
Chapter 4
Modeling and Predicting Human
Infectious Diseases

Nicola Perra and Bruno Gonçalves

Abstract The spreading of infectious diseases has dramatically shaped our history
and society. The quest to understand and prevent their spreading dates more than two
centuries. Over the years, advances in Medicine, Biology, Mathematics, Physics,
Network Science, Computer Science, and Technology in general contributed to the
development of modern epidemiology. In this chapter, we present a summary of
different mathematical and computational approaches aimed at describing, model-
ing, and forecasting the diffusion of viruses. We start from the basic concepts and
models in an unstructured population and gradually increase the realism by adding
the effects of realistic contact structures within a population as well as the effects
of human mobility coupling different subpopulations. Building on these concepts
we present two realistic data-driven epidemiological models able to forecast the
spreading of infectious diseases at different geographical granularities. We conclude
by introducing some recent developments in diseases modeling rooted in the big-
data revolution.

4.1 Introduction

Historically, the first quantitative attempt to understand and prevent infectious
diseases dates back to 1760 when Bernoulli studied the effectiveness of inoculation
against Smallpox [1]. Since then, and despite some initial lulls [2], an intense
research activity has developed a rigorous formulation of pathogens’ spreading. In
this chapter, we present different approaches to model and predict the spreading
of infectious diseases at different geographical resolutions and levels of detail. We
focus on airborne illnesses transmitted from human to human. We are the carriers of
such diseases. Our contacts and mobility are the crucial ingredients to understand
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and model their spreading. Interestingly, the access to large-scale data describing
these human dynamics is a recent development in epidemiology. Indeed, for many
years only the biological roots of transmission were clearly understood, so it is not
surprising that classical models in epidemiology neglect realistic human contact
structures or mobility in favor of more mathematically tractable and simplified
descriptions of unstructured populations. We start our chapter with these modeling
approaches that offer us an intuitive way of introducing the basic quantities and
concepts in epidemiology.

Advances in technology are resulting in increased data on human dynamics
and behavior. Consequently, modeling approaches in epidemiology are gradually
becoming more detailed and starting to include realistic contact and mobility
patterns. In Sects. 4.3 and 4.4 we describe such developments and analyze the
effects of heterogeneities in contact structures between individuals and between
cities/subpopulations.

With these ingredients in hand we then introduce state-of-the-art data-driven
epidemiological models as examples of the modern capabilities in disease modeling
and predictions. In particular, we consider GLEAM [3, 4], EpiSims [5], and
FLuTE [6]. The first model is based on the metapopulation framework, a paradigm
where the inter-population dynamics is modeled using detailed mobility patterns,
while the intra-population dynamics is described by coarse-grained techniques. The
other tools are, instead, agent-based model (ABM). This class of tools guarantees
a very precise description of the unfolding of diseases, but need to be fed with
extremely detailed data and are not computationally scalable. For these reasons their
use so far has been limited to the study of disease spread within a limited numbers
of countries. In comparison, metapopulation models include a reduced amount of
data, while the approximated description of internal dynamics allows scaling the
simulations to global scenarios.

Interestingly, the access to large-scale data on human activities has also started a
new era in epidemiology. Indeed, the big-data revolution naturally results in real
time data on the health related behavior of individuals across the globe. Such
information can be obtained with tools that either require the active participation
of individuals willing to share their health status or that is mined silently from
individuals’ health related data. Epidemiology is becoming digital [7, 8]. In Sect. 4.6
we introduce the basic concepts, approaches, and results in this new field of epidemi-
ology. In particular, we describe tools that, using search queries, microblogging, or
other web-based data, are able to predict the incidence of a wide range of diseases
two weeks ahead respect to traditional surveillance.

4.2 Basic Concepts in Mathematical Epidemiology

Epidemic models divide the progression of the disease into several states or
compartments, with individuals transitioning compartments depending on their
health status. The natural history of the disease is represented by the type of
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compartments and the transitions from one to another, and naturally varies from
disease to disease. In some illnesses, Susceptible individuals (S) become infected
and Infectious when coming in contact with one or more Infectious (I) persons and
remain so until their death. In this case the disease is described by the so-called
SI (susceptible-infected) model. In other diseases, as is the case for some sexual
transmitted diseases, infected individuals recover becoming again Susceptible to the
disease. These diseases are described by the SIS (susceptible-infected-susceptible)
model. In the case of influenza like illnesses (ILI), on the other hand, infected
individuals Recover becoming immune to future infections from the same pathogen.
ILIs are described by the SIR (susceptible-infected-recovered) model. These basic
compartments provide us with the fundamental description of the progression of an
idealized infection in several general circumstances. Further compartments can be
added to accurately describe more realistic illnesses such as Smallpox, Chlamydia,
Meningitis, and Ebola [2, 9, 10]. Keeping this important observation in mind, here
we focus on the SIR model.

4.2.1 Modeling Transitions Between Compartments

Epidemic models are often represented using chart such as the one seen in Fig. 4.1.
Such illustrations are able to accurately represent the number of compartments and
the disease’s behavior in a concise and easily interpretable form. Mathematically,
models can also be accurately represented as reaction equations as we will see
below.

