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1            Introduction 

 Ranaviruses were thought to have little impact on populations of fi sh and amphibians 
for decades after their serendipitous discovery in primary kidney cell cultures of 
northern leopard frogs ( Lithobates  [formerly  Rana ]  pipiens ; Granoff et al.  1966 ; 
Chinchar et al.  2009 ; Williams et al.  2005 ). This view changed with increasing 
evidence that ranaviruses were responsible for widespread epidemics and mortality 
in several fi shes and later amphibians (Ahne et al.  1997 ; Chinchar  2002 ; Williams 
et al.  2005 ). The growing interest in this genus of viruses is fueled by the apparent 
increases in geographic range, as well as evidence of population declines coming 
from a wide range of ectothermic vertebrates around the world (Duffus et al.  2015 ). 
Ranavirus die-offs in the wild and in captive settings are often marked by a rapid 
onset and high mortality, but less obvious ranaviral infections in natural populations 
can occur. Overall, ranavirus epidemics can result in a range of effects on population 
dynamics, from apparently benign infections to local extirpation. In this chapter, we 
will review the current status of ranavirus epidemiology, with a particular focus on 
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factors that can infl uence the outcome of ranavirus infections for individuals and 
populations. We will then discuss ranavirus transmission within and between spe-
cies, and its consequences for ranavirus epidemiology. We also consider the evolu-
tion of ranaviruses with a focus on local adaptation and virulence, which is important 
to understand in light of the growing evidence that ranaviruses are being moved 
around the world by human activities. We end by returning to the impacts of ranavi-
ruses on their hosts, considering whether ranaviruses can cause host extinctions.  

2     Epidemiology of Ranaviruses 

 Most of what is known about the epidemiology, geography, and host range of rana-
viruses comes from investigations of obvious die-offs, sporadic surveillance efforts 
in small numbers of populations and time points, and a few larger-scale surveillance 
efforts focused on a handful of species of economic importance or conservation 
interest (Grizzle and Brunner  2003 ; Gray et al.  2009a ; Whittington et al.  2010 ; 
Miller et al.  2011 ; Duffus et al.  2015 ). Duffus et al. ( 2015 ) reviewed the known 
 distribution and host range of ranaviruses. In total, six species of  Ranavirus  are 
recognized, causing infection or overt disease in at least 175 species (52 families) of 
ectothermic vertebrates from 32 countries on six continents (Duffus et al.  2015 ). 

2.1      Ranavirus Epidemiology in Amphibians 

 Ranavirus infections and related mortality events have been reported in amphibians 
from North and South America, Europe, Africa, and Asia (Duffus et al.  2015 ). In 
North America, 43–57 % of amphibian mortality events were attributed to viral 
infections, presumably ranaviruses (Green et al.  2002 ; Muths et al.  2006 ). These 
epidemics usually occurred in mid-to-late summer and involved late stage tadpoles 
and recent metamorphs (Fig.  1 ; Green et al.  2002 ). Mortality is often sudden, with 
hundreds or thousands of apparently normal larvae present on one day and >90 % 
dead within several days (Fig.  2 ; Green et al.  2002 ). In one recent report, at least 
200,000 larvae died within just 24 h (Wheelwright et al.  2014 ). There are similar 
reports of rapid, seasonal outbreaks in wild amphibians in Europe (e.g., Ariel et al. 
 2009a ; Kik et al.  2011 ), South and Central America (Fox et al.  2006 ; Stark et al. 
 2014 ), and Asia (e.g., Une et al.  2009 ), and widespread reports from captive popula-
tions that follow similar patterns (Duffus et al.  2015 ). Price et al. ( 2014 ) recently 
reported declines in amphibian communities at multiple sites in Spain after the 
apparent introduction of a novel ranavirus. There are, however, several reports of 
ranavirus being present in larval and post-metamorphic amphibians without notable 
disease or mortality (Duffus et al.  2015 ), although most studies do not collect lon-
gitudinal data and are liable to miss mortality events (Gray et al.  2015 ). It is worth 
noting that sublethal infections by ranavirus can impact fi tness-related traits such as 
growth and development (Echaubard et al.  2010 ).   
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 In contrast to this general pattern of ranavirus outbreaks in larval amphibians, the 
ranavirus die-offs in common frogs ( Rana temporaria ) in the UK seem to be 
restricted mostly to adult frogs (Cunningham et al.  1993 ; Teacher et al.  2010 ; Duffus 
et al.  2013 ). Duffus et al. ( 2013 ) detected ranavirus in only one of 288 tadpoles col-
lected in one year, but 32 of 120 adults were positive for ranavirus over three years. 
Population declines in the adult common frogs have been slow, but widespread in 
the UK (Teacher et al.  2010 ).  

Farmed Wild

−40

−20

0

20

40

60

−40

−20

0

20

40

60

A
m

phibian
R

eptiles &
 F

ish

D
ec

Ja
n

Fe
b

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

Ja
n

D
ec

Ja
n

Fe
b

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

Ja
n

La
tit

ud
e

Precision

Low

Moderate

High

Continent

Asia

Australia

Europe

North America

South America

  Fig. 1    The seasonal timing of ranavirus die-offs in farmed and wild populations of amphibians, 
fi sh, and reptiles ( dashed lines ) plotted against latitude. Most die-off events begin (and often end) 
during the summer months. The  vertical dashed lines  are the equinoxes and the  horizontal dashed 
lines  show the tropics of Cancer and Capricorn. The data include 109 events reported in 40 publi-
cations that included both the timing and location of the die-off. When only the names of months 
were provided, we include the entire month(s). If a duration was provided, we adjusted the end 
dates to match the duration. “Mid” month was assumed to be the 15th. Precision in the description 
of the dates ranged from low, when only partial information was presented (e.g., the onset, but not 
end of the event), to high, where precise dates were provided. There is also imprecision in the lati-
tude of many events as reports often provided only county, state, or province data. In these cases, 
we used the approximate midpoint of the region       
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2.2     Ranavirus Epidemiology in Fishes 

 Many ranaviruses have been associated with mortality events in cultured fi sh (e.g., 
Ahne et al.  1997 ; Chua et al.  1994 ; Deng et al.  2011 ; Langdon et al.  1988 ; Prasankok 
et al.  2005 ; Qin et al.  2003 ), but the epidemiology and ecology of these aquacultural 

  Fig. 2    Ranavirus die-offs can include larval ( a , credit = Matthew Niemiller) and adult ( b , credit = 
Ana Balseiro) age classes in amphibians. Outbreaks can occur rapidly progressing from no appar-
ent death ( c , credit = Nathaniel Wheelwright) to complete mortality ( d , credit = Nathaniel 
Wheelwright) in a matter of days. Global transport of subclinically infected individuals may be 
contributing to the emergence of ranaviruses ( e , credit = Jonathan Kolby). High contact rates 
with abundant hosts in captivity and during transport may be resulting in evolution of ranavirus 
virulence ( f , credit = Jonathan Kolby)       
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systems is rarely well documented. Most of what is known about the ecology and 
epidemiology of ranaviruses in fi shes comes from studies of  Epizootic haemato-
poietic necrosis virus  (EHNV) in Australia and largemouth bass virus (LMBV; a 
strain of  Santee Cooper ranavirus ) in the Southeast USA (Whittington et al.  2010 ). 
EHNV outbreaks have caused rapid (2–3 weeks) die-offs affecting tens to thousands 
of juvenile redfi n perch ( Perca fl uviatilis ) in the early summer, with a few adults 
also affected (Langdon et al.  1986 ; Langdon and Humphrey  1987 ). In isolated 
ponds with no prior history of EHNV, die-offs involved mass mortality in adults 
(>1 year old), suggesting a role of prior exposure or ontogeny. While die-offs are 
dramatic and have continued over the last 30 years, the frequency with which EHNV 
epidemics occur is diffi cult to assess given uncertain detection in deep waters and 
remote locations (Whittington et al.  2010 ). EHNV has also caused mortality events 
in farmed rainbow trout ( Oncorhynchus mykiss ) in Australia, in which the virus is 
not very infectious, but can be highly virulent (Langdon et al.  1988 ; Whittington 
et al.  1994 ,  1999 ). 

 Most LMBV die-offs occur in the summer and involve large (>30 cm) large-
mouth bass ( Micropterus salmoides ; Grizzle and Brunner  2003 ). While LMBV is 
sometimes associated with die-offs of thousands of large fi sh (Plumb et al.  1996 ; 
Hanson et al.  2001 ) and has been associated with the declines in larger, older large-
mouth bass noted in the 1990s in some lakes (Maceina and Grizzle  2006 ), the 
incidence of diseased or dying fi sh is often too low to be noticed (Grizzle and 
Brunner  2003 ). Moreover, LMBV is often found in clinically normal animals and at 
sites with no (observed) history of die-offs (Hanson et al.  2001 ; Grizzle et al.  2002 ; 
Grizzle and Brunner  2003 ). If there is a common theme to the epidemiology of these 
two fi sh ranaviruses, it is that epidemics primarily involve certain susceptible life 
history stages (EHNV in juveniles and LMBV in adults) during stressful conditions 
(e.g., warm periods). 

