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Abstract. By the rapid growth of computer systems, many IT applica-
tions that rely on cloud computing have appeared; one of these systems
is the data retrieval systems, which need to satisfy various requirements
such as the privacy of the data in the cloud. There are many proposed
Privacy-Preserving search (PPS) techniques that uses homomorphic en-
cryption to process the data after encryption, but these techniques did
not take into account the possibility of repetition of some values of
the features table (especially zero), even after the encryption, which
makes them vulnerable to frequency attacks. On the other hand, the
non-inclusion of these values may lead to the ability to infer some statis-
tical information about the data. In this paper, we took the advantages
of homomorphic encryption to encrypt the data as well as preventing
any ability to infer any kind of information about the data by normal-
izing the histogram of the features table while maintaining the quality
of the retrieval. The results showed that the proposed technique gave
better retrieval efficiency than the previously proposed techniques while
preventing frequency attacks.

Keywords: data clouds, security, homomorphic encryption, normaliza-
tion, frequency attacks, data retrieval.

1 Introduction

Recently, and with the quick production of the enterprise systems and the need
for competition with highly supported and resource-allocated systems, clouds
became essential in the IT industry. Cloud was defined by Buyya in [2] as a type
of parallel and distributed system consisting of a collection of interconnected
and virtualized computers that are dynamically provisioned and presented as
one or more unified computing resources based on service-level agreements es-
tablished through negotiation between the service provider and consumers. By
this way, any new or small system can has the same capabilities of the resources
(computing, storage, etc) as the enterprise systems in a cheap and scalable way,
also the enterprise systems can benefit from the clouds by increasing capacity
or adding capabilities, by pay-per-use service, according to their current needs.
Nowadays, there are many platforms for the cloud computing that are opened
for the users, such as Amazon’s EC2, IBM’s Smart Business cloud offerings, Mi-
crosoft’s Azure and Google’s AppEngine. Rad et al. surveyed many platforms

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part II, LNCS 8806, pp. 62–72, 2014.
c© Springer International Publishing Switzerland 2014



Privacy-Preserving Search in Data Clouds 63

by comparing their arrangements, foundation and infrastructure services and
their main capabilities used in some leading software companies [10]. To re-
alize the cloud, many requirements should be satisfied as shown by Dikaiakos
in [4], suitable software/hardware architecture, data management, cloud inter-
operability, security, privacy, service provisioning and cloud economics are the
main requirements; these requirements can be extended into many more specific
requirements. Despite the advantages of using clouds and the ability to reduce
costs and to improve the productivity, security issues should be handled care-
fully; they may inhibit wide adoption of the cloud model [1]. Jansen and Grance
provided an overview of the security and privacy challenges pertinent to public
cloud computing, they pointed out considerations that organizations should con-
sider when they outsource their data, applications and infrastructure to a public
cloud environment [7]. According to Zhang et al. [15], the security and integrity
of the cloud images are the foundation of the overall security of the cloud. One
of the new security related research problems is the Privacy-Preserving Search
(PPS) over encrypted data. The importance of this problem comes from being
the cloud server untrusted or curious. Fig. 1 shows a simple model of data cloud
comprising of three actors: Data Owner, Cloud Server (or simply Cloud) and
Client. The Owner is the one who has a large set of data to be searched, she
encrypt the data and outsource it with the querying services to the Cloud, the
Cloud is responsible of storing and processing the data, while the Client will
query the data stored in the cloud using the trapdoors that are given by the
Owner, therefore, the following requirements need to be satisfied to achieve the
Privacy-Preserving search in such a model:

1. Neither the cloud nor the data owner is allowed to know or to be able to
deduce anything about the client’s queries.

2. The cloud should process the client’s queries.

Fig. 1. A simple Model of Data Clouds
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Gopal and Singh [5] proposed a technique for Privacy-Preserving search that uses
Gentry’s Fully Homomorphic encryption [13]. The technique uses the Homomor-
phic encryption to encrypt the number of occurrences of each keyword in the
documents (by the owner) and the query (by clients) using the same key, so, if
the cloud does not know the key, it will do calculations using the encrypted data
and query without being able to know what they mean. Cao et al. [3] proposed
a multi-keyword ranked search technique. The idea depends on encrypting these
vectors by some operations that includes adding dummy keywords, splitting of
the vectors and multiplication by the key (the key consists of one vector and
two matrices). On the other side, the client will also apply the same operations
(with some changes) on the query vector using the same key before sending it to
the cloud, which in turn processes the encrypted vectors (the query and index)
to generate the similarity vector. Li et al. [9] proposed a technique for fuzzy
keyword search over encrypted data; In this technique, the data owner builds
an index by constructing a fuzzy keyword set then computing trapdoor set with
a secret key shared between data owner and authorized users, the data owner
sends this index to the cloud. To search in the dataset, the authorized user com-
putes the trapdoor set for the query keyword using the same secret key shared
between her and the data owner then sends it to the cloud. Upon receiving the
search request, the cloud compares them with the index table and returns all
the possible encrypted file identifiers according to fuzzy keyword definition ex-
plained in their paper. For such techniques, deterministic encryption is needed
to give the right matches.

