Skip to main content

New Methods in the Reconstruction of Arctic Marine Palaeoenvironments

  • Chapter
  • First Online:
Impact of Climate Changes on Marine Environments

Abstract

In recent years, numerous new proxies have been developed for the reconstruction of past environmental conditions in the polar regions. In this review we focus on the selected methods that are used in the reconstruction of the Arctic marine paleoenvironments, i.e., organic (IP25 and PIP25 index, \({\text{U}}_{37}^{\text{K}}\) and \({\text{U}}_{37}^{\text{K'}}\) and GDGT palaeothermometry) and inorganic geochemical indices (Mg/Ca and fragmentation/dissolution analysis) as well as genetic (ancient DNA) and physical (XRF, magnetic susceptibility) proxies. A brief description of each of them is presented with example applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aagaard-Sørensen SA, Husum K, Hald M, Marchitto T, Godtliebsen F (2013) Sub Sea surface temperatures in the polar north Atlantic during the Holocene: Planktic foraminiferal Mg/Ca temperature reconstructions. Holocene 24(1):93–103

    Google Scholar 

  • ACIA: Arctic Climate Impact Assesment (2005) Cambridge University Press, Cambridge

    Google Scholar 

  • Alonso-Garcia M, Andrews JT, Belt ST, Cabedo-Sanz P, Darby D, Jaeger J (2013) A comparison between multiproxy and historical data (AD 1990–1840) of drift ice conditions on the east Greenland Shelf (~66°N). Holocene 23(12):1672–1683

    Google Scholar 

  • Anderson-Carpenter LL, McLahlan JS, Jackson ST, Kuch M, Lumibao CY, Poinar HN (2011) Ancient DNA from lake sediments: bridging the gap between paleoecology and genetics. BMC Evol Biol 11:30. doi:10.1186/1471-2148-11-30

  • Andresen CS, Sicre M-A, Straneo F, Sutherland DA, Schmith T, Ribergaard MH, Kuijpers A, Lloyd JM (2013) A 100-year long record of alkenone-derived SST changes by southeast Greenland. Cont Shelf Res 71:45–51

    Google Scholar 

  • Andrews JT, Belt ST, Olafsdottir S, Massé G, Vare L (2009) Sea ice and marine climate variability for NW Iceland/Denmark Strait over the last 2000 cal. yr BP. Holocene 19:775–784

    Google Scholar 

  • Antoniades D, Francus P, Pienitz R, St-Onge G, Warwick FV (2011) Holocene dynamics of the Arctic’s largest ice shelf. PNAS 108(47):18899–18904

    Google Scholar 

  • Archer DE (1996) An atlas of the distribution of calcium carbonate in sediments of the deep sea. Global Biogeochem Cycle 10(1):159–174

    Google Scholar 

  • Archer D, Maier-Reimer E (1994) Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367:260–263

    Google Scholar 

  • Arz HW, Pätzold J, Wefer G (1998) Correlated millennial-scale changes in surface hydrography and terrigenous sediment yield inferred from last-glacial marine deposits off northeastern Brazil. Quat Res 50(2):157–166

    Google Scholar 

  • Axford Y, Andresen CS, Andrews JT, Belt ST, Geirsdóttir Á, Massé G, Miller GH, Ólafsdóttir S, Vare LL (2011) Do paleoclimate proxies agree? A test comparing 19 late Holocene climate and sea-ice reconstructions from Icelandic marine and lake sediments. J Quat Sci 26:645–656

    Google Scholar 

  • Barker S, Elderfield H (2002) Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2. Science 297(5582):833–836

    Google Scholar 

  • Barker S, Cacho I, Benway H, Tachikawa K (2005) Planktonic foraminiferal Mg/Ca as a proxy for past oceanic temperatures: a methodological overview and data compilation for the Last Glacial Maximum. Quat Sci Rev 24(7–9):821–834

    Google Scholar 

  • Barnett TP, Hasselmann K, Chelliah M, Delworth T, Hegerl G, Jones P, Rasmusson E, Roeckner E, Ropelewski C, Santer B, Tett S (1999) Detection and attribution of recent climate change: a status report. Bull Am Meteorol Soc 80:2631–2659

    Google Scholar 

  • Belt ST, Müller J (2013) The Arctic Sea ice biomarker IP25: a review of current understanding, recommendations for future research and applications in Palaeo Sea ice reconstructions. Quat Sci Rev 79:9–25

    Google Scholar 

  • Belt ST, Allard WG, Massé G, Robert JM, Rowland SJ (2000) Highly branched isoprenoids (HBIs): identification of the most common and abundant sedimentary isomers. Geochim Cosmochim Acta 64(22):3839–3851

    Google Scholar 

  • Belt ST, Massé G, Rowland SJ, Poulin M, Michel C, LeBlanc B (2007) A novel chemical fossil of Palaeo Sea ice: IP25. Org Geochem 38:16–27

    Google Scholar 

  • Belt ST, Massé G, Vare LL, Rowland SJ, Poulin M, Sicre M-A, Sampei M, Fortier L (2008) Distinctive 13C isotopic signature distinguishes a novel sea ice biomarker in Arctic sediments and sediment traps. Mar Chem 112:158–167

    Google Scholar 

  • Belt ST, Vare LL, Massé G, Manners H, Price J, MacLachlan S, Andrews JT, Schmidt S (2010) Striking similarities in temporal changes to seasonal sea ice conditions across the central Canadian Arctic Archipelago during the last 7,000 years. Quat Sci Rev 29(25–26):3489–3504

    Google Scholar 

  • Bendle J, Rosell-Melé A (2004) Distributions of U K37 and U K37 in the surface waters and sediments of the Nordic Seas: implications for paleoceanography. Geochem Geophys Geosyst 5:Q11013

