An Improvement of Linear Cryptanalysis
with Addition Operations with Applications
to FEAL-8X

Eli Biham and Yaniv Carmeli®9

Computer Science Department, Technion - Israel Institute of Technology,
3200003 Haifa, Israel
{biham,yanivca}@cs.technion.ac.il
http://www.cs.technion.ac.il/~{biham,yanivca}/

Abstract. FEAL is a Feistel cipher that uses addition operations. Since
its introduction 26 years ago it played a key role in the development of
many cryptanalytic techniques, including differential and linear crypt-
analysis. For its 25th anniversary Mitsuru Matsui announced a challenge
for an improved known plaintext attack on FEAL-8X. In this paper we
describe our attack and introduce several improvements to linear crypt-
analysis that allowed us to recover the key given 2'* known plaintexts in
about 14 h of computation, and led us to win the challenge. An especially
interesting improvement considers the approximation of addition-based
S-boxes by partitioning into several sets in a way that amplifies the bias,
and therefore allows for a reduction in the number of required known
plaintexts as well as saving computation time. We also describe attacks
that require only a few (even 2 or 3) known plaintexts that recover the
key much faster than exhaustive search.

Keywords: FEAL - Linear cryptanalysis -+ Partitioning - Meet in the
middle

1 Introduction

FEAL [13] was introduced in 1987 as a fast encryption algorithm which com-
bines the simplicity of software-based operations with an improved security over
prior designs. Over the years FEAL inspired the development of many crypt-
analytic techniques, including differential and linear cryptanalysis [3,7,8]. The
best known attacks on FEAL required (until recently) a few hundreds of chosen
plaintexts [4] or 16 million known plaintexts [2,6].

In CRYPTO 2012 Mitsuru Matsui announced a year-long challenge [6] for
developing improved attacks on FEAL-8X [9], and an award which will be given
to the best attack capable of recovering the key of given sets of known plaintexts
with various amounts of data. The attack recovering the key using the smallest
number of known plaintexts would be declared the winner. In the course of
this year we developed an improved attack capable of recovering the key of

© Springer International Publishing Switzerland 2014
A. Joux and A. Youssef (Eds.): SAC 2014, LNCS 8781, pp. 59-76, 2014.
DOI: 10.1007/978-3-319-13051-4_4

60 E. Biham and Y. Carmeli

FEAL-8X, and three weeks before the deadline we submitted our solution for
the challenge set with a million known plaintexts, and were the first to submit
a correct solution. A few days later another group submitted a solution for a
smaller set of 2!° known plaintexts. It took us another two weeks to finalize our
program with all the additional tricks and to submit the solution for the set
of 2'* known plaintexts, which became the winning solution. The secret key is
5681891EEC34CE1241EDOF52C9C23F65.

In this paper we present the cryptanalytic attacks that we developed for this
challenge, and the techniques that we used to improve linear cryptanalysis. We
first describe a linear attack which uses a 6-round approximation and analyzes
both the first and last rounds simultaneously, recovering 37 subkey bits in total.
We then describe how running it a second time with a different approximation
can reduce the number of required plaintexts and find 44 bit of the subkeys.
We describe the rest of the steps needed in order to recover the remaining sub-
keys and show how the FEAL-8X key can be reconstructed from those subkeys.
The above mentioned techniques can find the FEAL-8X key given 2'° known
plaintexts in about 26 h on our computer.

We then present our main contribution — a new partitioning method that can
amplify the bias of a linear approximation of addition. The data is partitioned
into two sets such that in one of the sets the bias of the linear approximation
is stronger than it is when all the messages are considered. Interestingly, we
cannot tell in advance which of the two sets is the one with the increased bias,
and therefore we try both of them. The amplified bias allows us to reduce the
number of plaintexts needed for the attack while keeping the analysis time per
plaintext the same. Due to the smaller number of required plaintexts the attack
time when using this method even decreases. Incorporating this technique with
our previous methods allowed us to find the key given 2!% known plaintexts in
about 14h. In the summary of this paper (Sect.7) we discuss the differences
between our technique and Partitioning Cryptanalysis [5].

In addition to the practical attacks we also discuss attacks that can find the
key with fewer plaintexts faster than exhaustive search. We describe an attack
that can recover the key given 2'° known plaintexts in time of 262 FEAL-8X
encryptions. In addition, we describe attacks in which given only 11-21 known
or chosen plaintexts the FEAL-8X key can be recovered with complexity about
280 and given 2 or 3 known plaintexts the FEAL-8X key can be recovered with
complexity about 2°¢. These attacks combine linear cryptanalysis and differential
cryptanalysis with exhaustive search of many subkeys, as well as meet in the
middle attacks. These attacks exploit the fact that the total size of the subkeys
is not sufficiently larger than the size of the key.

The structure of the paper is as follows: In Sect.2 we describe FEAL-8X,
give two equivalent descriptions of the cipher, and define notations. In Sect. 3
we describe the linear attack that recovers the key given 2'® known plaintexts.
In Sect.4 we present the new partitioning method and how to recover the key
given 2'* known plaintexts. In Sect. 5 we extend the methods from the previous
sections, and describe an attack on 2'° known plaintexts faster than exhaustive
search. Finally, in Sect. 6 we describe the attacks that require only a few known

An Improvement of Linear Cryptanalysis with Addition Operations 61

ciphertexts or a few chosen plaintexts. In Appendix A we describe an efficient
implementation of our attacks which is able to save a factor of about 2° in
the attack time. Appendix B illustrates the linear approximations used in our
attacks. In the full version of the paper we also show how to find the key of
FEAL-8X given the subkeys that are found by our attacks.

