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milone.francesco1988@gmail.com, {cspagnuolo,lvicidomini}@unisa.it

Abstract. Agent-based simulation models are a powerful experimental
tool for research and management in many scientific and technological
fields.

D-Mason is a parallel version of Mason, a library for writing and
running Agent-based simulations.

In this paper, we present a novel development of D-Mason, a de-
centralized communication strategy which realizes a Publish/Subscribe
paradigm through a layer based on the MPI standard. We show that our
communication mechanism is much more scalable and efficient than the
previous centralized one.

Keywords: Publish/Subscribe, MPI, Agent-based simulation models,
Mason, D-Mason, Parallel Computing, Distributed Systems, High Per-
formance Computing.

1 Introduction

Agent-Based Model (ABM) denotes a class of models which, simulating the be-
havior of multiple agents (i.e., independent actions, interactions and adaptation),
aims to emulate and/or predict complex phenomena.

Successes in Computational Sciences over the past ten years have caused in-
creased demand for supercomputing resources, in order to improve the perfor-
mance of ABMs in terms of both number of agents and complexity of interac-
tions.

Parallel computing has becoming the dominant paradigm for computational
scientist (indeed, serial-processing speed is reaching a physical limit [15]). Unfor-
tunately, exploiting parallel systems is not an easy task: performance has to be
realized through concurrency, with applications designed to scale as the number
of resources increases.

Computer science community has responded to the need for tools and plat-
forms that can help the development and testing of new models in each specific
field by providing tools, libraries and frameworks that speed up and make easier
the task of developing and running parallel ABMs for complex phenomena.
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D-Mason [6,16] is a parallel version of the Mason [3,10,11] library for run-
ning ABMs on distributed systems. D-Mason adopts a framework-level par-
allelization mechanism approach, which allows to harness the computational
power of a parallel environment and, at the same time, hides the details of the
architecture so that users, even with limited knowledge of parallel computer
programming, can easily develop and run simulation models.

In [7] a preliminary discussion about the use of MPI primitives for the devel-
opment of a Publish/Subscribe (PS) service has been showed. This paper makes
a step forward in that direction; we present a novel communication strategy,
based on the PS paradigm, which uses the MPI Standard [17] as an example of
distributed communication on D-Mason.

After a brief review and a critical analysis of the state of the art of D-Mason
(Section 2), we report, in Section 3, the details of the novelMPI Publish/Subscribe
layer which: (i) improves the preliminary version (cf. [7]); (ii) provides also a hy-
brid approach exploiting the advantages of both the centralized and decentralized
communication strategies. Finally, in Section 4 we report an extensive set of ex-
periments showing that the novelMPI-based Publish/Subscribe mechanism is ex-
tremely advantageous when the number of computing machines is large. In this
case, in fact, a single communication server is unable to handle all the communi-
cation that the system requires and thus it represents a bottleneck for the whole
system.

2 Mason and D-Mason

Mason toolkit is a discrete-event simulation core and visualization library writ-
ten in Java, designed to be used for a wide range of ABMs. Mason is based on
a standard Model-View-Controller (MVC) paradigm and three layers compose
it: the simulation layer, the visualization layer and the utility layer.

D-Mason adds a new layer named D-Simulation, which extends the Mason
simulation layer. The new layer adds some features to the simulation layer that
allow the distribution of the simulation workload on multiple, even heteroge-
neous, machines. The intent of D-Mason is to provide an effective and efficient
way of parallelizing Mason simulations: effective because with D-Mason you
can do more than what you can do with Mason, efficient because the porting
of an application from Mason to D-Mason happens with some incremental
modifications to the Mason application without the need of re-designing it.

