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Abstract. Many scientific areas make extensive use of computer simu-
lations to study complex real-world processes. These computations are
typically very resource-intensive and present scalability issues as experi-
ments get larger, even in dedicated clusters since they are limited by their
own hardware resources. Cloud computing raises as an option to move
forward into the ideal unlimited scalability by providing virtually infi-
nite resources, yet applications must be adapted to this new paradigm.
We propose a generalist cloudification method based in the MapReduce
paradigm to migrate numerical simulations into the cloud to provide
greater scalability. We analysed its viability by applying it to a real-
world simulation and running the resulting implementation on Hadoop
YARN over Amazons EC2. Our tests show that the cloudified applica-
tion is highly scalable and there is still a large margin to improve the
theoretical model and its implementations, and also to extend it to a
wider range of simulations.

1 Introduction

Scientific simulations constitute a major set of applications that attempt to
reproduce real-world phenomena in a wide range of areas such as engineering,
physics, mathematics and biology. Their complexity usually yields a significant
resource usage regarding CPU, memory, I/O or a combination of them.

In order to properly scale the application it can be distributed to a clus-
ter or grid. While these approaches have proved successful, they often rely on
heavy hardware investment and they are tightly conditioned by its capabilities,
which de facto limits actual scalability and the addressable simulation size. Since
sharing resources across multiple clusters implies several limitations, cluster ap-
plications cannot be considered sustainable, because their scalability is strongly
dependant on the cluster size.

Despite scientific simulations will likely benefit from the upcoming exascale
infrastructures [1], the challenges that must be overcome –power consumption,
processing speed and data locality, for instance [2]– will probably rise again in
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the future as applications become more complex; therefore, the ideal situation
of unlimited scalability seems difficult to reach with this approach.

Moreover, recent advances in cloud interoperability and cloud federations can
contribute to separate application scalability from datacenter size [7, 12]. From
that point of view, applications would become more sustainable, i.e. they can be
operated in a more flexible way through heterogeneous hardware, cross-domain
interactions and shared infrastructures.

Another recent option is cloud computing, which has been increasingly stud-
ied as an alternative to traditional grid and high-performance distributed envi-
ronments for resource-demanding and data-intensive scientific simulations [15].
Cloud computing emerged with the idea of virtual unlimited resources obtain-
able on-demand with minimal management effort [11]. It would enable the
execution of large simulations with virtual hardware properly tailored to fit spe-
cific use cases like memory-bound simulations, CPU-dependant computations or
data-intensive analysis. It holds further advantages, such as elasticity, automatic
scalability and instance resource selectivity which, along with its so-called pay-
as-you-go model, allow to adjust the required instances to the particular test
case size while cutting-down the resulting costs.

There are several issues that can be tackled in order to develop a sustainable
application, such as:

– Virtual unlimited scalability can be achieved by eliminating architectural
bottlenecks such as network communications or master node dependences.
This minimises the added overhead of working with more nodes, making a
better use of the available resources.

– By making the application platform independent, we can aggregate compu-
tational resources possibly located in different places, hence local data center
size would not be a limitation. Moreover, we can exploit cluster and cloud
resources simultaneously following an hybrid scheme.

– A flexible application could scale up or down easily according to instanta-
neous user needs, thus adapting computing resources to specific simulation
sizes and deadlines.

– If the application already exists and has to be adapted, it is desirable to
minimize the impact on the original code, thus performing the minimal mod-
ifications needed to achieve the aforementioned objectives.

Given the former, we suggest a paradigm shift from multi-thread computa-
tions to a data-centric model that would distribute the simulation load across a
set of virtual instances. This paper focuses on resource-intensive numerical sim-
ulations which hold potential scalability issues on large cases, since standalone
and cluster hardware may not satisfy simulation requirements under such stress
circumstances, and it proposes a generic methodology to transform numerical
simulations into a cloud-suitable data-centric scheme via the MapReduce frame-
work.