2 The Cipher FEAL-8X

The block size of FEAL-8X is 64 bits and the key size is 128 bits. The key process-
ing algorithm of FEAL-8X takes the 128-bit key and generates 16 subkeys,
denoted by K0-K f, each of length 16 bits.

FEAL-8X is an 8-round Feistel cipher. Before the first round the plaintext is
mixed with a 64-bit whitening subkey (K 89ab) which is followed by XORing the
left half of the data into the right half. The inverse of this operation is performed
after the last round, i.e., the left half of the data is XORed into the right half
and the result is mixed with a 64-bit whitening key (Kcdef). In each round a
function F is computed on the right half of the data and a 16-bit subkey (one of
K0-KT7T), and the output is XORed into the left half. The two halves are then
swapped.

The function F takes four bytes as input, and starts by XORing the first and
last bytes into the two middle bytes, and then XORs the subkey into the same
bytes. It then applies four S-boxes in the order described in Fig. 1. Each S-box
adds two bytes and an index (0 or 1) and rotates the output by two bits to the
left. FEAL-8X and the F-function are outlined in Fig. 1.

2.1 An Equivalent Description of FEAL-8X

In order to simplify the analysis we prefer to eliminate the whitening keys. This
is possible on one end of the cipher by extending the size of the subkeys to 32 bits
in each round and by XORing the eliminated whitening key information into all
the subkeys. We consider two equivalent descriptions of the cipher. In the first
we eliminate the whitening at the beginning of the cipher, and in the second we
eliminate the whitening at the end (this latter version is outlined in Fig. 2). The
32-bit subkeys of the equivalent description are called actual subkeys. We call
the actual subkeys of the version with eliminated whitening key at beginning
encryption actual subkeys and denote them by FK0-EK7, while we call the
actual subkeys of the version with eliminated whitening key at the end decryption
actual subkeys, and denote them by DK(0-DK?7. To simplify the description we
define the function

mw(X,Y) = (Y, Yo Y14 X0, Y28 Ys d X1,Y3)

where X is a 16-bit value, Y is a 32-bit value, and Xy, X1, Yo, Y7, Y5, Y3 are their
individual bytes. Note that mw(X,Y) is just the first part of the F-function
before the S-boxes (see Fig.1). The mapping between the subkeys of all three

(K89,Kab)

A ’_I*;‘_‘ P KO

L]
F/ K1 fo fi £ f
B gl b]
L]
e D
3 io —& i —&
D ’—*F‘—‘T‘ Wo wy w2 w3
N
)
=T
. S L1
G rFl g

;X F F F. F;
K7 0 1 l 2 3

(Kcd,Kef)
@ Si(z,y) = ROL2(z + y + i (mod 256))

Fig. 1. The outline of FEAL-8 and of the F-function

descriptions of the cipher (the subkeys of FEAL and the two equivalent descrip-
tions) is summarized in Table 1.

In our attacks when we analyze the last rounds of the cipher we assume the
whitening at the end is zero, and therefore retrieve the bits of the decryption
actual subkeys DK. Similarly, when we analyze the first rounds of the cipher we
retrieve the bits of the encryption actual subkeys FK.

Note that since there is a linear relation between the subkeys of all three
descriptions of FEAL it is possible to target actual subkeys of different descrip-
tions in the same linear attack. For example, the attack presented in Sect. 3.2
targets both EK0 and DKT.

3 First Attack — Finding the Key Using 2! Known
Plaintexts

In this section we describe a linear attack that requires 2'® known plaintexts
and finds the key in about 26h on a server with an Intel(R) Xeon(R) X5650

An Improvement of Linear Cryptanalysis with Addition Operations 63

Table 1. The Subkeys of FEAL-8X and the actual subkeys of the equivalent descrip-
tions

Subkeys of | Equivalent description without | Equivalent description without
FEAL-8X | whitening at the beginning whitening at the end

K89ab 0 (K89@® Ked @ Kef, Kab® Kef)
KO EK0 =mw(K0, K89 & Kab) DKO0 = mw(K0, Kcd)

K1 EK1=mw(K1, K89) DK1=mw(K1,Kcd ® Kef)
K2 EK2 =mw(K2,K89 ® Kab) DK?2 = mw(K2, Kcd)

K3 EK3=muw(K3, K89) DK3 =mw(K3,Ked ® Kef)
K4 EK4 = mw(K4, K89 @ Kab) DK4 = mw(K4, Kcd)

K5 EK5 = mw(K5, K89) DK5 = mw(K5,Ked ® Kef)
K6 EK6 = mw(K6, K89 ® Kab) DK6 = mw(K6, Kcd)

K7 EK7=mw(K7,K89) DKT7=mw(K7,Kcd ® Kef)
Kcdef (K89@ Kab@® Ked, Kab @ Kef) | 0

2.67 GHz processor with 12 cores. We first describe a 6-round linear approxima-
tion and then the basic attack which performs the analysis on both ends of the
cipher simultaneously. We then describe how to use it with reduced number of
plaintexts, and how to recover the rest of the actual subkeys and the full key.

