nudging technique
that poses additional large-scale constraints onto the largest
waves in the interior of the RCM domain (von Storch et al.
2000; Feser et al. 2001). To isolate the error due to nesting in
dynamical downscaling in both control run and perfect
boundary setting, an approach to separate different error
sources in an RCM pseudo-reality, the Big Brother approach
(see Sect. 10.2.3) can be used (Denis et al. 2002).

Before using a regional climate projection for follow-up
studies, the assessment of not only the downscaling error but
also the GCM error is essential, as misrepresentation of
large-scale patterns (e.g. the position of the storm tracks) or
temporal structure (e.g. blocking frequency and duration) is
important practical limitations.

10.5.1 Validation Data

Ultimately, the reliability of any validation depends on the
observational data used, either as a reference data set or to
provide the forcing in a perfect boundary setting. The typical
problems with reference data are inhomogeneities, outliers,
and biases (e.g. Jones 1995). Inhomogeneities are systematic
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changes in the observational data such as slow creeping trends
or jumps in the time series (its mean or other moments) due to
changes in the measurement system or the surrounding
environment; they might increase uncertainties and induce
spurious trends (e.g. Yang et al. 2006; BACC Author Team
2008, Annex 5). Outliers are erroneously high (or low) values,
such as caused by multiple-day counts of precipitation mea-
surements; they are particularly detrimental for the estimation
of extreme properties but may also affect the validation of
other quantities. Biases are caused by systematic peculiarities
that lead to a misrepresentation of the local climate by the
measurement device, such as wind shadows due to buildings
or wind-induced precipitation undercatch. Depending on the
property of interest, addressing these issues might be essential
for a reliable validation. Another common issue is the avail-
ability of long reference data sets, which are needed for robust
estimates of the indices of interest, especially for extremes and
long-term variability. In particular processes with strong
small-scale variability such as precipitation, station data
cannot directly be compared with regional climate data, which
are considered to represent areal averages instead of point
measurements (Chen and Knutson 2008). To overcome this
spatial mismatch, gridded data sets have been derived by
interpolation and averaging from dense station networks.
Prominent examples are the UK Met Office gridded daily
precipitation data set (Perry et al. 2009) and the E-OBS daily
data set of temperature and precipitation (Haylock et al. 2008)
derived from the European Climate Assessment & Dataset
database (http://eca.knmi.nl; Klok and Klein Tank 2009) as
part of the ENSEMBLES project. Crucial for the usefulness of
gridded precipitation data sets is the density of the underlying
rain gauge network. For instance, it has been shown that the
first version of the E-OBS data set has incorporated too few
rain gauges to represent extreme precipitation in some
mountain regions (Maraun et al. 2011).

To validate large-scale features, reanalysis data are often
taken as reference such as the National Centers for Envi-
ronmental Prediction/National Center for Atmospheric
Research (NCEP/NCAR) (Kalnay et al. 1996) or the ERA-
40 (Uppala et al. 2005) and ERA-Interim (Dee et al. 2011)
reanalysis. These are numerical model hindcasts into which
observational data have been assimilated. As the output from
numerical models, these data are globally complete at the
given resolution and provide a sequence of climate states
(usually provided every 6 h) consistent within the numerical
model. However, due to model biases, the reanalysis data
can substantially deviate from reality. Also, reanalysis data
do not resolve small-scale features and are therefore not
suitable for validation on scales typically relevant for impact
studies. Furthermore, it is necessary to be aware whether the
observations representing the variable of interest have been
assimilated into the model. For instance, precipitation is
generally not assimilated into the reanalysis model but fully

generated by the model parameterisations; such data are
obviously not suitable as reference for validation. Recent
projects such as the North American Regional Reanalysis
(Mesinger et al. 2006) therefore assimilate further variables
such as precipitation. Their completeness and consistency
make reanalysis data an ideal candidate to provide boundary
conditions for a perfect boundary validation.

10.5.2 Validation Indices

To validate climate simulations, several indices have been
proposed, depending on the application of the downscaled
product. Comprehensive lists of indices are available from
the ‘Expert Team on Climate Change Detection and Indices’
(Peterson et al. 2001), the STARDEX project (Goodess et al.
2005), and the ENSEMBLES project (van der Linden and
Mitchell 2009). Typical validated indices characterise sta-
tistics of the variable of interest such as mean, variance, or
even the spatial and temporal structure.

The indices to validate the distribution of the variable of
interest are statistics such as mean and variance or specific
quantiles. For instance, a widely used index for strong but not
yet extreme events is the 90th percentile. More generally, the
indices can be the parameters of a parameterised formulation
of the distribution such as the shape parameter describing the
tail behaviour. To obtain results as robust as possible, the
representation of extreme events should, if possible, be based
on parametric distributions motivated by the extreme value
theory, that is, the generalised extreme value (GEV) distri-
bution to validate maxima of long blocks and the generalised
Pareto distribution (GPD) to validate excesses of high
thresholds (Coles 2001). The spatial indices are, for example,
spatial correlations, cluster sizes, and indices describing
spatial patterns. The temporal indices are autocorrelation
functions, the annual cycle, variability on interannual to
decadal timescales, and trends. Other temporal indices
describe the length of events such as droughts or wet spells,
and the transition probability between different states (e.g.
from dry to wet). The corresponding extremal indices (which
do not necessarily follow the extreme value theory) would be
the maximum length of an event in a defined period, such as a
season. To increase confidence in future projections, it is also
important to assess the representation of relevant physical
processes (e.g. Schär et al. 1999; Lenderink and van Meijg-
aard 2008; Kendon et al. 2010; Maraun et al. 2011). Of course
for every validation procedure, particularly if hypothesis tests
and statistical models are involved, the assumptions to be
made should be clearly laid out.

An ongoing debate concerns whether the validation
should use the data directly with grid box resolution, or
whether the data should be smoothed in advance. On the one
hand, it is argued that regional climate simulations are not
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meant to be interpreted on a grid box level and so the former
choice would be too rigid. While on the other, it is a matter
of fact that RCM simulations are often used on the grid box
level, and a validation should not influence the corre-
sponding performance. Furthermore, in impact studies, the
simulated unsmoothed fields are often required even when
they are not interpreted on a grid box level. Smoothing
might then hide important spatial properties such as the
spatial correlation structure.

The validation indices need to be carefully selected. In
particular, they need to be independent of calibration or
tuning. That is, for PP statistical downscaling and MOS,
calibration and validation need to be carried out as a cross-
validation on different data sets (e.g. different time periods).
Even in cross-validation, the significance of apparently good
performance needs to be critically assessed. If the indices are
the predictands explicitly modelled in the PP approach or
corrected using MOS, they will probably closely resemble
the reference indices even in the validation period. Here,
good agreement does not necessarily imply a high skill to
represent future climate. A similar argument holds for
RCMs, as these are in general tuned to properly simulate the
observed climate of a specific region. This is discussed in
more detail in Sect. 10.5.6.

10.5.3 Validation Measures

To quantify the discrepancy between the modelled and ref-
erence validation indices, a range of validation measures has
been defined. In some validation studies, the discrepancies
have not been quantified at all, but have only been visually
inspected. On the other end of the range are statistical tests
which explicitly address the significance of the discrepan-
cies. In all cases, deviations should be interpreted carefully.
Whereas a visual inspection might overlook important mis-
specifications, a significance test might as well be mislead-
ing (BACC Author Team 2008, Annex 8). Apart from false-
positive results, the power of a test might simply be too low
to detect model errors due to a lack of data or, in contrast, a
significant deviation might simply be completely irrelevant.

The validation in a control run setting is fundamentally
different from that in a perfect boundary setting. In a control
run setting, the weather sequences between the model sim-
ulation and the validation data are independent. The vali-
dation can therefore only be based on long-term
(climatological) statistics or, more general, distributions. In a
perfect boundary setting, the modelled and observed weather
sequences are more or less synchronous, given spectral
nudging or a small domain and strong lateral forcing.
Therefore, in addition to a distribution-wise validation,
measures developed for the validation of weather forecasts
can be applied for an eventwise validation.

10.5.4 Measures for Distribution-Wise
Validation

Simple measures that can be applied to either spatial fields or
time series are absolute and relative biases, for example, in
mean and standard deviation. Spatial fields can furthermore
be validated by their pattern correlation and (root)-mean-
squared error relative to the reference pattern, which can be
visualised in Taylor diagrams (Taylor 2001). It should be
noted, however, that Taylor diagrams do not address the
overall biases and provide no confidence intervals. They
have been introduced in the AMIP project to synthesise the
results of a large number of models in a single diagram.
Further insight can be gained by calculating corresponding
measures for quantiles or parameters of distributions. For the
comparison of the overall distribution, the chi-square test or
the Kolmogorov–Smirnov test might be applied (e.g.
Semenov et al. 1998; Bachner et al. 2008). The graphical
tools for the comparison of distributions are probability (PP)
plots and, in particular for extremes, quantile (QQ) plots
(e.g. Déqué 2007; Coles 2001). For a list of measures to
validate distributions, see Ferro et al. (2005).

