
Reproducible Experiments in Parallel Computing:
Concepts and Stencil Compiler Benchmark Study

Danilo Guerrera, Helmar Burkhart, and Antonio Maffia

University of Basel, Switzerland
{danilo.guerrera,helmar.burkhart,antonio.maffia}@unibas.ch

Abstract. For decades, the majority of the experiments on parallel com-
puters have been reported at conferences and in journals usually without
the possibility to verify the results presented. Thus, one of the major prin-
ciples of science, reproducible results as a kind of correctness proof, has
been neglected in the field of experimental high-performance computing.
While this is still the state-of-the-art, current research targets for solu-
tions to this problem. We discuss early results regarding reproducibility
from a benchmark case study we did. In our experiments we explore the
class of stencil calculations that are part of many scientific kernels and
compare the performance results of four stencil compilers. In order to
make these experiments reproducible from remote, a first prototype of
an replication engine has been developed that can be accessed via the
internet.

1 Introduction

Whenever you read a paper that reports on computational experiments, imme-
diate questions such as the following arise:

– If we could rerun the experiment: will we get the same, similar or different
results? What if we run the experiment on a different compute environment?

– Results are often for a specific problem only. What if we define a slightly
different test case?

– Libraries and software components influence measurements. For instance,
have compilation flags been properly set?

One would reach another level of trust in scientific results if we could somehow
reproduce experiments. Such trust problems have already been reported in the
pharmaceutical industry, in finance, and other fields. "It is impossible to believe
most of the computational results presented at conferences and in published
papers today. Even mature branches of science, despite all their efforts, suffer
severely from the problem of errors in final published conclusions" [1]. It is
therefore crucial to be able to test results for science to be self-correcting. "The
ability to reuse and extend the results enable science to move forward" [2].

The difficulty in reproducing computational research is in large part caused
by the difficulty in capturing every last detail of the software and computing

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part I, LNCS 8805, pp. 464–474, 2014.
© Springer International Publishing Switzerland 2014



Reproducible Experiments in Parallel Computing 465

environment, which is what is needed to achieve reliable replication [3]. As can
be found, articles often do not have a sufficiently detailed description of their
experiments, and do not make available the software used to obtain the results
claimed. As a consequence, parallel computational results are most often im-
possible to reproduce, often questionable, and therefore of little or no scientific
value [4].

The problem has been detected and early results have been reported. Dolfi et
al. [5] propose a model for reproducible papers such that "the current manuscript
already contains sufficient details, codes, and scripts to reproduce all the pre-
sented numerical results and figures". A constellation of tools and prototypes is
available in order not only to document the workflow of an application but also
make it reproducible. Taverna [6] and Vistrails [7] integrate data acquisition,
derivation, analysis, and visualization as executable components throughout the
scientific exploration process. Repeatability is facilitated by ensuring that the
evolution of the software components used in the workflow is controlled by the
organizations that design the workflows. This "controlled services" approach
is shared by other WFMS such as Kepler [8] and Knime [9], an open-source
workflow-based integration platform for data analytics.

In this paper, we explore the reproducibility of benchmark experiments and
demonstrate early results of a project with the goal of building an ecosystem
for reproducible computational experiments. In Section 2 we define a taxonomy
which is the basis for the design of our system. Section 3 describes the func-
tionality of our system envisaged and an early prototype of a workflow engine.
In Section 4 we present a case study by introducing the stencil motif and the
performance results of different compilers. Conclusions and sketches of further
work are given in Section 5.

2 Taxonomy for Reproducible Benchmark Experiments

2.1 Space of Computational Experiments

Computational problem solving in general can be described as follows: A compu-
tational problem is solved by an algorithmic method on a compute system.
We call the triple (Problem / Method / System) a micro-experiment, which can
be considered as being one point in the space of experiments (see Figure 1).

– Problem : Solve a (random) dense system of linear equations in IEEE double
precision arithmetic.

– Method : Two-dimensional block-cyclic data distribution. Right-looking vari-
ant of the LU factorization with row partial pivoting (see [10]).

– System : Distributed-memory computerwithMessagePassing Interface (MPI
1.1 compliant) and Basic Linear Algebra Subprograms (BLAS) installed.