In general, epidemic models include two type of transitions, “interactive” and
“spontaneous.” Interactive transitions require the contact between individuals in two
different compartments, while spontaneous transitions occur naturally at a fixed rate
per unit time. For example, in the transition between S to I, Susceptible individuals
become Infected due to the interaction with Infected individuals, i.e. SCI ! 2I. The
transition is mediated by individuals in the compartment I, see Fig. 4.1. On the other
hand, an Infectious individual can naturally recover from infection after a certain

β

Infectious

Susceptible Infectious 
μ

Recovered

Fig. 4.1 Schematic representation of the SIR model. The transition from S to I is due to the
interaction between susceptible and infectious individuals. The transition from I to R is instead
spontaneous. The transition rates are ˇ and �, respectively
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amount of time and become Recovered, i.e. I ! R. Individuals are considered to
have a fixed recovery rate, �, defined as the inverse of the average time � spent in
the infected compartment, � D ��1

But how can we model the infection process? Intuitively we expect that the
probability of single individual becoming infected must depend on (1) the number of
infected individuals in the population, (2) the probability of infection given a contact
with an infectious agent and, (3) the number of such contacts. In this section we
neglect the details of who is in contact with whom and consider instead individuals
to be part of a homogeneously mixed population where everyone is assumed to be
in contact with everyone else (we tackle heterogeneous contacts in Sect. 4.3). In
this limit, the per capita rate at which susceptible contract the disease, the force of
infection �, can be expressed in two forms depending on the type of population.
In the first, often called mass-action law, the number of contacts per individual is
independent of the total population size, and determined by the transmission rate ˇ

and the probability of randomly contacting an infected individual, i.e. � D ˇI=N
(where N is the population size). In the second case, often called pseudo mass-
action law, the number of contacts is assumed to scale with the population size, and
the transmission rate ˇ, i.e. � D ˇI. Without loss of generality, in the following we
focus on the first kind of contact.

4.2.2 The SIR Model

The SIR framework is the crucial pillar to model ILIs. Think, for example, at the
H1N1 pandemic in 2009, or the seasonal flu that every year spread across the globe.
The progression of such diseases, from the first encounter to the recovery, happens
in matters of days. For this reason, birth and death rates in the populations can be
generally neglected, i.e. dtN � 0 for all times t.

Let us define the fraction of individuals in the susceptible, infected, and recovered
compartments as s; i, and r. The SIR model is then described by the following set of
differential equations:

8
<

:

dts D �s�
dti D s� � �i
dtr D �i

(4.1)

where � D ˇi � ˇ I
N is the force of infection, and dt � d

dt . The first equation
describes the infection process in a homogeneous mixed population. Susceptible
individuals become infected through random encounters with Infected individuals.
The second equation describes the balance between the in-flow (infection process,
first term), and the out-flow (recovery process, second term) in compartment i.
Finally, the third equation accounts for the increase of the recovered population
due to the recovery process. Interestingly, the SIR dynamical equations, although
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apparently very simple, due to their intrinsic non-linearity cannot be solved
analytically. The description of the evolution of the disease can be obtained only
through numerical integration of the system of differential equations. However,
crucial analytic insight on the process can be obtained for early t � t0 and late
times t ! 1.

4.2.2.1 Epidemic Threshold

Under which conditions a disease starting from a small number, I0, of individuals at
time t0 is able to spread in the population? To answer this question let us consider the
early stages of the spreading, i.e. t � t0. The equation for the infected compartment
can be written as dti D i.ˇs��/, indicating an exponential behavior for early times.
It then follows that if the initial fraction of susceptible individuals, s0 D S0=N, is
smaller than �=ˇ, the exponent becomes negative and the disease dies out. We call
this value the epidemic threshold [11] of the SIR model. The fraction of susceptibles
in the population has to be larger than a certain value, that depends on the disease
details, in order to observe an outbreak.

Typically, the initial cluster of infected individuals is small in comparison with
the population size, i.e. s0 � i0, or s0 � 1. In this case, the threshold condition can
be re-written as ˇ=� > 1. The quantity:

R0 � ˇ

�
(4.2)

is called the basic reproductive number, and is a crucial quantity in epidemiology
and provides a very simple interpretation of the epidemic threshold. Indeed, the
disease is able to spread if and only if each infected individual is able to infect, on
average, more than one person before recovering. The meaning of R0 is then clear:
it is simply the average number of infections generated by an initial infectious seed
in a fully susceptible population [10].

4.2.2.2 Disease-Free Equilibrium

For any value of � > 0, the SIR dynamics will eventually reach a stationary,
disease-free, state characterized by i D dti D 0. Indeed, infected individuals will
keep recovering until they all reach the R compartment. What is the final number
of recovered individuals? Answering this apparently simple question is crucial to
quantify the impact of the disease. We can tackle such conundrum dividing the first
equation with the third equation in the system 4.1. We obtain drs D �R0s which
in turn implies st D s0e�R0rt . Unfortunately, this transcendent equation cannot be
solved analytically. However, we can use it to gain some important insights on the
SIR dynamics. We note that for any R0 > 1, in the limit t ! 1, we must have
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s1 > 0. In other words, despite R0, the disease-free equilibrium of an SIR model
is always characterized by some finite fraction of the population in the Susceptible
compartment, or, in other words, some individuals will always be able to avoid
the infection. In the limit where R0 � 1 we can obtain an approximate solution
for r1 (or equivalently for s1 D 1 � r1) by expanding s1 D s0e�R0s1 at the
second order around r1 � 0. After a few basic algebraic manipulations we obtain
r1 D 2.R0�1/

R2
0

[9].

4.3 Beyond Homogeneous Mixing

In the previous sections we presented the basic concepts and models in epi-
demiology by considering a simple view of a population where individuals mix
homogeneously. Although such approximation allows a simple mathematical for-
mulation, it is far from reality. Individuals do not all have the same number of
contacts, and more importantly, encounters are not completely random [12–15].
Some persons are more prone to social interactions than others, and contacts with
family members, friends, and co-workers are much more likely than interactions
with any other person in the population.

Over the last decade the network framework has been particularly effective
in capturing the complex features and the heterogeneous nature of our con-
tacts [12–16]. In this approach, individuals are represented by nodes while links
represent their interactions. As described in different chapters of the book (see
Chaps. 3, 6, and 10), human contacts are not heterogeneous in both number and
intensity [12–15, 17] but also change over time [18]. This framework naturally
introduces two timescales, the timescale at which the network connections evolve,
�G and the inherent timescale, �P, of the process taking place over the network.
Although the dynamical nature of interactions might have crucial consequences on
the disease spreading [19–24], the large majority of results in the literature deal with
one of two limiting regimens [25, 26]. When �G � �P, the evolution of the network
of contacts is much slower than the spreading of the disease and the network can
be considered as static. On the other hand, when �P � �G, the links are said to be
annealed and changes in networks structure are much faster than the spreading of the
pathogen. In both cases the two time-scales are well separated allowing for a simpler
mathematical description. Here we focus on the annealed approximation (�P � �G)
that provides a simple stage to model and understand the dynamical properties of
epidemic processes. We refer the reader to Chap. 3 Face-to-Face Interactions for
recent approaches that relax this time-scale separation assumption.

Let us consider a network G .N; E/ characterized by N nodes connected by
E edges. The number of contacts of each node is described by the degree k.
The degree distribution P .k/ characterizes the probability of finding a node of
degree k. Empirical observations in many different domains show heavy-tailed
degree distributions usually approximated as power-laws, i.e. P .k/ � k�˛ [12, 13].
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Furthermore, human contact networks are characterized by so-called assortative
mixing, meaning a positive correlation between the degree of connected individuals.
Correlations are encoded in the conditional probability P .k0jk/ that a node of
degree k is connected with a node of degree k0 [12, 13]. While including realistic
correlations in epidemic models is crucial [27–29] they introduce a wide set of
mathematical challenges that are behind the scope of this chapter. In the following,
we consider the simple case of uncorrelated networks in which the interdependence
among degree classes is removed.

4.3.1 The SIR Model in Networks

How can we extend the SIR model to include heterogeneous contact structures? Here
we must take a step further than simply treating all individuals the same. We start
distinguishing nodes by degree while considering all vertices with the same degree
as statistically equivalent. This is known as the degree block approximation and is
exact for annealed networks. The quantities under study are now ik D Ik

Nk
; sk D

Sk
Nk

, and rk D Rk
Nk

, where the Ik; Sk, and Rk are the number of infected, susceptible,
recovered individuals in the degree class k. Nk instead describes the total number of
nodes in the degree class k. The global averages are given by i D P

k P .k/ ik; s DP
k P .k/ sk; r D P

k P .k/ rk. Using this notation and heterogeneous mean field
(HMF) theory [26], the system of differential equations (4.1) can now be written as:

8
<

:

dtsk D �sk�k

dtik D sk�k � �ik
dtrk D �ik

(4.3)

The contact structure introduces a force of infection function of the degree. In
particular, �k D �k�k where � is the rate of infection per contact, i.e. ˇ D �k,
and �k describes the density of infected neighbors of nodes in the degree class k.
Intuitively, this density is a function of the conditional probability that a node k
is connected to any node k0 and proportional to the number of infected nodes in
each class k0: �k D P

k0 P .k0jk/ ik0 . In the simple case of uncorrelated networks the
probability of finding a node of degree k0 in the neighborhood of a node in degree
class k is independent of k. In this case �k D � D P

k0 .k0 � 1/ P .k0/ ik0=hki where
the term k0 � 1 is due to the fact that at least one link of each infected node points to
another infected vertex [15].

4.3.1.1 Epidemic Threshold

In order to derive the epidemic threshold let us consider the early time limit of
the epidemic process. As done in Sect. 4.2.2.1 let us consider that at t � t0 the
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population is formed mostly by susceptible individuals. In the present scenario this
implies sk � ik and rk � 0 8k. The equation for the infected compartment then
becomes dtik D �k� � �ik. Multiplying both sides for P .k/ and summing over
all values of k we obtain dti D �hki� � �i. In order to understand the behavior
of i around t0 let us consider an equation built by multiplying both sides of the
last equation by .k � 1/ P .k/ =hki and summing over all degree classes. We obtain
dt� D �. hk2i�hki

hki /� � ��. The fraction of infected individuals in each value of k
will increase if and only if dt� > 0. This condition is verified when [15]:

R0 � ˇ

�
>

hki2

hk2i � hki (4.4)

giving us the epidemic threshold of an SIR process unfolding on an uncorrelated
network.

Remarkably, due to their broad-tailed nature, real contact networks display
fluctuations in the number of contacts (large hk2i) that are significantly larger than
the average degree hki resulting in very small thresholds. Large degree nodes (hubs)
facilitate an extremely efficient spreading of the infection by directly connecting
many otherwise distant nodes. As soon as the hubs become infected diseases are able
to reach a large fraction of the nodes in the network. Real interaction networks are
extremely fragile to disease spreading. While this finding is somehow worrisome,
it suggests very efficient strategies to control and mitigate the outbreaks. Indeed,
hubs are central nodes and play a crucial role in the network connectivity [12] and
by vaccinating a small fraction of them one is able to quickly stop the spread of
the disease and protect the rest of the population. It is important to mention that
in realistic settings the knowledge of the networks’ structure is often limited. Hubs
might not be easy to easily known and other indirect means must be employed.
Interestingly, the same feature of hubs that facilitates the spread of the disease
also allows for their easy detection. Since high degree nodes are connected to a
large number of smaller degree nodes, one may simply randomly select a node, A,
from the network and follow one of its links to reach another node, B. With high
probability, node B has higher degree than A and is likely a hub. This effect became
popularized as the friend paradox: on average your friends have more friends than
you do [12]. Immunizing node B is then much more effective than immunizing
node A. Remarkably, as counter-intuitive as this methodology might seem, it works
extremely well even in the case of quickly changing networks [30–32].

