Skip to main content

On the Evaluation of Automated MRI Brain Segmentations: Technical and Conceptual Tools

  • Chapter
  • First Online:
Developments in Medical Image Processing and Computational Vision

Abstract

The present work deals with segmentation of Glial Tumors in MRI images focusing on critical aspects in manual labeling and reference estimation for segmentation validation purposes. A reproducibility analysis was conducted confirming the presence of different sources of uncertainty involved in the process of manual segmentation and responsible of high intra-operator and inter-operator variability. Technical and conceptual solutions aimed to reduce operator variability and support in the reference estimation process are integrated in GliMAn (Glial Tumor Manual Annotator), an application allowing to view and manipulate MRI volumes and implementing a label fusion strategy based on fuzzy connectedness. A set of experiments was conceived and conducted to evaluate the contribution of the solutions proposed in the process of manual segmentation and reference data estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clarke L, Velthuizen R, Camacho M, Heine J, Vaidyanathan M, Hall L, Thatcher R, Silbiger M (1995) MRI segmentation: methods and applications. Magn Reson Imaging 13(3):34–3

    Article  Google Scholar 

  2. Bouix S, Martin-Fernandez M, Ungar L, Koo MNMS, McCarley RW, Shenton ME (2007) On evaluating brain tissue classifiers without a ground truth. Neuroimage, 36:1207–1224

    Article  Google Scholar 

  3. Balafar MA Ramli AR, Saripan MI, Mashohor S Review of brain MRI image segmentation methods. Artif Intell Rev 33(3):261–274 (2010)

    Article  Google Scholar 

  4. Warfield SK, Zou KH, Wells WM (2004) Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Transactions Medical Imaging 23(7):903–921. http://view.ncbi.nlm.nih.gov/pubmed/15250643.

    Article  Google Scholar 

  5. Rohlfing T, Maurer CR Jr (2007) Shape-based averaging. IEEE Trans Image Process 61:153–161

    Google Scholar 

  6. Robitaille N, Duchesne S (2012) Label fusion strategy selection. Int J Biomed Imaging 2012:431095. doi:10.1155/2012/431095

    Google Scholar 

  7. Pedoia V, De Benedictis A, Renis G, Monti E, Balbi S, Binaghi E (2012) Proceedings of the 1st International Workshop on Visual Interfaces for Ground Truth Collection in Computer Vision Applications. (ACM, New York, NY, USA, 2012), VIGTA ’12, pp 8:1–8:4. doi:10.1145/2304496.2304504. http://doi.acm.org/10.1145/2304496.2304504

  8. Udupa J, Samarasekera S (1996) Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. Gr Models Image Process 58(3):246–261

    Article  Google Scholar 

  9. Duffau H (2009) Surgery of low-grade gliomas: towards a ‘functional neurooncology’. Curr Opin Oncol 21:543–549

    Article  Google Scholar 

  10. Duffau H (2005) Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. Lancet Neurol 4(8):476–486

    Google Scholar 

  11. Pallud J, Varlet P, Devaux B, Geha S, Badoual M, Deroulers C (2010) Diffuse low-grade oligodendrogliomas extend beyond MRI-defined abnormalities. Neurology 74(21):172–4

    Article  Google Scholar 

  12. Kelly PJ, Daumas-Duport C, Kispert DB, Kall BA, Scheithauer BW, Illig JJ (1987) Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. Journal of Neurosurgery 66(6):865–875

    Article  Google Scholar 

  13. Jaccard P (1912) New Phytologist 11(2):3–7

    Google Scholar 

  14. Binaghi E, Pedoia V, Lattanzi D, Balbi S, Monti E, Minotto R (2013) Proceedings Vision And Medical Image Processing, VipIMAGE.

    Google Scholar 

  15. Wallis J, Miller T, Lerner C, Kleerup E (1989) Three-dimensional display in nuclear medicine. IEEE Trans Med Imagin 8(4):297–230. doi:10.1109/42.41482

    Article  Google Scholar 

  16. Heckemann RA, Hajnal JV, Aljabar P, Rueckert D, Hammers A (2006) Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. Neuroimage 33(1):115–126. doi:10.1016/j.neuroimage.2006.05.061. http://www.sciencedirect.com/science/article/pii/S1053811906006458

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Binaghi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Binaghi, E., Pedoia, V., Lattanzi, D., Monti, E., Balbi, S., Minotto, R. (2015). On the Evaluation of Automated MRI Brain Segmentations: Technical and Conceptual Tools. In: Tavares, J., Natal Jorge, R. (eds) Developments in Medical Image Processing and Computational Vision. Lecture Notes in Computational Vision and Biomechanics, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-13407-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13407-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13406-2

  • Online ISBN: 978-3-319-13407-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics