
Chapter 3

Stability Problems

3.1 Phenomena

A beam is loaded in its axial direction by a compressive force. The force is

increased. Suddenly the beam moves perpendicular to its axis: it buckles (Fig. 3.1).

Other instability phenomena of a beam are drilling under a compressive load and

drilling under a bending load as well as combinations.

A similar effect, namely deflection, i.e. transverse displacement, under in-plane

loading, can be seen considering a plate. Again it buckles (Fig. 3.2).

These phenomena have in common that the displacements occur perpendicular

to the load direction when a certain load level is exceeded and that a theoretical

equilibrium is possible for higher loads on the ideal system. However, a minimal

disturbance—in practice always existing—will lead to buckling. This effect is

called a bifurcation problem because of the two equilibrium paths (ideal and

buckled), see Fig. 3.3.

In case of the two-legged truss from Fig. 2.12 the displacement starts being

nearly proportional to the load but later the displacement more and more increases

until the load cannot be enlarged any more. At that stage the loaded point is still

above the line connecting the two foot points (Fig. 3.4). In a force-controlled test

the system will comply suddenly and—provided that it is not destroyed—reach

equilibrium not before the former top is now down (Fig. 3.5).

As in the cases above the load cannot exceed a critical one. Unlike in buckling

the system moves in the direction predicted by the load. This type is call a snap-

through problem. Snap-through needs not to be a system failure but can be desired

like in case of a switch where the dynamic snap-through should limit the danger of

an electric spark.

Common characteristic of these two phenomena is that there is a point where two

neighboured equilibrium states with the same load level but slightly resp. infinites-

imal different displacement states exist and thus a transition from one state to the

other can occur without changing the load (see Fig. 3.11).
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Bifurcation problems are classified by the post-critical behaviour (Fig. 3.6). If a

load-increase—even a small one only—becomes possible after the bifurcation the

post-critical behaviour is called stable otherwise unstable. The latter is very

Fig. 3.1 Buckling of a beam, third Euler case

Fig. 3.2 Plate buckling
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dangerous because the load level at the bifurcation point cannot be sustained which

can denote the complete destruction. Therefore a higher safety factor must be

chosen.

The post-critical behaviour can depend on the direction of the sudden motion,

stable in the one, unstable in the other direction. This is called asymmetric.
Even if the post-critical behaviour is classified as stable such large displacements

can occur that the system cannot be used any longer. Before buckling, however, the

behaviour is stable even if a certain imperfection (see Sect. 3.4) leading to bending

exists. Thus, it makes sense to determine a safety distance between the system in

use and the ideal critical load.

If the post-critical behaviour is unstable bending or an imperfection will reduce

the maximum load-carrying capacity significantly so that the ideal critical load is of

limited meaning for the safety of the system. Thus it is of particular importance to

take imperfections (see Sect. 3.4) into account.

In the load–displacement diagram (Fig. 3.3) the connection of the equilibrium

states of the ideal system forms the primary path becoming unstable after the

bifurcation point and thus existing theoretically only.

The equilibrium states after the bifurcation form the secondary path. However,

further bifurcations (called secondary) can occur when the system jumps from one

buckling mode to the other (Fig. 3.7). Some of these modes can be reached directly

from the primary path but at load levels higher than the first critical one.

The danger of buckling and bifurcation can exist within the same system.

Consider the two-legged truss. Before the snap-through the leg can buckle when

its critical load is reached (Fig. 3.8). This will also result in an earlier snap-through

(Fig. 3.9).
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Fig. 3.5 Snap-through problem: displacement states, reaction forces and load–displacement curve
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3.2 Conditions for Critical Points, Indifference Criterion

3.2.1 General

The equilibrium can be classified into stable, indifferent and unstable. If the

equilibrium is stable an applied load will lead to a displacement but the system

comes back to its previous state if the load is removed; in case of an unstable

equilibrium the system will never come back but will move away from its previous

configuration. In between is the indifferent equilibrium where the system will

remain in its new configuration when the load is removed (Fig. 3.10).

At the critical point, be it a snap-through or a bifurcation point, an—at least

infinitesimal—motion without a load increment is possible. This means indifferent

equilibrium (Fig. 3.11).