 Because they represent a distinct phylogenetic lineage within the genus  Ranavirus  
(Qin et al.  2003 ; Huang et al.  2011 ), it is worth mentioning the Grouper iridovirus 
(GIV) and Singapore grouper iridovirus (SGIV). These viruses have caused signifi -
cant mortality and losses in groupers ( Epinephelus  spp.) and other fi nfi sh in mari-
culture since the mid-1990s in Southeast Asia (Chua et al.  1994 ; Qin et al.  2003 ; 
Harikrishnan et al.  2010 ). Few details of the epidemiology of this virus have been 
reported, but epidemics occur over several weeks (Nagasawa and Cruz-Lacierda 
 2004 ), cause up to 90 % mortality, and stress (e.g., handling stress, water quality) 
may play a role in magnifying clinical signs and mortality (Chua et al.  1994 ).  

2.3     Ranavirus Epidemiology in Reptiles 

 In reptiles, ranavirus infections have been detected sporadically, primarily in reha-
bilitation facilities and other captive settings (Ariel  2011 ; Allender et al.  2013a ; 
Chinchar and Waltzek  2014 ). While several outbreaks in free-ranging chelonians 
have been observed (Allender et al.  2006 ; Johnson et al.  2008 ; Belzer and Seibert 
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 2011 ; Farnsworth and Seigel  2013 ), there are no similar reports of ranaviruses in 
free-living populations of other reptile taxa. Unlike in fi sh and amphibians, ranavi-
rus outbreaks in chelonians, at least in North America, are more diffuse. Mortalities 
are observed over the entire active season (i.e., when turtles are not hibernating in 
winter), often for several years (Belzer and Seibert  2011 ; Farnsworth and Seigel 
 2013 ). Most cases, however, are noted in the summer months (Fig.  1 ). The available 
evidence suggests that ranaviruses cause an acute, rapidly lethal infection in chelo-
nians (Johnson et al.  2007 ). Most individuals that are infected will die within several 
weeks, so the prevalence of infection at any given point in time is low. For instance, 
15 of 71 (21 %) free-ranging eastern box turtles ( Terrapene carolina carolina ) died 
during a ranavirus die-off at a private nature sanctuary in Pennsylvania, USA 
(Johnson et al.  2008 ; Belzer and Seibert  2011 ). The following year only one of the 
55 surviving turtles was seropositive, strongly suggesting that the vast majority of 
infected individuals died (Johnson et al.  2010 ). Similarly, Allender et al. ( 2013a ) 
found that the prevalence of ranavirus infection was very low (1/309; 0.3 %) over 
3 years in free-ranging eastern box turtles in Tennessee, USA. The seroprevalence 
of free-ranging gopher tortoises ( Gopherus polyphemus ) from fi ve states in the 
southeastern USA was also low (1.5 %; Johnson et al.  2010 ), which is consistent 
with a highly virulent, acute infection. There is some evidence that ranavirus infec-
tions in more aquatic turtles may be less pathogenic (Sect.  7 ). Consistent with this 
hypothesis, ranavirus prevalence was higher (11/63; 17 %) in highly aquatic eastern 
painted turtles ( Chrysemys picta picta ) in Virginia, USA (Goodman et al.  2013 ). 

 Based on the available information, it appears unlikely that the sporadic  mortality 
events in chelonians are caused by self-sustaining ranavirus epidemics. Ranaviruses 
infections in chelonians are acute and often lethal, which provides little time for 
infected turtles to contact naïve turtles. Moreover, most chelonian populations exist 
at low densities, which further limits opportunities for transmission. These die-offs 
therefore likely occur from spillover of ranavirus infections from other species.  

2.4     Summary of Ranavirus Epidemiology 

 While there is still a great deal of uncertainty surrounding ranavirus epidemiology 
in natural populations, two patterns are apparent. First, there appears to be a com-
mon temporal pattern to ranavirus epidemics or mortality events, at least in fi sh and 
amphibians (Fig.  1 ). Die-offs have a rapid onset, generally in the summer months, 
and often progress rapidly, although there are important exceptions to this pattern 
(e.g., bullfrog [ Lithobates catesbeianus  (formerly  Rana catesbeiana )] die-offs in 
Japan and the American Southeast have been noted in October; Hoverman et al. 
 2012 ; Une et al.  2009 ). Second, there is a great deal of variability in the outcome of 
ranavirus epidemics between populations and locations, from no (apparent) mortality 
to die-offs with few survivors. In the next sections, we explore several hypotheses 
for these patterns, beginning with the timing of epidemics.   
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3     Explanations for the Apparent Seasonality of Ranavirus 
Epidemics 

 Ranavirus epidemics often occur during late spring or summer and can begin and 
end within weeks (Langdon and Humphrey  1987 ; Green et al.  2002 ; Grizzle and 
Brunner  2003 ). There are four non-mutually exclusive hypotheses that might 
explain the apparent seasonality and rapidity of observed ranavirus die-offs. First, 
this pattern may be spurious, resulting from a detection bias. Second, the die-offs 
may simply refl ect the underlying epidemic dynamics following the introduction of 
ranavirus into populations earlier in the year. Third, hosts may become more sus-
ceptibility to ranavirus infections at certain development stages that coincide with 
the summer months. Lastly, these events may occur when temperatures rise in the 
summer. In the following sections, we evaluate these hypotheses and their underly-
ing mechanisms. 

3.1     Detection Biases 

 The frequent observation that ranavirus die-offs involve metamorphosing amphibi-
ans and late stage larvae (Green et al.  2002 ) may simply be an artifact of meta-
morphs moving to shallow water to complete metamorphosis where they are more 
easily observed. Similarly, large numbers of juvenile fi sh tend to cluster near shores 
frequented by people, which contributed to the fi rst detection of EHNV in redfi n 
perch (Whittington et al.  2010 ). Die-off events in remote locations, at times when 
people are not active, and in cryptic species may go unnoticed. For example, mor-
bidity and mortality of turtles due to ranavirus may be often missed given the secre-
tive nature of these animals (Farnsworth and Seigel  2013 ). However, many ranavirus 
outbreaks that fi t the general pattern of rapid onset of mortality in the summer have 
been observed in well-studied, frequently visited populations (e.g., Brunner et al. 
 2011 ; Langdon and Humphrey  1987 ; Petranka et al.  2007 ; Wheelwright et al.  2014 ), 
suggesting that detection biases are not a general explanation for the observed tim-
ing of mortality events.  

3.2      Seasonal Introductions and Incidence of Ranavirus 
Infection 

 The rapid onset and seasonality of ranavirus die-offs may simply refl ect a rapid 
increase in the incidence of infections following the introduction of virus earlier in 
the year. One hypothesis is that ranavirus epidemics in amphibians begin when sub-
lethally infected adults return to sites to breed (Brunner et al.  2004 ). Adults might 
transmit infections directly to larvae of the same or other species if they overlap in 
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space and time, or indirectly if they die from a recrudescent infection and are 
 consumed by feeding larvae. Brunner et al. ( 2004 ) found that some adult tiger 
salamanders ( Ambystoma mavortium  [formerly  tigrinum ]  nebulosum ) in the south-
western USA returning to breeding sites were infected with  Ambystoma tigrinum 
virus  (ATV). Similarly, a recent survey found that 39 % of male wood frogs 
( Lithobates  [ Rana ]  sylvaticus ) in the eastern USA returning to breeding sites har-
bored subclinical infections (JLB, E. J. Crespi, and S. Hall, Washington State 
University; S. Duncan, N.M. Mattheus, and L. Rissler, University of Alabama, 
unpublished data). Spillover from adults or carcasses could spark subsequent larval 
epidemics. Thus, the dynamics of ranavirus infection may be similar to those of 
many other infectious diseases (Keeling and Rohani  2008 ), spreading slowly after 
introduction because the infection is rare and accelerating as the epidemic builds. 
Because ranavirus infections in amphibians are often lethal, usually within days to 
weeks of exposure in laboratory challenges (Gray et al.  2009a ; Hoverman et al. 
 2011 ), one would expect mortality to track infection with some relatively short 
delay. The actual time course of mortality in the wild may appear more rapid simply 
because those few individuals dying earlier in an epidemic are diffi cult to detect 
because they are small, decompose quickly, or are scavenged. Only when there are 
many dead animals (and perhaps the scavengers are sated) does the event become 
obvious. Moreover, an accumulation of infectious carcasses may facilitate transmis-
sion (Pearman et al.  2004 ; Harp and Petranka  2006 ; Brunner et al.  2007 ), increasing 
the speed of the epidemic. There is some support of this hypothesis in amphibians. 
Todd-Thompson ( 2010 ) observed a typical epidemic curve in her longitudinal survey 
for ranaviruses in an amphibian community inhabiting a depressional wetland in the 
southern Appalachian Mountains of the USA. Ranavirus was not detected until late 
April, when 20 % of the larvae were infected and increased to a high of 80 % twenty 
days later, which coincided with a die- off of ambystomatid larvae. The rapid 
increase in the prevalence of infection signs in spotted chorus frog ( Pseudacris 
clarkii ) tadpoles collected by Torrence et al. ( 2010 ) is also consistent with this 
model. Indeed, mortality events generally coincide with high infection prevalence 
(Bollinger et al.  1999 ; Greer et al.  2005 ; Fox et al.  2006 ; Kik et al.  2011 ; Hoverman 
et al.  2012 ; Homan et al.  2013 ; Titus and Green  2013 ). 