3.1 The Linear Approximations

In [1,11] eight 7-round linear approximations with a bias of about 272 were pre-
sented. The attack we present in this paper uses two 6-round approximations
with bias of about 276, which we got by truncating two of the 7-round approx-
imations of [1,11] by one round. These approximations are outlined in Figs.4
and 5 in Appendix B.

3.2 The Basic Attack

The attack we present targets both the encryption actual subkey of the first
round (EKO0), and the decryption actual subkey of the last round (DK7). The
six-round linear approximation covers the six middle rounds of the cipher (rounds
1-6), while the first and last rounds are used for analysis. We found that when
using Approximation 1 there are only 37 bits of FK0 and DK?7 that affect the
parity of the bits in the approximation: 22 bits in the last actual subkey (DK7,
given by the mask 03 FF FF OF), and 15 bits of the first actual subkey (EKO,
given by the mask 00 7F 7F 00 and the parity of the two bits 00 80 80 00).
The remaining 27 bits of FK0 and DK7 have no impact on the parity of the
bits in the linear approximation of the six middle rounds. It is therefore that
this basic attack finds the 37 bits of the two actual subkeys.

(DK89,DKab)

A !—I*;'—\ g DKO

LL]
DKI1 Jo fi f2 f3
I N
LL]
e S DK2
L DKiy_.ds DKi; .y DKi> . DKis_.
DK3
D]—*F'—\ T‘ Wo wy w2 w3
DK4 [$F—
E [Fl e |
DK5 [Sa
F \L f\\
o B
G rFl g

\>X F F F F;
DK7 ! b ’ !

. r) Si(x,y) = ROL2(z +y +i (mod 256))

Fig. 2. Equivalent description of FEAL-8X without whitening at the end

The attack is as follows:

1. For each of the 2! candidates for the 16 bits of EKO:
(a) For each of the 222 candidates for the 22 bits of DKT:
i. For each known plaintext P,C"
A. Decrypt C by one round using DK?7.
B. Encrypt one round of P using EKO0.
C. Compute the parity of the approximated bits.
ii. Count the number of messages for which the linear approximation
holds and compute the bias.
2. The correct key is expected to be the one with the highest bias.

We also observed that not all 37bits of the subkeys have the same impact
on the bias. While some bits completely throw off the observed bias if guessed
incorrectly, others have only a minor impact. We can take advantage of this
observation to reduce the running time of the attack by excluding a few such
bits with a minor impact on the bias, and to search for them only when the rest

An Improvement of Linear Cryptanalysis with Addition Operations 65

of the bits are already known. For example, instead of guessing 15 bits of FK0Q
with a bias of about 276, we may guess only 13 bits (the 12 bits whose mask is
00 6E 7F 00, and the parity of the two bits 00 80 80 00) with a slightly lower
expected bias of 2765, and save a factor of 4 in computation time.

Clearly, the more data we have at our disposal the more accurate the results
are (since it is easier to detect the linear bias). If the available data is a lot
larger than required in order to detect the bias then we have more freedom to
exclude such minor-impact bits (as the measurement of the bias is only slightly
inaccurate). As the number of known plaintexts decreases, the identification of
the correct key becomes harder (as the bias is harder to detect), and in this case
we usually cannot afford to reduce the bias in return for speeding up the attack.

3.3 Matching Subkeys from the Backward and Forward Directions

As noted above, the basic attack does not suffice to find the correct key using
2% known plaintexts. In this section we apply the basic attack twice: once in
the forward direction, and once in the backward direction.

We first generate a list L1 of the N (for some parameter N) keys which
exhibit the highest bias according to Approximation 1 in the forward direction,
as described in Sect. 3.2. Recall that for each such key we get 15 bits of the first
encryption actual subkey FKO0, and 22 bits of the last decryption actual subkey
DKT.

We now run the attack again in the backward direction, i.e., we use the
reverse of Approximation 1. In this run we guess 22 bits of EK0 and 15 bits of
DK'7. We generate a second list L2 of the IV keys that exhibit the highest biases.

There is an overlap of 15 bits between the bits we guess in £KO0 in both runs,
and similarly, an overlap of 15bits in DK7. Seven bits of FKQ are available
only in L2, and seven bits of DK7 are available only in L1. The correct value of
these 30 overlapping bits is expected to be in both lists. In such a case, we can
easily find the correct value of 30 + 7+ 7 = 44 bits of the actual subkeys as the
(usually single) value that has a match in those 30 bits in both lists.

As we noted earlier, some of the bits of the key only have a minor impact
on the measured bias if they are guessed incorrectly. If we cannot find a match
between an entry in L1 and an entry in L2, we can try looking for entries that
have a low Hamming distance in the overlapping bits, and between these prefer
entries that differ in bits that are known to have a minor impact on the bias.

This is the most time-consuming part of our attack. When we ran it' on the
server mentioned above it found the 44 bits of the actual subkeys within 24 h
using 2'° known plaintexts (12h for each call to the basic attack). The correct
key bits were among the top N = 3200 keys in each list.

3.4 Retrieving the Rest of the Subkeys

In the previous section we found 44 bits of the actual subkeys. In this section we
briefly describe additional steps for finding the rest of the bits of EK0 and DK7,

! With the implementation improvement described in Appendix A.

66 E. Biham and Y. Carmeli

as well as the rest of the actual subkeys. The steps are described in the order
in which they are performed, as each step assumes knowledge of the subkey bits
that are retrieved in the preceding steps.