Usually the displacement due to a load increment is calculated in the Newton-

Raphson scheme by

KTΔ û ¼ Δf ð3:1Þ

At the critical point, however,

KTΔ û ¼ 0 ð3:2Þ

holds due to Δf¼ 0.
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This system of equations has a non-trivial solution only if the matrix KT is

singular. The trivial solution is that no displacement increment occurs if no load

increment is applied which would be calculated if the system of equations was

uniquely solvable.

Indicators for the singular matrix are:

1. the determinant detKT ¼ 0 or

2. at least one eigenvalue ω of KT is zero, where ω is the solution of

KT � ωIð Þφ ¼ 0 or

3. at least one zero main diagonal element (pivot) occurs in the matrix

triangularised in the Gaussian algorithm.

These three conditions are equivalent. It has to be assumed that this holds for a

converged state.

Following these criteria a solution is on an unstable path if

1. the determinant detKT < 0 or

2. there is at least one negative eigenvalue ω or

3. at least one negative main diagonal element of the triangularised matrix occurs.

Increased loads can lead to more negative eigenvalues or main diagonal ele-

ments each indicating a possible bifurcation point.

Condition 1 (determinant) has some limitations:

• An even number of negative eigenvalues lead to a positive determinant although

the actual load path is unstable (example in Fig. 3.12).
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Fig. 3.10 Equilibrium states
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Fig. 3.11 Load–displacement curves for snap-through (left) and bifurcation (right) with two

neighbouring equilibrium states at the same load level
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• The easiest way to calculate the determinant is to multiply the main diagonal

elements after a Gaussian elimination process. That means criterion 2 (pivots)

can be evaluated earlier.

• The determinant can be a very large number so that 10990 can indicate instability

when it had been 101,000 before.

3.2.2 Formulations of the Instability Condition

As shown in Sect. 2.3.4.1 the tangential stiffness matrix has at least two parts, the

initial displacement and the initial stress matrix:

KT ¼ Ku þKσ ð3:3Þ

Some authors use a split of the initial displacement matrix Ku—which makes sense

in a certain context only—, a split into the constant part from linear theoryK0 and a

non-linear part Kn:

KT ¼ K0 þKn þKσ ð3:4Þ

In this way different eigenvalue problems (EVPs) can be formulated:

1. the above mentioned one KT � ωIð Þφ ¼ 0, where the critical eigenvalue is

ω¼ 0 (mentioned above as indicator)

2. Ku þ Λ2Kσð Þφ ¼ K0 þKn þ Λ2Kσð Þφ ¼ 0 where Λ2¼ 1 is critical

t
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Fig. 3.12 Shallow circular arc, load–displacement curve and determinant

3.2 Conditions for Critical Points, Indifference Criterion 93

http://dx.doi.org/10.1007/978-3-319-13380-5_2#Sec18


3. K0 þ Λ3 Kn þKσð Þ½ �φ ¼ 0 where Λ3¼ 1 is critical.

ω¼ 0 in the first case as well as Λi¼ 1 in the other two cases means, that the total

matrix (in the brackets in front of φ) yields KT, i.e. the solutions will match at the

critical point. The evolution of the eigenvalues with the load level, however, can be

different (see Fig. 3.13 for an example).

One disadvantage of eigenvalue problem 1 can be that some eigenvalue solvers

have difficulties with negative eigenvalues (at over-critical load levels), a further

advantage of the formulations 2 and 3 is that

f� ¼ Λif
ext ð3:5Þ

can be taken as the next estimate for the critical load during the load incrementation
process. It approaches the critical load from the linear buckling analysis (LBA)

(Sect. 2.2.3) if the applied load is small. In all cases the load must be applied

incrementally until one of the instability criteria is fulfilled. At least in the vicinity

of the critical load an extrapolation of the relation between eigenvalue and load

level can become meaningful.

Figure 3.14 shows the load–deflection curve of the two-legged truss together

with the estimated critical load f* from eigenvalue analysis of type 2.