 In some ranavirus–host systems, infection prevalence may be uncorrelated with 
the occurrence of disease. Greer et al. ( 2009 ), for instance, found that ATV infection 
in tiger salamanders ( A. m. nebulosum ) increased to a peak of ~50 % prevalence in 
three ponds in northern Arizona, but no morbidity or mortality was observed. 
Similarly, Duffus et al. ( 2008 ) found that 20–32 % of wood frog tadpoles were 
infected in early summer, but none showed clinical signs of disease. LMBV is also 
commonly found in the absence of morbidity or mortality (Hanson et al.  2001 ; 
Grizzle and Brunner  2003 ; Groocock et al.  2008 ; Southard et al.  2009 ). It is thus 
important to collect both epidemiological and demographic data on host popula-
tions at multiple time points to understand the effects of ranaviruses on their host 
populations (Gray et al.  2015 ).  
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3.3       Susceptibility Throughout Development 

 In addition to the frequent observation that juveniles are more susceptible to ranavi-
rus infections than adults (Cullen et al.  1995 ; Ariel  1997 ; Cullen and Owens  2002 ; 
Bang Jensen et al.  2011b ), hosts may become vulnerable to ranavirus infections at 
certain development stages that coincide with the summer months. In amphibians, 
die-off events from ranaviruses have often been reported in individuals near to or 
undergoing metamorphosis (Speare and Smith  1992 ; Green and Converse  2005 ; 
Greer et al.  2005 ). Amphibian metamorphosis is energetically costly and entails a 
period of natural immunosuppression (Rollins-Smith  1998 ; Carey et al.  1999 ). 
Metamorphosing anurans are hypothesized to be particularly vulnerable to ranavi-
rus infection. This might explain both the occurrence of ranavirus die-offs in 
amphibians in the summer and their speed (e.g., Gahl and Calhoun  2010 ). Warne 
et al. ( 2011 ) found that the odds of death in wood frog tadpoles exposed to ranavirus 
increased 1.7-fold with each increase in Gosner ( 1960 ) development stage. Higher 
susceptibility of wood frog larvae to ranavirus later in development was supported 
by an epidemiological model that correctly predicted the timing of mortality events 
in summer using stage-specifi c susceptibility (Fig.  3 ; Warne et al.  2011 ). If all stages 
were equally susceptible, mortality in wood frog populations would occur in spring, 
which was not observed. Haislip et al. ( 2011 ) also found that susceptibility to rana-
virus differed among amphibian developmental stages, but metamorphosis was not 
always the most susceptible stage. Thus, the occurrence of metamorphosis is not a 
universal explanation for timing of ranavirus outbreaks in amphibian communities.   

3.4     Temperature and Susceptibility 

 Higher temperatures during summer may be another factor contributing to the tim-
ing of ranavirus outbreaks. Grizzle and Brunner ( 2003 ) hypothesized that the occur-
rence of LMBV die-offs in the summer was driven by increased susceptibility of 
largemouth bass to infection at higher temperatures or other temperature-related 
stressors (e.g., low oxygen concentrations, Goldberg  2002 ), which was supported 
by experimental challenges (Grant et al.  2003 ). The occurrence of EHNV epidemics 
in redfi n perch in the early summer, primarily in juveniles (Langdon  1989 ), may 
also be related to the effects of temperature on susceptibility. Juvenile perch feed in 
shallow, warmer waters in the early summer, which promotes EHNV infection and 
disease (Whittington and Reddacliff  1995 ; Ariel et al.  2009b ), while adults feed in 
deeper, cooler waters and may thus avoid or clear infections (Whittington and 
Reddacliff  1995 ; Whittington et al.  2010 ). Outbreaks of ENHV in rainbow trout in 
Australia do not appear to be associated with temperature, but rather with poor 
husbandry and high stocking densities (Whittington et al.  1999 ,  2010 ). 

 Temperature can infl uence both the kinetics of host–parasite interaction and act 
as a stressor to hosts. First, the replication rates of pathogens and the kinetics of the 
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host’s immune responses can be temperature sensitive (Altizer et al.  2013 ). Ariel 
et al. ( 2009b ) reported that ranavirus replication rates in cell culture increased with 
temperature up to some optimum, which varied by virus isolate and cell line, but 
generally was between 24 and 28 °C. However, the short-fi nned eel ranavirus 
(SERV) isolated from a coldwater eel replicated best at 20 °C or lower, suggesting 
adaptation to its host’s environment (Ariel et al.  2009b ). Grant et al. ( 2003 ) also 
found some evidence for a host-specifi c temperature profi le in LMBV replication. 
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  Fig. 3    The prevalence ( a ,  b ) and dynamics ( c ,  d ) of a susceptible-infected-susceptible (SIS) 
model of ranavirus epidemics in a population of developing wood frog tadpoles that assumes all 
tadpoles are equally susceptible ( a ,  c ) or that tadpoles become more susceptible to infection as they 
approach metamorphosis ( b ,  d ). The model includes a constant background mortality rate of 0.04 
per day (estimated from DeBenedictis  1974 ) and a development rate of 0.25 stages per day from 
Gosner ( 1960 ) stage 20 (hatching) to 41 (metamorphosing), which equates to an average larval 
period of 60 days. The transmission rate was estimated from experimental epidemics in mesocosms 
with wood frog tadpoles (JLB, Washington State University, unpublished data). The initial density 
of hatchling tadpoles is 40 per m 2 , which is at the low end of the natural range of densities (e.g., 
26–790 per m 2 ; Petranka et al.  2003 ), but the results do not qualitatively change at 400 per m 2 . 
Estimates of the rates at which infected animals die (0.0331 per day) or recover (0.0169 per day) 
were from Reeve et al. ( 2013 ). Note that recovered tadpoles become susceptible again in this 
model, as we have no evidence of immune memory in these tadpoles. Stage-specifi c susceptibility 
was included by multiplying the transmission term by the Gosner stage-specifi c odds of becoming 
infected, which was estimated in an LD 50  study in Warne et al. ( 2011 )       
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While LMBV grew slightly faster at 30 °C than 25 °C, it did not replicate past one 
day in cell culture when held at 35 °C, probably because largemouth bass typically 
inhabit aquatic systems that do not exceed 30 °C (Eaton and Scheller  1996 ; Grant 
et al.  2003 ). Thus, there is strong evidence that ranavirus replication is highly 
temperature- and host-dependent (Speare and Smith  1992 ; Grant et al.  2003 ; Rojas 
et al.  2005 ; Ariel et al.  2009b ). 

 To the extent that replication  in vitro  represents replication rates  in vivo , we 
would expect that the rates of viral replication and host mortality would generally 
increase with temperature. Results from several studies are consistent with this 
hypothesis. In experimental water bath challenges of adult redfi n perch, all of the 
fi sh held at water temperatures of 12–21 °C died, while those at 6–10 °C either did 
not become infected or quickly cleared the infection (Whittington and Reddacliff 
 1995 ). Experimental challenges of European stocks of redfi n perch and rainbow 
trout with EHNV also found that mortality increased with temperature (from 15 to 
20 °C), and signifi cant mortality was not observed at 10 °C (Ariel and Jensen  2009 ). 
Similarly, Bayley et al. ( 2013 ) reported >96 % mortality of the common frog 
tadpoles exposed to ranaviruses (FV3 [ Frog virus 3 ] or REV [ Rana esculenta  virus]) 
at 20 °C but <32 % when exposed to ranaviruses at 15 °C. A contrasting pattern was 
observed in a study conducted with larval tiger salamanders and ATV (Rojas et al. 
 2005 ). Larvae exposed to ATV and reared at 10 or 18 °C experienced >80 % mortal-
ity, while larvae reared at 26 °C experienced <38 % mortality. Viral titers were 
higher in salamanders that died at 10 °C than 18 °C, suggesting that colder tempera-
ture may have suppressed immune responses to ATV. There is also evidence in 
turtles that temperature infl uences the outcome of infection. Red-eared sliders 
( Trachemys scripta elegans ) infected with FV3 experienced 100 % mortality at 
22 °C but 50 % mortality at 28 °C (Allender et al.  2013b ). Additionally, time to 
death was shorter and viral loads greater in turtles at 22 °C compared to those at 
28 °C. Allender et al. ( 2013b ) hypothesized that cell-mediated or humoral immune 
responses could be enabling turtles to clear infections at higher temperatures. 

