Skip to main content

Low Density Pedoboragraphy as a Gait Analysis Tool

  • Reference work entry
  • First Online:
Handbook of Human Motion

Abstract

Precise and objective evaluation of gait provides important information about an individual’s overall health and can be used to detect symptoms of motor impairment, determine appropriate therapeutic procedures, and monitor rehabilitation progress. There are various gait analysis techniques currently available, including the three-dimensional motion tracking and the low density pedobarography, etc. The relative low cost, high accuracy and consistency, and automated data analysis features make the low density pedobarography technique an ideal platform for quantifying the spatial and temporal gait characteristics in various populations. The following chapter will review the use the low density pedobarography in conducting gait and balance assessment. Topics covered in this chapter will include the primary outcome measures of gait analysis using low density pedobarography, the validity and reliability of the equipment, the applications of the technique in clinical populations, guidelines for use, and the potential applications in future research and clinical environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Baker R (2006) Gait analysis methods in rehabilitation. J Neuroeng Rehabil 3:1

    Article  Google Scholar 

  • Bilney B, Morris M, Webster K (2003) Concurrent related validity of the GAITRite® walkway system for quantification of the spatial and temporal parameters of gait. Gait Posture 17:68–74

    Article  Google Scholar 

  • Brenton-Rule A, Mattock J, Carroll M, Dalbeth N, Bassett S, Menz HB, Rome K (2012) Reliability of the TekScan MatScan® system for the measurement of postural stability in older people with rheumatoid arthritis. J Foot Ankle Res 5:1

    Article  Google Scholar 

  • Bridenbaugh SA, Kressig RW (2010) Laboratory review: the role of gait analysis in seniors’ mobility and fall prevention. Gerontology 57:256–264

    Article  Google Scholar 

  • Camicioli R, Howieson D, Oken B, Sexton G, Kaye J (1998) Motor slowing precedes cognitive impairment in the oldest old. Neurology 50:1496–1498

    Article  Google Scholar 

  • Cavanaugh JT, Guskiewicz KM, Stergiou N (2005) A nonlinear dynamic approach for evaluating postural control. Sports Med 35:935–950

    Article  Google Scholar 

  • Chesnin KJ, Selby-Silverstein L, Besser MP (2000) Comparison of an in-shoe pressure measurement device to a force plate: concurrent validity of center of pressure measurements. Gait Posture 12:128–133

    Article  Google Scholar 

  • Chien S-L, Lin S-Z, Liang C-C et al (2006) The efficacy of quantitative gait analysis by the GAITRite system in evaluation of parkinsonian bradykinesia. Parkinsonism Relat Disord 12:438–442

    Article  Google Scholar 

  • Chisholm AE, Perry SD, McIlroy WE (2011) Inter-limb Centre of pressure symmetry during gait among stroke survivors. Gait Posture 33:238–243

    Article  Google Scholar 

  • Cho KH, Lee HJ, Lee WH (2015) Test–retest reliability of the GAITRite walkway system for the spatio-temporal gait parameters while dual-tasking in post-stroke patients. Disabil Rehabil 37:512–516

    Article  Google Scholar 

  • Clark RA, Bower KJ, Mentiplay BF, Paterson K, Pua Y-H (2013) Concurrent validity of the Microsoft Kinect for assessment of spatiotemporal gait variables. J Biomech 46:2722–2725

    Article  Google Scholar 

  • Cutlip RG, Mancinelli C, Huber F, DiPasquale J (2000) Evaluation of an instrumented walkway for measurement of the kinematic parameters of gait. Gait Posture 12:134–138

    Article  Google Scholar 

  • Dusing SC, Thorpe DE (2007) A normative sample of temporal and spatial gait parameters in children using the GAITRite® electronic walkway. Gait Posture 25:135–139

    Article  Google Scholar 

  • Eastlack ME, Arvidson J, Snyder-Mackler L, Danoff JV, McGarvey CL (1991) Interrater reliability of videotaped observational gait-analysis assessments. Phys Ther 71:465–472