What we usually want is a comparison between data resulting from more than
a single micro-experiment. Keeping two out of the three dimensions fixed, we get
an experiment which is a function of the third one: the red line shown in Figure



466 D. Guerrera, H. Burkhart, and A. Maffia

Fig. 1. Space of Computational Experiments

1 identifies such a macro-experiment, which is a collection of micro-experiments
(e.g. the black dots in Figure 1). Macro-experiments can be categorised as being
either system-oriented, method-oriented, or problem-oriented.

2.2 Replication, Recomputation, and Reproduction

Given the taxonomy of above, we obtain different levels of repeatability:

– Replication : Basic replication means re-running the original micro- or
macro-experiment with all values in the experiment space kept fixed. As a
result, execution properties that have been claimed become verifiable, which
guarantees a high-level of credibility. Advanced replication mechanisms even
support the changing of certain problem parameters while keeping method
and system dimensions fixed. One of the major difficulties for providing
replication support are security concerns because the system needs to be
accessible from outside. In addition, the workload in high-performance com-
puting scenarios is often significant, which forces the setting of limits for the
number of replication calls.

– Recomputation : Portable methods are usually considered as being a good
quality criterion for computational experiments. Therefore, methods used
to solve a particular problem should not be bound to a specific compute
environment. In the context of high-performance computing where parallel
systems are used, this movement is however restricted to related machine
models.

– Reproduction : Computational experiments are only an aid for getting ac-
tual scientific results. If different methods end up with the same scientific
results in terms of computed output, some kind of experimental proof of the
scientific insight is given.



Reproducible Experiments in Parallel Computing 467

3 Towards BETSc: Basel Ecosystem for Trusted Scientific
Computing

3.1 Design Issues

In addition to the taxonomy described in the previous section, we identified some
features we would like to achieve. The major problem when talking about repro-
ducibility of experiments is that people other than the original researcher have to
deal with the configuration of their own environment, which likely differs from the
one used in the original test: we therefore target for dependency check (which
must represent the first step of an experiment) andportability. A scientific discov-
ery process may require the application of several steps and activities and it is nec-
essary to trace and collect sufficient provenance information over this process, thus
achieving provenance support. Allowing to automatically run tests, makes it
possible to generate documentation regarding the environment in which the ex-
periment was executed and store it as a unique identifier. What scientists aim for
are results: since they are so important, it is necessary to be sure about their cor-
rectness, therefore introducing a correctness checkat the end of the experiment’s
execution, and only at this point visualize the outputs.

Fig. 2. Experiment flow

The key idea is that, once an experiment is characterized (i.e. the problem to
be explored is stated), a user can define the macro-experiments to be executed,
and pass such information to the workflow engine. The workflow sets up the
environment and produces a structured output. Such an output was designed
in order to allow flexibility in treating the data. As shown in Figure 2, it is
composed of:

– self-descriptor: this field stores the information which uniquely defines an
experiment. An environment stamp with libraries and dependencies is cre-
ated, then all of the experiment-dependent parameters are added, together
with information about hardware and threads used.



468 D. Guerrera, H. Burkhart, and A. Maffia

– performance data: each micro-experiment generates data, which are used
to set up a comparison based on different performance metrics (e.g. GFlop-
s/s, speedup, etc.).

– output data: these are simply the numerical results produced by each
micro-experiment. Later on, they can be used to verify the correctness of
the execution.

– execution state: at the end of a micro-experiment, potential fails can be
detected thanks to log data generated at run time and stored in this field.

In order to analyze or visualize the information stored in the data structure
described above, BETSc will provide a tool suite:

– Documenter: provides information about the experiments, in particular
the settings as defined in the configuration phase;

– Visualizer: provides graphs regarding the performance output of a macro-
experiment (stored in the field Performance Data of the structured output);

– Correctness Checker: verifies the correctness of an execution. Numerical
simulation outputs are not suitable for checking bit-wise correctness due to
their nature, and this is even worse when talking about numerical results
coming out from a parallel computation, where not only the sequence of
operations on the data can change but also the core where the operations
are executed;

– Tracer: provides information on the state of an execution, showing what
possibly went wrong and why.