D-Mason is based on a Master-Worker paradigm: some workers, henceforth
logical processors (LPs), perform the simulation while a master application is
in charge of: discovering the LPs, bootstrapping the system, managing and in-
teracting with the simulation. D-Mason adopts a space partitioning approach
where the space to be simulated (D-Mason’s field) is partitioned into regions.
Each region, together with the agents contained in it, is assigned to a LP. Since
usually the area of interest (AOI) of an agent is small compared with the size
of a region, the communication between workers, required to synchronize the
simulation step by step, is limited to local messages (messages between LPs,
managing neighboring spaces, etc.).
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Fig. 1. D-Mason scheme

In a discrete-event simulation, events need to be processed in a non-decreasing
timestamp order, because an event with a smaller timestamp can potentially
modify the state of the system and thereby affect events that happen later.
We call this phenomenon causality constraint. On a sequential simulation, the
causality constraint is easily satisfied by using a queue of events ordered by
timestamp. On parallel simulation, the problem is much tougher and two main
approaches have been introduced to deal with it: Optimistic approach, which
allows events to be processed out of order. Once a causality error is detected,
the offending LP has to rollback and recover from such an error. This kind
of approach requires state saving and recovery mechanisms [9]; Conservative
approach which guarantee that events are always processed in the right order.
D-Mason adopts a conservative approach: each simulation step is divided in two
phases: communication/synchronization and simulation. Each simulation step is
associated with a fixed state of the simulation. Regions are simulated step by
step: the step i of a region r is computed according to the states i − 1 of r’s
neighboring regions, so the step i of a region cannot be executed until the states
i−1 of its neighbors have been computed and delivered. This approach does not
need any rollback strategies but each simulation step represents a barrier; the
system advances with the same speed provided by the slower LP in the system.
For this reason, it is necessary to balance the load among workers.

Figure 1 depicts the architecture of D-Mason.



410 G. Cordasco et al.

Current Centralized Communication Strategy in D-Mason with
ActiveMQ

D-Mason uses a well-known communication mechanism, based on the Pub-
lish/Subscribe (PS) design pattern, to propagate agents’ state information: a
multicast channel is assigned to each region; LPs then simply subscribe to the
channels associated with the regions, which overlap with their AOI to receive
relevant message updates.

The first versions of D-Mason used Java Message Service (JMS) [8] for com-
munication between workers. A dedicated machine that runs an Apache Ac-
tiveMQ Server [1] and acts as a JMS provider (i.e., it allows to generate and
manage multicast channels and route messages accordingly) was used.D-Mason
however, is designed to be used with any Message Oriented Middleware that im-
plements the PS pattern.

The choice for a centralized dedicated communication service was due to the
fact thatD-Mason was initially conceived to harness the amount of unused com-
puting power available in common installations like educational laboratories. In
this setting, the choice for a dedicated communication server was preferred for
several reasons. It does not require the installation of a specific communication
middleware on each logical processor. All communication is handled by a single
machine, consequently all the computational power provided by LPs is dedicated
to simulation phase. The number of machines (LPs) available in common labo-
ratory is limited, therefore the centralized communication does not represent a
bottleneck for the system, as confirmed by the experiments in [6].

The More You Get, the More You Want

Considering the good results obtained byD-Mason we wondered if the approach
used by D-Mason (a framework-level parallelization mechanism) could also be
exploited for dedicated installation, such as massively parallel machines and clus-
ters of workstations. If so, what changes are needed in order to adapt D-Mason
for dedicated installation? These platforms usually offer a large number of ho-
mogeneous machines that, on one hand, simplify the issue of balancing the load
among LPs [4], but, on the other hand, the considerable computational power
provided by the system weakens the efficiency of the communication server. In-
deed, centralized solutions cannot scale with the growth of the computational
power (which affects the amount of communication) and especially in the number
of LPs (number of communication).

The main goal of our paper is to check whether the communication strategy
in D-Mason architecture can be improved using a distributed MPI layer.

3 Decentralized Communication Strategy in D-Mason
with MPI

MPI is a library specification for message-passing, designed for high perfor-
mance on both massively parallel machines and on workstation clusters. MPI
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has emerged as one of the primary programming paradigms for writing efficient
parallel applications; it provides point-to-point and collective communications
and guarantees portability with all platforms compliant with the MPI Standard.
MPI provides several collective operations, which are very important because
they sustain very high parallel speed-ups for parallel applications [17]. Our im-
plementation is based on mpiJava, a Java binding of MPI-1.1 Standard [2, 5].