4.4 Metapopulation Models

The next step in the progression towards more realistic modeling approaches is to
consider the internal structure of the nodes. If each node in the network represents
a homogeneously mixed sub-population instead of a single individual and we
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consider the edges to represent interactions or mobility between the different sub-
populations, then we are in the presence of what is known as meta-population.
This concept was originally introduced by R. Levins in 1969 [33] for the study
of geographically extended ecological populations where each node represents one
of the ecological niches where a given population resides.

The metapopulation framework was later extended for use in epidemic modeling
by Sattenspiel in 1987. In a landmark paper [34] Sattenspiel considered two different
types of interactions between individuals, local ones occurring within a given node,
and social ones connecting individuals originating from different locations on the
network. This idea was later expanded by Sattenspiel and Dietz to include the effects
of mobility [35] and thus laying the foundations for the development of epidemic
models at the global scale.

Metapopulation epidemic models are extremely useful to describe particle
reaction-diffusion models [36]. In this type of model each node is allowed to have
zero or more individuals that are free to diffuse among the nodes constituting the
network. In our analysis, as done in the previous section, we follow the HMF
approach and consider all nodes of degree k to be statistically equivalent and write
all quantities in terms of the degree k. To start, let us define the average number of
individuals in a node of degree k to be Wk D 1

Nk

P
i Wiı .ki � k/, where Nk is the

number of nodes with degree k and the sum is taken over all nodes i. The mean field
dynamical equation describing the variation of the average number of individuals in
a node of degree k is then:

dWk .t/

dt
D �pkWk .t/ C k

X

k0

P
�
k0jk�

pk0kWk0 .t/ (4.5)

where pk and pkk0 represent, respectively, the rate at which particles diffuse out of a
node of degree k and diffuse from a node of degree k to one of degree k0.

With these definitions, the meaning of each term of this equation becomes
intuitively clear: the negative term represents individuals leaving the node, while
the positive term accounts for individuals originating from other nodes arriving
at this particular class of node. The conditional probability P .k0jk/ encodes all
the topological correlations of the network. By imposing that the total number of
particles in the system remains constant, we obtain:

pk D k
X

k0

P
�
kjk0� pkk0 (4.6)

that simply states that the number of particles arriving at nodes of degree k0
coming from nodes of degree k must be the same as the number of particles
leaving nodes of degree k. The probabilities pk and pkk0 encode the details of the
diffusion process [37]. In the simplest case, the rate of movement of individuals
is independent of the degree of their origin pk D p for all values of the degree.
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Furthermore, if individuals that are moving simply select homogeneously among
all of their connections, then we have pkk0 D p=k. In this case, the diffusion process
will reach a stationary state when:

Wk D k

hkiW (4.7)

where W D W=N, W is the total number of walkers in the system, and N the total
number of nodes. The simple linear relation between Wk and k serves as a strong
reminder of the importance of network topology. Nodes with higher degree will
acquire larger populations of particles while nodes with smaller degrees will have
proportionally smaller populations. However, even in the steady state, the diffusion
process is ongoing, so individuals are continuously arriving and leaving any given
node but are doing so in a way that maintains the total number of particles in each
node constant.

In more realistic settings, the traffic of individuals between two nodes is function
of their degree [37]:

pkk0 D w0

.kk0/�

Tk
(4.8)

In this expression � modulates the strength of the diffusion flow between degree
classes (empirical values are in the range �0:5 � � � 0:5 [3]), where w0 is
a constant and Tk D w0hk1C� i=hki is the proper normalization ensured by the
condition in Eq. (4.6). In these settings, the diffusion process reaches a stationary
state when:

Wk D k1C�

hk1C� iW (4.9)

Note that for � D 0 this solution coincides with the case of homogeneous diffusion
[Eq. (4.7)].

Combining this diffusion process with the (epidemic) reaction processes
described above we finally obtain the full reaction-diffusion process. To do so
we must simply write Eq. (4.5) for each state of the disease (e.g., Susceptible,
Infectious, and Recovered for a simple SIR model) and couple the resulting
equations using the already familiar epidemic equations. The full significance
of Eq. (4.7) now becomes clear: nodes with higher degree have higher populations
and are visited by more travelers, making them significantly more likely to also
receive an infected individual that can act as the seed of a local epidemic.

In a metapopulation epidemic context we must then consider two separate
thresholds, the basic reproductive ratio, R0, that determines whether or not a disease
can spread within one population (node) and a critical diffusion rate, pc, that
determines if individual mobility is sufficiently large to allow the disease to spread
from one population to another. It is clear that if p D 0 particles are completely
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unable to move from one population to another so the epidemic cannot spread
across subpopulations and that if p D 1 all individuals are in constant motion and
the disease will inevitably spread to every subpopulation on the network with a
transition occurring at some critical value pc.

In general, the critical value pc cannot be calculated analytically using our
approach as it depends non-trivially on the detailed structure of the network and
the fluctuations of the diffusion rate of single individuals. However, in the case of
uncorrelated networks a closed solution can be easily found for different mobility
patterns. Indeed, in the case where the mobility is regulated by Eq. (4.8) we obtain:

pc D 1

W

hk1C� i2

hk2C2� i � hk1C2� i
�R2

0

2.R0 � 1/2
(4.10)

Interestingly, the critical value of p is inversely proportional to the degree hetero-
geneity in the network, so that broad tailed networks have very low critical values.
This simple fact explains why simply restricting travel between populations is a
highly ineffective way to prevent the global spread of an epidemic.