3.2 Replication Prototype

We developed a prototype of a workflow engine [11]. Its first task is an automatic
installation of all of the components required for running the experiments (see
Figure 3): this is done with the command install. In order to run a test, a test
suite needs to be created: this means both adding a method and a problem. A
working example (fully implemented methods) is provided along with the work-
flow: at the current stage new methods and problems must be added manually by
the user. Under development are the commands to do it automatically: adding a
new method will be done by the command add_method, which generates a direc-
tory structure for the method passed as argument to it. A skeleton of Makefile
will be provided in the newly created directory structure: it has to be modified
by the user according to the peculiarity of the method. The same has to be done
for new problems: after a problem has been added, the user has to provide the
implementations for it, according to the methods he is intending to test.

After this configuration, it is possible to automatically execute all of the spec-
ified micro-experiments using the command run followed by a specification of
the methods you want to use. Problem specific parameters as well as particu-
lar system settings (e.g. number of threads to be used) are passed through the
SetEnv file. The workflow manages the execution of such experiments, setting
the parameters, actually running the test, gathering the results, and sending



Reproducible Experiments in Parallel Computing 469

Fig. 3. Workflow architecture

them to the data server for storing. It is then possible to visualize different kinds
of graphs regarding the executed experiments, starting from the fields of the
structured data stored (as defined above, see Figure 2).

4 Case Study: Stencil Compiler Comparisons

4.1 Stencil Motif Background

In his 2004 lecture titled Defining Software Requirements for Scientific Com-
puting, Phillip Colella identified seven so-called dwarfs, which are defined as
algorithmic methods that capture a reusable pattern of computation and com-
munication. The dwarf idea was later taken up by scientists at Berkeley and
the list of dwarfs (renamed to motifs) was extended [12]. In this list, stencil
computations are present as motif Structured Grid. It defines operations on a
multi-dimensional grid, which are repeatedly applied such that the value of a grid
point depends on the value of the point itself and the values of neighbours in a
previous time step. The stencil motif has manyfold applications in science and
engineering such as weather forecast, geophysics, computational fluid dynamics,
and image processing.

Stencil computations expose a high degree of parallelism, however perfor-
mance is not for free. They are memory-bound as typically only a limited amount
of computation is performed per grid point (i.e. low arithmetic intensity). Be-
cause of this memory bandwidth limitation, different optimization strategies are
possible. For example, if the application requires that the stencil has to be ap-
plied multiple times, there is potential to exploit temporal data locality, i.e. reuse
cache data across iterations. A fair amount of research has addressed the ques-
tion how temporal and spatial optimization can be done and what algorithmic
changes and code transformations are needed. It is the purpose of our case study
to experimentally explore different compilation methods.



470 D. Guerrera, H. Burkhart, and A. Maffia

4.2 Macro-experiment Definition

We set up and execute a macro-experiment using five different methods and
compare the performance achieved.

Problem: We solve the classical wave equation utt − c2Δu = 0 with a fourth
order-in-space and second order-in-time finite difference method. After discretiz-
ing with step sizes h in space and t in time, we obtain the following stencil
computation formula:

ut+1
ijk = 2ut

ijk + ut−1
ijk +

Δt2c2

h2
(−15

2
ut
ijk+

4

3
(ut

i±1,j,k + ut
i,j±1,k + ut

i,j,k±1)−
1

12
(ut

i±2,j,k + ut
i,j±2,k + ut

i,j,k±2)).

We use a 3-dimensional grid of 2003 points and calculate 100 timesteps.

Method: The following five methods are used in micro-experiments:

– Directive-based approach exploits a set of compiler directives that in-
fluence run-time behaviour. OpenMP uses a portable, scalable model that
gives programmers a simple and flexible interface for developing parallel ap-
plications for platforms ranging from the standard desktop computer to the
supercomputer.

– Cache-oblivious algorithm for stencil computations of Frigo and Strumpen
[13]. An algorithm is cache-oblivious when it does not contain parameters (set
at either compile-time or runtime) that can be tuned to optimize the cache
complexity for the particular cache size and line length. Pochoir[14], extends
the cache-oblivious algorithm by using hyperspace cuts which improve paral-
lelism. The compiler translates the embedded stencil code into Cilk code.