 Instead of focusing on the kinetics of viral replication and host immune responses, 
temperature could be a stressor in and of itself. Bayley et al. ( 2013 ) found greater 
mortality in  R. temporaria  tadpoles held at 20 °C than at 15 °C when exposed to 
FV3, PPIV (Pike perch iridovirus), and REV, but mortality was also greater at 20 °C 
in the unexposed control animals, suggesting that the higher temperature was gener-
ally stressful. Several fi sh challenges have shown increased mortality at tempera-
tures near the fi shes’ thermal limits (Whittington and Reddacliff  1995 ; Grant et al. 
 2003 ). Ariel and Jensen ( 2009 ) noted that mortality in rainbow trout exposed to 
EHNV was highest at 20 °C, which is beyond the natural temperature range for this 
species and likely stressful or immunosuppressive. The redfi n perch in their study, 
however, experienced the greatest mortality at intermediate temperatures—twice as 
much at 15 °C than 20 °C, and very little at 10 °C—so temperature-induced stress 
appears not to be important in this species. Perhaps viral replication was favored at 
15 °C more than the host’s immune system, whereas the immune system was domi-
nant at 20 °C (Ariel and Jensen  2009 ). Similarly, Echaubard et al. ( 2014 ) found that 
the rate of mortality in experimental epidemics with northern leopard frog and wood 
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frog tadpoles was greater at 14 °C than at 22 °C in control populations and those 
exposed to two FV3-like ranaviruses, providing additional evidence that tempera-
ture can infl uence ranavirus epidemics, but likely depends on the host and type of 
virus (Echaubard et al.  2014 ). In conclusion, there are likely multiple mechanisms 
through which temperatures can infl uence ranavirus infections. Given the predicted 
increases in global temperature with climate change, a greater focus on understand-
ing the interactive effects of temperature and its variability (and even temperature 
variability; e.g., Raffel et al.  2006 ; but see Terrell et al.  2013 ) on host and pathogen 
physiology is needed (Altizer et al.  2013 ).   

4     Susceptibility in the Face of Other Natural 
and Anthropogenic Stressors 

 One of the perplexing characteristics of ranavirus epidemics is the variation in the 
outcome, from no (apparent) mortality to massive die-offs. This apparent “random-
ness” has led to the hypothesis that environmental factors, which can vary a great 
deal in space and time, may play an important role in disease outbreaks (Gray et al. 
 2009a ). Natural and anthropogenic stressors are broadly thought to suppress 
immune function, making individuals in stressful environments more susceptible to 
infection and disease (reviewed in Martin  2009 ; Blaustein et al.  2012 ). Although 
many researchers use the term “stress” to mean any aversive, generally unpredict-
able condition that would seem to challenge the organisms, there is a physiological 
basis to the “stress-induced susceptibility” hypothesis. It posits that chronically 
elevated levels of glucocorticoid “stress” hormones have negative impacts on the 
immune system, such as reducing circulating lymphocyte populations, decreasing 
cytokine production, or suppressing cell-mediated immune responses (Sheridan 
et al.  1994 ; Haddad et al.  2002 ; Dhabhar  2009 ). 

 Defi ning stress and identifying stressors and the responses they elicit  a priori , 
however, is often diffi cult, particularly in the absence of detailed information on the 
environmental, developmental, and evolutionary context of the organisms (Martin 
 2009 ). For example, Warne et al. ( 2011 ) found that pro-metamorphic wood frog 
tadpoles challenged with a ranavirus had elevated glucocorticoid concentrations 
relative to controls and also experienced faster development and more rapid weight 
loss. As glucocorticoids are responsible for mobilizing resources (e.g., to respond to 
infection) as well as accelerating metamorphosis in pro-metamorphic tadpoles, the 
authors hypothesized that this surge in glucocorticoids led to an energetic trade-off. 
Only those individuals with large enough energetic reserves could support rapid 
development and a robust immune response at the same time (Warne et al.  2011 ). 
Clearly, linking elevated glucocorticoid concentrations to immunocompetence is 
fraught with diffi culties, even with considerable context. It is thus not surprising 
that the reported effects of natural and anthropogenic stressors on host susceptibility 
to ranaviruses are highly variable. 
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4.1     Predators and Other Natural Stressors 

 Decades of research, especially in amphibians, have demonstrated that predators 
can alter the physiology, behavior, and morphology of individuals and populations 
(Tollrian and Harvell  1999 ). The threat of predation can alter the production of the 
stress hormone corticosterone in tadpoles (Fraker et al.  2009 ), and thus presumably 
their immunocompetence. Recently, several studies have examined the infl uence of 
predation risk on disease outcomes using caged predators, which emit chemical 
cues (i.e., kairomones), but prevent the predator from contacting and killing the prey. 
Kerby et al. ( 2011 ) found that infection prevalence and mortality increased in ATV-
exposed larval tiger salamanders when exposed to chemical cues from larval drag-
onfl y predators ( Anax junius ) compared to controls. However, Haislip et al. ( 2012 ) 
found no effect of predator cues on mortality or infection in a similar set of experi-
ments with four species of larval anurans ( L. clamitans ,  L. sylvaticus ,  P. feriarum , 
and  Hyla chrysoscelis ) and two predator species ( Anax  sp. and  Belostoma fl u-
mineum ). Similarly, Reeve et al. ( 2013 ) found no effect of caged predators (dytiscid 
beetle larvae and dragonfl y larvae) on mortality rates of wood frog tadpoles in labo-
ratory or mesocosm experiments. In this experiment, glucocorticoid concentrations 
did not differ between the control and predator cue treatments, suggesting either 
that predator stress does not universally elevate corticosterone production or that the 
effect dissipates with time. Thus, it seems that predators do not make anuran larvae 
more susceptible to ranavirus infection, although studies with additional species 
would be helpful. In addition, although other putative stressors, such as food-level 
reductions signifi cantly increased glucocorticoid concentrations, tadpoles were not 
more likely to become infected or experience ranavirus-induced mortality (Reeve 
et al.  2013 ). Thus even energetically challenged, physiological stressed amphibians 
may not be more susceptible to ranaviruses.  

4.2     Anthropogenic Stressors 

 It has been hypothesized that anthropogenic stressors may have a stronger impact 
on ranaviral disease than natural stressors (Reeve et al.  2013 ). Indeed, many 
emerging infectious diseases have been linked to human activity, including land-use 
change and pollution (Daszak et al.  2001 ). St-Amour et al. ( 2008 ) found that the 
prevalence of ranavirus infection in green frog ( Lithobates  [ Rana ]  clamitans ) popu-
lations increased with proximity to industry and human housing, although the 
mechanisms were unclear. Several studies have found increased ranavirus preva-
lence in wetlands used by cattle, which were attributed to reductions in emergent 
vegetation, resulting in greater clustering of amphibian larvae, and decreased water 
quality (Gray et al.  2007 ; Greer and Collins  2008 ; Hoverman et al.  2012 ). Gahl and 
Calhoun ( 2008 ,  2010 ) found that the probability of ranavirus outbreaks increased, 
albeit weakly, in ponds with higher concentrations of aluminum ions, low levels of 
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calcium, higher temperatures, and those at higher elevation in the watershed. 
A long-term study in the Great Smoky Mountains National Park, USA, found that 
ranavirus prevalence was greater in plethodontid salamanders at lower elevation, 
which the authors attributed to higher water temperature, greater human access, and 
possibly downstream fl ow of virions (Gray et al.  2009b ; Sutton et al.  2014 ). Despite 
these intriguing results from correlational studies, there is a need for experimental 
studies that investigate the relative importance of anthropogenic stressors and 
identify the underlying mechanisms. 