The mobility patterns considered so far are so-called Markovian: individuals
move without remembering where they have been nor they have a home where
they return to after each trip. Although this is a rough approximation of individuals
behavior, Markovian diffusion patterns are allowed to analytically describe the
fundamental dynamical properties of many systems. Recently, new analytic results
have been proposed for non-Markovian dynamics that include origin-destination
matrices and realistic travel routes that follow shortest paths [38]. In particular, the
threshold within such mobility schemes reads as:

pc D 1

W

hk�i
hk1C�i

hki�R2
0

2 .R0 � 1/2
(4.11)

The exponent �, typically close to 1:5 in heterogeneous networks, emerges from
the shortest paths routing patterns [38]. Interestingly, for values of � � 0:2, fixing
� D 1:5, pc in the case of Markovian mobility patterns is larger than the critical
value in a system subject to non-Markovian diffusion. The presence of origin-
destination matrices and shortest paths mobility lower the threshold facilitating the
global spreading of the disease. Instead, for values of � > 0:2 the contrary is true.

In these models the internal contacts rate is considered constant across each
subpopulation. Interestingly, recent longitudinal studies on phone networks [39]
and Twitter mention networks [40] point to the evidence that contacts instead
scale super-linearly with the subpopulation sizes. Considering the heterogeneity in
population sizes observed in real metapopulation networks, the scaling behavior
entails deep consequence in the spreading dynamics. A recent study generalized the
metapopulation framework considering such observations. Interestingly, the critical
mobility thresholds, in the case of mobility patterns described by Eq. (4.8), changes
significantly being lowered by such scaling features of human contacts [40].
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Despite their simplicity, metapopulation models are extremely powerful tools in
large scale study of epidemics. They easily lend themselves to large scale numerical
stochastic simulations where the population and state of each node can be tracked
and analyzed in great detail and multiple scenarios as well as interventions can be
tested.

The state of the art in the class of metapopulation approaches is currently defined
by the global epidemic and mobility model (GLEAM) [3, 4]. GLEAM integrates
worldwide population estimates [41, 42] with complete airline transportation and
commuting databases to create a world wide description of mobility around the
world that can then be used as the substrate on which the epidemic can spread.
GLEAM divides the globe into 3362 transportation basins. Each basin is defined
empirically around an airport and the area of the basin is determined to be the region
within which residents would likely use that airport for long distance travel. Each
basin represents a major metropolitan area such as New York, London, or Paris.
Information about all civilian flights can be obtained from the International Air
Transportation Association (IATA) [43] and the Official Airline Guide (OAG) [44]
that are responsible for compiling up-to-date databases of flight information that
airlines use to plan their operations. By connecting the population basins with the
direct flight information from these databases we obtain the network that acts as a
substrate for the reaction diffusion process.

While most human mobility does not take place in the form of flights, the flight
network provides the fundamental structure for long range travel that explains
how diseases such as SARS [45], Smallpox [46], or Ebola [47] spread from
country to country. To capture the finer details of within country mobility further
information must be considered. GLEAM uses census information to create a
commuting network at the basin level that connects neighboring metropolitan areas
proportionally to the number of people who live in one are but work in the other.

Short-term short-distance mobility such as commuting is fundamentally different
from medium-term long-distance airline travel. In one case, the typical timescale is
work-day (8h) while in the other it is 1 day. This timescale difference is taken into
account in GLEAM in an effective, mean-field, manner instead of explicitly through
a reaction process such as the one described above. This added layer is the final
piece of the puzzle that brings the whole together and allows GLEAM to describe
accurately the spread from one country to the next but also the spread happening
within a given country [48].

In Fig. 4.2 we illustrate the progression in terms of detail that we have undergone
since our initial description of simple homogeneously mixed epidemic models in
a single population. With all these ingredients in place we have a fine grained
description of mobility on a world wide scale on top of which we can finally build
an epidemic model.

Within each basin, GLEAM still uses the homogeneous mixing approximation.
This assumption is particularly suited for diseases that spread easily from person
to person through airborne means such as ILI. GLEAM describes influenza through
an SEIR model as illustrated in Fig. 4.3. SEIR models are a modification of the SIR
model described above that includes a further compartment, Exposed, to represent
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Fig. 4.2 The multilayer structure of GLEAM. Each layer increases the level of detail with respect
to the previous ones
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Fig. 4.3 SEIR Epidemic structure used in GLEAM

individuals in the incubation phase of the disease that are already infected but not yet
Infectious. GLEAM further expands on this model by distinguishing three classes of
Infectious individuals based on the severity of the disease. One third of the infectious
individuals are asymptotic individuals do not display any symptoms and continue
to behave normally while having an infectiousness reduced by a factor rˇ D 0:5.
Of the remaining symptomatic individuals, one half is sick enough to decide to not
travel or commute while the remaining half continue to travel normally.

Despite their apparent complexity, large scale models such as GLEAM are
controlled by just a small number of parameters and ultimately, it’s the proper setting
of these few parameters that is responsible for the proper calibration of the model
and validity of the results obtained. Most of the disease and mobility parameters are
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set directly from the literature or careful testing so that as little as possible remains
unknown when it is time to apply it to a new outbreak.

GLEAM was put to the test during the 2009 H1N1 pandemic with great success.
During the course of the epidemic, researchers were able to use official data as it was
released by health authorities around the world. In the early days of the outbreak
there was a great uncertainty about the correct value of the R0 for the 2009/H1N1
pdm strain in circulation so a methodology to determine it had to be conceived.