10.5.5 Measures for Eventwise
Validation

In a perfect boundary setting, a broad range of additional
validation measures can be applied. If the modelled and
observed time series are synchronous and their phases are
expected to match, measures can be applied that have been
applied to validate weather forecasts. The same measures
that are only applicable to spatial fields in a distribution-wise
validation can in this context be applied to validate indi-
vidual time series. These are, for example, cross-correlations
and (centred) root-mean-squared errors, which then, for
variables close to normally distributed, can also be visual-
ised by Taylor diagrams. The measures to validate the
occurrence of events are the hit rate and the false alarm rate,
which are summarised in contingency tables (e.g. Wilks
1995). From these, it is possible to derive frequency biases
and odds ratios. Also, continuous variables can be compared
using these measures by defining suitable thresholds. Several
downscaling approaches predict local-scale probability
density distributions rather than specific values; their per-
formance can be validated by probability scores. The classic
measure to validate the occurrence of events is the Brier
score (Brier 1950). Continuous events (i.e. intensities) can
be validated by the continuous ranked probability score (e.g.
Jolliffe and Stephenson 2003) and the quantile verification
score (e.g. Friederichs and Hense 2007). Absolute score
values are often difficult to interpret; therefore, they are
usually compared with a reference forecast such as the
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climatology or the best-performing method. Such relative
measures are skill scores, which can be derived from the
aforementioned scores. A comprehensive list of further
scores is available from, for example, Wilks (1995) and
Jolliffe and Stephenson (2003). As an alternative to simple
cross-correlations, one can assess the performance on dif-
ferent timescales using the squared coherence (Brockwell
and Davis 1991); for an example, see Maraun et al. (2011).
In essence, in this setting, a more rigorous validation is
possible, as the capability of a model to simulate the
occurrence and magnitude of individual events can be
assessed. Of course, this setting does not in general allow for
the assessment of GCM errors.

10.5.6 Validation in a Climate Change
Context

A high skill of a downscaling method in the current climate
does not necessarily imply a high skill in a future climate
(e.g. Christensen and Christensen 2007). In PP statistical
downscaling, the predictor–predictand relationships might
be non-stationary in time, for example, because not all
relevant factors controlling the local-scale variable have
been included in the model. Also, it is not a priori clear
whether the parameterisations of RCMs might capture the
changing climate conditions. Finally, biases are not sta-
tionary under climate change (e.g. Christensen et al. 2008;
Maraun 2012).

To at least partly address these shortcomings, it has
been suggested to choose time periods climatically, as
different as possible, to calibrate and validate statistical
downscaling models (Maraun et al. 2010). This approach is
of course limited by the availability of long time series of
high quality. For dynamical downscaling, a similar
approach is to check whether a RCM performs well in
different present-day climates (Christensen et al. 2007).
Consensus between different simulations is often seen as a
measure of skill. Similarly, a comparison of statistical and
dynamical downscaling might provide some insight into the
reliability of future simulations. For instance, relationships
within statistical downscaling models have been used to
validate dynamical climate models (e.g. Busuioc et al.
2001; Maraun et al. 2011). Closely related is the use of
RCMs as pseudo-realities to assess the stationarity of pre-
dictor–predictand relationships and model biases (e.g. Frias
et al. 2006; Vrac et al. 2007; Maraun 2012). The value of
model consensus and related concepts is, however, limited
as deficiencies might be common to all models. Therefore,
understanding the relevant underlying processes and the
quality of their representation by the models used is
essential to assess the reliability of future climate simula-
tions (Maraun et al. 2010).

10.6 Skill of Downscaling Methods

This section gives a brief overview of the advantages and
disadvantages of different downscaling methods. A more
detailed discussion can be found in Benestad et al. (2008)
and Maraun et al. (2010).

The quality of a downscaling product stands and falls
with the ability of the forcing GCM to provide meaningful
large-scale boundary conditions. As downscaling aims to
correct local-scale misrepresentations due mainly to topo-
graphic and small-scale circulation effects, it cannot correct
the misrepresentation of the large-scale atmospheric flow.
For northern Europe and the Baltic Sea, the most obvious
shortcoming of many GCMs is the position, strength, and
variability of the main westerly flow. The circulation in
many GCMs is too zonal (van Ulden et al. 2007). The large-
scale circulation plays a dominant role in the European
winter climate (Hurrel and van Loon 1997; Wibig 1999), but
also strongly influences summer precipitation in northern
Europe (Wibig 1999; Boé et al. 2009). A major shortcoming
of the current generation of GCMs is the representation of
blocking events (e.g. Palmer et al. 2008; Hinton et al. 2009).
Consequently, a large part of the uncertainty in northern and
central European temperature and precipitation projections
stems from the driving GCM (Déqué et al. 2007).

The main rationale for using dynamical downscaling is
that RCMs are based on physical laws. As a consequence,
RCMs are in general expected to adequately describe climate
change on regional scales. Although the related stationarity
issues are more severe for statistical downscaling, it should
be noted that parameterisations are developed and tuned for
specific climates and might be at least slightly misspecified
under future climate conditions. As RCMs calculate the state
of the atmosphere regularly in three-dimensional space and
in time, output can be generated for a large number of
variables at or close to the surface as well as for levels above
at temporal frequencies down to the internal computational
time step of the respective RCM on a regular grid.