The most important application of these type of eigenvalue buckling analysis

parallel to a non-linear calculation (eigenvalue tracking) is not to determine the

critical load but

• to decide whether non-convergence occurs due to a physical stability problem

(ω� 0 or Λ� 1) or to numerical reasons

• to detect if a solution state is on an unstable path (ω <0 or Λ <1)
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Fig. 3.13 Evolution of the eigenvalues Λ2 and Λ3 for a spherical cap under external pressure
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3.2.3 Modal Analysis (Natural-Frequencies Analysis)
and Stability Problems

As it is well known pre-stressing influences the natural frequencies of a system. The

best examples are strings of music instruments. If a system with a certain bending

stiffness shows compressive stresses the natural frequencies decrease. In case of a

stability problem the system can be deflected without returning after removing the

perturbation. For an oscillation that means that the period becomes infinite, i.e. the

natural frequency tends to zero. Therefore, a pre-stressed modal analysis can be

used instead of the buckling analyses described above. At the critical point the

eigenvectors (modes) from buckling and modal analysis match.

The eigenvalue problem reads:

KT � ω2M
� �

φ ¼ 0 ð3:6Þ

with M the mass matrix and ω the eigen angular frequency, the natural frequency

times 2π.
In Fig. 3.16 the first five natural frequencies of a spherical cap under concen-

trated pressure from Fig. 3.15 are plotted against a characteristic displacement.

Furthermore, the pressure level is shown (light blue curve). Since the arc-length

method (see Sect. 4.4) is used to control the analysis the pressure increases, reaches

a maximum, decreases, reaches a local minimum and increases again. Since the

purpose of the eigensolver is the determination of frequencies they and the related

modes are suppressed if a negative square of ω occurs. Thus the first mode vanishes

when the critical point, here a snap-through point, the maximum load, is passed.

The previous second mode becomes the new first one and a further mode is added.

Furthermore, mode jumping occurs, i.e. the order of the eigenvalues related to

certain modes changes. For these two reasons the curves connecting the eigenvalues

in their current order show jumps. That is why in Fig. 3.16 the eigenvalues related to

the modes later forming the three lowest eigenvalues are marked in black. It is

undeformed
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visible that they form a smooth curve. The vanished mode reappears when the

carryable load increases again (positive slope–positive eigenvalue).

The use of this eigenvalue tracking can be seen in the example from Fig. 3.17, an

ultimate load analysis of a stiffened sector of a cylindrical shell (cf. [21]).

Depending on the load incrementation three paths can be distinguished, one leading

to a much too high load, one to a slightly too high load which is obtained in the

numerical analysis but cannot be carried by the system in practice, i.e. the equilib-

rium becomes unstable. Then negative eigenvalues are indicators for this fact, the

related modes give ideas for imperfections (see Sect. 3.4) to reach the lowest path.

In a modal analysis of such cases a certain mode may vanish (be suppressed)

because the first eigenvalue ω2 becomes negative, thus the natural frequency

imaginary. This happens above a bifurcation point if no bifurcation has happened.

Fig. 3.15 Spherical cap under concentrated external pressure
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Fig. 3.16 Natural frequencies depending on the equilibrium state
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An example is shown in Fig. 3.18 for a similar system but a different load case. The

second mode at load factor 1 becomes the first one if the load is slightly increased to

1.03 because the previously first mode is suppressed. The meaning of the vanishing

mode is explained in Sect. 3.3.

The disappearance of a certain mode can be identified numerically (important

for automation) regarding the fact that two different modes are M-orthogonal,

i.e. the product of the mass matrix M times the transposed of the one eigenvector

φ from the left and the other eigenvector from the right is zero. This holds for

eigenvectors of the same matrices, here at the same equilibrium point. Since the

eigenvectors under consideration are from different load levels and thus from

different but similar tangential matrices this condition should be formulated as

φT
i�1Mφi

φT
i Mφi

<< 1 ð3:7Þ

where the index i counts the load levels where the eigenvalue analysis has taken

place.

The problem of the suppressed modes and eigenvalues can be overcome by a

solver for non-symmetric matrices or for natural frequencies of damped systems. In

these cases complex eigenvalues are expected. If these solvers are applied to a

displacement
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e

Fig. 3.17 Different load–displacement curves of a system depending on imperfections and the

load incrementation
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system not being damped and with symmetric matrices one natural frequency

becomes purely imaginary when exceeding a critical load (Table 3.1).

The eigenvector is the probable buckling mode. In the example from Fig. 3.19 it

is shaped below and above the critical load in the same way as depicted.