One of the main advantages of epidemic metapopulation models is their com-
putational tractability. It was this feature what proved invaluable when it came to
determine the proper value of R0. By plugging in a given set of parameters one is
able to generate several hundreds or thousands of in silico outbreaks. Each outbreak
contains information not only about the number of cases in each city or country as a
function of time but also information about the time when the first case occurs within
a given country. In general, each outbreak will be different due to stochasticity and
by combining all outbreaks generated for a certain parameter set we can calculate
the probability distribution of the arrival times. The number of times that an outbreak
generated the seeding of a country, say the UK, in the same day as it occurred in
reality provides us with a measure of how likely the parameter values used are.
By multiplying this probability for all countries with a known arrival time we can
determine the overall Likelihood of the simulation:

L D
Y

c

Pc .tc/ (4.12)

where the product is taken over all countries c with known arrival time tc and the
probability distribution of arrival times, Pc .t/ is determined numerically for each set
of input values. The set of parameters that maximizes this quantity is then the one
whose values are the most likely to be correct. Using this procedure the team behind
GLEAM determined that the mostly likely value of the basic reproductive ratio was
R0 D 1:75 [49], a value that was later confirmed by independent studies [50, 51].

Armed with an empirical estimate of the basic reproductive ratio for an ongoing
pandemic, they then proceeded to use this value to estimate the future progression
of the pandemic. Their results predicting that the full peak of the pandemic would
hit in October and November 2009 were published in early September 2009 [49].
A comparison between these predictions and the official data published by the
health authorities in each country would be published several years later [52] clearly
confirming the validity of GLEAM for epidemic forecasting in real time. Indeed, the
model predicted, months in advance, the correct peak week in 87 % of countries
in the north hemisphere for which real data was accessible. In the rest of cases the
maximum error reported has been 2 weeks. GLEAM can also be further extended to
include age-structure [53], interventions and travel reductions.
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4.5 Agent-Based Models

The next logical step in the hierarchy of large scale epidemic models is to take the
description of the underlying population all the way down to the individual level
with what are known as ABM. The fundamental idea behind this class of model is a
deceptively simple one: treat each individual in the population separately, assigning
it properties such as age, gender, workplace, residence, family structure, etc: : :

These added details give them a clear edge in terms of detail over metapopulation
models but do so at the cost of much higher computational cost.

The first step in building a model of this type is to generate a synthetic population
that is statistically equivalent to the population we are interested in studying.
Typically this is in a hierarchical way, first generating individual households,
aggregating households into neighborhoods, neighborhoods into communities, and
communities into the census tracts that constitute the country.

Generating synthetic households in a way that reproduces the census data is
far from a trivial task. The exact details vary depending on the end goal of the
model and the level of details desired but the household size, age, and gender of
household members are determined stochastically from the empirically observed
distributions and conditional probabilities. One might start by determining the
size of the household by extracting from the distribution of household size of the
country of interest and selecting the age and gender of the head of the household
proportionally to the number of heads of households for that household size that are
in each age group. Conditional on this synthetic individual we can then generate the
remaining members, if any, of the household. The required conditional probability
distributions and correlation tables can be easily generated [54] from high quality
census data that can be found for most countries in the world. This process is
repeated until enough synthetic households have been generated. Households are
then aggregated into neighborhoods by selecting from the households according
to the distribution of households in a specific neighborhood. Neighborhoods are
similarly aggregated into communities and communities into census tracts.

Each increasing level of aggregation (from household to country) represents a
decrease in the level of social contact, with the most intimate contacts occurring at
the household level and least intimate ones at the census tract or country level. The
next step is to assign to each individual a profession and work place. Workplaces
are generated following a procedure similar to the generation of households and
each employed individual is assigned a specific household. School age children are
assigned a school. Working individuals are assigned to work places in a different
community or census tract in a way that reflects empirical commuting patterns.

At this point, we have a fairly accurate description of where the entire population
of a city or country lives and works. It is then not entirely surprising that this
approach was first used to study in detail the demands imposed on the transportation
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system of a large metropolitan city. TRANSIMS,1 the TRansportation ANalysis and
SIMulation System [55], used an approach similar to the one described above to
generate a synthetic population for the city of Portland, in Oregon (OR) and coupled
it with a route planner that would determine the actual route taken by each individual
on her way to work or school as a way of modeling the daily toll on Portland’s
transportation infrastructure and the effect that disruptions or modification might
have in the daily lives of its population.

EpiSims [5] was the logical extension of TRANSIMS to the epidemic world.
EpiSims used the TRANSIMS infrastructure to generate the contact network between
individuals in Portland, OR. Susceptible individuals are able to acquire the infection
whenever they are in a location along with one or more infectious individuals. In
this way the researchers are capable of observing as the disease spreads through the
population and evaluate the effect that measures such as contact tracing and mass
vaccination.

More recent approaches have significantly simplified the mobility aspect of this
kind of models and simply divide each 24 h period into day time and nighttime.
Individuals are considered to be in contact with other members of their workplace
during the day and with other household members during the night. In recent years,
modelers have successfully expanded the large scale Agent Based approach to the
country [6] and even continent level [56].

As the spatial scale of the models increased further modes of long-range
transportation such as flights had to be considered. These are important to determine
not only the seeding of the country under consideration through importation of cases
from another country but also to connect distant regions in a more realistic way.
FluTE [6] is currently the most realistic large scale Agent-Based epidemic model
of the continental United States. It considers that international seeding occurs at
random in the locations that host the 15 largest international airports in the US
by, each day, randomly infecting in each location a number of individuals that is
proportional to the international traffic of those airports.