This process is illustrated by means of a real production application, a simula-
tor which calculates power consumption on railway installations. This simulator,
starting from the train movements (train position and consumption), calculates
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the instantaneous power demand (taking into account all railway elements such
as tracks, overhead lines, and external consumers) indicating whether the power
provisioned by power stations is enough or not. Simulator internals consist on
composing the electric circuit on each instant, and solving that circuit using
modified nodal analysis. The starting version of the simulator, based on multi-
threading, is memory bounded, strongly limited by the number of instants to
be simulated simultaneously (and therefore by the number of threads). The re-
sulting performance is evaluated on Amazon Elastic Compute Cloud running
Hadoop YARN MapReduce.

The rest of this paper is organized as follows: Section 2 discusses related works,
Section 3 describes our proposed methodology, Section 4 illustrates the cloudifi-
cation transformation method on a particular use case, Section 5 evaluates how
the resulting design implementation on Hadoop MapReduce 1.1.2 (MRv1) and
Hadoop YARN Mapreduce 2.2.0 (MRv2) behaves on both a cluster and Ama-
zon Elastic Compute Cloud (EC2) and, finally, Section 6 provides key ideas as
conclusions and some insight in future work.

2 Related Work

Scientific applications and their adaptability to new computing paradigms have
been dragging increasing attention from the scientific community in the last few
years. The applicability of the MapReduce scheme for scientific analysis has been
notably studied, specially for data-intensive applications, resulting in an overall
increased scalability for large data sets, even for tightly coupled applications [6].

The possibility to run such simulations in the cloud in terms of cost and
performance was studied in [10], concluding that performance in the Abe HPC
cluster and Amazon EC2 is similar –besides the virtualization overhead and high-
speed connectivity loss in the cloud– and that clouds are a viable alternative for
scientific applications. Hill [9] investigated the trade-off between the resulting
performance and achieved scalability on the cloud versus commodity clusters;
despite at the time of this work the cloud could not properly compete against
HPC clusters, its low maintenance and cost made it a viable option for small
scale clusters with a minimum performance loss.

The relationship between Apache Hadoop MapReduce and the cloud for scien-
tific applications has also been tackled in [8], which establishes that performance
and scalability tests results are similar between traditional clusters and virtual-
ized infrastructures.

In this context, trends are naturally evolving to migrate applications to the
cloud by means of several techniques, and this includes scientific simulations as
well. D’Angelo [4] describes a Simulation-as-a-Service schema in which paral-
lel and distributed simulations could be executed transparently, which requires
dealing with model partitioning, data distribution and synchronization. He con-
cludes that the potential challenges concerning hardware, performance, usabil-
ity and cost that could arise could be overcome and optimized with the proper
simulation model partitioning.
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In [13], Srirama, Jakovits and Vainikko study how some scientific algorithms
could be adapted to the cloud by means of the Hadoop MapReduce framework.
They establish a classification of algorithms according to the structure of the
MapReduce schema these would be transformed to and suggest that not all of
them would be optimally adapted by their selected MapReduce implementa-
tion, yet they would suit other similar platforms such as Twister or Spark. They
focus on the transformation of particular algorithms to MapReduce by redesign-
ing the algorithms themselves, and not by wrapping them into a cloudification
framework as we propose.

Finally, in [14] we find interesting efforts to move desktop simulation appli-
cations to the cloud via virtualized bundled images that run in a transparent
multi-tenant fashion from the end user’s point of view, while minimizing costs.
As previously discussed, we believe the virtualization middleware might affect
performance since it does not take into account any structural characteristics of
the model, which could be exploited to minimize cloudification effects or drasti-
cally affect execution times or resource consumption.

Our work focuses in providing a general methodology to transform numeri-
cal simulations into a cloud-suitable execution framework with minimal impact
to the original code, while exploiting simulation model features that inherently
aid with partitioning and performance optimization. A related approach is the
so-called parameter sweep [3], in which the same simulation kernel is executed
multiple times with different input parameters, thus providing task indepen-
dence. However, in our approach we transform a single simulation into several
autonomous tasks through any independent variable that belongs to the simula-
tion domain, not only input parameters. Domain decompositions and transfor-
mations can be used in applications where task independence is not so evident;
therefore, task independence is a result of our methodology, not a means.

3 Methodology Description

The MapReduce paradigm consists of two user-defined operations: map and re-
duce. The former takes the input and produces a set of intermediate (key, value)
pairs that will be organized by key by the framework so that every reducer gets
a set of values that correspond to a particular key [5].