A practical advantage of dynamical downscaling
approaches is that they are in principle applicable to any
region of the world, whereas statistical downscaling
approaches rely on high-quality data for the calibration. As
parameterisations must be tuned for different climatic
regions, however, RCM simulations for regions without
proper validation data should not be taken face value.
Although station coverage in the Baltic Sea region is gen-
erally very dense (e.g. van Engelen et al. 2008), this problem
is not negligible here. Lind and Kjellström (2009) have
shown that the observational estimates of precipitation differ
to such a high degree that RCM evaluation was affected.

RCMs have been shown to adequately simulate European
daily temperature and precipitation intensities, although
considerable biases must be expected (e.g. Fig. 10.5; Jacob
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et al. 2007). For instance, in winter, model results tend to be
too wet in northern Europe, too warm in summer and winter,
and too cold in spring and autumn (Jacob et al. 2007). On the
one hand, RCMs generally overestimate the number of wet
days; this ‘drizzle effect’ is partly because RCMs simulate
area averages rather than point values. While on the other,
RCMs underestimate heavy precipitation events (e.g. Fowler
et al. 2007b). Generally, bias is different in different part of
the distribution (e.g. Jeong et al. 2011; Fig. 10.6).

A major advantage of RCMs is the simulation of spatially
coherent fields. In general, RCMs with a typical resolution
of 25 km overestimate the spatial coherence of precipitation
events, in particular for convective precipitation. It should be
noted that RCMs provide meaningful information only on
the scale of a few grid cells (e.g. Fowler and Ekström 2009).
In particular, local precipitation is dominated by internal
climate variability (Maraun 2012).

As RCMs integrate the equations governing the atmo-
spheric circulation, they in principle provide a coherent
picture. However, biases in one variable may propagate into
strong biases in dependant variables (e.g. Fig. 10.7); for
example, Yang et al. (2010) have shown for Sweden that
small temperature biases may, via the nonlinear interaction
with precipitation around the melting point, lead to large
biases in spring river run-off. Inconsistencies arise in par-
ticular where parameterisations come into play. For exam-
ple, Graham et al. (2007b) have shown for the drainage areas

to the total Baltic Sea basin and Bothnian Sea basin that the
partition of precipitation into run-off and evapotranspiration
is in general biased towards the latter.

Only a few RCM validation studies consider sub-daily
scales, which are particularly relevant for heavy precipitation
events. Jeong et al. (2011) have shown that the spatial pat-
tern of the diurnal precipitation cycle in Sweden is reason-
ably captured by the RCA3 model (Uppala et al. 2005), but
the afternoon peak occurs too early and is spatially too
uniform. The RACMO2 model accurately simulates the
intensity scaling of heavy hourly precipitation with tem-
perature for very intense precipitation, but fails to represent
the temperature influence on moderate precipitation inten-
sities beyond 20 °C (Lenderink and van Meijgaard 2008).

In general, increasing model resolution improves model
simulations, in particular for precipitation in complex terrain
(e.g. Salathé 2003; Hohenegger et al. 2009).

MOS (see Sect. 10.3.1) aims to improve misspecification
of dynamical downscaling, although recent work has dem-
onstrated the ability to directly apply MOS to GCMs (Eden
et al. 2012). An underlying assumption of MOS is sta-
tionarity of the bias. Yet Christensen et al. (2008) inferred a
dependence of biases on temperature, indicating potential
non-stationarities. In a pseudo-reality, Maraun (2012) found
biases in seasonal temperature and precipitation to be rela-
tively stable across Europe, but identified non-stationarities
for some regions and seasons; for the Baltic Sea region,

Fig. 10.5 A schematic overview
of seasonal bias in the
PRUDENCE regional models. In
each panel, rows are the analysis
areas, and columns correspond to
models. Rows of panels signify
the four seasons, the left column
of panels is temperature biases
(left colour bar, °C), while the
right column of panels signifies
precipitation (right colour bar,
relative change). Areas not
covered by a particular model are
indicated by black squares (after
Jacob et al. 2007)
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temperature biases appear to be non-stationary because of
uncertainties in sea ice parameterisations.

MOS has been shown to successfully correct temperature
biases as well as biases in precipitation intensities and the
number of wet days (e.g. Hay and Clark 2003; Lenderink
et al. 2007b; Piani et al. 2010). MOS is particularly suitable
to correct orographic effects on precipitation intensity in
regions where the topography is misrepresented by the
coarse model grid. Furthermore, Widmann et al. (2003)
developed a non-local MOS that corrects systematic spatial
displacements of precipitation. Yang et al. (2010) applied
MOS to improve the correlation between simulated tem-
perature and precipitation.

The good example of the skill of the DBS methodology
was presented by Piani et al. (2010). Bias corrections were
assessed for the 10-year period 1961–1970 and then applied
to the simulated data for the period 1991–2000 and com-
pared with observations from this period. The periods were

chosen to maximise the time lag between them and test
whether the bias correction estimated in one period can be
applied in the other period with different climatic conditions.
The results were surprisingly good (Fig. 10.8). Not only did
the mean and higher moments of the scenario data fit well
with the observed data, but also indices depending on
autocorrelation spectra, such as drought and heavy precipi-
tation, were well projected.