FluTE is a refinement of a previous model [57] and it further refines the modeling
of the infectious process by varying the infectiousness of an individual over time in
the SIR model that they consider. At the time of infection each individual is assigned
one of six experimentally obtained viral load histories. Each history prescribes the
individuals viral load for each day of the infectious period and the infectiousness is
considered to be proportional to the viral load. Individuals may remain asymptotic
for up to 3 days after infection during which their infectiousness is reduced by 50 %
with respect to the symptomatic period. The total infectious period is set to 6 days
regardless of the length of the symptomatic period.

Given the complexity of the model the calibration of the disease parameters
in order to obtain a given value of the basic reproductive ratio, R0 requires some
finesse. Chao et al. [6] uses the definition of R0 to determine “experimentally”
its value from the input parameters. It numerically simulates 1000 instances of

1The source code for TRANSIMS can be obtained from https://www.code.google.com/p/transims/.

https://www.code.google.com/p/transims/
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the epidemic caused by a single individual within a 2000 person fully susceptible
community for each possible age group of the seeding individual and use it to
calculate the Ra

0 of each age group a. The final R0 is defined to the average of
the various Ra

0 weighted by age dependent attack rate [57]. The final result of this
procedure is that the value of R0 is given by:

R0 D 5:592� C 0:0068 (4.13)

where � is the infection probability per unit contact and is given as input. FluTE was
a pioneer in the way it completely released its source code,2 opening the doors of a
new level of verifiability in this area. It has successfully used to study the spread of
influenza viruses and analyze the effect of various interventions in the Los Angeles
County [58] and United States country level [6].

4.6 Digital Epidemiology

The unprecedented amount of data on human dynamics made available by recent
advances technology has allowed the development of realistic epidemic models able
to capture and predict the unfolding of infectious disease at different geographical
scales [59]. In the previous sections, we described briefly some successful examples
that have been made possible thanks to high resolution data on where we live, how
we live, and how we move. Data availability has started a second golden age in
epidemic modeling [60].

All models are judged against surveillance data collected by health departments.
Unfortunately, due to excessive costs, and other constraints their quality is far
from ideal. For example, the influenza surveillance network in the USA, one of
the most efficient systems in the world, is constituted of just 2900 providers that
operate voluntarily. Surveillance data is imprecise, incomplete, characterized by
large backlogs, delays in reporting times, and the result of very small sample
sizes. Furthermore, the geographical coverage is not homogeneous across different
regions, even within the same country. For these reasons the calibration and test of
epidemic models with surveillance data induce strong limitations in the predictive
capabilities of such tools. One of the most limiting issues is the geographical
granularity of the data. In general, information are aggregated at the country or
regional level. The lack of ground truth data at smaller scales does not allow a more
precise selection and training of realistic epidemic models.

How can we lift such limitations? Data, data and more data is again the answer.
At the end of 2013 almost 3 billion of people had access to the Internet while
almost 7 billion are phone subscribers, around 20 % of which are actively using
smartphones. The explosion of mobile usage boosted also the activity of social

2http://www.cs.unm.edu/~dlchao/flute/.

http://www.cs.unm.edu/~dlchao/flute/
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media platforms such as Facebook, Twitter, Google+ etc. that now count several
hundred million active users that are happy to share not just their thoughts, but also
their GPS coordinates. The incredible amount of information we create and access
contain important epidemiologically relevant indicators. Users complaining about
catching a cold before the weekend on Facebook or Twitter, searching for symptoms
of particular diseases on search engines, or Wikipedia, canceling their dinner
reservations on online platforms like OpenTable are just few examples. An intense
research activity, across different disciplines, is clearly showing the potential, as
well as the challenges and risks, of such digital traces for epidemiology [61]. We
are at the dawn of the digital revolution in epidemiology [7, 8]. The new approach
allows for the early detection of disease outbreaks [62], the real time monitoring of
the evolution of a disease with an incredible geographical granularity [63–65], the
access to health related behaviors, practices and sentiments at large scales [66, 67],
inform data-driven epidemic models [68, 69], and development of statistical based
models with prediction power [67, 70–78].

The search for epidemiological indicators in digital traces follows two method-
ologies: active and passive. In active data collection users are asked to share their
health status using apps and web-based platforms [79]. Examples are influenzanet
that is available in different European countries [64], and Flu near you in the
USA [65] that engage tens of thousands of users that together provide the infor-
mation necessary for the creation of interactive maps of ILI in almost real time.
In passive data collection, instead, information about individuals health status is
mined from other available sources that do not require the active participation
of users. News articles [63], queries on search engines [74], posts on online
social networks [67, 70–73], page view counts on Wikipedia [75, 76] or other
online/offline behaviors [77, 78] are typical examples. In the following, we focus
on the prototypical, and most famous, method of digital epidemiology, Google Flu
Trends (GFT) [80], while considering also other approaches based on Twitter and
Wikipedia data.

4.6.1 Social Media Based Epidemic Models

GFT is by far the most famous model in digital epidemiology. Launched in
November 2008 together with a Nature paper [80] describing its methodology, it has
continuously made predictions on the course of seasonal influenza in 29 countries
around the world.3 The method used by GFT is extremely simple. The percentage of
ILI visits, a typical indicator used by surveillance systems to monitor the unfolding
of the seasonal flu, is estimated with a linear model based on search engine queries.
This approach is general, and used in many different fields of Science. A quantity
of interest, in this case the percentage of ILI visits P, is estimated using a correlated

3Data available at http://www.google.org/flutrends.

http://www.google.org/flutrends
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signal, in this case the ILI related queries fraction Q, that acts as surrogate. The fit
allows the estimate of P as a function of the value of Q:

logit .P/ D ˇ0 C ˇ1logit .Q/ C 	; (4.14)

where logit .x/ D ln
�

x
1�x

�
, ˇ0 and ˇ1 are fitting parameters, and 	 is an error term.