3.2.4 Direct Identification of Critical Points by an Extended
System

At a critical load level λcrit two conditions must be fulfilled [24]:

1. Equilibrium must be achieved:

d û; λð Þ ¼ f int ûð Þ � λfext0 ûð Þ ¼ 0

2. The eigenvalue problems from Sect. 3.2.2 must deliver a critical eigenvalue (0 or

1 depending on the formulation). Thus:

KTφ ¼ 0

This results in two unknown vectors with n components each plus the unknown

load factor λ, i.e. 2n+ 1 unknowns in 2n equations.

3. The missing equation can be found in conjunction with the eigenvector:

a. The length of the eigenvector must be scaled, e.g. to 1:

load factor 1

load factor 1.03

total deflection first mode second mode

& negative shift resp.

negative eigenvalue 

reported during iteration

mode is suppressed

lowest load path

missed

Fig. 3.18 Vanishing mode after reaching an unstable paths [21]
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φTφ� 1 ¼ 0

b. Only bifurcation points where the eigenvector is perpendicular to the external

load vector should be found:

φTfext0 ¼ 0

c. Only snap-through points where this is not the case should be found. Since the

eigenvector can be scaled arbitrarily one can formulate:

φTfext0 � 1 ¼ 0

These equations must be solved simultaneously by a Newton scheme. The

tangential matrix contains the derivatives with respect to the unknowns, when

using condition 3a:

Table 3.1 Natural

frequencies below (upper

table) and above a critical

load (lower)

Mode Real part [Hz] Imaginary part [Hz]

1 32.149 0

2 224.28 0

3 297.9 0

4 545.01 0

5 804.38 0

6 957.56 0

Mode Real part [Hz] Imaginary part [Hz]

1 0 13.514

2 209.46 0

3 303.14 0

4 528.72 0

5 786.32 0

6 928.83 0

Fig. 3.19 First mode below

and above the critical load
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∂λ

∂KTφ
∂u

∂KTφ
∂φ

∂KTφ
∂λ

φTφ� 1ð Þ
∂u

φTφ� 1ð Þ
∂φ

φTφ� 1ð Þ
∂λ

2
6666664

3
7777775

Δu
Δφ
Δλ

2
4

3
5 ¼ λfext0 � f int

�KTφ
1� φTφ

2
4

3
5 ð3:8Þ

The derivative in the second row and third column exists if the load vector depends

on the displacements. Then

Kp ¼ �∂fext

∂u
¼ �∂ λfext0

� �
∂u

¼ �λ∂ fext0

� �
∂u

ð3:9Þ

is the only part of the tangential stiffness matrix KT depending on the load factor λ.
The derivative reads:

∂KTφ
∂λ

¼ ∂Kpφ
∂λ

¼ ∂Kp

∂λ
φ ¼ �∂ fext0

� �
∂u

φ ¼ �1
λ

∂ fextð Þ
∂u

φ ¼ �1
λ
Kpφ ð3:10Þ

Thus the linear system of equations in Newton’s method reads:

KT 0 �fext0

∂KTφ
∂u

KT �1
λ
Kpφ

0 2φT 0

2
664

3
775

Δu
Δφ
Δλ

2
4

3
5 ¼ λfext0 � f int

�KTφ
1� φTφ

2
4

3
5 ð3:11Þ

What looks like a rather complicated and huge system of equations can be reduced

to mainly solving systems with KT and different right hand sides as can be shown

after presenting the idea of the arc-length method in Sect. 4.4.

KTφ and Kpφ as well as their derivatives can be calculated on element level and

then assembled to a global vector. For the term in the first column and second row

this will be shown below after the derivation of the algorithm. For a multi-element-

type program a numerical procedure might be appropriate to form the derivatives.
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3.3 Meaning of the Eigenvector

In Fig. 3.20 the displacement states from two different load levels in the vicinity of

the maximum load are shown. They are hard to distinguish but when forming the

difference (left hand in Fig. 3.21) a certain pattern can be recognised. It is on the one

hand similar to the vanishing mode from Fig. 3.18, on the other hand similar to the

total displacement in the failure state (right hand in Fig. 3.21). That means this

difference and the suppressed mode, the eigenvector to the zero eigenvalue at the

critical point, show how the system must deform to reach the lowest load path.