2 Problem Statement

In data mining, Term Frequency (TF) table is used to get feature vectors for the
documents (especially text documents). In this paper, we consider a dataset D
consists of N documents where D=(d1, d2, ..., dN), and the set of all the ID’s
of these documents is ID=(id1, id2, ..., idN), the total number of the unique
keywords in the entire documents is M, therefore, the set of all the unique key-
words is W=(w1, w2, ..., wM). For a TF table, the rows represents ID while the
columns representsW, so, TF=[ xn,m | 1<=n<=N and 1<=m<

=M ], the value of xn,m
represents how many times the m’th keyword is found in the n’th document. If
the value of an entity xn,m is zero, this means that the n’th document doesn’t
has the m’th keyword, also, any equal values in one column means that the cor-
responding documents has the same keyword with equal number of occurrences.
Creating TF table generates a lot of entities with zero value; to show that, stop-
words are removed from the documents of the “uw-can-data” dataset [6] using
three lists of stopwords, Table 1 shows that the ratio of the non-zero entities to
the zero entities in the TF table is 1.41%, which means large number of zeros
in the table. For retrieval efficiency, Term Frequency–Inverse Document Fre-
quency (TF-IDF) table [11] is used. Also, for security, these entities need to be
encrypted. In most efficient Privacy-Preserving Search techniques, the entities of
the comparable parts of the index need to be encrypted individually, therefore,
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Table 1. Statistics of the keywords in the “uw-can-data” dataset

The total
number of
keywords in
the documents

The total num-
ber of different
keywords in
the documents

The number of
non-zero’s in
the table

The number of
zero’s in the ta-
ble

The ratio of
the non-zero’s
to the zero’s in
the table (non-
zeros/ zero’s)

91923 21014 91923 6506473 1.413%

if the encryption has to be deterministic, the values in the TF-IDF table will be
mapped to new values in the encrypted TF-IDF table, which means a new table
with the same statistics but different values, this make the dataset vulnerable to
frequency analysis attacks, whatever the value that appears with largest number
of times in the encrypted TF-IDF table, it will be considered to represent the
zero’s in the TF table. During this paper we will call this “zero’s attack”.

2.1 Zero’s Attack

The matrix multiplication, as in Cao et al. [3] technique, may handle the zero’s
attack problem since each element in the vector will depend on the other ele-
ments in the same vector and the corresponding vector in the key matrix, so,
elements with zero or high frequently occurred values will have different values
after encryption according to the randomness of the key. But, this is not the case
with the techniques similar to Gopal et al. [5] since the entities of the features
table is encrypted using the same key. Also, for techniques similar to Li et al. [9],
where the encrypted keywords are compared to find the matches, it will need the
similar keywords before encryption keep similar after encryption which makes it
vulnerable to frequency analysis attacks. Therefore the proposed technique has
to be developed to prevent this frequency analysis attacks keeping in mind not
to affect the properties of homomorphic encryption and the retrieval efficiency.

2.2 Relations between Documents

Technique to be developed should not allow the cloud to deduce any relation
between documents from the encrypted index. Including only the keywords with
values greater than zero can also give an idea about which keywords are not
found in specific documents, which can be considered as threat as in [9] where
the index consists of the unique keywords and the document ID’s for only the
documents that include each of these keywords.

2.3 Retrieval Efficiency

Data retrieval quality depends on many different factors; one of these factors is
the way of choosing feature vectors for the documents. According to [12], binary
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term vectors give lower efficiency than weighted term vectors. Note that Cao used
the binary vectors while Gopal used the weighted vectors in their techniques.

3 Suggested Technique

As mentioned before, Cao et al. [3] can hide zero’s and high frequently oc-
curred values. However, because of using the binary vectors (beside the dummy
keywords), the retrieval efficiency will be lower than weighted term vector algo-
rithms. Therefore, Gopal technique [13] has to be improved to be able to handle
the three issues mentioned in Section 2. With reference to Fig. 1, the suggested
model is working as follows:

1. Data owner creates the TF table; the keywords in this table are hashed.
2. The names of the documents and the documents themselves are encrypted

separately using symmetric or asymmetric key (Ks).
3. TF-IDF is created from the TF table.
4. TF-IDF table is normalized using the technique which will be explained later

in this section.
5. The entities of the normalized TF-IDF table are encrypted individually using

homomorphic encryption with the same key (Kh), the encrypted TF-IDF
table is the index that will be outsourced to the cloud (encrypted data &
querying services).