A Distributed MPI Publish/Subscribe Layer

The communication model in D-Mason is potentially n-to-n, which means that
each LP of the network may need to communicate with all others. D-Mason is
based on the Publish/Subscribe paradigm to meet the requirements of flexibility
and scalability of the system. In more details, the Communication Layer of
D-Mason exploits the flexibility of the Publish/Subscribe paradigm to virtualize
groups of communication between the agents. In the distributed simulation, these
groups communicate at the end of each simulation step.

MPI does not provide Publish/Subscribe functionalities so we had to develop a
different layer, according to the communication interface ofD-Mason, which ex-
poses some routines to publish and receive messages on specific topics. This layer
is based on MPI collective communications (i.e., MPI Bcast and MPI Gather)
which allows making a series of point-to-point communications in one single call.
MPI processes can be grouped and managed by an object called Communica-
tor [13].

The JMS Strategy and the MPI one handle the synchronization in a different
way. In the JMS strategy the synchronization is implemented at the framework
level using a data structure that indexes, for each step, the updates and acts as
barrier, so that each cell remains locked until it receives all updates. In the MPI
strategy, we take advantage of the intrinsic synchronization of MPI, because the
collective communication primitives are blocking.

In [7] the details of three different implementations have been presented:
MPI Bcast, MPI Gather and MPI Parallel. The first two strategies are based
on the MPI group communication primitives of the same name and are almost
equivalent in terms of performances in real scenarios, while MPI Parallel al-
lows us to increase the degree of parallelism during the synchronization phase,
resulting in increased performances.

The parallel strategy is based on the following considerations. Each synchro-
nization phase requires a certain set C of communication where each communica-
tion is identified by a pair 〈sender, receiver〉. Using MPI a set of communication
can be executed in parallel provided that each process appears at most once (ei-
ther as sender or as receiver). Hence, we need to partition C in such a way that
each set obtained can be executed in parallel and the number of sets is as small
as possible. This problem is a well-known NP-Hard problem: Edge coloring [12].
An edge coloring of a graph is a minimum assignment of colors to the edges of the
graph so that no adjacent edges have the same color. In [7] a simple randomized
heuristic was presented to find a good partition in a reasonable time.
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Implementation

A preliminary implementation of MPI Publish/Subscribe pattern was provided
in a previous work [7]. In this work, we updated the implementation according
to the latest Java binding available in OpenMPI V. 1.7.5.

This required, in fact, a major rewrite of our implementation. Briefly, the
previous Java binding relied upon the MPI.Object class in order to automatically
perform (de-)serializing of arbitrary Java objects. This feature was removed in
OpenMPI V. 1.7.5 so we had to manually perform (de-)serializing in order to
send arrays of MPI.Byte objects.

The package dmason.util.connection provides the interface Connection,
which defines the Publish/Subscribe functionalities. In this new version,
D-Mason’s communication layer offers three implementations: one is based on
Apache ActiveMQ, one on MPI and one, named hybrid, uses both ActiveMQ
and MPI. Specifically, the hybrid implementation uses MPI for 1-to-n commu-
nications between the system management and the LPs and for n-to-1 com-
munications between the LPs and the visualization component, while it uses
MPI for the simulation updates between LPs (synchronization). Both the imple-
mentations that exploit MPI have been implemented using two out of the tree
strategies described above: MPI Bcast and MPI Parallel. The latter strategy is
highly recommended when running simulations with a large number of LPs.

In Section 4 we show a performance analysis of the new D-Mason’s decen-
tralized communication layer.