The most important mode can change during the load history indicating further

potential bifurcations. For the example in Fig. 3.20 [21] the deformation pattern is

the result of an earlier buckling process with at first stable post-critical behaviour.

The eigenvector to the critical eigenvalue 0 resp. 1 shows how the system can

deform without change in the load. In case of a snap-through problem the mode is

similar to the deformation state reached, in case of a bifurcation problem it is

completely different (compare Fig. 3.20 with Fig. 3.18). Furthermore, in the latter

case the eigenvector is perpendicular to the load vector, i.e.

φTfext ¼ 0 ð3:12Þ

For the snap-through problem this product yields a value being significantly apart

from zero. Thus, a criterion to distinguish between snap-through and bifurcation is

obtained as long as one has got a comparative value. This can be the product of the

displacement vector and the load vector while the displacement vector should be

normalised in the same way as the eigenvector:

φTfext

ûTfext
¼ << 1 ) bifurcation problem

else ) snap� through problem

�
ð3:13Þ

Fig. 3.20 Radial displacement for two subsequent load levels close to the instability point

Fig. 3.21 Difference between two subsequent load levels (left), last solution (right)
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3.4 Imperfections

In the case of a bifurcation problem a perfect system can remain on the primary

unstable equilibrium path for loads much higher than the critical one. Often the

buckling process must be initiated by an imperfection to obtain a physically

meaningful solution. This can be done by appropriate perturbation loads or geo-

metric imperfections.

3.4.1 Imperfection by Forces

Imperfections should initiate the buckling mode to the lowest load path. If this is not

known the imperfection by forces should be chosen so that they do not overpredict

the mode. Thus a small number of forces is preferred. This statement especially

holds under the point of view that buckling patterns in experiments, even those

being spread over the total system, usually are initiated by a local buckle. For

example in Fig. 3.22 between five and seven half-waves are expected. Applying five

single, equally spaced loads would be dangerous. Two forces, non-symmetrically

placed are an initiation but leave the system enough degrees of freedom to find the

correct buckling pattern.

Such an imperfection can only specially be chosen and requires an estimate of

the buckling or failure mode.

Fig. 3.22 Imperfection (radial displacements shown) resulting from two single loads
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3.4.2 Imperfection by Geometric Prescriptions

For geometric imperfections, i.e. stress-free predeformations, that means changes

of the nodal coordinates, one can try to find a suitable function to initiate the

buckling but this is case-dependent. In particular it cannot be assured that the

buckling mode to the lowest critical load is matched.

Randomly distributed changes in nodal coordinates turned out to be even less

appropriate [22]. They can even lead to higher buckling loads than the ideal ones.

Furthermore, it can happen that randomly the largest coordinate jumps occur from one

node to its neighbour possibly leading to element warping which can deteriorate the

accuracy. In order to avoid that such geometric distortions must be smoothed again.

Furthermore, in both cases conflicts occur if the system contains parts not being

connected by common nodes but by contact. It is very likely that arbitrary changes

of the contact surface geometry lead to interferences or gaps.

3.4.3 Imperfection by a Linear Buckling Analysis

A more general approach to generate geometric imperfections is the use of a mode

from a buckling analysis, i.e. to change the nodal coordinates by the scaled

eigenvector:

x0  x0 þ cφ ð3:14Þ

The assumptions of the linear buckling analysis, namely totally linear behaviour up

to the incidence of buckling, must be fulfilled to make this procedure successful.

Then the first buckling modes can constitute good imperfections. In case of multiple

or—more often in practice—clustered eigenvalues at least all modes related to

these values must be taken into account. Then each linear combination of these

modes can be the proper buckling pattern.

If the system remains stable after the first bifurcation and later fails by a new

bifurcation or a switch from one buckling pattern to the other, the linear buckling

analysis of the system in its initial configuration often is not sufficient. Such a

behaviour is typical for stiffened plates and shells. For example an initial buckling

occurs in the zones bordered by the stiffeners, later followed by collapse of the

stiffening construction. In the case of the panel shown in Figs. 3.22 and 3.23 [21]

the seventh or eighth mode is similar to the pattern occurring later in the non-linear

analysis, but how to know this beforehand?
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3.4.4 Eigenvalue- and Mode-Tracking

Amore reliable but more complicated procedure than the linear buckling analysis is

to use the first mode from an eigenvalue extraction which is performed repeatedly

after resp. parallel to a non-linear analysis based on the actual tangential matrix (see

Sect. 3.2.2). The question is how execute this buckling analysis and when as well as

how to apply the buckling pattern as imperfection to the deformed system.