Finding 8 additional bits of FK0 and DK'7. This step is similar to the
attack presented in Sect. 3.2, but uses Approximation 2 instead of Approxima-
tion 1. Since the linear approximation is different, there are also different bits
of the subkeys of Rounds 0 and 7 that affect the parity. The bits of EKO0 that
affect the parity are given by the mask 3F FF FF 00 and the bits of DK7 are
given by the mask OF FF FF 03. Most of those bits are already known, except
for eight bits. The correct values of these remaining eight bits can be identified
by standard linear cryptanalysis techniques, similarly to the attack of Sect. 3.2.
After this step is performed we know 26 bits in each of EK0, DK7, a total of 52
actual subkey bits.

Finding 4 additional bits of DK 7 and 15 bits of DK 6. At this point there
are still 6 bits missing in the subkey DK'7, which are difficult to retrieve by
analyzing Round 7. We therefore move on to analyze Round 6 by using a shorter
linear Approximation. We use the first five rounds of Approximation 1 with a
bias of 273, and use it to cover rounds 1-5. In order to compute the parity of
the approximated bits in Round 5 we need to guess the values of four more bits
of DK7?, and 15bits of DK6. After this step is performed we know a total of
30 bits of DK7 (given by the mask 7F FF FF 7F) and 15 bits of DK6 (given by
the mask 00 7F 7F 00 and in addition the parity of bits 00 80 80 00).

Finding 7 additional bits of DK 6. This step is similar to the previous step,
but this time we use a 5-round approximation obtained from the last five rounds
of Approximation 1, which covers Rounds 1-5. There are 22 bits in DK6 that
affect the parity of this linear approximation. We already found 15 of them in
the previous step, and we should now search for the remaining seven.

Finding 4 additional bits of DK 6. We use a 5-round approximation com-
prised of the last five rounds of Approximation 2, which covers Rounds 1-5 We
can obtain four more bits of DK6, and get a total of 26 bits of DK6.

Finding the rest of the subkeys DK1-DK?7. In a similar way, we can
attack the rest of the rounds until we have all the actual subkeys DK1-DKT.
Note that as we progress in the attack, analyzing each additional round becomes
easier for two main reasons: First, we use shorter approximations with higher
biases, which significantly decrease the chances of errors. Second, since the actual
subkeys DK0, DK2, DK4 and DK6 have 16 bits in common (and similarly for
DK1, DK3, DK5 and DKT) there are only 16 bits to retrieve in each of those
actual subkeys once DK6 and DK7 are fully known.

Finding EK0-EK®6. Once we finish recovering the decryption actual subkeys,
we can repeat the entire process in the reverse direction in order to find the

2 The value of the two remaining bits of DK7 can only be determined when we analyze
round 3. Until then those bits have only a linear effect on the parity of the approxi-
mation, and therefore cannot be discovered by methods of linear cryptanalysis.

An Improvement of Linear Cryptanalysis with Addition Operations 67

10, 11, 55, 54,
01, 01,
DK6D_,€9 DK614,€9 DK624,€9 DK63_,€9
11, 55,
Eg]’ 11,
44 4. 44,
s f)
01 01
y 02 11, R
5, 01, E 01 A[SE’

04, 03, | 10, 04,

Fig. 3. The approximation of the seventh round

encryption actual subkeys EFK0-EKG6.> These actual subkeys depend on the
whitening key of the plaintext, and are needed in order to retrieve the FEAL-8X
key.

Finding The Key Itself. Given DK1-DK7 and FK0-E K6 we find the FEAL-
8X key within a fraction of a second. The details are omitted here due to space
constraint, but the algorithm is described in the full version of the paper.

4 The Partitioning Technique — Finding the Key Using
24 Known Plaintexts

In this section we describe a technique that can reduce the number of known
plaintexts by a factor of 3.1 compared to the algorithm of Sect. 3.2. In this tech-
nique we partition the data into several sets, such that the bias of the approxi-
mation in some of them is higher than when measured across all the data, with
a ratio that overcomes the smaller number of messages in those sets. Therefore,
fewer messages are required in order to detect the amplified bias.

4.1 A Simplified Example

We apply this technique to Round 6 of the cipher in the inner loop of the
algorithm, after the output of the last F-function is already (partially) computed.
It is therefore that most bits of the inputs to the S-boxes of Round 6 are known
up to an XOR with DK6.

3 We note that instead of searching for EK0-EK6, we can continue the analysis in
the decryption direction and retrieve the actual subkey DKO0 and the whitening key.
Once all the decryption actual subkeys DK 0-D K7 and the whitening key are known,
the encryption actual subkeys FEK0-EKT can easily be computed (see Table1).

68 E. Biham and Y. Carmeli

At Round 6 we approximate the first S-box by 11 11 — 44 (see Fig. 3). The
input mask 11 11 is approximated to the output mask 44 through the addition
operations in the S-boxes (and the rotation), and therefore the quality of the
approximation is determined by the carry bits from lower bits into the approxi-
mated bits.

We are interested in improving our control on the carry bits, which in turn
will improve our approximations.

For that we identified that some of the bits in the inputs to this S-box
(denoted by w; and ws in Fig.2) in this round are known to us up to an XOR
with the actual subkey DK6 (as mentioned above).