MOS is not capable of correcting the misrepresentation of
the temporal structure of a simulated variable; for example,
MOS cannot correct errors in the length of dry, hot, or cold
spells inherited from GCMs. In particular, the POD method
should be considered carefully. Because it only scales
observed time series, owing to its construction, it ignores
any changes in the atmospheric dynamics which might
change the temporal structure of future weather. Neverthe-
less, applying MOS separately to seasons, individual months
or even shorter parts of the year might improve the

Fig. 10.6 Probability density of
precipitation intensity on the
eastern coast of Sweden in the
warmest months of the year
(April–September). Inner box
highlights the probability of
precipitation intensity from
1–3 mm h−1. The 90th, 95th, and
99th percentiles are marked for
the observations (solid vertical
lines) and the model simulation
(dashed vertical lines) (Jeong
et al. 2011)

Fig. 10.7 Impact of precipitation
on temperature bias for
Stenudden, northern Sweden.
Annual cycle of daily temperature
from observations (1961–1990)
and a model (R3E5A1B3)
simulation for the same period.
Tmean mean daily temperature;
Twet mean daily temperature for
days with precipitation; Tdry
mean daily temperature for dry
days (Yang et al. 2010)
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representation of the annual cycle (e.g. Boé et al. 2007;
Leander and Buishand 2007).

PP statistical downscaling (see Sect. 10.3.2) is often a
computationally cheap alternative to dynamical downscal-
ing. Its main rationale is the explicit use of empirical
knowledge by including observational data in statistical
models. By construction, the properties which are directly
modelled as predictands should be simulated bias free over
the calibration period, a characteristic often required by
impact modellers. In particular, over complex terrain, PP
intrinsically accounts for local effects which might not be
captured by the coarse topography and imperfect parame-
terisations of RCMs. The predictor selection is crucial for the
performance of PP approaches; non-stationarities may arise
if the predictors do not capture the climate change signal.
Predictors should therefore be physically motivated and as
close to the underlying processes as possible, see Benestad
et al. (2008) for details.

In general, PP methods perform better during winter than
summer; Wetterhall et al. (2007) demonstrated this tendency
for Sweden.

A shortcoming of many traditional PP methods is the
underrepresentation of temporal variability. Most PP meth-
ods can be interpreted as some kind of linear or nonlinear,
continuous, or categorical regression models. Such models
are in general intended to predict the mean of a distribution,
disregarding the variability around the mean. As previously
discussed, inflation (Karl et al. 1990) or similar approaches
do not resolve this problem, but rather create time series with
an incorrect temporal structure (von Storch et al. 2000).
Instead, many randomisation procedures have been sug-
gested, ranging from generalised linear models (e.g. Chan-
dler 2005) via mixture models (e.g. Vrac and Naveau 2007)
to full weather generators. These models provide a realistic

temporal structure, which might be explicitly modelled by
Markov processes on short temporal scales, and imposed on
longer timescales by large-scale predictors (Wilks and Wilby
1999). Weather generators have also been constructed to
simulate sub-daily precipitation (e.g. Cowpertwait et al.
1996; Jones et al. 2009).

A main disadvantage of PP approaches is the handling of
spatial coherence. Many PP approaches are used for single
locations. Here, the downscaling to local scales is a major
advantage over RCMs, which operate on scales of tens of
kilometres. The large-scale predictors might impose a
coherent spatial structure, which however is often too smooth
and can be improved by the addition of a stochastic factor—a
weather generator. Randomisation leads to improved local
temporal variability, but at the same timemight destroy spatial
coherence. Therefore, spatial dependence needs to be mod-
elled explicitly by complex multi-site models (e.g. Yang et al.
2005), which provide output at discrete points in space. The
development of downscaling methods to full spatial fields for
climate change studies is still in its early stages; an example is
the Gaussian process-based disaggregation of areal rainfall by
Onibon et al. (2004).

A practical advantage of the PP approach is its compu-
tational cost; for single sites, it can easily be applied to large
ensembles of GCMs, and conditional on one GCM,
numerous realisations can be carried out by randomisation.

In general, whether dynamical downscaling or PP is
preferable depends on the problem addressed. In many sit-
uations, both methods are complementary and should be
used in combination. With the availability of large RCM
ensembles from the ENSEMBLES project (van der Linden
and Mitchell 2009), MOS corrections have become
increasingly attractive, attempting to combine the best of
both worlds.