As a data-centric paradigm, in which large amounts of information can be
potentially processed, these operations run independently and only rely upon
the input data they are fed with. Thus, several instances can run simultaneously
with no further interdependence. Moreover, data can be spread across as many
nodes as needed to deal with scalability issues.

Simulations, however, are usually resource-intensive in terms of CPU or mem-
ory usage, so their scalability is limited to hardware restrictions, even in large
clusters. Our goal is to exploit the data-centric paradigm to achieve a virtually
infinite scalability so that large numeric simulations can be executed indepen-
dently of the underlying hardware resources, with minimal effects to the original
simulation code. From this point of view, numeric simulations would become
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Fig. 1. Methodology overview

more sustainable, allowing us to spread simulation scenarios of different sizes
in a more flexible way, using heterogeneous hardware, and taking advantage of
shared inter-domain infrastructures.

To achieve this, we will take advantage of MapReduce’s lack of task interde-
pendence and data-centric design, this will allow to disseminate the simulation’s
original input to distribute its load among the available nodes, which will yield
the scalability we aim for. The steps involved in our proposed methodology are
described in the following sections.

3.1 Application Analysis

Our purpose is to divide the application into smaller simulations that can run
with the same simulation kernel but on a fragment of the full partitioned data set,
so that we can parallelise the executions and lower the hardware requirements
for each.

Hence, we must analyse the original simulation domain in order to find an
independent variable –Tx in Fig. 1– that can act as index for the partitioned
input data and the following procedures. This independent variable would be
present either in the input data or the simulation parameters and it could rep-
resent, for example, independent time-domain steps, spatial divisions or a range
of simulation parameters.

3.2 Cloudification Process Design

Once the application is shown suitable for the process, it can be transformed by
matching the input data and independent variables with the elements in Fig. 1,
thus resulting in the two MapReduce jobs described below:

– Adaptation stage: reads the input files in themap phase and indexes all the
necessary parameters by Tx for every execution as intermediate output. The
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Table 1. Test cases definition

Experiment Simulated Input

time (hours) size (MB)

I 1 1.7

II 33 170

III 177 1228.8

IV 224 5324.8

Table 2. Execution environments

Configuration Platform Underlying

infrastructure

1 Multi-thread Cluster node

2 MRv1 Cluster node

3 MRv2 Cluster node

4 MRv2 EC2

original data must be partitioned so that subsequent simulations can run au-
tonomously with all the necessary data centralized in a unique (Tx,
parameters) entry.

– Simulation stage: runs the simulation kernel for each value of the indepen-
dent variable along with the necessary data that was mapped to them in the
previous stage, plus the required simulation parameters that are common for
every partition. Since simulations might generate several output files, map-
pers would organize the output by means of file identifier numbers as keys,
so as reducers could be able to gather all the output and provide final results
as the original application.

4 Case Study

To illustrate how this methodology works on a real-world use case, we applied it
to transform a memory-bound railway electric power consumption simulation.

Four test cases were considered with variations on the simulation’s initial
and final time and, consequently, input data volume and memory consumption.
A description of these simulations is provided in Table 1. Cases I and II should
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Fig. 3. Case study original simulation structure

not yield any significant load, yet simulation III is expected to show some differ-
ences, while the biggest experiment, case IV, should reveal the platforms’ actual
behaviour and limitations as simulations become larger, if any. These tests are
meant to indicate the performance of the cloudified adaptation versus the origi-
nal application under an increasing amount of input data and simulation time.

As seen in Fig. 2, this application does not scale well for large test cases
in terms of memory usage in a standalone environment (Configuration 1, see
Sec. 5.1 for further details). We believe we can achieve greater scalability by
cloudifying the application, since we can distribute the simulation load across
several nodes. It would also disperse memory usage so that we could always add
a new node in case we need to tackle a larger case. To show its feasibility, next
we will apply the method described in Section 3.

4.1 Analysis

The structure of the selected application is shown in Fig. 3. It consists of a
preparation phase in which all the required input data is read and fragmented
to be executed in a predefined number of threads. Each of the resulting threads
then perform the actual simulation by means of an electric iterative algorithm,
storing in shared memory the results that will be merged in the main thread to
constitute the final output files.