    Google Scholar 

  • Bendle JA, Rosell-Melé A, Ziveri P (2005) Variability of unusual distributions of alkenones in surface waters of the Nordic Seas. Palaeoceanography 20(2):PA2001

    Google Scholar 

  • Berben SMP, Husum K, Cabedo-Sanz P, Belt ST (2014) Holocene sub-centennial evolution of Atlantic water inflow and sea ice distribution in the western Barents Sea. Clim Past 10:181–198

    Google Scholar 

  • Bik HM, Sung W, De Ley P, Baldwin JG, Sharma J, Rocha-Olivares A, Thomas WK (2011) Metagenetic community analysis of microbial eukaryotes illuminates biogeographic patterns in deep-sea and shallow water sediments. Mol Ecol 21:1048–1059

    Google Scholar 

  • Biscaye PE (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol Soc Am Bull 76(7):803–832

    Google Scholar 

  • Boere AC, Abbas B, Rijpstra WIC, Versteegh GJM, Volkman JK, Sinninghe Damsté JS, Coolen MJL (2009) Late-Holocene succession of dinoflagellates in an Antarctic fjord using a multi-proxy approach: paleoenvironmental genomics, lipid biomarkers and palynomorphs. Geobiol 7:265–281

    Google Scholar 

  • Boere AC, Sinninghe Damsté JS, Rijpstra WIC, Volkman JK, Coolen MJL (2011a) Source-specific variability in post-depositional DNA preservation with potential implications for DNA based paleoecological records. Org Geochem 42:1216–1225

    Google Scholar 

  • Boere AC, Rijpstra WIC, De Lange GJ, Malinverno E, Sinninghe Damsté JS, Coolen MJL (2011b) Exploring preserved fossil dinoflagellate and haptophyte DNA signatures to infer ecological and environmental changes during deposition of sapropel S1 in the eastern Mediterranean. Paleoceanography 26:PA2204

    Google Scholar 

  • Bozzano G, Kuhlmann H, Alonso B (2002) Storminess control over African dust input to the Moroccan Atlantic margin (NW Africa) at the time of maxima boreal summer insolation: a record of the last 220 kyr. Palaeogeogr Palaeoclim Palaeoecol 183(1–2):155–168

    Google Scholar 

  • Broecker WS, Clark E (2001) An evaluation of Lohmann’s foraminifera weight index. Paleoceanography 16:531–534

    Google Scholar 

  • Brochier-Armanet C, Bousssau B, Gribaldo S (2008) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nature Rev Microbiol 6:245–252

    Google Scholar 

  • Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850. J Geophys Res 111:D12106

    Google Scholar 

  • Bradley RS (2014) Paleoclimatology: reconstructing climates of the quaternary (3rd edition). Elsevier/Academic Press, San Diego, p 675

    Google Scholar 

  • Brassell SC (1993) Applications of biomarkers for delineating marine paleoclimate fluctuations during the Quaternary. In: Engel MH, Macko SA (eds) Organic geochemistry. Plenum, New York, pp 699–738

    Google Scholar 

  • Brassell SC, Eglinton G, Marlowe IT, Pflaumann U, Sarnthein M (1986) Molecular stratigraphy: a new tool for climatic assessment. Nature 320:129–133

    Google Scholar 

  • Brown TA, Belt ST, Mundy C, Philippe B, Massé G, Poulin M, Gosselin M (2011) Temporal and vertical variations of lipid biomarkers during a bottom ice diatom bloom in the Canadian Beaufort Sea: further evidence for the use of the IP25 biomarker as a proxy for spring Arctic Sea ice. Polar Biol 34:1857–1868

    Google Scholar 

  • Brown TA, Belt ST, Tatarek A, Mundy CJ (2014) Source identification of the Arctic Sea ice proxy IP25. Nature Commun 5:4197

    Google Scholar 

  • Cabedo-Sanz P, Belt ST, Knies, Husum K (2013) Identification of contrasting seasonal sea ice conditions during the Younger Dryas. Quat Sci Rev 79:74–86. doi:10.1016/j.quascirev.2012.10.028

  • Chave KE (1954) Aspects of the biogeochemistry of 1. Calcareous marine organisms. J Geol 62:266–283

    Google Scholar 

  • Chen JL, Wilson CR, Tapley BD (2006) Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science 313:1958–1960

    Google Scholar 

  • Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic Sea ice cover. Geophys Res Lett 35:L01703

    Google Scholar 

  • Conan SMH, Ivanova EM, Brummer GJ (2002) Quantifying carbonate dissolution and calibration of foraminiferal dissolution indices in the Somali Basin. Mar Geol 182(3–4):325–349

    Google Scholar 

  • Coolen MJL, Boere A, Abbas B, Baas M, Wakeham SG, Sinninghe Damste JS (2006) Ancient DNA derived from alkenone-biosynthesizing haptophytes and other algae in Holocene sediments from the Black Sea. Paleoceanography 21:1–17

    Google Scholar 

  • Coolen MJL, Volkman JK, Abbas B, Muyzer G, Schouten S, Sinninghe Damste JS (2007) Identification of organic matter sources in sulfidic late Holocene Antarctic fjord sediments from fossil rDNA sequence analysis. Paleoceanography 22(2):PA2211. doi:10.1029/2006PA001309

  • Coolen MJL, Orsi WD, Balkema C, Quince C, Harris K, Sylva SP, Filipova-Marinovad M, Giosan L (2013) Evolution in the plankton paleome in the Black Sea from the Deglacial to Anthropocene. PNAS 110(21):8609–8614

    Google Scholar 

  • Croudace IW, Rindby A, Rothwell RG (2006) ITRAX: description and evaluation of a new multi-function X-ray core scanner. In: Rothwell RG (ed) New techniques in sediment core analysis. Geological Society of London, London, pp 51–63

    Google Scholar 

  • de la Torre JR, Walker JC, Ingalls A, Könneke M, Stahl D (2008) Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ Microbiol 10:810–818