Fig. 10.8 Validation of
methodology: seasonal mean
daily precipitation. Application of
bias correction, derived from
simulated and observed data for
1961–1970, to model data for
1991–2000. a Mean observed
daily precipitation for winter
(DJF) 1991–2000, b as ‘a’ but for
corrected simulated data, c as ‘a’
but for uncorrected simulated
data, and d–f as ‘a–c’ but for
summer (JJA) (Piani et al. 2010)
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10.7 Added Value of Dynamical
Downscaling

It is assumed that GCMs are able to provide a reliable
description of large-scale weather phenomena and their
dynamics. RCMs can resolve mesoscale atmospheric fea-
tures explicitly and they add small-scale structures to the
large-scale circulation provided by the driving model (Feser
2006). Local climate is influenced by large-scale dynamics,
regional physiographic features such as local orography,
land-sea contrasts land use, and soil type, as well as by
small-scale atmospheric features such as frontal systems or
convective cells (Lenderink et al. 2007b; Feser et al. 2011).
This is particularly the case for the simulation of precipita-
tion. Consequently, the simulated mean precipitation pat-
terns as well as the extreme values are enhanced, especially
for complex terrain (e.g. Christensen and Christensen 2001;
Feldmann et al. 2008; Suklitsch et al. 2008). For many
variables, the explicit treatment of small-scale atmospheric
features leads to added value (AV) with respect to the
driving model. Assessment of the AV of large-scale con-
strained versus unconstrained simulations was discussed by
Castro et al. (2005) and Rockel et al. (2008). For different
realisations of an RCM simulation, generated by small
changes in the set-up of the RCM (e.g. domain size/location,
initialisation time), substantial variability between the indi-
vidual realisations is well known (e.g. Ji and Vernekar 1997;
Rinke and Dethloff 2000; Weisse et al. 2000), demonstrating
the need for ensemble RCM simulations with a large number
of realisations. Many publications demonstrate that RCMs
are able to realistically simulate climate in comparison with
raw or gridded observations or reanalysis. Most of these
state the superiority of RCM simulations compared to those
from GCMs, but without giving proof.

One of the most important purposes of regional climate
modelling is increasing knowledge of the real world (Laprise
2005). This additional knowledge is commonly termed
‘added value’ (Feser 2006). Identification of AV is not an easy
task. Small-scale atmospheric fields are usually less energetic
than large-scale fields (Laprise 2005), so scale decomposition
is sometimes necessary to separate the finer scales.

Di Luca et al. (2012) used a diagram, adapted from Or-
lanski (1975) and von Storch (2005), to illustrate the concept
of AV for the range of scales represented by global and
regional models, relative to the characteristic temporal and
spatial scales of atmospheric processes (Fig. 10.9). Regional
climate modelling is mainly expected to add value at
regional dimensions below 300 km and temporal scales less
than 30 min, which are absent in GCMs.

Evaluation of a hypothesis of AV implies a comparison
of the performance of the RCM with that of the driving
GCM (Feser et al. 2011). To date, the number of studies in
which the AV of RCMs is directly analysed is limited and
only a few concerns the Baltic Sea region.

RCMs could provide AV by adding variability at scales
not well resolved by GCMs (at Fig. 10.9 referred to as AV1).
However, RCMs can also improve climate simulation at
scales resolved by both RCMs and GCMs. This component
of AV is referred as AV2 in Fig. 10.9. Because separation of
scales is usually made while assessing AV, it is convenient
to analyse both types of AV separately (Di Luca et al. 2012).
RCMs operate in a limited domain, and two-way interactions
between the regional domain and the rest of the globe do not
usually occur. In many simulations, the spectral nudging
technique ensures that the large scales are not altered too
much by the regional model. For all these reasons, AV2 has
not been clearly identified and existing analyses are usually
limited to AV1.

Fig. 10.9 Characteristic
temporal and horizontal spatial
scales of atmospheric processes
(in black) and the range of scales
represented in RCMs (blue line)
and GCMs (red line). Red and
blue shaded regions represent the
added value of type 1 (AV1) and
2 (AV2), respectively (redrawn
from Di Luca et al. 2012)
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As RCMs can resolve mesoscale atmospheric features
explicitly, they do add small-scale structures to the large-
scale circulation provided by the driving model (Feser
2006). This explicit treatment of small-scale atmospheric
features leads, for many variables, to an AV with respect to
the driving model. This is particularly the case for the sim-
ulation of precipitation, which also depends strongly on
topography and land–sea contrast, which are better repre-
sented at the increased resolution of the RCM. Conse-
quently, the simulated mean precipitation patterns as well as
the extreme values are enhanced, especially for complex
terrain (e.g. Christensen and Christensen 2001; Feldmann
et al. 2008; Suklitsch et al. 2008). For the Baltic Sea region,
Walther et al. (2013) demonstrated the improved simulation
of the daily precipitation cycle for spring and summer with
increasing RCM resolution; an example for a station in
central southern Sweden is displayed in Fig. 10.10.