This simulator, starting from the train movements –that describe train posi-
tion and power consumption– and infrastructure design –tracks, power stations,
among others– calculates the instantaneous power demand taking into account
all railway elements such as tracks, overhead lines, and external consumers, in-
dicating whether the power provisioned by power stations is sufficient or not.
Simulator internals consist on composing the electric circuit on each instant,
and solving that circuit using modified nodal analysis. The initial version of the
simulator, based on multi-threading, is memory bounded, strongly limited by the
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number of instants to be simulated simultaneously, and therefore by the number
of threads.

The key to adapt such algorithm to a cloud environment resides its input files,
for they hold an indexed structure that stores in each line an (instant, parameters)
pair. Therefore, we can consider the temporal key as the independent variable re-
quired for the theoretical model.

4.2 Cloudification

Following the cloudification schema, the application was transformed into two
independent MapReduce jobs executed sequentially.

In the first job, which matches the first MapReduce in Fig. 1, the movement
input files, Ik, are divided into input splits by the framework according to its
configuration. Each split is then assigned to a mapper, which reads each line
and emits (key, value) pairs where the key is the instant ti and the value is
the corresponding set of parameters for such instant; the intention is to provide
reducers with a list of movement parameters per instant In, . . . , Im –each element
representing the movement of one of the trains involved in the overall system
for a particular ti– to concatenate and write to the output files, so that the
simulation kernel can be executed once per instant with all the required data.

As described in Fig. 1, the output of the previous job is used as input to
the mapper tasks by parsing each line in order to get the data corresponding
to the instant being processed, which is passed to the electric algorithm itself
along with the scenario information obtained from the infrastructure file that is
also read by the mapper. The mappers’ output is compounded by an output file
identifier Fj as key and the actual content as value.

Reducers simply act as mergers gathering and concatenating mappers’ output
organized by file identifier and instant as a secondary key injected in the value
content; this arranges the algorithm’s output so that the full simulation results
are shown as in the original application, in which each output file contains the
results for the whole temporal interval of the simulation.

5 Evaluation

In order to asses the application’s performance we compared its execution times
on both a cluster and the cloud. The following sections describe the utilized
resources and a discussion on the obtained outcome.

5.1 Execution Environments

Table 2 summarizes the infrastructures and software platforms on which the
tests were conducted.

In a first place, we tested the original multi-thread application’s memory
consumption and performance on a cluster node consisting of a 24 Xeon E7
cores and 110GB of RAM (Configuration 1).
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This node was also used to test the resulting cloudfied application to avoid
variations that may arise from heterogeneous configuration, resource differences,
or network latency in case of the MapReduce application [10]. This isolation
favours the multi-thread application, which is especially designed to perform in
standalone environments, yet it allows to focus on the actual limiting factors
that may affect scalability in large test cases like I/O, memory consumption
and CPU usage. Both Hadoop versions –MRv1 and MRv2– were installed and
configured on the single-node cluster to benchmark their performance against
the original application (Configurations 2 and 3, respectively).

MRv2 was chosen to be deployed on EC2 given its improved resource man-
agement options and better overall performance (Configuration 4). The cloud
infrastructure consisted of a general purpose m1.medium node as dedicated mas-
ter and several memory optimized m2.xlarge machines as slaves, with 2 CPUs
and 17.1GB of RAM each. Tests on EC2 have been conducted using a variable
number of slaves in order to check if scalability issues arise as the number of
nodes increases.

5.2 Results Discussion

As we already discussed in Section 4, the original multi-thread application’s
memory usage suggests a lack of scalability in a cluster environment. We will
now analyse whether the cloudified simulation behaves as expected in relation
to performance and scalability by examining its execution times on several ex-
ecution environments, which are shown in Fig. 4. This figure shows the time
measurements obtained on the configurations in Tab. 2, in which the EC2 clus-
ter is constituted by five slaves –graphs (a), (b) and (c)–. The EC2 values also
served as baseline for the scalability study shown in (d).

(a) Cloudification phase

The data adaptation phase –graph (b)– is 65% slower on EC2 compared
to the same MapReduce version in the local cluster, for the largest ex-
periment. This is a result of the selected EC2 instances’ characteristics,
since memory optimised machines are meant to favour the memory-bound
kernel execution phase. This stage would benefit from compute optimised
instances, since a large number of cores would allow the execution of more
mappers simultaneously.