6. Kh and Ks are sent from the data owner to the client (the trapdoors).
7. The client applies the same operations on the query using Kh before sending

it to the cloud.
8. The cloud calculates the similarity between the query and the documents

using operations on the encrypted data without revealing them.
9. The similarity vector is sent to the client to decrypt it using Kh and find the

best matches to be retrieved.
10. The client sent the names to the cloud and the cloud sends the encrypted

file that will be decrypted by the client using the secret key Ks.

Prior to explaining the suggested normalizing technique, the need of including
zero’s as well as hiding these zero’s and highly frequented values have to be
discussed. Assume that:

1. Keyword1 found in documents 1, 3 and 8 for 5, 12 and 6 times respectively.
2. Keyword2 found in documents 1, 3 and 9 for 3, 1 and 13 times respectively.
3. Keyword3 found in documents 4, 5 and 10 for 7, 9 and 2 times respectively.

Even the keywords, document names and frequencies are encrypted; one can end
up with some deductions such as:

1. Document 1 and document 3 are related (contain two common keywords)
2. Document 8 and document 4 are not related (have no common keywords)
3. Document 1 does not contain Keyword3
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Fig. 2. Histogram for the TF-IDF table of uw-can-data dataset

Even though such a simple example, it is seen that including zeros is necessary to
prevent such deductions. Fig. 2 shows the histogram for the TF-IDF table of uw-
can-data dataset [6], someTF-IDFvalues have frequenciesmore than others,which
can be considered as indicators to them in the frequency analysis attacks even after
encryption. So, the goal is to normalize these values before encrypting them.

Consider the number of the unique values in the TF-IDF table is Q, then U=
(u1, u2, ..., uQ) where U is the set of unique values in the TF-IDF table, in this

case, the histogram will be H=(h1, h2, ..., hQ) where hq represents the number

of times that uq appeared in the TF-IDF table for 1<=q<=Q. To normalize these
values, the following steps are done:

1. Order U increasingly in V=(v1, v2, ..., vQ). Values of H will be ordered

corresponding to V in HV=(hv1, hv2, ..., hvQ).

2. For each vq ∈ V, calculate eq =(vq+1 – vq)/(hvq × k), where k is scaling
factor that determines the size of difference between the original value and
the normalized values (will be discussed later in Section 4). For eQ, minimum

eq value is taken to be its value.
3. For each vq ∈ V :

(a) Define Sq=hvq-1

(b) Generate new set vq’ = (vq’0, vq’1, ..., vq’Sq) where 0 <= s <= Sq as follows:

– For s = 0 to (Sq)

• vq’s = vq + s × eq
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(c) Replace all the entities in the TF-IDF table that have the vq value by
the elements of the vq’ randomly without repetition.

In this case all the TF-IDF values will be different. Also, even in small difference
between the values will be hidden by the encryption process. So, the final step in
creating the index for the cloud is to encrypt the entities of the normalized TF-
IDF table using Homomorphic encryption [13]; this hides the actual values, but
operations on these values are still applicable. To discuss the effect of applying
this technique on the retrieval efficiency, the retrieval efficiency of the normalized
TF-IDF table is compared with the original TF-IDF table. Average precision
value (APV) is used to calculate the retrieval efficiency of the techniques as
follows:

1. For each document dn ∈ D, calculate the precision value prn as follows:

prn =
RetrievedDocuments ∩ RelatedDocuments

RetrievedDocuments
(1)

Where the number of retrieved documents is equal to the size of the cluster
containing the document dn in the original dataset

2. Calculate the APV as follows:

APV =

∑

n
prn

NumberofDocuments
(2)

4 Simulations and Results

In order to test the suggested technique, we used three different datasets: uw-can-
data [6], mini-classicdocs [14] and mini-20newsgroups [8]. Table 2 shows some
details about these three datasets. The datasets are prepared before being used
by the following steps:

1. html documents are parsed using htmlparser-1.6 to extract the data from
them.

2. Stopwords are removed using three different lists of stopwords: Long list,
Short list and Google list.

3. Porter stemmer is used to stem the keywords.
4. The datasets are classified using k-means classification with cosine similarity

distance.