As clear from the expression, the GFT is a simple linear fit, where the unknown
parameters are determined considering historical data. The innovation of the system
lies on the definition of Q that is evaluated using hundreds of billions of searches
on Google. Indeed, GFT scans all the queries we submit to Google, without using
information about users’ identity, in search of those that ILI related. This is the
paradigm of passive data collection in digital epidemiology. In the original model
the authors measured the correlation of 50 millions search queries with historic CDC
data, finding that 45 of them were enough to ensure the best correlation between the
number of searches and the number of ILI cases. The identity of such terms has
been kept secret in order to avoid changes in users’ behavior. However, the authors
provided a list of topics associated with each one of them: 11 were associated with
influenza complications, 8 to cold/flu remedies, 5 to general terms for influenza,
etc. Although the search for the terms has been performed without prior information,
none of the most representative terms were unrelated to the disease. In these settings
GFT showed a mean correlation of 0:97 with real data and was able to predict the
surveillance value with 1–2 weeks ahead.

GFT is based on proprietary data that for many different constraints cannot be
shared with the research community. Other data sources, different in nature, are
instead easily accessible. Twitter and Wikipedia are the two examples. Indeed, both
systems are available for download, with some limitations, through their respective
APIs.

The models based on Twitter are built within the same paradigm of GFT [67, 71–
73, 81]. Tweets are mined in search of ILI-related tweets, or other health conditions
such as insomnia, obesity, and other chronic diseases [67, 82], that are used to
inform regression models. Such tweets are determined either as done in GFT , or
through more involved methods based on support vector machine (SVM) or other
machine learning methods that, provided an annotated corpus, find disease related
tweets beyond simple keywords matches [67, 71–73, 81]. The presence of GPS
information or other self-reported geographical data allows the models to probe
different granularities ranging from countries [67, 71, 73, 81] to cities [72].

While models based on Twitter analyze users’ posts, those based on Wikipedia
focus on pages views [75, 76]. The basic intuition is that Wikipedia is used to learn
more about a diseases or a medication. Plus, the website is so popular that is most
likely one of the first results of search queries on most search engines. The methods
proposed so far monitor a set of pages related to the disease under study. Examples
are Influenza, Cold, Fever, Dengue, etc. Page views at the daily or weekly basis are
then used a surrogates in linear fitting models. Interestingly, the correlation with
surveillance data ranges from 0:02 in the case of Ebola to 0:99 in for ILIs [75, 76],
and allows accurate predictions up to 2 weeks ahead. One important limitation of
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Wikipedia based methods is the lack of geographical granularity. Indeed, the view
counts are reported irrespective of readers’ location but the language of the page
can be used as a rough proxy for location. Such approximation might be extremely
good for localized languages like Italian but it poses strong limitations in the case
of global languages like English. Indeed, it is reported that 51 % of pages views
for English pages are done in the USA, 11 % in the UK, and the rest in Australia,
Canada and other countries [76]. Besides, without making further approximation
such methods cannot provide indications at scales smaller than the country level.

Despite these impressive correlations, especially in the case of ILIs, much still
remains to be done. GFT offers a particular clear example of the possible limitations
of such tools. Indeed, despite the initial success, it completely failed to forecast
the 2009 H1N1 pandemic [61, 83]. The model was updated in September 2009 to
increase the number of terms to 160, including the 40 terms present in the original
version. Nevertheless, GFT missed high 100 out of 108 weeks in the season 2011–
2012. In 2013 GFT predicted a peak height more than double the actual value
causing the underlying model to be modified again later that year.

What are the reasons underlying the limitations of GFT and other similar tools?
By construction, GFT relies just on simple correlations causing it to detect not only
the flu but also things that correlate strongly with the flu such as winter patterns.
This is likely one of the reasons why the model was not able to capture the unfolding
of an off-season pandemic such as the 2009 H1N1 pandemic. Also, changes in the
Google search engine, that can inadvertently modify users’ behavior, were not taken
into account in GFT . This factor alone possibly explains the large overestimation of
the peak height in 2013. Plus, simple auto-regressive models using just CDC data
can perform as well or better than GFT [84]. The parable of GFT clearly shows both
the potential and the risks of digital tools for epidemic predictions. The limitations
of GFT can possibly affect all similar approaches based on digital passive data
collection. In particular, the use of simple correlations measures does not guarantee
the ability of capturing the phenomena across different scales in space and time
with respect to those used in the training. Not to mention that correlations might
be completely spurious. In a recent study for example, a linear model based on
Twitter simply informed with the timeline of the term zombie was shown to be a
good predictor of the seasonal flu [71].

Despite such observations the potential of these models is invaluable to probe
data that cannot be predicted by simple auto-regressive models. For example, flu
activity at high geographical granularities, although very important, is measured
with great difficulties by the surveillance systems. GFT and other spatially resolved
tools can effectively access to these local indicators, and provide precious estimates
that can be used a complement for the surveillance and as input for generating
epidemic models [49, 68].
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4.7 Discussion

The field of epidemiology is currently undergoing a digital revolution due to the
seemingly endless availability of data and computational power. Data on human
behavior is allowing for the development of new tools and models while the
commoditization of computer resources once available only for world leading
research institutions is making highly detailed large scale numerical approaches
feasible at last.

In this chapter, we present a brief review not only of the fundamental mathe-
matical tools and concepts of epidemiology but also of some of the state-of-the-art
and computational approaches aimed at describing, modeling, and forecasting the
diffusion of viruses. Our focus was on the developments occurring over the past
decade that are sure to form the foundation for developments in decades to come.

Acknowledgements BG was partially supported by the French ANR project HarMS-flu (ANR-
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