    Google Scholar 

  • De Rosa M, Esposito E, Gambacorta A, Nicolaus B, Bu’Lock J (1980) Effects of temperature on ether lipid composition of Caldariella acidophila. Phytochemistry 19:827–831

    Google Scholar 

  • Dzvonik JP (1996) Alkenones as records of oceanic paleotemperatures: studies of Eocene and Oligocene sediments from the north, south and Equatorial Atlantic, M.S. dissertation, Indiana University, Bloomington

    Google Scholar 

  • Edmond JM, Gieskes JMTM (1970) On the calculation of the degree of saturation of seawater with respect to calcium carbonate under in-situ conditions. Geochim Cosmochim Acta 34:1261–1291

    Google Scholar 

  • Erbs-Hansen DR, Knudsen KL, Olsen J, Underbjerg JA, Sha L (2013) Paleoceanographical development off Sisimiut, west Greenland, during the mid- and late Holocene: a multiproxy study. Mar Micropaleontol 102:79–97

    Google Scholar 

  • Fahl K, Stein R (2012) Modern seasonal variability and deglacial/Holocene change of central Arctic Ocean sea-ice cover: new insights from biomarker proxy records. Earth Planet Sci Lett 351–352:123–133

    Google Scholar 

  • Farmer JR, Cronin TM, Dwyer GS (2012) Ostracode Mg/Ca paleothermometry in the north Atlantic and Arctic Oceans: evaluation of a carbonate ion effect. Paleoceanography 27(2):2212. doi:10.1029/2012PA002305

    Google Scholar 

  • Farrimond P, Eglinton G, Brassell SC (1987) Alkenones in Cretaceous black shales, Blake-Bahama Basin, western north Atlantic. Org Geochem 10:897–903

    Google Scholar 

  • Funk J, von Dobeneck T, Reitz A (2004) Integrated rock magnetic and geochemical quantification of redoxomorphic iron mineral diagenesis in Late Quaternary sediments from the Equatorial Atlantic. In: Wefer G, Mulitza S, Ratmeyer V (eds) The south Atlantic in the Late Quaternary: reconstruction of material budgets and current systems. Springer, Berlin, pp 239–262

    Google Scholar 

  • Francis JA, Vavrus SJ (2012) Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett 39:L06801. doi:10.1029/2012GL051000

    Google Scholar 

  • Gong C, Hollander DJ (1999) Evidence for differential degradation of alkenones under contrasting bottom water oxygen conditions: implications for paleotemperature reconstruction. Geochim Cosmochim Acta 63:405–411

    Google Scholar 

  • Govin A, Holzwarth U, Heslop D, Ford KL, Zabel M, Mulitza S, Collins JA, Chiessi CM (2012) Distribution of major elements in Atlantic surface sediments (36°N–49°S): imprint of terrigenous input and continental weathering. Geochem Geophys Geosyst 13(1):Q01013

    Google Scholar 

  • Hanslik D, Löwemark L, Jakobsson M (2013) Biogenic and detrital-rich intervals in central Arctic Ocean cores identified using x-ray fluorescence scanning. Polar Res 32:18386

    Google Scholar 

  • Haug GH, Hughen KA, Sigman DM, Peterson LS, Röhl U (2001) Southward migration of the Intertropical Convergence Zone through the Holocene. Science 293(5533):1304–1308

    Google Scholar 

  • Harada N, Shin KH, Murata A, Uchida M, Nakatani T (2003) Characteristics of alkenones synthesized by a bloom of Emiliania huxleyi in the Bering Sea. Geochim Cosmochim Acta 67:1507–1519

    Google Scholar 

  • Hebbeln D, Henrich R, Baumann K-H (1998) Paleoceanography of the last interglacial/glacial cycle in the polar north Atlantic. Quat Sci Rev 17:125–153

    Google Scholar 

  • Helmke JP, Bauch HA, Rohl U, Mazaud A (2005) Changes in sedimentation patterns of the Nordic Seas region across the Mid-Pleistocene. Mar Geol 215:107–122

    Google Scholar 

  • Hennekam R, de Lange G (2012) X-ray fluorescence core scanning of wet marine sediments: methods to improve quality and reproducibility of high resolution paleoenvironmental records. Limnol Oceanogr Methods 10:991–1003

    Google Scholar 

  • Henrich R, Baumann K-H, Huber R, Meggers H (2002) Carbonate preservation records of the past 3 Myr in the Norwegian-Greenland Sea and the northern north Atlantic: implications for the history of NADW production. Mar Geol 184(1–2):17–39

    Google Scholar 

  • Herbert TD (2003) Alkenone paleotemperature determinations. In: Holland HD, Turekian KK (eds) The ocean and marine geochemistry. Treatise on geochemistry. Elsevier-Pergamon, Oxford, pp 365–390

    Google Scholar 

  • Higuchi R, Bowman B, Freiberger M, Ryder OA, Wilson AC (1984) DNA sequences from the quagga, an extinct member of the horse family. Nature 312:282–284

    Google Scholar 

  • Hillenbrand C-D, Kuhn G, Frederichs T (2009) Record of a Mid-Pleistocene depositional anomaly in west Antarctic continental margin sediments: an indicator for ice-sheet collapse? Quat Sci Rev 28:1147–1159

    Google Scholar 

  • Ho SL, Mollenhauer G, Fietz S, Martínez-García A, Lamy F, Rueda G, Schipper K, Méheust M, Rosell-Melé A, Stein R, Tiedemann R (2014) Appraisal of TEX86 and TEX L86 thermometries in subpolar and polar regions. Geochim Cosmochim Acta 131:213–226