    Article  Google Scholar 

  • Fontecha J, Navarro FJ, Hervás R, Bravo J (2013) Elderly frailty detection by using accelerometer-enabled smartphones and clinical information records. Pers Ubiquit Comput 17:1073–1083

    Article  Google Scholar 

  • Fritz S, Lusardi M (2009) White paper: “walking speed: the sixth vital sign”. J Geriatr Phys Ther 32:2–5

    Article  Google Scholar 

  • Garciaguirre JS, Adolph KE, Shrout PE (2007) Baby carriage: infants walking with loads. Child Dev 78:664–680

    Article  Google Scholar 

  • González I, López-Nava IH, Fontecha J, Muñoz-Meléndez A, Pérez-SanPablo AI, Quiñones-Urióstegui I (2016) Comparison between passive vision-based system and a wearable inertial-based system for estimating temporal gait parameters related to the GAITRite electronic walkway. J Biomed Inform 62:210–223

    Article  Google Scholar 

  • Hartmann A, Luzi S, Murer K, de Bie RA, de Bruin ED (2009) Concurrent validity of a trunk tri-axial accelerometer system for gait analysis in older adults. Gait Posture 29:444–448

    Article  Google Scholar 

  • Highsmith MJ, Schulz BW, Hart-Hughes S, Latlief GA, Phillips SL (2010) Differences in the spatiotemporal parameters of transtibial and transfemoral amputee gait. J Prosthetics Orthot 22:26–30

    Article  Google Scholar 

  • Hollands K, Agnihotri D, Tyson S (2014) Effects of dual task on turning ability in stroke survivors and older adults. Gait Posture 40:564–569

    Article  Google Scholar 

  • Horak FB (1997) Clinical assessment of balance disorders. Gait Posture 6:76–84

    Article  Google Scholar 

  • Katz-Leurer M, Rotem H, Lewitus H, Keren O, Meyer S (2008) Relationship between balance abilities and gait characteristics in children with post-traumatic brain injury. Brain Inj 22:153–159

    Article  Google Scholar 

  • Keefe FJ, Hill RW (1985) An objective approach to quantifying pain behavior and gait patterns in low back pain patients. Pain 21:153–161

    Article  Google Scholar 

  • Kim A, Kim J, Rietdyk S, Ziaie B (2015) A wearable smartphone-enabled camera-based system for gait assessment. Gait Posture 42:138–144

    Article  Google Scholar 

  • Kressig RW, Beauchet O (2006) Guidelines for clinical applications of spatio-temporal gait analysis in older adults. Aging Clin Exp Res 18:174–176

    Article  Google Scholar 

  • Kuys SS, Brauer SG, Ada L (2011) Test-retest reliability of the GAITRite system in people with stroke undergoing rehabilitation. Disabil Rehabil 33:1848–1853

    Article  Google Scholar 

  • Lewek MD, Randall EP (2011) Reliability of spatiotemporal asymmetry during overground walking for individuals following chronic stroke. J Neurol Phys Ther 35:116–121

    Article  Google Scholar 

  • Liu W-Y, Lin P-H, Lien H-Y, Wang H-S, Wong AM-K, Tang SF-T (2014) Spatio-temporal gait characteristics in children with Tourette syndrome: a preliminary study. Res Dev Disabil 35:2008–2014

    Article  Google Scholar 

  • Maetzler W, Domingos J, Srulijes K, Ferreira JJ, Bloem BR (2013) Quantitative wearable sensors for objective assessment of Parkinson’s disease. Mov Disord 28:1628–1637

    Article  Google Scholar 

  • Maki BE, Holliday PJ, Topper AK (1994) A prospective study of postural balance and risk of falling in an ambulatory and independent elderly population. J Gerontol 49:M72–M84

    Article  Google Scholar 

  • McDonough AL, Batavia M, Chen FC, Kwon S, Ziai J (2001) The validity and reliability of the GAITRite system’s measurements: a preliminary evaluation. Arch Phys Med Rehabil 82:419–425