(b) Kernel execution

The algorithm execution stage, (c), is the most determinant phase in the
whole process, ranging from the 48% of the whole execution time, in case
I on EC2, to an 89%, in case II in the same environment. The total re-
sources held by the physical cluster in terms of memory make a substantial
difference in this stage, resulting in simulation times 2.1 times lower than
EC2, in average. Cloud’s virtualization and communication overhead could
also affect the simulation execution and the shuffle of the mapper’s output,
respectively, degrading performance against the single-node environment.
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(c) Aggregated time
In (c) we observe the overall execution time for the application including
both MapReduce jobs and input data upload, which must be considered
given that replication and balance must be achieved by the platform to
distribute load evenly. The graph indicates that the obtained performance
with MapReduce on Yarn in both the single-node cluster and the elastic
cloud is remarkably better than the original multi-thread application –68%
and 25% less total simulation time for the largest experiment, respectively–
. The shared memory simulator’s results might be caused by the bottleneck
constituted by the physical memory and the disk; the latter is particularly
critical, as all threads write their results to disk while they perform their
computations in the original simulator.
The smallest experiment is an interesting exception, with execution times
ten times greater than the original application in all the platforms. This
reflects how the MapReduce framework’s overhead significantly affects the
time taken to complete such a small simulation compared to the original
application benchmark.

(d) Scalability study
Finally, in (d) we observe the speed-up obtained on EC2 running YARN
when the number of slaves is increased. The speed-up shown in the figure
is related to the execution times commented in the previous paragraphs,
which were obtained in a five-slave cluster. As the figure indicates, increas-
ing the number of slaves decreases the total simulation time. However, the
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performance does not scale up linearly with the number of nodes: while
with 16 nodes the speed-up is 3.3, with 64 nodes it is only 7.6. The reason
behind this result is that the problem size becomes small for the cluster
size as more nodes are added, hence less data is assigned to each slave
and some resources become underutilised. Moreover, as we mentioned in
the previous paragraph, in very small experiments the measured execution
time is mostly spent in the platform’s task preparation and scheduling,
and not in the actual simulation, resulting in degraded performance due to
platform overhead. Therefore, it is necessary to increase the problem size
as well as the number of slave nodes in order to achieve linear scalability.

6 Conclusions

As the cloud is increasingly shown as a viable alternative to traditional com-
puting paradigms for high-performance applications and resource-intensive sim-
ulations, we propose a general methodology to transform numeric simulations
into a highly scalable MapReduce application that re-uses the same simulation
kernel while distributing the simulation load across as many nodes are desired
in a virtual cluster running on the cloud.

The procedure requires an application analysis phase in which at least one
independent variable must be found, since this element will act as index for
the cloudification phase. The cloud adaptation stage transforms the original
input into a set of partitions indexed by the the previous variable by means
of a MapReduce job; these partitions are fed to a second MapReduce job that
executes the simulation kernel independently for each, merging the final results
as well.

This methodology performs a paradigm shift from resource-bound applica-
tions to a data-centric model; such cloudification mechanism provides effective
cloud migration of simulation kernels with minimal impact on the original code
and achieves great scalability since limiting factors are scattered. Therefore, it
provides a way to increase application’s sustainability, breaking the dependence
on local infrastructure, and allowing to spread simulation scenarios of different
sizes in a more flexible way, using heterogeneous hardware, and taking advantage
of shared inter-domain infrastructures.

Future works are strongly focused on extending the current methodology to a
generalized framework which would allow to cloudify any scientific application.
With this aim, several issues have to be solved:

– The behaviour of the methodology should be analysed when other different
kinds of applications (CPU or network intensive) are cloudified. Currently
we are cloudifying a classic MPI application such as the n−bodies problem,
in order to assure performance even in cluster-oriented applications.

– Parameter extraction and application analysis is currently performed man-
ually by the user, who is accountable for selecting an independent variable
Tx. Current development is also oriented to ease this tasks through creating
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data definitions which would allow the adaptation phase to select and split
the input data automatically.
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