    Google Scholar 

  • Hoefs MJL, Versteegh GJM, Rijpstra WIC, de Leeuw JW, Sinninghe Damsté JS (1998) Postdepositional oxic degradation of alkenones: implications for the measurement of Palaeo Sea surface temperatures. Paleoceanography 13:42–49

    Google Scholar 

  • Hollis CJ, Taylor KWR, Hadley L, Pancost RD, Huber M, Creech JB, Hines BR, Crouch EM, Morgans HE, Crampton JS, Gibbs S, Peasrson PN, Zachos JC (2012) Early Paleogene temperature history of the southwest Pacific Ocean: reconciling proxies and models. Earth Planet Sci Lett 349–350:53–66

    Google Scholar 

  • Hopmans EC, Weijers JWH, Schefuß E, Herfort L, Sinninghe Damsté JS, Schouten S (2004) A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet Sci Lett 224:107–116

    Google Scholar 

  • Houghton JT, Filho LGM, Callander BA, Harris N, Kattenberg A, Maskell K (1996) Climate change 1995: the science of climate change. Intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 572

    Google Scholar 

  • Huber R, Meggers H, Baumann KH, Henrich R (2000) Recent and Pleistocene carbonate dissolution in sediments of the Norwegian-Greenland Sea. Mar Geol 165:123–136

    Google Scholar 

  • Huguet C, Kim J, Sinninghe Damsté JS, Schouten S (2006) Marine crenarcheaotal membrane lipids in decapods: implications for the TEX86 paleothermomether. Geochem Geophys Geosyst 7:Q11010

    Google Scholar 

  • Huguet C, de Lange GJ, Gustafsson O, Middelburg JJ, Sinninghe Damsté JS, Schouten S (2008) Selective preservation of soil organic matter in oxidized marine sediments (Madeira Abyssal Plain). Geochim Cosmochim Acta 72:6061–6068

    Google Scholar 

  • Huguet C, Kim J, de Lange G, Sinninghe Damsté JS, Schouten S (2009) Effects of long term oxic degradation on the TEX86 and BIT organic proxies. Org Geochem 40:1188–1194

    Google Scholar 

  • IPCC (2007) Climate change 2007: impact, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2013) Climate change 2013: impact, adaptation and vulnerability. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jansen JHF, Van Der Gaast SJ, Koster B, Vaars AJ (1998) CORTEX, a shipboard XRF-scanner for element analyses in split sediment cores. Mar Geol 151:143–153

    Google Scholar 

  • Jessen SP, Rasmussen TL, Nielsen T, Solheim A (2010) A new Late Weichselian and Holocene marine chronology for the western Svalbard slope 30,000-0 cal years BP. Quat Sci Rev 29(9–10):130–1312

    Google Scholar 

  • Johnson J, Phillips S, Panieri G, Sauer S, Knies J, Mienert J (2014) Tracking paleo-SMT positions using a magnetic susceptibility proxy approach from sediments on the Arctic Vestnesa Ridge, offshore western Svalbard. Geophys Res Abstr 16:EGU2014-13511 (EGU General Assembly)

    Google Scholar 

  • Jones PD, Osborn TJ, Briffa KR (2001) The evolution of climate over the last millennium. Science 292:662–667

    Google Scholar 

  • Karner M, Delong E, Karl D (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507–510

    Google Scholar 

  • Kim J-H, Schouten S, Hopmans EC, Donner B, Sinninghe Damsté JS (2008) Global sediment core-top calibration of the TEX86 paleothermometer in the ocean. Geochim Cosmochim Acta 72(4):1154–1173

    Google Scholar 

  • Kim J-H, Huguet C, Zonneveld AF, Versttegh GJM, Roeder W, Sinninghe Damsté JS, Schouten S (2009) An experimental field study to test the stability of lipids used for the TEX86 and U K37 palaeothermometers. Geochim Cosmochim Acta 73:2888–2898

    Google Scholar 

  • Kim J, van der Meer J, Schouten S, Helmke P, Willmott V, Sangiorgi F, Koç N, Hopmans E, Sinninghe Damsté JS (2010) New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: implications for past sea surface temperature reconstructions. Geochim Cosmochim Acta 74:4639–4654

    Google Scholar 

  • Kim J-H, Crosta X, Willmott V, Renssen H, Bonnin J, Helnke P, Schouten S, Sinninghe Damsté JS (2012) Holocene subsurface temperature variability in the eastern Antarctic continental margin. Geophys Res Lett 39:L06705

    Google Scholar 

  • Kissel C, Laj C, Lehman B, Labyrie L, Bout-Roumazeilles V (1997) Changes in the strength of the Icelande Scotland overflow water in the last 200,000 years: evidence from magnetic anisotropy analysis of core SU90-33. Earth Planet Sci Lett 152:25–36

    Google Scholar 

  • Kohfeld KE, Fairbanks RG, Smith SL, Walsh ID (1996) Neogloboquadrina pachyderma (sinistral coiling) as paleoceanographic tracers in polar oceans: evidence from northeast Water Polynya plankton tows, sediment traps, and surface sediments. Paleoceanography 11(6):679–699. doi:10.1029/96PA02617

    Google Scholar 

  • Kozdon R, Eisenhauer A, Weinelt M, Meland MY, Nürnberg D (2009) Reassessing Mg/Ca temperature calibrations of Neogloboquadrina pachyderma (sinistral) using paired δ44/40Ca and Mg/Ca measurements. Geochem Geophys Geosyst 10:Q03005

    Google Scholar 

  • Kristjásdóttir GB, Lea DW, Jennings AE, Pak DK, Belanger C (2007) New spatial Mg/Ca-temperature calibrations for three Arctic, benthic foraminifera and reconstruction of north Iceland shelf temperature for the past 4000 years. Geochem Geophys Geosyst 8(3):Q03P21. doi:10.1029/2006GC001425