    Article  Google Scholar 

  • Menz HB, Latt MD, Tiedemann A, San Kwan MM, Lord SR (2004) Reliability of the GAITRite® walkway system for the quantification of temporo-spatial parameters of gait in young and older people. Gait Posture 20:20–25

    Article  Google Scholar 

  • Miyazaki S, Kubota T (1984) Quantification of gait abnormalities on the basis of continuous foot-force measurement: correlation between quantitative indices and visual rating. Med Biol Eng Comput 22:70–76

    Article  Google Scholar 

  • Morris ME, Huxham F, McGinley J, Dodd K, Iansek R (2001) The biomechanics and motor control of gait in Parkinson disease. Clin Biomech 16:459–470

    Article  Google Scholar 

  • Nelson AJ, Zwick D, Brody S et al (2002) The validity of the GaitRite and the functional ambulation performance scoring system in the analysis of Parkinson gait. NeuroRehabilitation 17:255–262

    Google Scholar 

  • Nomura K, Fukada K, Azuma T, Hamasaki T, Sakoda S, Nomura T (2009) A quantitative characterization of postural sway during human quiet standing using a thin pressure distribution measurement system. Gait Posture 29:654–657

    Article  Google Scholar 

  • Owings TM, Grabiner MD (2003) Measuring step kinematic variability on an instrumented treadmill: how many steps are enough? J Biomech 36:1215–1218

    Article  Google Scholar 

  • Papadopoulos N, McGinley JL, Bradshaw JL, Rinehart NJ (2014) An investigation of gait in children with attention deficit hyperactivity disorder: a case controlled study. Psychiatry Res 218:319–323

    Article  Google Scholar 

  • Patterson KK, Gage WH, Brooks D, Black SE, McIlroy WE (2010) Evaluation of gait symmetry after stroke: a comparison of current methods and recommendations for standardization. Gait Posture 31:241–246

    Article  Google Scholar 

  • Paul L, Ellis B, Leese G, McFadyen A, McMurray B (2009) The effect of a cognitive or motor task on gait parameters of diabetic patients, with and without neuropathy. Diabet Med 26:234–239

    Article  Google Scholar 

  • Podsiadlo D, Richardson S (1991) The timed “up & go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 39:142–148

    Article  Google Scholar 

  • Rao AK, Quinn L, Marder KS (2005) Reliability of spatiotemporal gait outcome measures in Huntington’s disease. Mov Disord 20:1033–1037

    Article  Google Scholar 

  • Rinehart NJ, Tonge BJ, Iansek R, McGinley J, Brereton AV, Enticott PG, Bradshaw JL (2006) Gait function in newly diagnosed children with autism: cerebellar and basal ganglia related motor disorder. Dev Med Child Neurol 48:819–824

    Article  Google Scholar 

  • Salarian A, Russmann H, Vingerhoets FJ, Dehollain C, Blanc Y, Burkhard PR, Aminian K (2004) Gait assessment in Parkinson’s disease: toward an ambulatory system for long-term monitoring. IEEE Trans Biomed Eng 51:1434–1443

    Article  Google Scholar 

  • Schniepp R, Wuehr M, Neuhaeusser M et al (2012) Locomotion speed determines gait variability in cerebellar ataxia and vestibular failure. Mov Disord 27:125–131

    Article  Google Scholar 

  • Sekiya N, Nagasaki H, Ito H, Furuna T (1997) Optimal walking in terms of variability in step length. J Orthop Sports Phys Ther 26:266–272

    Article  Google Scholar 

  • Selby-Silverstein L, Besser M (1999) Accuracy of the GAITRite® system for measuring temporal-spatial parameters of gait. Phys Ther 79:S59

    Google Scholar 

  • Shany T, Redmond S, Marschollek M, Lovell N (2012) Assessing fall risk using wearable sensors: a practical discussion. Z Gerontol Geriatr 45:694–706