4 Results

We analyzed the performance of the novel D-Mason communication layer
against the centralized ActiveMQ approach performing a number of tests on
large simulations. Experiments have been carried on several configurations ob-
tained varying several parameters: number of agents, fields dimension, AOI ra-
dius and number of regions. Such parameters determine a ratio between the
communication and computation requirements. We expected that the benefits
of the new strategy are proportional to the ratio communication / computation.
Indeed using the centralized approach, the synchronization is handled by the
ActiveMQ server, whereas using the decentralized approach the synchronization
represents a computational cost for each LP. Hence, only when the ratio com-
munication / computation is sufficiently large, that cost is paid off in terms of
efficiency of communication.

We also evaluated the scalability and the effectiveness of latest implementation
of D-Mason’s communication layer in exploiting homogeneous hardware.

Setting and Goals of the Experiments

We have used a cluster of eight nodes, each equipped as follows:

– CPUs: 2 x Intel(R) Xeon(R) CPU E5-2680 @ 2.70GHz (#core 16, #threads
32)
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– RAM: 256 GB
– Network: adapters Intel Corporation I350 Gigabit

Considering the high computational power of each node we were able to run
several (up to 90) LPs on each node. Simulations have been conducted on a
scenario consisting of seven machines for computation and one for managing the
simulations and running the ActiveMQ server when needed.

We have tested the simulation Flockers available in Mason, an implementa-
tion of the well–known “Boids” model by Craig Reynolds [14], stated in 1986.
We chose this simulation due to the embarrassingly parallelizable nature of the
problem. Concisely, the Flockers model simulates the flocking behavior of birds
and its relevant aspect is that the interactions are purely local between each
agent and its neighbors; for such reason the simulation fits very well to the
execution in a distributed environment.

We performed three categories of experiments:

1. Communication scalability: this test aims to evaluate the scalability of the
communication layer in terms of the number of LPs. As the number of LPs
increases, the communication requirements become crucial in the efficiency.
On the other hand, on very large simulations the ability to run a large
number of LPs is essential in order to partition the overall computation
without exceeding the physical limits of each LP in the system;

2. Computation scalability : this test aims to evaluate the scalability of the com-
munication layer in terms of the number of simulated agents. In this case an
increase of the number of agents corresponds to an increase of the computa-
tional power required, and consequently to a reduction of the ratio commu-
nication / computation.

3. Robustness : this test aims to assess the effectiveness of the proposed solution
on different scenarios.

Communication Scalability Test

For this experiment, we fixed both the field size (10, 000× 10, 000), the number
of agents (1 million) and the AOI (10). We employ 16 test settings, each char-
acterized by: the field partitioning configuration (number of rows and columns),
which determines also the number of Logical Processes (Number of LPs =
[R]ows × [C]olums) and the communication scheme (MPI or ActiveMQ). A
couple (P, S) identifies each test setting where

– P ∈ {2× 2, 3× 3, 4× 4, 5× 5, 10× 10, 15× 15, 20× 20, 25× 25} is the field
partitioning configuration.

– S ∈ {ActiveMQ,MPI} is the communication scheme.

We compared the two communication schemes by running the simulation
Flockers for 3, 000 simulation steps. Each simulation has been executed sev-
eral times in order to check for any fluctuations in the results but we observed
no significant changes.
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Fig. 2. Communication scalability

Figure 2 presents the results. The X−axis indicates the value of P (left to
right the number of LPs is increasing), while the Y−axis indicates the overall
execution time in seconds. Notice that there is a point missing because the test
setting (25× 25, ActiveMQ) crashes after few steps (the ActiveMQ server is not
able to manage the communication generated by 625 LPs.)

When the number of LPs is small, the advantage of the decentralized commu-
nication does not appear because the message broker is much efficient comparing
to the coarse grain synchronization requirement of the decentralized one. By in-
creasing the number of LPs, the efficiency of the centralized message broker gets
down dramatically and the simulation performance does exhibit the benefits of
using the decentralized communication. This trend is due to the fact that by
increasing the LPs number there are much more messages in the system and the
effort needed to have a synchronizing mechanism in the decentralized commu-
nication approach is hidden by the time taken by the message broker to deliver
all the messages.