Winterfeldt et al. (2011) analysed AV in dynamically
downscaled wind speed fields. They used the Brier skill
score (BSS) to detect the AV of the regionally modelled
(with spectrally nudged-REMO) wind in comparison with
the global reanalysis (NCEP). As seen in Fig. 10.11, the
RCM provides AV along the coasts and in narrow bays and
straits, in places with complex coastlines or topography.
Over open seas and oceans, as well as the interior of Baltic
Sea, the BSS is negative, indicating that in these regions,
dynamical downscaling does not add value.

Feser (2006) analysed AV in the case of SLP and 2 m air
temperature provided by the REMO RCM in comparison
with NCEP reanalysis data. Spatial filters were used to
separate the data into two domains: that represented best at
the large-scale and that represented well by the REMO
model (Fig. 10.12). The effect of spectral nudging was also
analysed. For SLP, no AV is provided by RCM simulation
without nudging. The small improvement was obtained
when spectral nudging was applied. For 2 m air temperature,

significant AV was obtained at both scales when spectral
nudging was applied. Without nudging, only the improve-
ment in the scale represented well by RCM was provided
(Feser 2006). AV is small in the case of SLP and only for the
scale well resolved by RCM, because it is the driving fields
(from the GCM) that are the most relevant for SLP. For 2 m
air temperature, regional and local factors exert a strong
impact on its spatial distribution and the AV of RCMs can be
significant (Feser et al. 2011).

Zahn et al. (2008) have shown that RCMs can provide
AV in describing mesoscale phenomena such as polar lows.
Figure 10.13 presents the SLP and 10 m wind speed fields
filtered with a digital bandpass filter that allows better

Fig. 10.10 Estimated diurnal cycle of precipitation amount from
observation and the RCA3 regional climate model (RCM developed by
the Rossby Centre of SMHI) simulations for four different resolutions for
the station ‘Malexander’ in central southern Sweden (Walther et al. 2013)

Fig. 10.11 Brier skill score
using QuikSCAT level 2B12 as
the source of ground-truth data,
global reanalysis (NCEP
reanalysis) as the reference
forecast, and a regional model
(spectrally nudged-REMO) as the
forecast, after Winterfeldt et al.
(2011)
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presentation of phenomena at the 200–600 km spatial scale.
The community land model (CLM) was able to identify the
polar low along the Norwegian coast, although it was still
too coarse to describe fine detail.

Di Luca et al. (2012) also introduced the concept of
potential AV, as a type of necessary condition for AV. It is a
fine spatial scale variability that would be present in regional

climate statistics but absent on a coarser grid. The presence
of potential AV in RCM simulations indicates the possible
existence of AV but does not prove it. Di Luca et al. (2012)
investigated the existence of potential AV at the temporal
scale for different regions and seasons. They showed that for
precipitation, potential AV increases for short temporal
scales, the summer season and in regions with complex

Fig. 10.12 Left Six-hourly time
series of sea-level pressure pattern
correlation coefficients (pcc)
between DWD (Deutscher
Wetterdienst—German weather
service) analyses and reanalyses
or RCM data after Feser (2006)
for winter 1998/99. Right Time
series of 2 m temperature
anomaly (pcc) for summer 1998
for (top) full fields, (middle) low-
pass-filtered, and (bottom)
medium-pass filtered fields

Fig. 10.13 Bandpass-filtered mean sea-level pressure (isolines hPa)
and 10 m wind speed anomalies (shaded) at 0600 UTC 15 October
1993: NCEP analysis, DWD (Deutscher Wetterdienst—German
weather service) analysis data, and a simulation by the regional climate

model CLM (after Zahn et al. 2008). The position of the pressure
minimum of the polar low in the CLM simulation is indicated (yellow
dot), after Feser et al. (2011)
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orography, and decreases when statistics are averaged over
long time periods or over a wide spatial domain.

10.8 Downscaling in the Context
of Climate Change Impact
Studies

The GCMs were not designed for direct application in
impact models. Prudhomme et al. (2002) stated that the
quality of their output did not allow for direct use in
hydrological impact studies, because the spatial and tem-
poral scales were too coarse. Wilby et al. (1999) recom-
mended the use of downscaling techniques before the GCM
output data could be used in impact studies. There are many
possibilities for downscaling GCM output: direct use of
RCM output (Wood et al. 2004), use of bias-corrected RCM
output (Wood et al. 2004; Fowler et al. 2007a), statistical
downscaling (Wilby et al. 2000; Müller-Wohlfeil et al.
2000), stochastic weather generators (Evans and Schreider
2002) or weather typologies, and/or indices (Pilling and
Jones 2002). The skills of different downscaling methods
differ considerably between variables and regions.

Hydrologic simulation was found to be sensitive to biases
in the spatial distribution of temperature and precipitation at
the monthly level, especially where the seasonal snow pack
transfers run-off from one season to the next (Fowler et al.
2007c).