  • Kuijpers A, Nielsen T, Akhmetzhanov A, de Haas H, Kenyon NH, van Weering TCE (2001) Late Quaternary slope instability on the Faeroe margin: mass flow features and timing of events. Geo-Mar Lett 20:149–159

    Google Scholar 

  • Lamy F, Kaiser J, Ninnemann U, Hebbeln D, Arz HW, Stoner J (2004) Antarctic timing of surface water changes off Chile and Patagonian ice sheet response. Science 304:1959–1962

    Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol G, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809

    Google Scholar 

  • Lejzerowicz F, Esling P, Majewski W, Szczucinski W, Decelle J, Obadia C, Arbizu PM, Pawlowski W (2013) Ancient DNA complements microfossil record in deep-sea subsurface sediments. Biol Lett 9:20130283. doi:10.1098/rsbl.2013.0283

    Google Scholar 

  • Llirós M, Gich F, Plasencia A, Auguet J, Darchambeau F, Casamayor E, Descy J, Borrego C (2010) Vertical distribution of ammonia oxidizing crenarchaeota and methanogens in the epipelagic waters of Lake Kivu (Rwanda Democratic Republic of the Congo). Appl Environ Microbiol 76:853–6863

    Google Scholar 

  • Lekens WAH, Sejrup HP, Haflidason H, Petersen GØ, Hjelstuen B, Knorr G (2005) Laminated sediments preceding Heinrich event 1 in the northern north Sea and southern Norwegian Sea: origin, processes and regional linkage. Mar Geol 216:27–50

    Google Scholar 

  • Lekens WAH, Sejrup HP, Haflidason H, Knies J, Richter T (2006) Meltwater and ice rafting in the southern Norwegian Sea between 20 and 40 calendar kyr B.P.: implications for Fennoscandian Heinrich events. Paleoceanography 21(3):PA3013. doi:10.1029/2005PA001228

  • Lohmann GP (1995) A model for variation in the chemistry of planktonic foraminifera due to secondary calcification and selective dissolution. Paleoceanography 10(3):445–457. doi:10.1029/95PA00059

    Google Scholar 

  • Löwemark L, Jakobsson M, Mörth M, Backman J (2008) Arctic Ocean Mn contents and sediment color cycles. Polar Res 27:105–113

    Google Scholar 

  • Łącka M, Zajączkowski M, Forwick M, Szczuciński W (2014) Late Weichselian and Holocene paleoceanography of Storfjordrenna, southern Svalbard. Clim Past Discuss 10:3053–3095. doi:10.5194/cpd-10-3053-2014

    Google Scholar 

  • Marlowe IT, Green JC, Neal AC, Brassell SC, Eglinton G, Course PA (1984) Long chain (n-C37-39) alkenones in the Prymnesiophyceae. Distribution of alkenones and other lipids and their taxonomic significance. Br Phycol J 19:203–216

    Google Scholar 

  • Massé G, Rowland SJ, Sicre M-A, Jacob J, Jansen E, Belt ST (2008) Abrupt climate changes for Iceland during the last millennium: evidence from high resolution sea ice reconstructions. Earth Planet Sci Lett 269(3–4):565–569

    Google Scholar 

  • Matthiessen J, Baumann K-H, Schröder-Ritzrau A, Hass C, Andruleit H, Baumann A, Jensen S, Kohly A, Pflaumann U, Samtleben C, Schäfer P, Thiede J (2001) Distribution of calcarous, siliceous and organic-walled planktic microfossils in surface sediments of the Nordic Seas and their relation to surface-water masses. In: Schäfer P, Ritzrau W, Schlüter M, Thiede J (eds) The northern north Atlantic: a changing environment. Springer, Berlin, pp 105–127

    Google Scholar 

  • Meland MY, Jansen E, Elderfield H, Dokken TM, Olsen A, Bellerby RGJ (2006) Mg/Ca ratios in the planktonic foraminifer Neogloboquadrina pachyderma (sinistral) in the northern north Atlantic/Nordic Seas. Geochem Geophys Geosyst 7:Q06P14. doi:10.1029/2005GC001078

  • Moros M, Kuijpers A, Snowball I, Lassen S, Bäckström D, Gingele F, McManus J (2002) Were glacial iceberg surges in the north Atlantic triggered by climatic warming? Mar Geol 192:393–417

    Google Scholar 

  • Moy AD, Howard WR, Bray SG, Trull TW (2009) Reduced calcification in modern southern ocean planktonic foraminifera. Nature Geosci 2:276–280

    Google Scholar 

  • Müller J, Massé G, Stein R, Belt ST (2009) Variability of sea-ice conditions in the Fram Strait over the past 30,000 years. Nature Geosci 2(11):772–776

    Google Scholar 

  • Müller J, Wagner A, Fahl K, Stein R, Prange M, Lohmann G (2011) Towards quantitative sea ice reconstructions in the northern north Atlantic: a combined biomarker and numerical modelling approach. Earth Planet Sci Lett 306:137–148

    Google Scholar 

  • Navarro-Rodriguez A, Belt ST, Knies J, Brown TA (2013) Mapping recent sea ice conditions in the Barents Sea using the proxy biomarker IP25: implications for Palaeo Sea ice reconstructions. Quat Sci Rev 79:26–36

    Google Scholar 

  • Norris RD, Röhl U (1999) Carbon cycling and chronology of climate warming during the Palaeocene/Eocene transition. Nature 401:775–778

    Google Scholar 

  • Nürnberg D (1995) Magnesium in tests of Neogloboquadrina pachyderma sinistral from high northern and southern lattitudes. J Foram Res 25(4):350–368

    Google Scholar 

  • Ojala AEK, Salonen V-P, Moskalik M, Kubischta F, Oinonen M (2014) Holocene sedimentary environment of a high-Arctic fjord in Nordaustlandet. Svalbard Pol Polar Res 35(1):73–98