 Pesticides are another anthropogenic factor that may infl uence the likelihood of 
developing ranaviral disease. Aquatic systems can receive pesticides from direct 
application, terrestrial runoff, or windborne drift (Davidson et al.  2002 ). Moreover, 
many pesticides have immunosuppressive effects on wildlife (Marcogliese and 
Pietrock  2011 ). Larval tiger salamanders exposed to the herbicide atrazine had 
reduced peripheral leukocyte counts and experienced increased susceptibility to 
ATV infection (Forson and Storfer  2006b ). The insecticides chlorpyrifos and carba-
ryl also increased mortality of ATV- exposed tiger salamanders (Kerby and Storfer 
 2009 ; Kerby et al.  2011 ). However, Forson and Storfer ( 2006a ) found that atrazine 
in the water reduced ATV infection in larval long-toed salamanders ( Ambystoma 
macrodactylum ). The authors hypothesized that the pesticide may have inactivated 
the virus or that the pesticide stimulated the immune system of the host. In all four 
studies, exposure to pesticides and ranavirus occurred simultaneously. Because the 
immunosuppressive effects of pesticides can take several days to manifest, experi-
mental designs that initiate pesticide exposure prior to virus addition may reveal 
more consistent outcomes.   

5     Ranavirus Transmission Within a Species 

 Ranaviruses can be transmitted by contact with infected individuals, through the 
water or on fomites (e.g., pond substrates), and by consuming part or all of infected 
animals (Langdon et al.  1988 ; Reddacliff and Whittington  1996 ; Jancovich et al. 
 1997 ; Plumb and Zilberg  1999b ; Woodland et al.  2002b ; Pearman et al.  2004 ; Harp 
and Petranka  2006 ; Brunner et al.  2007 ; Cunningham et al.  2007a ; Robert et al. 
 2011 ; Brenes et al.  2014a ). Viral mRNA is detectable in the intestines of larval and 
adult African clawed frogs ( Xenopus laevis ) as early as 3 h after exposure to virus 
in water and then spreads to other tissues, suggesting that the intestines are a pri-
mary point of entry of waterborne virus in amphibians (Robert et al.  2011 ). The skin 
may not be a common site of infection in metamorphosed amphibians because they 
secrete antimicrobial peptides on their skin, which can inactivate several types of 
pathogens, including FV3 and ATV (Chinchar et al.  2001 ,  2004 ; Sheafor et al.  2008 ; 
Rollins-Smith  2009 ). Brunner et al. ( 2007 ), however, demonstrated that a 1 s skin-
to- skin contact out of water was suffi cient for transmission of ATV from infected, 
symptomatic tiger salamander larvae to uninfected larvae, so entry through the 
epithelium is possible at least during the larval stage. 
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 We suspect that consuming infected tissues is a common and important route of 
transmission in amphibian larvae. Cannibalism is common in amphibians and reptiles 
(Crump  1983 ; Polis and Myers  1985 ). Even anuran tadpoles engage in cannibalism 
and scavenging (Altig et al.  2007 ). Two studies found that wood frog and Italian 
agile frog ( Rana latastei ) tadpoles had greater mortality rates when allowed to scav-
enge dead FV3-infected conspecifi cs (Pearman et al.  2004 ; Harp and Petranka 
 2006 ). Similarly, Brunner et al. ( 2007 ) found that ATV-infected tiger salamander lar-
vae were most infectious near or after death when they could be easily consumed. 

 The absence of gastrointestinal lesions in fi sh intraperitoneally injected with 
EHNV but their occurrence in naturally infected fi sh suggests an oral route of infec-
tion in nature (Langdon et al.  1988 ; Reddacliff and Whittington  1996 ). The LMBV 
is also transmissible through the water (Plumb and Zilberg  1999b ) and by consum-
ing infected prey (Woodland et al.  2002a ). Transmission by direct contact may also 
be possible, as LMBV has been detected in cutaneous mucus (Woodland et al. 
 2002b ). In an experiment by Grant et al. ( 2005 ), LMBV was transmitted from 
infected to naïve fi sh in small aquaria nearly as effi ciently when direct contact was 
prevented as when it was allowed, suggesting that transmission through water is the 
dominant route. One caveat is that while outbreaks of LMBV disease primarily 
involve adults, most transmission studies used juvenile fi sh. 

 The route of transmission to chelonians is less clear. Johnson et al. ( 2007 ) could 
only induce infections in a box turtle ( Terrepene ornata ornata ) and several red- 
eared sliders with intramuscular injections of Burmese star tortoise ranavirus, but 
those that were orally exposed to the same dose remained uninfected. More recently, 
however, Brenes et al. ( 2014a ) demonstrated water-borne transmission of an FV3- 
like ranavirus isolated from pallid sturgeon ( Scaphirhynchus albus ; Waltzek et al. 
 2014 ) to red-eared sliders: 20 % of turtles that were bath exposed and 30 % of tur-
tles co-housed with infected Cope’s gray treefrog ( H. chrysoscelis ) became infected. 
It should also be noted that transmission by arthropod vectors has not been ruled 
out. The frog erythrocytic virus, which appears to be an iridovirus but likely not a 
ranavirus (Gruia-Gray et al.  1989 ), was mechanically transmitted between meta-
morphosed bullfrogs by  Culex territans  mosquitos and the midge,  Forcipomyia  
( Lasiohelea )  fairfaxensis  (Gruia-Gray and Desser  1992 ). Allender et al. ( 2006 ) 
speculated that ranaviruses may be transmitted between chelonians by vectors 
because the virus is found in circulating blood cells in turtles. Kimble et al. ( 2014 ) 
recently detected ranavirus in mosquitoes at a site with ranavirus-infected eastern 
box turtles. Mosquito transmission might help explain how ranaviruses continue to 
spread between turtles that rarely encounter one another and die fairly quickly 
from infection. 

 Different routes of transmission likely result in individuals being exposed to 
different amounts of virus, which can have dramatic effects on the probability and 
outcome of infection. Dose–response experiments in fi sh and amphibians have 
demonstrated that exposure to larger doses of ranavirus leads to an increased 
probability of infection and death with reduced survival time (Plumb and Zilberg 
 1999b ; Pearman et al.  2004 ; Brunner et al.  2005 ; Deng et al.  2011 ; Warne et al. 
 2011 ). Consuming infected tissues, which likely exposes hosts to a greater dose of 
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virus, is thus expected to increase the chance of infection compared with a single 
contact or swimming through contaminated water. Consistent with this hypothesis, 
Hoverman et al. ( 2010 ) found that tadpoles that were orally inoculated with FV3-
like viruses died faster than those exposed via water bath. Although rarely evaluated 
in an ecologically relevant context, there may be a minimum dose necessary to 
cause infection and disease (e.g., 10 2  PFU mL −1  in tiger salamander larvae) and a 
threshold above which dose becomes unimportant (e.g., >10 4  PFU mL −1 ; Brunner 
et al.  2005 ). It is important to note that even within highly standardized exposures, 
the course and outcome of infections can vary greatly (e.g., Beck et al.  2006 ). 

 Lastly, we are aware of no published studies on ranavirus transmission rates or 
dynamics in wild populations. Virtually every study on transmission focuses on the 
routes by which ranavirus can be transmitted, ignoring the critical role that host 
behavior, density, and contact rates may play in shaping transmission dynamics. One 
problem is a lack of longitudinal data. That is, studies that track the incidence of 
ranavirus infection and mortality over time are rare (Gray et al.  2015 ). A focus on 
collecting the data that could be used to parameterize epidemiological models would 
signifi cantly advance our understanding of ranavirus ecology (Gray et al.  2015 ).  

6     Ranavirus Transmission Between Species 

 It is clear that ranaviruses can infect a wide range of hosts (Duffus et al.  2015 ), but 
until recently it was unclear whether these viruses were restricted to certain closely 
related taxa or could be transmitted between classes of ectothermic vertebrates. 
Anecdotal evidence from the wild suggested the possibility of interclass transmis-
sion. For example, morbid fi sh and turtles have been reported in association with 
amphibian die-offs due to ranaviral disease (Mao et al.  1999 ; Farnsworth and Seigel 
 2013 ). Moreover, several laboratory studies have demonstrated that BIV and FV3- 
like viruses isolated from one vertebrate class could be used to experimentally infect 
animals in another (Moody and Owens  1994 ; Ariel and Owens  1997 ; Bang Jensen 
et al.  2009 ,  2011b ; Gobbo et al.  2010 ; Bayley et al.  2013 ; Brenes et al.  2014b ). 
Recently, Brenes et al. ( 2014a ) paired ranavirus-exposed and -unexposed hosts from 
different vertebrate classes on opposite sides of a fi ne mesh screen, preventing direct 
contact but allowing water and virions to pass through. They demonstrated that red- 
eared slider hatchlings and western mosquito fi sh ( Gambusia affi nis ) were able to 
transmit an FV3-like ranavirus to Cope’s gray treefrog tadpoles, resulting in 50 % 
and 10 % mortality, respectively. Treefrog tadpoles infected 30 % of red-eared slid-
ers (although no mortality occurred in the 28-day experiment), but none of the mos-
quito fi sh. While it is important to demonstrate that interclass transmission is 
possible, the more important question may be understanding how individuals of 
different classes contact (or consume) one another in ways that promote direct 
transmission or overlap in space and time so that indirect transmission can occur 
(Gray et al.  2009a ).  
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7      Susceptibility to Ranaviruses Among Species 

 There are a growing number of experimental studies investigating the relative sus-
ceptibility of amphibian species to ranavirus infection and disease (Cullen et al. 
 1995 ; Cullen and Owens  2002 ; Schock et al.  2008 ; Hoverman et al.  2010 ,  2011 ; 
Haislip et al.  2011 ). Until the recent studies by Brenes et al. ( 2014a ,  b ), comparative 
studies involving reptiles were generally lacking, and those involving fi sh are largely 
restricted to EHNV (Becker et al.  2013 ; Langdon  1989 ; but see Brenes et al.  2014b ). 
Note, however, that several recent studies have exposed different fi sh species to 
multiple ranaviruses from fi sh and amphibians, so collectively information is accu-
mulating on the relative susceptibility of fi sh (Bang Jensen et al.  2009 ,  2011a ; 
Gobbo et al.  2010 ; Brenes et al.  2014b ). 