    Article  Google Scholar 

  • Shull PB, Jirattigalachote W, Hunt MA, Cutkosky MR, Delp SL (2014) Quantified self and human movement: a review on the clinical impact of wearable sensing and feedback for gait analysis and intervention. Gait Posture 40:11–19

    Article  Google Scholar 

  • Sorsdahl AB, Moe-Nilssen R, Strand LI (2008) Test–retest reliability of spatial and temporal gait parameters in children with cerebral palsy as measured by an electronic walkway. Gait Posture 27:43–50

    Article  Google Scholar 

  • Sosnoff JJ, Sandroff BM, Motl RW (2012) Quantifying gait abnormalities in persons with multiple sclerosis with minimal disability. Gait Posture 36:154–156

    Article  Google Scholar 

  • Sosnoff JJ, Klaren RE, Pilutti LA, Dlugonski D, Motl RW (2015) Reliability of gait in multiple sclerosis over 6 months. Gait Posture 41:860–862

    Article  Google Scholar 

  • Stover AM (2005) Reliability of the GAITRite (R) Walking System for the assessment of gait in individuals with Parkinson’s disease. Master’s and Doctoral Project, The University of Toledo Digital Repository

    Google Scholar 

  • Thorpe DE, Dusing SC, Moore CG (2005) Repeatability of temporospatial gait measures in children using the GAITRite electronic walkway. Arch Phys Med Rehabil 86:2342–2346

    Article  Google Scholar 

  • Van Uden CJ, Besser MP (2004) Test-retest reliability of temporal and spatial gait characteristics measured with an instrumented walkway system (GAITRite®). BMC Musculoskelet Disord 5:13

    Article  Google Scholar 

  • Verghese J, Wang C, Lipton RB, Holtzer R, Xue X (2007) Quantitative gait dysfunction and risk of cognitive decline and dementia. J Neurol Neurosurg Psychiatry 78:929–935

    Article  Google Scholar 

  • Verghese J, Holtzer R, Lipton RB, Wang C (2009) Quantitative gait markers and incident fall risk in older adults. J Gerontol Ser A Biol Med Sci 64:896–901

    Article  Google Scholar 

  • Wajda DA, Moon Y, Motl RW, Sosnoff JJ (2015) Preliminary investigation of gait initiation and falls in multiple sclerosis. Arch Phys Med Rehabil 96(6):1098–1102

    Google Scholar 

  • Webster KE, Wittwer JE, Feller JA (2005) Validity of the GAITRite® walkway system for the measurement of averaged and individual step parameters of gait. Gait Posture 22:317–321

    Article  Google Scholar 

  • Webster KE, Merory JR, Wittwer JE (2006) Gait variability in community dwelling adults with Alzheimer disease. Alzheimer Dis Assoc Disord 20:37–40

    Article  Google Scholar 

  • Whittle MW (1996) Clinical gait analysis: a review. Hum Mov Sci 15:369–387

    Article  Google Scholar 

  • Wittwer JE, Webster KE, Andrews PT, Menz HB (2008) Test–retest reliability of spatial and temporal gait parameters of people with Alzheimer’s disease. Gait Posture 28:392–396

    Article  Google Scholar 

  • Wondra VC, Pitetti KH, Beets MW (2007) Gait parameters in children with motor disabilities using an electronic walkway system: assessment of reliability. Pediatr Phys Ther 19:326–331

    Article  Google Scholar 

  • Wong JS, Jasani H, Poon V, Inness EL, McIlroy WE, Mansfield A (2014) Inter-and intra-rater reliability of the GAITRite system among individuals with sub-acute stroke. Gait Posture 40:259–261

    Article  Google Scholar 

  • Wu J, Looper J, Ulrich BD, Ulrich DA, Angulo-Barroso RM (2007) Exploring effects of different treadmill interventions on walking onset and gait patterns in infants with down syndrome. Dev Med Child Neurol 49:839–945

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruopeng Sun .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sun, R., Wood, T.A., Sosnoff, J.J. (2018). Low Density Pedoboragraphy as a Gait Analysis Tool. In: Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-14418-4_38

Download citation

Publish with us

Policies and ethics