Using the example of the Lule River in northern Sweden
and two GCMs used to force the same RCM, Graham et al.
(2007a) have shown that the choice of driving GCM has a
greater impact on results than the choice of GHG emission
scenario. The strong impact of the choice of GCM was also
emphasised by Widmann et al. (2003), Jasper et al. (2004),
Salathé (2005), and Wilby et al. (2006).

Fowler et al. (2007a) stated that at least two variables—
temperature and precipitation—had to be downscaled for
impact studies in hydrology. In impact models, the physical
consistency between variables is very important. To obey
this requirement for physical consistency, multi-variate
methods should be applied which yield simultaneous cor-
rection of relevant variables. This is possible when RCMs
are used (Fowler and Kilsby 2007; Fowler et al. 2007a;
Graham et al. 2007a, b), but is generally not in statistical
downscaling. A multi-site approach should be used when
spatial consistency is needed.

10.9 Conclusion

GCMs are a useful tool for studying how climate may
change in the future. Such models describe the climate on a
set of grid points, regularly distributed in space and time

using the same density over land and ocean. Their temporal
resolution is relatively high; however, their spatial resolution
is low. To simulate regional climate, that is, at a scale
smaller than the skilful scale, it is necessary to downscale the
GCM results. Downscaling is understood as a process that
links large-scale variables with small-scale variables. There
are two conceptually different ways of downscaling. One
uses RCMs nested in GCMs; RCMs have much higher
resolution and can describe local features better and are still
able to simulate the atmospheric state in a realistic manner in
their skilful scales. The other group of downscaling methods
uses empirical and/or statistical relations between the large-
scale variables simulated by GCMs and small-scale variables
describing regional and/or local climate conditions.

There are many sources of uncertainty in climate model
results. These include uncertainty related to limited infor-
mation on future land use and atmospheric GHG concen-
trations, limits on the amount of input data and their
accuracy, and the chaotic nature of weather. Many sub-grid
processes must be represented in models in a simplified form
and are not well described by the models. For example, the
modelling of cloud formation, the optical and radiative
features of clouds, and the creation of atmospheric precipi-
tation still carry considerable model error. The skill of
methods for describing regional climate futures is also lim-
ited by natural climate variability.

The quality of a downscaling product rests with the
ability of the forcing GCM to provide meaningful large-scale
boundary conditions, because a large part of the uncertainty
in northern and central European temperature and precipi-
tation stems from the driving GCM (Déqué et al. 2007). The
main shortcoming of GCMs in Europe is that in many, cir-
culation is too zonal in winter (van Ulden et al. 2007).

RCMs are able to simulate spatially coherent fields, but
the parameterisations are developed and tuned for specific
climates and might be slightly misspecified under future
climate conditions. RCMs have been shown to adequately
simulate European daily temperature and precipitation
intensities, although considerable biases must be expected
(e.g. Jacob et al. 2007). The biases in one variable may
propagate into strong biases in dependant variables (e.g.
Yang et al. 2010).

Using an ensemble of RCMs is one way of filtering a
random error and assessing uncertainty. However, the
models within an ensemble are not fully independent
because of using shared codes. There is still debate about
ensemble design. There have been some recent attempts to
design GCM-RCM ensembles in order to sample various
kinds of uncertainty in a more systematic way. The uncer-
tainty in future European climate change is generally more
associated with the choice of GCM than RCM (Déqué et al.
2007), although for summer precipitation, the RCM formu-
lation may be the dominant source of uncertainty.
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Only a few RCM validation studies consider sub-daily
scales. Jeong et al. (2011) showed that the diurnal precipi-
tation cycle in Sweden is reasonably well captured by the
RCM at SMHI, but that the afternoon peak in precipitation
occurs too early and is spatially too uniform. Increasing
model resolution will in general improve model simulations,
particularly for precipitation in complex terrain (Salathé
2003).

Using coupled AOGCMs is state of the art for global
climate projections (Meehl et al. 2007). RCM climate
change projections are in general still carried out for the
atmosphere only, prescribing SST data from the driving
GCM (Christensen et al. 2007). The quality of the prescribed
SST/sea ice data depends on the quality of the global
modelling system. For a relatively small and semi-enclosed
water body like the Baltic Sea, data quality might be limited
by the coarse resolution of the global ocean component.

Non-GHG forcings, such as aerosols and land-use
change, are not fully represented in RCMs. This can be a
source of major uncertainty in projections of future climate
as a large part of the simulated multi-decadal variance in
North Atlantic SSTs depends on the atmospheric levels of
aerosols.

Natural climate variability limits the skill of future climate
predictability in many regions (Deser et al. 2012a). In
locations where the amplitude of natural variability is high,
predictability is low. Conversely, in locations with low
natural variability, predictability is higher. The uncertainty
of future climate projections is largely a consequence of the
chaotic nature of large-scale atmospheric circulation pat-
terns, and improving models or GHG scenarios cannot
eliminate this uncertainty (Deser et al. 2012b).

Open Access This chapter is distributed under the terms of the Creative
Commons Attribution Noncommercial License, which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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