 From these studies, two patterns seem to emerge. First, species vary a great deal 
in susceptibility to any given ranavirus. For instance, Becker et al. ( 2013 ) chal-
lenged 12 economically and ecologically important freshwater fi sh in Australia with 
EHNV. Four were susceptible, one (the eastern mosquitofi sh,  G. holbrooki ) was a 
potential carrier, and seven either did not become infected or recovered from infec-
tion (Becker et al.  2013 ). Similarly, the outcome of exposure to an FV3-like ranavi-
rus varied dramatically among 14 anurans and fi ve caudates from North America, 
from complete mortality to no infections detected at the end of the experiment 
(Hoverman et al.  2010 ,  2011 ; Haislip et al.  2011 ). Challenges with three FV3-like 
ranaviruses isolated from a chelonian, fi sh, and anuran resulted in infection in only 
two of fi ve fi sh species (including the western mosquitofi sh) and two of three highly 
aquatic turtles (Florida softshell turtle,  Apalone ferox , and Mississippi map turtle, 
 Graptemys pseudogeographica kohni ; Brenes et al.  2014b ). In addition to differ-
ences among host species, it is clear that susceptibility varies among developmental 
stages and environmental conditions (Sect.  3.3 ). So while we often speak of the 
susceptibility of fi sh or frogs to ranaviruses or treat all ranaviruses as very similar, 
it is increasingly clear that such broad statements mask a great deal of important 
variation. Explaining this variation remains a challenge. 

 In a promising step forward, Hoverman et al. ( 2011 ) used a comparative phylo-
genetic approach with 19 amphibian species from seven families to assess possible 
correlates (e.g., phylogenetic relatedness, life history, ecology) of susceptibility to 
ranavirus (FV3) infection. Certain families (Ranidae) were more susceptible on 
average than others (Hylidae and Ambystomatidae), but there were also patterns 
related to ecology and life history. Species that breed in semi-permanent wetlands 
and have limited distributions (i.e., rare species) were more susceptible to infection. 
Additionally, there was evidence that species with rapidly developing larvae were 
more susceptible to infection. This result could be driven by life history trade-offs 
such that investment in growth and development comes at the cost of defense against 
pathogens. Such a trade-off has been observed with trematode infections in amphib-
ians (Johnson et al.  2012 ), and it is clear that ranavirus infections do impart costs in 
terms of growth and development (Echaubard et al.  2010 ). 

Ranavirus Ecology and Evolution: From Epidemiology to Extinction



88

 Given this interspecifi c variation in susceptibility (and, presumably, differences 
in shedding rates and behavior), community composition is likely to infl uence the 
likelihood, dynamics, and outcome of ranavirus outbreaks. Species that amplify 
pathogen transmission increase the likelihood of an outbreak occurring (Paull et al. 
 2012 ). Moreover, the order in which host species are exposed to the pathogen may 
change outcomes. Brenes ( 2013 ) demonstrated in aquatic mesocosms that, if wood 
frog tadpoles were exposed to ranavirus fi rst, community-level mortality was greater 
than if upland chorus frog ( P. feriarum ) or spotted salamander ( A. maculatum ) 
larvae were exposed fi rst. Additionally, if the community was composed of three 
highly susceptible species, community-level morality was greater than if it was 
composed of only one highly susceptible species (Brenes  2013 ). 

 The second general pattern of susceptibility is that, despite their generally broad 
host ranges, ranaviruses appear to be better at infecting animals in the taxonomic 
class from which they were isolated. In particular, it appears that fi sh and at least 
some reptiles are less susceptible to ATV and FV3-like ranaviruses than amphibians 
(Jancovich et al.  2001 ; Picco et al.  2010 ; Allender et al.  2013b ; Brenes et al.  2014a ). 
Several studies have demonstrated little or no transmission of ATV (Jancovich et al. 
 2001 ; Picco et al.  2010 ) and FV3 to fi sh (Ariel et al.  2010 ; Gobbo et al.  2010 ; Bang 
Jensen et al.  2011a ; but see Bang Jensen et al.  2011b ). Similarly, amphibians may 
be less susceptible to fi sh ranaviruses. Bayley et al. ( 2013 ) found that the European 
common frog could be infected with FV3 and REV as tadpoles and adults (and with 
PPIV as tadpoles), but not with several other fi sh viruses (doctorfi sh virus, European 
sheetfi sh virus, guppy virus 6, EHNV, and SERV). Distinctions in host range may 
be found even within species of ranavirus. For example, the turtles in Brenes et al. 
( 2014b ) developed subclinical infections with FV3-like viruses isolated from a fi sh 
and turtle, but none were infected by the frog isolate. We caution against extrapolat-
ing these patterns too broadly, however. Researchers have only begun to sketch the 
host ranges of ranaviruses, so it remains an open question whether the patterns 
described above are general, and if so, why.  

8     Persistence of Ranaviruses in the Environment 
and Carriers 

 There are two potential mechanisms of persistence of ranaviruses: enduring in the 
environment or in sublethally infected hosts (reservoirs). Historically, ranaviruses 
were thought to be resistant to degradation in the environment. For instance, EHNV 
can persist in fi sh tissues frozen at −20 and −70 °C for more than 2 years and for at 
least 7 days at 4 °C (Langdon  1989 ). EHNV is also persistent for long periods in dis-
tilled water (i.e., no decrease in titer over 97 days at 15 °C) and in tissue culture 
medium dried on sterile plastic Petri dishes (between 113 and 200 days at 15 °C in the 
dark; Langdon  1989 ). Similarly, LMBV persists in frozen tissues for 155 days (Plumb 
and Zilberg  1999a ). However, ranaviruses degrade more quickly under more ecologi-
cally realistic conditions. In one study, LMBV lost 90 % of its infectivity in water in 
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24 h (its T-90 value), although it remained detectable in water for at least 7 days 
(Grizzle and Brunner  2003 ). Nazir et al. ( 2012 ) found that four FV3-like viruses iso-
lated from frogs, a tortoise, and a gecko had T-90s of between 22 and 34 days in 
unsterile pond water at 20 °C and up to 72 days at 4 °C, which is long enough to allow 
for continued transmission from the environment within an epidemic, if not between 
years. However, their experiment isolated virus particles from the direct action of 
microbes, which is problematic because bacteria and other microbes might otherwise 
be able to consume and inactivate pathogens. To address this issue, Johnson and 
Brunner ( 2014 ) collected water from fi ve ponds and either fi lter-sterilized it, 
UV-disinfected it, or left if unmanipulated then added an FV3-like ranavirus directly 
to the water. They found the T-90 value in fi lter-sterilized water was 8 days and only 1 
day in the unmanipulated pond water where aquatic microbes were present. Similarly, 
rapid degradation of ranavirus was observed in spring water when the common 
zooplankton  Daphnia pulex  were added to virus-inoculated water. Johnson and 
Brunner ( 2014 ) concluded that while ranaviruses may be resistant to adverse condi-
tions (e.g., drying, freezing), they are likely rapidly degraded in water by naturally 
occurring microbes and zooplankton, suggesting direct routes of  transmission (i.e., 
contact, ingestion) may be more important than waterborne transmission. An important 
caveat is that all of these studies used virus grown in cell culture; ranaviruses shed in 
mucous, sloughed skin, etc., may be protected from microbes and the environment. 

 Nazir et al. ( 2012 ) also tested the persistence of ranaviruses in soil and found 
T-90s of 30–48 days, which raises concern over the potential for ranaviruses to be 
translocated in contaminated soil (Harp and Petranka  2006 ). Brunner et al. ( 2007 ), 
however, found that ATV becomes noninfectious in pond substrate that is allowed to 
dry. Thus, whether water bodies or their substrate remain hydrated may be critical. 