The approximation 11 11 — 44 approximates two bits through the addition
operations. One of them involves the addition of the least significant bits of
the inputs (mask 01 01 or wi g + we o = F1 2, where w; are the input bytes to
the S-boxes and F; is the output, as denoted in Fig. 2, and w; ; is bit j of w;). The
approximation of this bit has probability 1, as there cannot be a carry into the
LSB. The other approximates Bit 4 of both inputs (mask 10 10), the carry to
which involves Bit 3 of both inputs (w3 and ws 3, identified by the mask 08 08).
If we would know in advance that the unknown values of these two bits are both 0
then it is certain that there cannot be any carry into Bit 4, which would ensure
that this approximation will also have probability 1 (bias +0.5). Similarly, when
both bits are 1, a carry from this bit to the next one is guaranteed, and therefore
we would also be able to make the approximation with probability 1 (knowing
that the carry always flips the approximated output, thus the bias is —0.5). In
the other cases (where the bits wq 3 and ws 3 are either 0,1 or 1,0), we have
no idea what the carry is, but we expect that it would occur in about half of
the inputs, which would cause the bias to be much closer to zero. We refer to
the four possible cases by the values of w; 3, wa 3 as cases 00, 11, 01, and 10,
respectively. The bias of the S-box (on all inputs) is close to 0.25, and therefore
the bias of the entire Approximation 1 is 0.25¢, for some « that depends on the
other parts of the approximation.

If we could choose only plaintexts of cases 00 and 11 and run the attack
only on these plaintexts, we would need fewer messages due to the larger bias.
Unfortunately, the values of w; 3 and w3 are only known up to a XOR with
two missing bits of DK6 (see Fig. 2):

wis = fo3® fi,3®DKG613, waz= fo3® f33P DK6y3,

and therefore they clearly cannot be chosen or known directly. Nevertheless, the
corresponding bits fo 3, f1,3, f2,3 and f3 3 in the input of the F-function are all
known as a result of the partial guess of the actual subkey DK 7. We observe that
we can still partition all the data into the same four sets according to fo 3 ® fi,3
and f23 @ f3.3, instead of w; 3 and w3, but we do not know which of the four
sets have the amplified biases.

Though we cannot identify the two sets with an amplified bias, we can run
this inner part of the attack four times, once on each of the sets. We expect
the following results: In each set we would have about a quarter of the known

An Improvement of Linear Cryptanalysis with Addition Operations 69

plaintexts but in two of them we would have a bias twice as large as we had
originally (meaning #0.5a).* Therefore the number of required plaintexts in
these sets is about 4 times (0.52/0.25%) smaller than would have been needed
without applying this technique.

A more careful analysis shows that we can merge the two sets with bias +0.5
(with an appropriate sign coefficient) and partition the plaintexts only to two
sets. This merges the sets of cases 00 and 11 into one set, and the sets of cases
01 and 10 into another set according to the parity of the two bits fo 3 @ fi3
and f 3 @ f3 3. Denote the number of known plaintexts required for the original
attack by m. As discussed above, the amplified bias can be detected with m/4
plaintexts. Since each of the two unified sets has about half of the plaintexts, we
deduce that m/2 known plaintexts suffice for the partitioning technique.

4.2 The Attack

The attack follows the lines of the above example, but considers that the details
of the approximation of the S-boxes are more complicated than described so
far. While for a single S-box and appropriate independence assumptions the
technique would work as described, in practice there is a correlation between
the approximation of the two middle S-boxes of F. We give the combination
of both middle S-boxes the name T-box (marked by a rectangle in Fig.3). The
joint approximation of the two S-boxes in the T-box cannot be described as
a combination of two independent approximations since the input bits to the
second S-box are all either inputs of the first S-box or its output. Therefore, a
closer examination of the joint distribution is in order.

We computed the joint approximation of the S-boxes (the T-box) with the
approximation 11 55 — 02 11 and observed that the partition to two sets (by the
value of fo 3@ f1.3® f2,3® f3,3) has the following effect: In the cases 01 and 10
the bias is increased by a factor of about 2.49 compared to the original bias,
while the absolute value of the bias in the other cases (00 and 11) is halved. Tt is
therefore that the number of known plaintexts needed by the attack is reduced
by a factor of about 2.492/2 ~ 3.1.

We also note that there are other possible partitions (by other control bits)
that yield an increased bias in one or more of the sets, that can be used for
alternative implementations of this technique.

We applied this improvement to the attack of Sect. 3 and successfully reduced
the number of required known plaintexts from 2'° to 2'*. Applying this technique
did not add a noticeable overhead to the running time of the attack. In fact, the
time it took to recover the 44bits of the actual subkeys using 2'* plaintexts
was 12h — which is about half the time that was required using 2'° plaintexts
(without using this technique). The rest of the attack took about two more
hours, and the key was found after 14 h of computation. The key that was found
for the challenge with 2™ plaintexts is 56681891EEC34CE1241EDOF52C9C23F65.

4 For the purpose of this simplified example we assume that the linear approximation
of this S-box is independent of the rest of Approximation 1. We will see later that
this is not the case.

70 E. Biham and Y. Carmeli

5 Attacking FEAL-8X Using 2'° Known Plaintexts
with Complexity 262

The methods we described in the previous sections can be used to break FEAL-
8X with even fewer known plaintexts in time which is still faster than exhaustive
search. In particular, the key can be found given 2'° known plaintexts in time
of about 262 FEAL encryptions.