    Google Scholar 

  • Okada H, Honjo S (1973) The distribution of oceanic coccolithophorids in the Pacific. Deep-Sea Res 20:355–374

    Google Scholar 

  • Okada H, McIntyre A (1979) Validation of Florisphaera profunda var. elongata (2). Int Nannoplankton Assoc (INA) Newsl 1:2

    Google Scholar 

  • Ochsenreiter T, Selezi D, Quaiser A, Bonchosmolovskaya L, Schleper C (2003) Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ Microbiol 5:787–797

    Google Scholar 

  • Pääbo S (1985) Molecular cloning of ancient Egyptian mummy DNA. Nature 314:644–645

    Google Scholar 

  • Pääbo S, Poinar H, Serre D, Jaenicke-Després, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M (2004) Genetic analyses from ancient DNA. Ann Rev Gen 38:645–79

    Google Scholar 

  • Pälike H, Shackleton NJ, Röhl U (2001) Astronomical forcing in Late Eocene marine sediments. Earth Planet Sci Lett 193:589–602

    Google Scholar 

  • Pälike H, Spofforth DJA, O’Regan M, Gattacceca J (2008) Orbital scale variations and timescales from the Arctic Ocean. Paleoceanography 23:PA1S10. doi:10.1029/2007PA001490

  • Pawlowski J, Christen R, Lecroq B, Bachar D, Shahbazkia HR, Amaral-Zettler L, Guillou L (2011) Eukaryotic richness in the abyss: insights from pyrotag sequencing. Plos One 6(4):e18169. doi:10.1371/journal.pone.0018169

    Google Scholar 

  • Pawłowska J, Lejzerowicz F, Esling P, Szczuciński W, Zajączkowski M, Pawlowski J (2014) Ancient DNA sheds new light on the Svalbard foraminiferal fossil record from the last millennium. Geobiol 12(4):277–288. doi:10.1111/gbi.12087

    Google Scholar 

  • Pearson A, Huang Z, Ingalls A, Romanek C, Wiegel J, Freeman K, Smittenberg R, Zhang C (2004) Nonmarine crenarchaeol in Nevada hot springs. Appl Environ Microbiol 70:5229

    Google Scholar 

  • Prahl EG, Wakeham SG (1987) Calibration of unsaturation patterns in long-chain ketone compositions for paleotemperature assessment. Nature 330:367–369

    Google Scholar 

  • Prahl FG, Wolfe GV, Sparrow MA (2003) Physiological impacts on alkenone paleothermometry. Paleoceanography 18(2):1025. doi:10.1029/2002PA000803

    Google Scholar 

  • Prahl FG, Popp BN, Karl DM, Sparrow MA (2005) Ecology and biogeochemistry of alkenone production at Station ALOHA. Deep-Sea Res I 52:699–719

    Google Scholar 

  • Peterson LC, Haug GH, Hughen KA, Röhl U (2000) Rapid changes in the hydrologic cycle of the tropical Atlantic during the last Glacial. Science 290:1947–1950

    Google Scholar 

  • Polyak L, Bischof J, Ortiz JD, Darby DA, Channell JET, Xuand C, Kaufmane DS, Løvlie R, Schneider DA, Eberl DD, Adler RE, Councili EA (2009) Late quaternary stratigraphy and sedimentation patterns in the western Arctic Ocean. Global Planet Change 68(1–2):5–17

    Google Scholar 

  • Pufhl HA, Shackleton NJ (2004) Two proximal, high-resolution records of foraminiferal fragmentation and their implications for changes in dissolution. Deep-Sea Res I 51:809–832

    Google Scholar 

  • Rasmussen TL, Thomsen E, van Weering TCE, Labeyrie L (1996) Rapid changes in surface and deep water conditions at the Faroe margin during the last 58,000 years. Paleoceanography 11:757–771

    Google Scholar 

  • Rasmussen TL, Thomsen E, van Weering TCE (1998) Cyclic changes in sedimentation on the Faeroe Drift 53-9 kyr BP related to climate variations. In: Stoker M, Evans D, Cramp R (eds) Geological processes on continental margins: sedimentation, mass-wasting and stability, vol 129. Geological Society Special Publication, London, pp 55–267

    Google Scholar 

  • Rasmussen TL, Thomsen E, Slubowska MA, Jessen S, Solheim A, Koç N (2007) Paleoceanographic evolution of the SW Svalbard margin (76 N) since 20,000 14C yr BP. Quat Res 67:100–114

    Google Scholar 

  • Richter TO, Van der Gaast SJ, Koster B, Vaars A, Gieles R, De Stigter HC, de Haas H, van Weering TCE (2006) The Avaatech XRF Core Scanner: technical description and applications to NE Atlantic sediments. In: Rothwell RG (eds) New techniques in sediment core analysis, vol 267. Geological Society Special Publication, London, pp 39–50

    Google Scholar 

  • Robinson SG, Sahota JTS, Oldfield F (2000) Early diagenesis in north Atlantic abyssal plain sediments characterized by rock-magnetic and geochemical indices. Mar Geol 163:77–107

    Google Scholar 

  • Robson JN, Rowland SJ (1986) Identification of novel widely distributed sedimentary acyclic sesterterpenoids. Nature 324:561–563

    Google Scholar 

  • Rontani JF, Belt ST, Vaultier F, Brown TA, Massé G (2014) Autoxidative and photooxidative reactivity of highly branched isoprenoid (HBI) alkenes. Lipids 49(5):481–494. doi:10.1007/s11745-014-3891-x

    Google Scholar 

  • Rosell-Melé A, Comes P (1999) Evidence for a warm Last Glacial Maximum in the Nordic Seas or an example of shortcomings in U K37′ and U K37 to estimate low sea surface temperature? Paleoceanography 14:770–776