The purpose of the eigenvalue analysis is to identify bifurcation points resp. the

remaining on an unstable path and to determine imperfections which have the

system branch to the lowest load path. The following algorithms are appropriate:

Algorithm 1 Eigenvalue analysis after a non-linear analysis

• At certain load levels save the tangential matrix KT or a restart file to recreate

KT.

• Perform a series of eigenvalue analyses.

– Keep the first mode when its eigenvalue becomes negative (eigenvalue

problem 1 from Sect. 3.2.2 or modal analysis) resp. <1 (EVP 2 and 3) or

– identify mode switching or suppression when

φT
i�1Mφi

φT
i Mφi

<< 1

where

M¼ I for EVP 1, M¼Kσ for EVP 2, M¼Kn+Kσ for EVP 3 and M equals

the mass matrix in a modal analysis.

• Repeat the non-linear analysis with a geometric imperfection obtained from the

eigenvector.

In principle a repetition is only necessary if a bifurcation point is missed or no

convergence could be achieved because the system tends to bifurcate but alternates

between different intermediate disequilibrium states during the iteration.

This procedure cannot be repeated to often because each time a further geomet-

ric imperfection is added or replaces the preceding one. In the latter case it becomes

doubtful at a certain time whether the bifurcation point for which the imperfection

is suitable will be reached again.

Fig. 3.23 First, seventh and eighth linear buckling mode
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More appropriate for multiple bifurcations is

Algorithm 2 Eigenvalue analysis parallel a non-linear analysis

• At certain load levels interrupt the non-linear analysis and solve an eigenvalue

problem.

• Continue the non-linear analysis.

As reaction on the eigenvalue there are two choices:

– Stop the analysis if an unstable path is detected and restart from the beginning

with a geometric imperfection based on the related eigenvector. Then, however,

the procedure differs from algorithm 1 in the order of the steps only. It avoids too

many increments on the unstable path but can show the same lack for multiple

buckling.

or

– Perturb the Newton-Raphson iteration by the actual eigenvector when con-

tinuing the non-linear analysis.

The latter way is explained in more detail: The initial vector u0i+1 for a Newton-

Raphson scheme at a new load level i+ 1 usually is the last converged solution u1i.

Now the scaled eigenvector φ is added at the beginning of the iteration:

u0iþ1 ¼ u1i þ cφ ð3:15Þ

As long as the system is on a stable path the same solution u1i+1 as from an

undisturbed initial vector will be found. In the vicinity of a critical point, however,

an appropriatemodewill be found to initiate a bifurcationwithout having deformed the

initial geometry. Further decisions are not necessary. If the system has reached a snap-

through point, an eigenvalue analysis is not necessary but the perturbation will cause

no problem because the eigenvector φ will be similar to the displacement increment.

Since only a perturbation of the initial displacement vector takes place, the

accuracy of the eigenvalue extraction need not to be high. Furthermore, close to

critical point it is likely that the eigenvalues are sufficiently separated. Thus the

simplest method would be the inverse von-Mises iteration where the system of

equations determined by KT must be solved with a series of right hand sides which

does not cause so much computational effort in a Gaussian type algorithm because

the triangularisation has already happened.

Imperfections from an eigenvalue analysis are considered to be the worst case

and thus the most appropriate ones if the real predeformation is not known.

3.5 Imperfection Sensitivity

If the safety of a system must be quantified it is necessary to study the sensitivity to

the size of imperfections. It mainly depends on the post-critical behaviour: the

steeper the (negative) slope in the post-critical branch, the more sensitive the
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reaction to perturbations. The imperfection sensitivity can be classified by sensi-

tivity diagrams (Fig. 3.24).