To justify the above claim, we describe an attack on seven rounds of FEAL,
which is based on the attack of Sect.3.2, and then extend it to 8 rounds by
exhaustively searching for the subkey of the last round.

The attack on seven rounds of FEAL uses the first five rounds of Approxima-
tion 1, with a bias of 273. Similarly to the attack of Sect. 3.2, the approximation
covers the five middle rounds and the analysis is performed on the first and last
rounds. In each of the first and last rounds there are 15 bits that we need to
guess in order to compute the parity of the linear approximation, and therefore
the attack requires encrypting/decrypting an equivalent of 215 .215.210.9 = 241
rounds of FEAL.

In order to extend the attack to eight rounds, we also guess 30 bits of the
actual subkey DKT of the last round (recall that two of the 32 bits have no effect
on the parity of the linear approximation). For each candidate for these 30 bits
of DK7 we decrypt the last round of all the inputs, and then apply the above
attack to the remaining seven rounds. The attack on seven rounds is performed
230 times, and therefore the total time complexity is equivalent to computing
230 241 — 271 rounds of FEAL (or 258 encryptions of the full cipher), which is
much faster than exhaustively searching for the 128-bit key.

When applying the optimization improvements described in Appendix A we
get an even lower complexity of about 22 FEAL encryptions.’

6 Attacks with a Few Known or Chosen Plaintexts

In this section we describe several attacks that require only a few (even 2 or 3)
known or chosen plaintexts, which are based on linear cryptanalysis or differential
cryptanalysis combined with exhaustive search of most subkeys, as well as meet
in the middle attacks.

6.1 Differential and Linear Exhaustive Search Attacks

During the work on this paper we noticed that the actual subkeys of FEAL-
8X are mixed very slowly through the encryption function. In particular, we
observed that only 112 bits of the actual subkeys are needed in order to decrypt a
ciphertext by 5 rounds and compute the data after the third round of the cipher
from the ciphertext. In addition, we recalled that there are four independent

5 Recall that the key size of FEAL-8X is 128 bit.

An Improvement of Linear Cryptanalysis with Addition Operations 71

3-round linear approximations with probability 1 (creating a total of 15 non-
trivial approximations) and two independent 3-round differential characteristics
with probability 1 (creating a total of 3 characteristics). These approximations
and characteristics can be found in [2,4].

In the case of the linear approximations with probability 1, each allows us to
test one parity bit of the data after the third round and to compare to a parity
bit of the plaintext. Therefore, a total of 4 bits can be tested on each plaintext
(except for the first known plaintext to whose parities we compare). Given 5
known plaintexts the attack would be:

1. For each value of the set of subkeys DK3, DK4, DK5, DK6, DK7 (in total
these 160 bits only contain 112 independent bits).

(a) For each plaintext-ciphertext pair (P,C) decrypt the ciphertext by 5
rounds to D3 and compute the parity of each approximation PA\% & D33,
where A%, — A3 is the mask of the linear approximation in use.

(b) Discard any guess for which the five results (each of 4 bits, one for each
approximation) are not the same.

(c) Note that at this point only about

296 of the guesses of the subkeys

remain.
(d) For each value of the subkey DK2 (16 more bits)

i.

ii.

iii.

iv.

vi.

Note that at this point we have about 2''2 guesses of the subkeys.
We will now use four 2-round approximations A% — A2, which are
based on the last two rounds of the prior ones.

For each plaintext-ciphertext pair (P, C') decrypt the ciphertext by 6
rounds to Dy and compute the parity of each approximation PA% &
DoA2.

Discard any guess for which the five results are not the same.

Note that at this point we are left again with only about 2?6 guesses
of the subkeys.

For each value of the subkey DK1 (16 more bits)

A. Note that at this point we have about 2!!? guesses of the subkeys.

B. For each plaintext-ciphertext pair (P, C') decrypt the ciphertext
by 7 rounds to D; and compute the XOR of both halves of the
whitening key DK89 @ DKab (32 bits in total).

C. Discard any guess for which the five results are not the same.

D. Note that at this point we expect that only the correct values of
all the above guesses remain.

E. Complete the rest of the subkeys by guessing DK0 and compar-
ing the resulting DK 89 in 2'6 time.

F. Recover the original key. The algorithm is described in the full
version of the paper (note that given all the decryption actual
subkeys and the whitening key it is easy to compute the encryp-
tion actual subkeys needed by that algorithm).

The complexity of this attack is 2''2, taking into consideration that the various
decryptions need not be computed several times (once by 5 rounds, then by 6,

72 E. Biham and Y. Carmeli

then by 7), but that the intermediate values can be cached to save computation
time. A careful implementation would require an average computation of only
two rounds in each guess for each of the three guessing loops. Thus the total
complexity is about 3 -2 - 212 round computations = 0.75 - 2''2 encryption of
FEAL-8X.

A similar attack that uses the 3-round differential characteristics with prob-
ability 1 requires only three chosen plaintexts (whose plaintexts differ by the
two plaintext differences of the two characteristics). Since each differential char-
acteristic predicts 64 bits of the intermediate difference, we have a much better
elimination of wrong guesses, and thus we need only three chosen plaintexts.
The complexity of the attack is also 212,

6.2 Meet in the Middle Attacks

The attack that requires the least number of known plaintexts is a meet in the
middle attack. We observe that the number of (independent) bits of the actual
subkeys that are required to partially encrypt (or decrypt) four rounds of the
cipher is 96. Therefore, a meet in the middle attack using two (or three) known
plaintexts computes 27% 4-round partial encryptions of two blocks plus 296 4-
round partial decryptions of two blocks. This attack also requires 2°¢ memory
words of size 128 bits (or even 96 bits). The list of about 264 (or 2%) colliding
values should then be checked by auxiliary techniques, and be completed to a
full key with the same known plaintexts.