– Auto-tuning is the use of search to select the best performing code vari-
ant and parameter configuration from a set of possible versions. A compiler
following this approach is Halide[15], which is specialized for image pro-
cessing pipelines. It separates the algorithm from the scheduling task which
uses an auto-tuning approach. LLVM is used for just-in-time compilation
and parallelization is realized with pthreads.

– Polyhedral model [16] is a framework for automatic optimization and par-
allelization. It is applicable to loops with affine index functions and affine
loop bounds, interprets the iteration space as a polyhedron, and loop trans-
formations correspond to operations on or affine transformations of that
polyhedron.Pluto [17], is a source to source compiler that uses the polyhe-
dral model approach for compiler optimization. The compiler uses C code as
input and provides as output an OpenMP parallelized C code.

– DSL + Auto-tuning approach. Domain Specific Languages allow the pro-
grammer to express a stencil computation in a concise way independently of
hardware architecture-specific details. Patus [18], developed at University



Reproducible Experiments in Parallel Computing 471

of Basel, separates the specification of the stencil operation from strategy
specifications (i.e. optimization and parallelization methods such as cache-
blocking). Auto-tuning is used to find the best strategy and code generation-
specific parameters.

Source code for all variants is available at [11].

System: We ran the benchmarks on an AMD Opteron 6274 CPU with a total
number of 16 cores which has a 16 KB L1 cache, a 2 MB shared exclusive L2
cache and a 6MB shared L3 cache, with 2.2 GHz clock rate, running Ubuntu
12.04.4 LTS (kernel 3.8.0-38-generic).

The following C/C++ compiler were used: GNU gcc 4.6.3 and Intel icc 13.1.2.

4.3 Results

Stated system configuration and parameter setting, we want to obtain a com-
parison between the GFlops (calculated as product of number of timestep * grid
size * stencil floating point operations, out of five executions) produced by the
methods presented above. The result of such a comparison is shown in Figure 4.
It is a visualization mash-up of 6 macro-experiments using different number of
cores (1, 2, 4, 8, 16 and 32).

Fig. 4. Benchmark results with 100 timesteps



472 D. Guerrera, H. Burkhart, and A. Maffia

4.4 Replication Proof via Internet

The question which now arises is: can external people verify these measurements?
In order to allow it, we set up a web interface (see Figure 5): you can configure
the micro- or macro-experiments and submit them to our parallel machine. The
experiment can be called, in principle, from outside, but at this stage it is only
possible from our internal network, due to security and load problems.

Fig. 5. Phases during the experiment: (a) shows the set-up of an (macro- or micro-)
experiment, while in (b) the experiment is running on the parallel machine; it is then
possible to choose (c) and visualize (d) the output

5 Conclusions and Future Work

If computational and computer science want to be a science, reproducibility
needs to be emphasized. This is a challenge on both the technical and social
side. On the technical side we need tools and platforms that allow us to store
experiments, remotely access them, and offer collaboration support for team
efforts but also security and protection guarantees from misuse. On the social
side we have to think about incentives for those who spend time in making their
experiments reproducible.



Reproducible Experiments in Parallel Computing 473

We so far achieved a replication prototype for stencil experiments that can be
remotely recalled via the Internet. Taking this as a starting point, our taxonomy
defines the roadmap for future work. We will extend the distributed architecture,
develop security layers and load attack fences, and formalize data and workflow
descriptions at the micro- and macro-experiment level. Future system versions
should thus support not only replication but also recomputation and reproduc-
tion, as well as more generalized experiment settings in computational science.

Acknowledgement. We thank Severin Gsponer for his early contributions to
the workflow engine [19].

References

1. Victoria, S.: Trust your science? Open your data and code. Amstat News (2011)
2. Freire, J., Silva, C.T.: Making computations and publications reproducible with

VisTrails. Computing in Science Engineering 14(4), 18–25 (2012)
3. Davison, A.P.: Automated capture of experiment context for easier reproducibility

in computational research. Computing in Science Engineering 14(4), 48–56 (2012)
4. Hunold, S., Träff, J.L.: On the state and importance of reproducible experimental

research in parallel computing. CoRR abs/1308.3648 (2013)
5. Dolfi, M., Gukelberger, J., Hehn, A., Imriska, J., Pakrouski, K., Rønnow, T.F.,