 Ranaviruses can persist within infected hosts, whether dead or alive. It is clear 
that ranaviruses can persist for long periods in frozen carcasses (e.g., Langdon 
 1989 ). In environments that freeze soon after die-offs, frozen carcasses might be an 
important source of ranavirus infection in the following year (Bollinger et al.  1999 ). 
Alternatively, individuals of certain species or life history stages that are carriers 
(i.e., remain infected and infectious for long periods without clearing or succumb-
ing to the infection) may act as reservoirs for more susceptible species or stages 
(Haydon et al.  2002 ). In general, only a small fraction of individuals survive for 
weeks or months with inapparent infections (Langdon  1989 ; Cullen and Owens 
 2002 ; Brunner et al.  2004 ; Robert et al.  2007 ; Haislip et al.  2011 ; Hoverman et al. 
 2011 ; Brenes  2013 ; Brenes et al.  2014b ). For example, of the 43 ectothermic verte-
brate species challenged with FV3-like ranaviruses by Hoverman et al. ( 2011 ), 
Haislip et al. ( 2011 ), Brenes ( 2013 ), and Brenes et al. ( 2014b ), there was about an 
85 % correlation between infection and mortality after 28 days. Still, it may take 
only a few subclinically infected individuals to transmit ranavirus to more suscep-
tible individuals or species, thereby initiating outbreaks (Brunner et al.  2004 ). 
Additionally, Robert et al. ( 2007 ) demonstrated that  X. laevis , which is generally 
resistant to FV3 infections, can be asymptomatic carriers. In a subsequent study, 
Morales et al. ( 2010 ) showed that peritoneal macrophages sometimes harbor quies-
cent FV3 infections for at least 3 weeks. Asymptomatic infections can be  reactivated 
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in animals that are immunocompromised by γ-irradiation (Robert et al.  2007 ). 
Whether these inapparently infected  Xenopus  or individuals of other species survive 
and retain infections over longer periods, and how they can transmit the infection to 
other individuals remain open questions (but see Sect.  3.2 ).  

9     Selection and Coevolution of Ranaviruses and Their Hosts 

 Ranaviruses can be a strong selective force on their host populations, frequently 
causing epidemics that result in extreme population fl uctuations and even localized 
extinctions. As an example, past selection by ranavirus infections appears to favor 
certain MHC Class I alleles (associated with viral recognition and antigen presenta-
tion) among European common frog populations. Particular MHC Class I alleles 
were found in higher frequencies among populations with a history of ranaviral 
disease relative to populations with no history of infection (Teacher et al.  2009 ). 
In addition, decreases in heterozygosity and relatedness were observed, suggesting 
epidemics led to behavioral changes in mating patterns (Teacher et al.  2009 ). 

 There is ample evidence of variation among amphibian populations in their sus-
ceptibility to ranaviruses, presumably because of underlying genetic differences. 
Laboratory experiments commonly reveal dramatic differences in mortality or 
infection rates between populations (Pearman et al.  2004 ; Brunner et al.  2005 ; 
Pearman and Garner  2005 ; Schock et al.  2008 ; Brunner and Collins  2009 ; Echaubard 
et al.  2014 ). As an example, Pearman et al. ( 2004 ) found that two populations of 
Italian agile frog ( Rana latastei ) with low genetic diversity experienced 100 % 
mortality in just 5 days following exposure to FV3, while four other populations 
with higher genetic diversity experienced 40–70 % mortality. Similarly, inbred lines 
of the African clawed frog tadpoles had dramatically lower survival times than out-
bred lines (Gantress et al.  2003 ). 

 Given the large, and presumably heritable, variation in susceptibility and the 
strong selective pressure placed on host populations by ranaviruses, we would 
generally expect ranaviruses and their hosts to coevolve. This coevolutionary poten-
tial is exemplifi ed by the tiger salamander–ATV system because tiger salamanders 
are commonly found in the absence of other amphibians and epidemics are common 
(Brunner et al.  2004 ). Three lines of evidence suggest coevolution in this system. 
First, there is a negative correlation between disease frequency and cannibal 
frequency among salamander populations throughout Arizona (Pfennig et al.  1991 ). 
Although cannibals enjoy a performance advantage by preying on conspecifi cs 
(Reilly et al.  1992 ), cannibalism comes at the cost of increased risk of acquiring 
ATV (and other pathogens) from conspecifi cs, such that reduced cannibalism might 
prevent disease spread (Pfennig et al.  1991 ; Bolker et al.  2008 ). Common garden 
experiments suggest these patterns are genetically based and thus likely result from 
past selection (Parris et al.  2005 ). Animals were not plastic in development of the 
cannibalistic phenotype between treatments with and without ATV, and observed 
differences in the frequency of cannibals in the fi eld were replicated in the lab 
(Parris et al.  2005 ). 
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 Second, the tight coupling of viral persistence and the life cycle of the host suggests 
a coevolutionary history. Larvae, branchiate adults, and metamorphosed adults are 
all susceptible to ATV, but larvae are signifi cantly more likely to recover than meta-
morphs (Brunner et al.  2004 ). Ranavirus epidemics occur in ponds in the larval 
stage, but many metamorphs leave ponds with sublethal infections, overwinter, and 
return in later years to breed (Brunner et al.  2004 ). Salamanders themselves are thus 
a critical reservoir for ATV, serving as a key source of virus transmission among or 
within populations across years. 

 Third, molecular genetic analyses of phylogenetic concordance suggest coevolu-
tion between salamander populations and local ATV strains (Storfer et al.  2007 ). 
Excluding the three host switches attributed to the movement of infected salaman-
ders as fi shing bait (Jancovich et al.  2005 ), there is complete concordance between 
phylogenetic trees for both salamanders and virus (Storfer et al.  2007 ). In addition, 
nodal depths, or the timing of putative speciation or divergence events, were strongly 
correlated in ATV strains and their associated tiger salamander populations (Storfer 
et al.  2007 ). Moreover, there appears to be local selection for molecular evolution of 
different ATV strains in different tiger salamander populations. ATV genes associ-
ated with host immune evasion (Jancovich and Jacobs  2011 ) have evolved unique 
amino acid differences among spatially distinct tiger salamander populations inde-
pendently of their phylogenetic relationships (Ridenhour and Storfer  2008 ). Taken 
together, these fi ndings provide strong support for a coevolutionary history of ATV 
and its tiger salamander host.  

10     The Evolution of Virulence in Ranaviruses 

 Although ranaviruses are often recognized for their high virulence, there is wide 
variation in virulence among viral strains and host species. For example, Brunner 
and Collins ( 2009 ) challenged tiger salamander larvae with nine strains of ATV and 
found that virulence (measured as the time to death) varied substantially among 
isolates and was apparently heritable. This and similar results from many other 
studies that consider virulence raise the question: why are some viruses or strains 
more virulent than others? 

 One widespread and important hypothesis for variation in virulence posits a 
trade-off between transmission and virulence, the latter of which is generally seen 
as an unavoidable by-product of replicating in and being transmitted from the host 
(Lenski and May  1994 ; Alizon et al.  2009 ). Highly virulent pathogens may have 
fewer opportunities for transmission than less virulent strains because they rapidly 
kill their hosts, leading to the widespread assumption that parasites evolve to inter-
mediate virulence levels. However the optimal level of virulence, and even the 
existence of a trade-off, depends heavily on the ecology of the host (e.g., density, 
background mortality), pathogen (e.g., competition between pathogens within a 
host, host immune responses), and their interaction (e.g., transmission mode, cause 
of pathogenesis; Day  2001 ; Day  2002 ; Day and Proulx  2004 ; Ebert  1999 ). 
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Conditions that favor rapid transmission (e.g., dense host populations, an infl ux of 
naïve hosts), reduce the infectious period (e.g., high background mortality rates, 
rapid clearance by the immune system), or lead to competition among strains within 
hosts (i.e., multiple infections) generally favor more virulent pathogens (May and 
Nowak  1994 ; Ebert and Mangin  1997 ; Williams and Day  2001 ; Cooper et al.  2002 ; 
Gandon et al.  2002 ; Day  2003 ; Restif and Koella  2003 ; Alizon and van Baalen 
 2008 ). Hosts that tolerate infections (i.e., minimize the fi tness consequences) rather 
than resist or clear infections are expected to circumvent the evolution of increased 
host virulence (Roy and Kirchner  2000 ; Restif and Koella  2003 ). The details of the 
host–pathogen system, however, often drive the expected evolutionary dynamics 
(Day  2001 ,  2002 ; Sabelis and Metz  2002 ; Day and Proulx  2004 ), so we must be 
careful in applying virulence theory to ranavirus–host systems. 