An improvement of this attack may reduce the complexity to 23°, by encrypt-
ing or decrypting only three rounds from each end, using 11 known plaintexts.
This improvement considers that the F-function in the fourth round can be
approximated by the four independent linear approximations with probability 1
(each one is represented by a single parity bit in the output of encryption and
a single parity bit in the output of decryption). The fifth round can be approxi-
mated similarly. This way, each known plaintext contributes 8 bits to the collid-
ing values (except for the first, whose 8 parity bits are XORed into the parity bits
of all the other ones), and thus in order to collide on 80 bits, we need 11 known
plaintexts. Each of the 280 colliding values can then be checked by auxiliary
techniques, and be completed to the full key.

We also note that these meet in the middles attacks can be transformed
to memoryless meet in the middle attacks by standard techniques [10,12]. The
simplest implementation of the former encrypts/decrypts three blocks at a time,
each encrypted or decrypted by four rounds, resulting in a collision on 192 inter-
mediate data bits, which ensures that the real value of the subkeys are easily iden-
tified in time 2%6. The simplest implementation of the latter encrypts/decrypts
21 blocks at a time, each encrypted or decrypted by three rounds, resulting in a
collision on 160 intermediate data bits, which ensures that the real value of the
subkeys be easily identified in time 21 - (3/8 4 3/8) - 280 ~ 284,

An Improvement of Linear Cryptanalysis with Addition Operations 73

7 Summary

We presented the techniques which allowed us to break FEAL-8X with only
2™ known plaintexts and recover the secret key. This is an improvement of the
best known-plaintext attacks prior to this paper. Our attack is based on a few
improvements and optimizations to linear cryptanalysis, the most important of
which is the new partitioning technique which allowed us to reduce the amount
of known plaintexts needed for the attack.

In addition to the practical attacks on FEAL-8X we also presented a few
attacks which are based on linear and differential cryptanalysis in combination
with meet-in-the-middle techniques. Those attacks can find the secret key given
only a few messages in time which is faster than exhaustive search.

We wish to discuss the similarities and differences between our partition-
ing technique and partitioning cryptanalysis [5]. They both partition the data
into several sets based on functions that take the plaintexts or ciphertexts and
guessed key bits, where each set of the input-partition is related to some linear
approximation and expected biases. In that sense, our technique is a variant of
partitioning cryptanalysis. However, in partitioning cryptanalysis the expected
biases are known in advance for each input block of the partition, and thus the
attacker can select the best block and choose all the chosen plaintexts to be in
that block. In our case we succeed (in the particular case of the addition opera-
tion) to take one step further and divide to partitions such that we do not know
which set should have which bias. The identification of the sets is part of the
attack, and it is therefore that our technique is a known plaintext attack. But
perhaps the most significant improvement of our technique stems directly from
the motivation that is the basis of our partition — we use the partition in order
to discard (or rather ignore) messages that do not contribute to the linear bias.
By doing so the bias in the remaining set is higher, which allows us to reduce the
number of messages needed for the attack. We also note that our technique may
in some cases be applied both on the plaintext side and on the ciphertext side
simultaneously, and gain the extra factor in cases that partitioning cryptanalysis
may not.

Acknowledgements. The authors would like to thank Mitsuru Matsui for initiating
the FEAL 25 Years challenge. We would also like to thank Orr Dunkelman for his
insightful comments and helpful suggestions.

A Efficient Implementation

We describe an optimization to the implementation of the attack of Sect. 3.2
which saves a factor of about 2% in the computation time of the attack. This
optimization can also be applied to other attacks presented in this paper that
are based on the attack of Sect. 3.2.

74 E. Biham and Y. Carmeli

Recall that in the attack of Sect. 3.2 we iterate over 2° possible values for (16
bits of) the encryption actual subkey of the first round (EKO0), and 222 possible
values for (22 bits of) the decryption actual subkey of the last round (DKT7).
For each of the 237 combinations, two rounds of FEAL are encrypted/decrypted
for each known plaintext. We denote the number of known plaintexts by m.

We observe that given a known plaintext-ciphertext pair P, C, the parity of
the approximated bits can be written as bp @ b, where bp is a bit that depends
only on the plaintext and the actual subkey of the first round, and bs is a bit
that depends only on the ciphertext and the actual subkey of the last round.
Therefore, we can change the attack as follows:

1. For each of the 2! candidates for the 16 bits of EKO :

(a) Compute a vector Bp of length D bits, where (Bp); = bp,. Save all the
vectors in a table.

2. For each of the 222 candidates for the 22 bits of DKT:

(a) Compute a vector Be of length m bits, where (B¢); = bg,.

(b) For each of the 2'5 candidates for the 16 bits of EKO0, get the vector
Bp from the table, and compute the number of plaintexts for which
the parity of the Approximations is 1 by H(Bp @ B¢), where H is the
Hamming weight function.

(¢) Compute the bias for approximation.