Computation Scalability Test

For this experiment, we fixed the density of the field (i.e., field area divided by
number of agents) and theAOI (10).We employ 72 test settings, each characterized
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Fig. 3. Computation scalability

by: the field partitioning configuration, the communication scheme and the number
of agents. Each test setting is identified by a triple (P, S,A) where

– P ∈ {10× 10, 15× 15, 20× 20} is the field partitioning configuration.
– S ∈ {ActiveMQ,MPI} is the communication scheme.
– A ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048} × 1, 000, 000 (M) is the

number of agents.

We compared six configurations, each one characterized by a field partitioning
configuration and a communication scheme, by running the simulation Flockers
for 3, 000 simulation steps.

Figure 3 presents the results. The X−axis indicates the number of agents A,
while the Y−axis indicates the overall execution time in seconds. The test starts
with a field size of 10, 000× 10, 000 and one million of agents, these values are
scaled up proportionally in such a way to keep a fixed density along the overall
test.

The figure shows that for each field configuration the MPI approach per-
forms better than ActiveMQ up to a certain number of agents (i.e., 64M for
10 × 10 configuration) that is when the computational requirement are signifi-
cantly higher than the communication one. However, the figure shows also that
if this is the case then the system deserves a finer field partitioning. Indeed, by
increasing the number of LPs (i.e., moving from 10× 10 to 15× 15) we are able
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to obtain better performances. Moreover increasing the number of LPs requires
more communication, which increases the ratio communication / computation
and consequently shifts the “cross-point” (1024M for 15×15 configuration). We
notice that in the last field configuration (20× 20), the cross point has not been
reached because the ActiveMQ server is not able to manage the communication
generated by more than 2048M agents.

Robustness

We also study the robustness of the schedule by varying the parameters that
have been fixed in previous experiments and checking that they do not affect
the results in terms of efficiency.

For this experiment, we fixed both the field partitioning configuration (20×20)
and the number of agents (1 million). We performed two different experiment
by changing:

– Area of interest (AOI ), this test observes the ability of the two different com-
munication layers to manage different sizes of messages. We tested several
values of the AOI, ranging from 5 to 80;

– Average field density (FD), the FD= A
W×H , where A is the number of agents,

W is the field’s width and H the field’s height. FD is the average density
of agents within the field, obviously is possible to change this value setting
different values of the field size or the number of agents (or both); varying the
value of FD affect both the messages size and the computation requirements.
We tested different FDs, changing the field size in a range from 5, 000×5, 000
(FD = 1/25) to 20, 000× 20, 000 (FD = 1/400).

Both the experiments show the same trend in which the MPI solution clearly
beats the centralized one. The improvement is always more than 95%. Because
the new results are so close to the ones we have presented, there would be no
value in exhibiting new plots.

5 Conclusions and Future Works

The performance results described in the previous Section show that the novel
communication strategy allows taking advantage from using homogeneous hard-
ware when the simulation requires a sensible amount of communication. As a
future work, it would be interesting to devise a specific test in order to char-
acterizing the communication / computation trade-off, that is to determine the
minimum ratio communication / computation, beyond which the MPI approach
is more efficient than the centralized one.

The MPI communication layer uses the Java binding of MPI, available in
OpenMPI ; during our work, we discovered some limits of this kind of solution
as described in [7]. Moreover, the current stable binding is not tread safe.

The bindings is in continuous development following a JNI approach; mpiJava
[2] was taken as a starting point for OpenMPI Java binding, but it was later
totally rewritten.
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The novel MPI approach provides also several by-products: First of all the syn-
chronization among LPs is easier because MPI calls are blocking. Moreover, MPI
provides also several features, such as dynamic process creation and management,
which simplifies the management of the system, especially using heterogeneous
hardware.

Finally, we are still working to enhance the efficiency of the MPI communica-
tion layer on either the communication strategy or the mpiJava implementation.
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