 One pattern that is becoming clear, however, is that ranaviruses isolated from 
captive settings (e.g., aquaculture and ranaculture facilities, bait shops) are more 
virulent relative to wild strains. For instance, an ATV strain isolated from a fi shing 
bait store was signifi cantly more virulent (i.e., caused greater mortality) to tiger 
salamander larvae than native strains (Storfer et al.  2007 ). Similarly, an FV3 strain 
isolated from a bullfrog farm in Idaho (RCV-Z; Majji et al.  2006 ) grew signifi cantly 
faster in vivo and caused signifi cantly higher mortality in bullfrog and spotted frog 
( Lithobates luteiventris ) tadpoles than a strain isolated from a wild bullfrog popula-
tion in Washington (AS, KC, Washington State University,  unpublished data ). 
Hoverman et al. ( 2011 ) also found that an FV3-like ranavirus from a captive bull-
frog facility was more virulent, causing an average of 51 % more mortality in labo-
ratory experiments across eight species of larval anurans, compared to the type 
isolate of FV3. An FV3-like ranavirus isolated from a pallid sturgeon hatchery has 
proven to be among the most virulent strains identifi ed to date (Waltzek et al.  2014 ). 

 There are several hypotheses that might explain the evolution of increased viru-
lence of ranaviruses in captive settings. First, the cost of virulence—host death 
before transmission has occurred—may be reduced in captive settings because of 
high rates of background mortality or because conditions promote rapid transmis-
sion. High stocking densities are likely to increase contact rates and the buildup of 
shed virions, both of which will increase transmission rates. Also, the death of the 
host is not the end of the infectious period for ranaviruses. Depending on the facility, 
infectious carcasses may not be removed before susceptible individuals scavenge 
them and become infected, whereas in nature other scavengers and organisms that 
facilitate decomposition are likely to be more abundant, and thus these carcasses 
disappear more quickly. Second, selection during the initial phases of a growing 
epidemic, when susceptible hosts are not limiting, should favor rapid transmission 
and virulence (Day and Proulx  2004 ; Bolker et al.  2010 ). If new, susceptible animals 
are continually introduced into a population undergoing an epidemic, as appears to 
be the case in some bait shops selling tiger salamanders (Picco and Collins  2008 ), 
this could favor more proliferative, virulent viral strains over those that would be 
favored when hosts become limiting. Lastly, competition between pathogens within 
a host can favor increased virulence, even at the cost of reduced transmission (e.g., 
de Roode et al.  2005 ). Captive settings, which often receive  animals from many 
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sources (e.g., Woodland et al.  2002b ), may harbor several co-circulating ranavirus 
strains, with the effect of selecting the most virulent strains (Antia et al.  1994 ; Bull 
 1994 ). While all of these hypotheses remain to be tested, collectively their logic 
suggests a need to change the conditions and practices in captive facilities that may 
promote ranavirus transmission, mixing, and persistence. 

 These results also raise concern that introduction of infected bait tiger salaman-
ders or American bullfrogs may introduce novel, highly virulent viral strains into 
areas with naïve hosts or into areas where hosts have been previously exposed but 
are adapted to other ranavirus strains. Bullfrogs in particular comprise a major por-
tion of amphibians involved in international trade. Schloegel et al. ( 2009 ) reported 
that over 28 million amphibians were imported into the USA during 2000–2005, 
with an 8.5 % prevalence of ranavirus infection. Farmed and wild bullfrogs and 
other amphibians are traded globally in enormous quantities (Altherr et al.  2011 ), 
making international trade an important route for the translocation and introduction 
of ranaviruses (Fig.  2 , Schloegel et al.  2010 ). A key question is thus whether intro-
duced, virulent ranavirus strains persist or outcompete resident strains of ranavirus 
in the wild.  

11     The Risk of Extinction from Ranaviruses 

 De Castro and Bolker ( 2005 ) reviewed three theoretical mechanisms by which patho-
gens could cause the extinction of their host. First, small, isolated populations may be 
at risk of stochastic extinction from disease. Highly transmissible, virulent pathogens, 
such as ranaviruses, can also reduce initially dense populations to levels where demo-
graphic fl uctuations or related genetic effects (e.g., inbreeding) can lead to stochastic 
extinction. Second, pathogens transmitted in a density-independent fashion are capa-
ble of continued transmission as host densities decline, even to the point of host 
extinction. One common example of density-independent transmission is sexually 
transmitted infections, but any form of aggregation (e.g., localized feeding or breed-
ing sites) can maintain high rates of transmission, regardless of host density. Even 
brief periods of density-independent transmission (e.g., during breeding) can lead to 
pathogen-driven extinction (Ryder et al.  2007 ). Third, pathogens that have biotic 
(other species) or abiotic (environmental) reservoirs will also continue to infect hosts 
irrespective of host densities, and so have the potential to cause host extinction. 

 Ranaviruses appear to meet the conditions required to cause host extinction by 
any or all of these mechanisms (Miller et al.  2011 ). Given the broad host range and 
frequent movement of ranaviruses in regional and international trade, it is easy to 
imagine how a highly virulent and transmissible ranavirus might be introduced into 
small or naïve populations. Second, while a laboratory experiment with ATV in 
tiger salamander larvae found that the rate of transmission increased with the den-
sity of infected larvae, it quickly saturated and led to substantial rates of infection 
even at the lowest density (Greer et al.  2008 ). Moreover, there are many examples 
of ectothermic vertebrates aggregating as they feed, shelter, and mate, which could 
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lead to at least short-term density-independent transmission. Lastly, as noted above, 
ranaviruses may persist in the environment long enough to be transmitted to naïve 
hosts. Perhaps more importantly, fi sh, amphibians and reptiles often overlap with 
other, less susceptible or more abundant species that act as biotic reservoirs for the 
species of interest. Collectively, there is good reason to think that ranaviruses can 
lead to host extinction (Miller et al.  2011 ). 

 In spite of this potential for ranaviruses to cause host extinctions, it is diffi cult to 
fi nd specifi c examples of ranavirus leading to regional or global extinctions or, until 
recently, declines. Few long-term datasets exist that have followed wild populations 
of ectothermic vertebrates with reoccurring die-offs from ranavirus, and at least for 
amphibians, long datasets are often required to be certain of declines (Alford and 
Richards  1999 ). To some degree this may be explained by the fact that ranaviruses 
often affect the larval or juvenile stages (see Sects.  2.1  and  3.3 ) and for many taxa 
these stages can be less important demographically than adults (Biek et al.  2002 ). 
We would thus expect populations or species where the adults were most affected 
by ranaviruses to display the greatest declines (but see Earl and Gray  2014 ). Indeed, 
Teacher et al. ( 2010 ) reported an 81 % median reduction in population abundance 
of common frog ( Rana temporaria ) adults at ponds in the UK with known reoccur-
ring die-offs from ranaviral disease. Again, ranaviruses in the UK appear to primar-
ily affect adults (Cunningham et al.  1993 ; Teacher et al.  2010 ; Duffus et al.  2013 ). 
Similarly, the signifi cant ranavirus mortality observed in adult turtles presumably 
puts these populations at increased risk of extinction as well (Belzer and Seibert 
 2011 ; Farnsworth and Seigel  2013 ). 

 Repeated ranavirus epidemics in larval amphibians may also lead to declines 
and local extinctions. Petranka et al. ( 2003 ,  2007 ), for instance, reported minimal 
recruitment of wood frogs at several newly constructed wetlands over an 8-year 
period due to annual die-offs from ranaviral disease. Recently, Earl and Gray 
( 2014 ) used a matrix population-projection model to demonstrate that local extir-
pation of a closed wood frog population was likely if larvae or metamorphs were 
exposed to ranavirus once every 5 years. For populations that were exposed every 
year, time to extinction could be as rapid as 5 years (Earl and Gray  2014 ). Moreover, 
a sensitivity analysis showed that survival of the pre-metamorphic stages was more 
important than post-metamorphic stages for the wood frog, providing initial evi-
dence that signifi cant mortality of larvae due to ranavirus could lead to population 
extinction (Earl and Gray  2014 ). Susceptible species in fragmented landscapes 
with limited dispersal may be at greater risk of extinction than has been previously 
recognized (Collins and Crump  2009 ). 

 The most compelling example of recurring ranavirus epidemics leading to 
amphibian declines comes from the Picos de Europa National park in Spain 
(Price et al.  2014 ). These communities were monitored for six years, during which 
ranaviruses were apparently introduced, leading to signifi cant declines over the fol-
lowing years. What makes these virus-host community interactions different from 
others that have not suffered declines remains unknown. Clearly, there is a need for 
more studies of the population- level effects of ranavirus outbreaks, particularly 
long-term studies of sites with reoccurring ranavirus die-offs (Gray et al.  2015 ). 
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Additionally, it will be important to incorporate host and virus dispersal (e.g., 
 metapopulation dynamics) into mathematical models and studies to understand the 
risk that ranaviruses pose to their ectothermic vertebrate hosts.     
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