3. The correct key is expected to be the one with the highest bias.

Assuming a processor with a word size of 64 bits, this optimization lets us
compute the parity of 64 plaintexts at the same time, and therefore saves a factor
of about 2° in the attack.

We note that this optimized implementation also works with the partitioning
technique described in Sect. 4. In Step 2a of the algorithm above, in addition to
generating the vector Bo we generate a third vector W. The i-th bit of W deter-
mines to which set of the partition the i-th plaintext belongs. We can compute
the number of plaintexts with a parity of 1 in the bits of the approximation in
each of the sets as H((Bp @ Bc)&W) and H((Bp @ Bco)&W), where & is the
bitwise-and operator, and W denotes the binary complement of W.

B The Linear Approximations Used in Our Attacks

The appendix lists the two linear approximations from [1,11] which we use in
our attacks. Approximation 1 is presented in Fig.4 and Approximation 2 is in
Fig. 5.

An Improvement of Linear Cryptanalysis with Addition Operations 75

@,” =00 01 05 04 04 03 10 049

!

00010504, [. 00 00 01 00, p=1/24+27"
[

——————

04031104, [g 00 01 05 04, p=1/24272
—————
0 7 0 p=1/2+27"!
L=

04031104, [00 01 05 04, p=1/2+272
[

e

00 01 05 04, F 00 00 01 00, p=1/2+27"!

——————

04031004, [10 11 55 54, p=1/2+274
[

!

@TU =04 03 10 04 10 10 50 509

Fig. 4. Approximation 1 — A six round approximation with bias 276

@3‘ =04 01 00 00 1D 00 04 00;

1
04010000, [L 01 00 00 00, p=1/24+271
1C 00 04 00, [, 04 01 00 00, p=1/2+272
><
0 F 0 p=1/2+27"!
L= |

1C 0004 00, [L. 04 01 00 00, p=1/24+272
[

——————

04010000, [L 01 00 00 00, p=1/2+27"
[

e

1D 0004 00, [o, 54 11 10 10, p=1/2+27*
[

!

@T"” = 1D 00 04 00 50 10 10 10;

Fig. 5. Approximation 2 — A six round approximation with a bias 276

76

E. Biham and Y. Carmeli

References

10.

11.

12.

13.

. Aoki, K., Ohta, K., Moriai, S., Matsui, M.: Linear cryptanalysis of FEAL. IEICE

Trans. Fundam. Electron. Commun. Comput. Sci. E81-A(1), 88-97 (1998)

. Biham, E.: On matsui’s linear cryptanalysis. In: De Santis, A. (ed.) EUROCRYPT

1994. LNCS, vol. 950, pp. 341-355. Springer, Heidelberg (1995)
Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cyptosystems. J.
Cryptol. 4(1), 3-72 (1991)

. Biham, E., Shamir, A.: Differential cryptanalysis of feal and N-Hash. In: Davies,

D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 1-16. Springer, Heidelberg
(1991)

Harpes, C., Massey, J.L.: Partitioning cryptanalysis. In: Biham, E. (ed.) FSE 1997.
LNCS, vol. 1267, pp. 13-27. Springer, Heidelberg (1997)

Matsui, M.: Celebrating the 25th year of FEAL - A new prize problem, rump
session of CRYPTO’12. http://crypto.2012.rump.cr.yp.to/19997d5a295baee62
c05ba73534745ef.pdf

Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386-397. Springer, Heidelberg (1994)
Matsui, M., Yamagishi, A.: A new method for known plaintext attack of FEAL
cipher. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 81-91.
Springer, Heidelberg (1993)

Miyaguchi, S.: News on FEAL Cipher, talk at the rump session at CRYPTO’90
(1990)

Morita, H., Ohta, K., Miyaguchi, S.: A switching closure test to analyze cryp-
tosystems. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 183-193.
Springer, Heidelberg (1992)

Ohta, K., Aoki, K.: Linear cryptanalysis of fast data encipherment algorithm.
Technical Report of IEICE (1994)

Quisquater, J.-J., Delescaille, J.-P.: How easy is collision search. New results and
applications to DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp.
408-413. Springer, Heidelberg (1990)

Shimizu, A., Miyaguchi, S.: Fast data encipherment algorithm FEAL. In: Price,
W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 267-278.
Springer, Heidelberg (1988)

http://crypto.2012.rump.cr.yp.to/19997d5a295baee62c05ba73534745ef.pdf
http://crypto.2012.rump.cr.yp.to/19997d5a295baee62c05ba73534745ef.pdf

	An Improvement of Linear Cryptanalysis with Addition Operations with Applications to FEAL-8X
	1 Introduction
	2 The Cipher FEAL-8X
	2.1 An Equivalent Description of FEAL-8X

	3 First Attack -- Finding the Key Using 215 Known Plaintexts
	3.1 The Linear Approximations
	3.2 The Basic Attack
	3.3 Matching Subkeys from the Backward and Forward Directions
	3.4 Retrieving the Rest of the Subkeys

	4 The Partitioning Technique -- Finding the Key Using 214 Known Plaintexts
	4.1 A Simplified Example
	4.2 The Attack

	5 Attacking FEAL-8X Using 210 Known Plaintexts with Complexity 262
	6 Attacks with a Few Known or Chosen Plaintexts
	6.1 Differential and Linear Exhaustive Search Attacks
	6.2 Meet in the Middle Attacks

	7 Summary
	A Efficient Implementation
	B The Linear Approximations Used in Our Attacks
	References