    Google Scholar 

  • Rosell-Melé A, Weinelt M, Ko N, Jansen E, Sarnthein M (1998) Variability of the Arctic front during the last climatic cycle: application of a novel molecular proxy. Terra Nova 10:86–89

    Google Scholar 

  • Rosenthal Y, Boyle EA (1993) Factors controlling the fluoride content of planktonic foraminifera: an evaluation of its paleoceanographic applicability. Geochim Cosmochim Acta 57:335–346

    Google Scholar 

  • Rosell-Melé A, Eglinton G, Pflaumann U, Sarnthein M (1995) Atlantic core-top calibration of the U K37 index as a sea-surface paleotemperature indictor. Geochim Cosmochim Acta 59:3099–3107

    Google Scholar 

  • Rueda G, Fietz S, Rosell-Melé A (2013) Coupling of air and sea surface temperatures in the eastern Fram Strait during the last 2000 years. Holocene 23(5):692–698

    Google Scholar 

  • Sachs JP, Pahnke K, Smittenberg R, Zhang Z (2013) Biomarker indicators of past climate. In: Elias SA (ed) The encyclopedia of quaternary science, vol 2. Elsevier, Amsterdam, pp 775–782

    Google Scholar 

  • Schiermeier Q (2012) Ice loss shifts Arctic cycles. Nature 489:185–186

    Google Scholar 

  • Schouten S, Hopmans EC, Schefuss E, Sinninghe Damsté JS (2002) Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet Sci Lett 204:265–274

    Google Scholar 

  • Schouten S, Hopmans EC, Sinninghe Damsté JS (2004) The effect of maturity and depositional redox conditions on archaeal tetraether lipid paleothermometry. Org Geochem 35:567–571

    Google Scholar 

  • Schouten S, Forster A, Panoto E, Sinninghe Damsté JS (2007) Towards calibration of the TEX86 palaeothermometer for tropical sea surface temperatures in ancient greenhouse worlds. Org Geochem 38:1537–1546

    Google Scholar 

  • Schouten S, Rijpstra W, Durich-Kaiser E, Schubert C, Sinninghe Damsté J (2012) Distribution of glycerol dialkyl glycerol tetraether lipids in the water column of Lake Tanganyika. Org Geochem 53:34–37

    Google Scholar 

  • Schütz L, Rahn KA (1982) Trace-element concentrations in erodible soils. Atmos Environ 16(1):171–176

    Google Scholar 

  • Schulz H, Schöner A, Emeis KC (2000) Long-chain alkenone patterns in the Baltic Sea-an ocean-freshwater transition. Geochim Cosmochim Acta 64:469–477

    Google Scholar 

  • Scott DB, Schell T, Rochon A, Blasco S (2008) Modern benthic foraminifera in the surface sediments of the Beaufort Shelf, slope and Mackenzie Trough, Beaufort Sea, Canada: taxonomy and summary of surficial distributions. J Foram Res 38:228–250

    Google Scholar 

  • Seki O, Kawamura K, Sakamoto T, Ikehara M, Nakatsuka T, Wakatsuchi M (2005) Decreased surface salinity in the Sea of Okhotsk during the last glacial period estimated from alkenones. Geophys Res Lett 32(8):L08710. doi:10.1029/2004GL022177

    Google Scholar 

  • Serreze MC, Walsh JE, Chapin FSII, Osterkamp T, Dyurgerov M, Romanovsky V, Oechel WC, Morison J, Zhang T, Barry RG (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Change 46:159–207

    Google Scholar 

  • Shiller AM (1982) The geochemistry of particulate major elements in Santa Barbara Basin and observations on the calcium carbonate-carbon dioxide system in the ocean, PhD thesis, University of California, San Diego, p 197

    Google Scholar 

  • Sikes EL, Volkman JK, Robertson LG, Pichon J-J (1997) Alkenones and alkenes in surface waters and sediments of the southern ocean: implications for paleotemperature estimation in polar regions. Geochim Cosmochim Acta 61(7):1495–1505

    Google Scholar 

  • Sinninghe Damsté JS, Hopmans EC, Schouten S, van Duin ACT, Greenevasen JAJ (2002) Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. J Lipid Res 43:1641–1651

    Google Scholar 

  • Skirbekk K, Marchitto TM, Hald M (2012) Preliminary results of new benthic foraminifera Mg/Ca temperature calibrations and reconstruction of bottom water temperatures and salinity from a transect along the northern branch of the north Atlantic Current. AGU Fall Meeting, San Francisco

    Google Scholar 

  • Sluijs A, Schouten S, Pagani M, Woltering M, Brinkhuis H, Sinninghe Damsté JS, Dickens GR, Huber M, Reichart G-J, Stein R, Matthiessen J, Lourens Lj, Pedentchouk N, Backman J, Moran K (2006) Subtropical arctic ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature 441:610–613

    Google Scholar 

  • Spang A, Hatzenpichler R, Brochierarmanet C, Rattei T, Tischler P, Spieck E, Streit W, Stahl D, Wagner M, Schleper C (2010) Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends Microbiol 18:331–340

    Google Scholar 

  • Spielhagen R, Werner K, Aagaard-Sørensen S, Zamelczyk K, Kandiano E, Budéus G, Husum K, Marchitto TM, Hald M (2011) Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science 331(6016):450–453

    Google Scholar 

  • Spofforth DJA, Pälike H, Green, DRH (2008) Paleogene record of elemental concentrations in sediments from the Arctic Ocean obtained by XRF analyses. Paleoceanography 23(1):PA1S09

    Google Scholar 

  • Stein R, Fahl K (2012) Biomarker proxy IP25 shows potential for studying entire Quaternary Arctic Sea-ice history. Org Geochem 55:98–102

    Google Scholar 

  • Stein R, Fahl K, Matthiessen J (2014) Late Pliocene/Pleistocene changes in Arctic Sea-ice cover: biomarker and dinoflagellate records from Fram Strait/Yermak Plateau (ODP Sites 911 and 912). Geophys Res Abstr 16:EGU2014-6895 (2014 EGU General Assembly)