Troyer, M., Zintchenko, I., Chirigati, F.S., Freire, J., Shasha, D.: A model project
for reproducible papers: critical temperature for the Ising model on a square lattice.
CoRR abs/1401.2000 (2014)

6. Missier, P., Soiland-Reyes, S., Owen, S., Tan, W., Nenadic, A., Dunlop, I., Williams,
A., Oinn, T., Goble, C.: Taverna, Reloaded. In: Gertz, M., Ludäscher, B. (eds.)
SSDBM 2010. LNCS, vol. 6187, pp. 471–481. Springer, Heidelberg (2010)

7. Scheidegger, C.E., Vo, H.T., Koop, D., Freire, J., Silva, C.T.: Querying and re-using
workflows with VisTrails. In: Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, SIGMOD 2008, pp. 1251–1254. ACM, New
York (2008)

8. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee,
E.A., Tao, J., Zhao, Y.: Scientific workflow management and the Kepler system.
Concurrency and Computation: Practice and Experience 18(10), 1039–1065 (2006)

9. https://www.knime.org/knime
10. HPL - A portable implementation of the high-performance Linpack Benchmark for

distributed-memory computers (2008), http://www.netlib.org/benchmark/hpl/
11. Danilo Guerrera and Antonio Maffia. Workflow for reproducibility (2014),

https://github.com/sguera/workflow_repro
12. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer,

K., Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.: The
landscape of parallel computing research: A view from Berkeley. Technical Re-
port UCB/EECS-2006-183, EECS Department, University of California, Berkeley
(December 2006)

13. Frigo, M., Strumpen, V.: Cache oblivious stencil computations. In: Proceedings
of the 19th Annual International Conference on Supercomputing, ICS 2005, pp.
361–366. ACM (2005)

https://www.knime.org/knime
http://www.netlib.org/benchmark/hpl/
https://github.com/sguera/workflow_repro


474 D. Guerrera, H. Burkhart, and A. Maffia

14. Tang, Y., Chowdhury, R.A., Kuszmaul, B.C., Luk, C.-K., Leiserson, C.E.: The
Pochoir stencil compiler. In: Proceedings of the Twenty-Third Annual ACM Sym-
posium on Parallelism in Algorithms and Architectures, SPAA 2011, pp. 117–128.
ACM, New York (2011)

15. Kelley, J.R., Barnes, C., Adams, A., Paris, S., Durand, F., Amarasinghe, S.: Halide:
a language and compiler for optimizing parallelism, locality, and recomputation in
image processing pipelines. SIGPLAN Not. 48(6), 519–530 (2013)

16. Benabderrahmane, M.-W., Pouchet, L.-N., Cohen, A., Bastoul, C.: The Polyhedral
Model Is More Widely Applicable Than You Think. In: Gupta, R. (ed.) CC 2010.
LNCS, vol. 6011, pp. 283–303. Springer, Heidelberg (2010)

17. Bondhugula, U., Ramanujam, J., Sadayappan, P.: PLuTo: A practical and fully
automatic polyhedral parallelizer and locality optimizer. Technical Report OSU-
CISRC-10/07-TR70, The Ohio State University (October 2007)

18. Christen, M., Schenk, O., Burkhart, H.: PATUS: A code generation and autotun-
ing framework for parallel iterative stencil computations on modern microarchi-
tectures. In: 2011 IEEE International Parallel Distributed Processing Symposium
(IPDPS), pp. 676–687 (2011)

19. Gsponer, S.: Stencil compilers in practice: Workflow engine and code generation
issues. Master’s thesis, University of Basel (2014)


	Reproducible Experiments in Parallel Computing: Concepts and Stencil Compiler Benchmark Study
	1 Introduction
	2 Taxonomy for Reproducible Benchmark Experiments
	2.1 Space of Computational Experiments
	2.2 Replication, Recomputation, and Reproduction

	3 Towards BETSc: Basel Ecosystem for Trusted Scientific Computing
	3.1 Design Issues
	3.2 Replication Prototype

	4 Case Study: Stencil Compiler Comparisons
	4.1 Stencil Motif Background
	4.2 Macro-experiment Definition
	4.3 Results
	4.4 Replication Proof via Internet

	5 Conclusions and Future Work
	References