With an appropriate imperfection a snap-through problem remains a snap-

through problem but the ultimate load is affected. A bifurcation problem, however,

changes to either a snap-through problem, if the post-buckling branch is unstable, or

to a non-linear stress problem without a strictly defined critical load if the post-

critical path of the perfect system is stable. The direction of an imperfection is of

importance, not only but especially in case of an asymmetric bifurcation.
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Fig. 3.24 Classification of the imperfection sensitivity
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In Figs. 3.25 and 3.26 the influence of the imperfection on the load carrying

behaviour of two systems is shown, the one being a flat plate, the other a sector of a

cylindrical shell made from the same material (length, width, thickness) as the

plate. The shell shows an unstable post-critical behaviour. Therefore, the bifurca-

tion problem changes to a snap-through problem by the imperfection showing a

significant reduction of the maximum load. In case of the plate a transition happens

to a still strongly non-linear but stable behaviour. A maximum load is no longer

defined but in practice the deflection must be limited, at least under the loads in use.

Furthermore, a comparison of the two systems shows that the shell reaches a

significantly higher load level than the plate but the price is an unstable post-

critical behaviour.
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Fig. 3.25 Buckling plate and its load–displacement diagrams for different imperfection sizes
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Fig. 3.26 Buckling cylindrical shell and its load–displacement diagrams for different imperfec-

tion sizes
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3.5.1 Size of the Imperfection

Which size must have the maximum value of the imperfection? This question can

generally be answered in the following way only: Large enough to initiate buckling.

More imperfection is mostly on the safe side but too much can be an economic

problem. The best is to know the probable or maximum allowed imprecision due to

prescribed tolerances. They must be multiplied by a safety factor. Technical

standards often define such values.

For beam-like structures 1/500 to 1/250 of the buckling length is a usual choice.

The buckling length is defined as the distance between two inflection points of the

deflection curve of the buckling mode.

In case of surface structures a buckling diameter, also measured between inflec-

tion points could be a useful reference. In case of plates with stable post-critical

behaviour 1/250 of that as an imperfection would lead to the fact that a buckling

behaviour is hardly to identify any longer. In this case such an imperfection is

probably considerably too large. A common choice for the maximum is 1/10 of the

thickness. This often initiates the bifurcation but the buckling effect remains visible.

This value has no theoretical background but is a rule of thumb. If in doubt one has

to try a couple of imperfection sizes and to study their influence on the limit load.

3.6 Classification of Instability Analyses

This is kind of a summary of the procedures outlined above.

3.6.1 Linear Buckling Analysis (LBA)

• It requires a linear static analysis with a reference load to get a reference stress

state.

• Assumption is linear behaviour until buckling.

• The method is suitable for perfect systems.

• It delivers a load multiplier and thus the ideal critical load.

This analysis is appropriate to estimate the critical load and thus to adjust settings

for non-linear analyses. Furthermore, the modes can be used as imperfection to

initiate first buckling provided the assumption above holds.

3.6.2 Geometrically Non-linear Analysis (GNA)

• It is necessary if the pre-critical behaviour is non-linear.

• It is always necessary if snap-through problems are explored.
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• It uses the perfect system.

• At least large rotations must be activated.

• It describes the behaviour up to final buckling of very slender structures only.

This method can be sufficient in case of snap-through problems. It is a good base for

eigenvalue tracking procedures to detect bifurcation points or unstable branches. It

can also be used as long as the real bifurcations occur without imperfections.

3.6.3 Geometrically and Materially Non-linear Analysis
(GMNA)

• It has the same assumptions and limitations as the geometrically non-linear

analysis (GNA).

• Except that non-linear material behaviour is considered and influences the

ultimate load.

• Material non-linearity is necessary for moderately slender structures.

The method should also be accompanied by eigenvalue tracking and/or the tracking

of the minimum pivot element in the Gaussian algorithm.

3.6.4 Geometrically or Geometrically and Materially
Non-linear Imperfect Analysis (GNIA or GMNIA)

• It includes the effect of imperfections

• It has the same distinction between considering material non-linearities or not as

GNA and GNMA (usefulness depends on slenderness).

• The imperfections must be appropriate to guide the system on the lowest load

path. Most reliable for their determination are eigenvalue analyses. Choices to

apply imperfections are

– imperfections by forces

– geometric imperfections, especially by eigenvectors

– perturbation of initial displacement states in iterative procedures

– separately excited oscillations if the (quasi-)static analyses is stabilised by

inertia effects.
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