Using the normalization technique will make all the histogram values of the
normalized TF-IDF table equal one. The number of different numbers of the TF-
IDF table will be equal to: number of unique keywords × number of documents
To know the effect of normalization on the retrieval efficiency, different values of
the factor k are used. As mentioned before, the factor k determines the size of the
difference between the original value (vq) and the expanded set of values (vq’)
in the normalization process. The technique was applied on the uw-can-data,
mini-20newsgroups and mini-classicdocs datasets separately as follows:



Privacy-Preserving Search in Data Clouds 69

– For z=1 to 10000 increasing by 5:

• Calculate APVz= the APV where k=z.

• Calculate AV= Average of APVz over all z values.

Table 2. Details of the three datasets (uw-can-data, mini-20newsgroups and mini-
classicdocs) used in the evaluation of the suggested technique

Dataset Number of
Documents

Number of
Classes

Description

uw-can-data 314 10 web pages from various web
sites at the University of Wa-
terloo, and some Canadian web-
sites

mini-20newsgroups 400 20 20 Newsgroups data set is a col-
lection of approximately 20,000
newsgroup documents, parti-
tioned (nearly) evenly across 20
different newsgroups, the num-
ber of documents is minimized
to 400 documents with the same
number of classes

mini-20newsgroups 800 10 Consists of 4 different docu-
ment collections: CACM, CISI,
CRAN, and MED. the number
of documents is minimized to
800 documents clustered in 10
classes

Table 3 shows the APV ’s using the original TF-IDF tables (without normaliza-
tion) for the three datasets in the first column, which is the case in Gopal et
al. [5] technique. The second column represents the APV ’s for the binary term
tables also for the three datasets, which is the case in Cao et al. [3] technique,
Finally, the third column represents the average APV ’s (AV ’s) for the normal-
ized TF-IDF tables with k = 1 to 10000 increased by 5 for the three datasets,
which is the case in the suggested technique in this paper.

5 Analysis

The effectiveness of proposed technique is discussed in this section with regard
to the results given in Section 4.
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Table 3. Comparison between normalized and unnormalized TF-IDF tables according
to AVP and AV values

Dataset APV without nor-
malization (Gopal
Technique)

APV With binary
term tables (Cao
Technique)

AV value for
the normalized
TF-IDF tables

uw-can-data 0.175935689 0.150279841 0.183681939

mini-20newsgroups 0.110836309 0.101195467 0,114799958

mini-20newsgroups 0.110236005 0.107274797 0.111710287

Table 4. Comparison between the three discussed techniques

Problem Gopal Technique Cao Technique Suggested Technique

Hiding Zero’s Doesn’t hide
Zero’s

Hides zero’s Hides zero’s

Relations Between
Documents

Can be deduced Hard to deduce Hard to deduce

Retrieval Efficiency Higher than Cao Lower than
Gopal

Higher than both

5.1 The Effects of the Used Normalization on Privacy

Using normalization gave different values with the same number of appearance
in the TF-IDF table which prevents any kind of frequency attacks (discussed
in 2.1 and 2.2 subsections). Although the difference between the values may be
small before encryption, the Homomorphic encryption will map them to different
values.

5.2 The Effects of the Normalization on Retrieval Efficiency

Results show that the retrieval efficiency does not decrease after normalization
of the TF-IDF tables. As shown in Table 3, the average of the APV ’s (AV ) after
normalization are higher than the precision values before normalization for the
three datasets.

5.3 The Effects of this Technique on the Time and Memory Costs

Time cost: The normalization technique will be done once in the setup of the
system (which is offline process), all the steps can be done using parallel proces-
sors, ordering the histogram increasingly according to the TF-IDF values is O(n
logn) for n unique keywords. Memory cost: Storing the different values after
normalization will be: (number of unique keywords × number of documents ×
size of each unit). Table 4 summarizes the comparison between the two discussed
techniques with the proposed technique with regard to the first three problems
have been introduced in Section 2.
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6 Conclusion

We started with three problems: Zero’s attack, hiding relations between doc-
uments and conserving retrieval efficiency. We proposed a technique that nor-
malizes the TF-IDF tables; this technique hides the large number of zeros (or
any highly frequented values) in the tables as well as any other relation between
documents since it keeps the zeros. The technique was applied on three different
datasets; results show that the technique improves the retrieval efficiency even
with small values. The next step is to find a technique to retrieve only the chosen
documents without giving any information about them to both the client and the
cloud, or in the case of sending the similarity vector to the client, she will not be
able to know anything about the unchosen documents, the technique should also
prevent the cloud from guessing any relation between the document lists and the
previous queries on the same dataset; this technique should integrate with the
suggested technique in this paper to satisfy the needs of a “Privacy-Preserving
Search in Data Clouds”
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