    Google Scholar 

  • Steinsund PI, Hald M (1994) Recent carbonate dissolution in the Barents Sea: Paleoceanographic applications. Mar Geol 117:303–316

    Google Scholar 

  • Stoynova V, Shanahan TM, Hughen KA, de Vernal A (2013) Insights into Circum-Arctic Sea ice variability from molecular geochemistry. Quat Sci Rev 79:63–73. doi:10.1016/j.quascirev.2012.10.006

    Google Scholar 

  • Uda I, Sugai A, Itoh Y, Itoh T (2001) Variation in molecular species of polar lipids from Thermoplasma acidophilum depends on growth temperature. Lipids 36:103–105

    Google Scholar 

  • Vare LL, Massé G, Gregory TR, Smart CW, Belt ST (2009) Sea ice variations in the central Canadian Arctic Archipelago during the Holocene. Quat Sci Rev 28(13–14):1354–1366

    Google Scholar 

  • Vare LL, Massé G, Belt ST (2010) A biomarker-based reconstruction of sea ice conditions for the Barents Sea in recent centuries. Holocene 20:637–643

    Google Scholar 

  • Volkman JK, Barrett SM, Blackburn SI, Sikes EL (1995) Alkenones in Gephyrocapsa oceanica: implications for studies of paleoclimate. Geochim Cosmochim Acta 59:513–520

    Google Scholar 

  • Volkman JK, Eglinton G, Corner EDS, Forsberg TEV (1980) Long-chain alkenes and alkenones in the marine coccolithophorid Emiliania huxleyi. Phytochem 19:2619–2622

    Google Scholar 

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Google Scholar 

  • Wefer G, Berger W, Bijma J, Fischer G (1999) Clues to ocean history: a brief overview of proxies. In: Fischer G, Wefer G (eds) Use of proxies in paleocenography: examples from the south Atlantic, Springer, Berlin Heidelberg, pp 1–68

    Google Scholar 

  • Weijers JWH, Schouten S, Hopmans EC, Greenevasen JAJ, David ORP, Coleman JM, Pancost RD, Sinninghe Damsté JS (2006) Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits. Environ Microbiol 8:648–657

    Google Scholar 

  • Weijers JWH, Schouten S, van den Donker JC, Hopmans EC, Sinninghe Damsté JS (2007a) Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochim Cosmochim Acta 71:703–713

    Google Scholar 

  • Weijers JWH, Schouten S, Sluijs A, Brinkhuis H, Sinninghe Damsté JS (2007b) Warm arctic continents during the Palaeocene-Eocene thermal maximum. Earth Planet Sci Lett 261:230–238

    Google Scholar 

  • Weltje GJ, Tjallingii R (2008) Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: theory and application. Earth Planet Sci Lett 274:423–438

    Google Scholar 

  • Westerhold T, Röhl U, Raffi I, Fornaciari E, Monechi S, Reale V, Bowles J, Evans HF (2008) Astronomical calibration of the Paleocene time. Palaeogeogr Palaeoclimatol Palaeoecol 257(4):377–403

    Google Scholar 

  • Willerslev E, Hansen AJ, Binladen J, Brand TB, Gilbert MTP, Shapiro B, Bunce M, Wiuf C, Gilichinsky DA, Cooper A (2003) Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300:791–795

    Google Scholar 

  • Willerslev E, Hansen AJ, Poinar HN (2004a) Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends Ecol Evol 19:141–147. doi:10.1016/j.tree.2003.11.010

  • Willerslev E, Hansen AJ, Ronn R, Brand TB, Barnes I, Wiuf C, Gilichinsky D, Mitchell D, Cooper A (2004b) Long-term persistence of bacterial DNA. Curr Biol 14:R9-10

    Google Scholar 

  • Willerslev E, Cappellini E, Boomsma W, Nielsen R, Brand TB, Hofreiter M, Bunce M, Dahl-Jensen D, Johnsen S, Steffensen JP, Bennike O, Schwenninger J-L, Nathan R, deHoog C-J, Alfimov V, Christl M, Beer J, Muscheler R, Barker J, Sharp M, Penkman KEH, Haile J, Taberlet P, Gilbert MTP, Casoli A, Campani E, Collins MJ (2007) Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science 317:111–113

    Google Scholar 

  • Wuchter C, Schouten S, Coolen MJL, Sinninghe Damsté JS (2004) Temperature dependent variation in the distribution of tetraether membrane lipids of marine Crenarchaeota: implications for TEX86 paleothermometry. Paleoceanography 19(4):PA4028. doi:10.1029/2004PA001041

  • Xiao X, Fahl K, Stein R (2013) Biomarker distributions in surface sediments from the Kara and Laptev Seas (Arctic Ocean): indicators for organic-carbon sources and sea-ice coverage. Quat Sci Rev 79:40–52

    Google Scholar 

  • Zamelczyk K, Rasmussen TL, Husum K, Haflidason H, de Vernal A, Ravna EJK, Hald M, Hillaire-Marcel C (2012) Paleoceanographic changes and calcium carbonate dissolution in the central Fram Strait during the last 20 ka. Quat Res 78(3):405–416

    Google Scholar 

Download references

Acknowledgments

This review paper was developed within the framework of grant no. 2012/05/N/ST10/03696 and 2011/01/N/ST10/06533 funded by the National Science Centre in Kraków (Poland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Łącka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Łącka, M., Pawłowska, J., Zajączkowski, M. (2015). New Methods in the Reconstruction of Arctic Marine Palaeoenvironments. In: Zielinski, T., Weslawski, M., Kuliński, K. (eds) Impact of Climate Changes on Marine Environments. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-14283-8_10

Download citation

Publish with us

Policies and ethics