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Abstract. Several algorithms have been proposed for factoring RSA
modulus N when attackers know the most or the least significant (β −
δ) log N bits of secret exponents d < Nβ . The attacks are expected to
work when β < 1 − 1/

√
2 with full size public exponent e considering

Boneh and Durfee’s result for small secret exponent attacks on RSA.
However, previous attacks do not always work in this condition when
attackers know only a small amount of information on secret exponent,
that is, δ is close to β. In this paper, we propose the improved algo-
rithms for partial key exposure attacks which cover Boneh and Durfee’s
bound when δ = β. Our algorithms are the best among all known results
when attackers know the most significant bits of d ≤ N9/16 or the least

significant bits of d ≤ N (9−√
21)/12. In our algorithm constructions, we

construct basis matrices for lattices which are not triangular and analyze
the determinant by using unravelled linearization. The analysis enables
us to make better use of the algebraic structures of modular polynomials,
that is, we can select appropriate lattice bases or construct appropriate
lattice bases.

Keywords: RSA · Cryptanalysis · Partial key exposure · Coppersmith’s
method · Lattices

1 Introduction

1.1 Background

Small Secret Exponent RSA. When small secret exponent d < Nβ is used,
RSA cryptosystem becomes efficient for the decryption cost or the signature
generation cost. However, Wiener [32] revealed the vulnerability. They claimed
that public modulus N can be factored in polynomial time when β < 1/4.

Boneh and Durfee [5] revisited the attack and further improved the result.
They used lattice-based Coppersmith’s method to solve modular equations [8,
20]. At first, they constructed lattices which provide Wiener’s bound β < 1/4.
Next, they added some extra polynomials in the lattice bases and improved the
bound to β < (7−2

√
7)/6 = 0.28474 · · · . Finally, they achieved a stronger bound

β < 1 − 1/
√

2 = 0.29289 · · · by extracting sublattices. To achieve the stronger
bound, they used lattices which are not full-rank. Since the determinant of such
lattices are difficult to compute, the analysis of the bound is involved.
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Partial Key Exposure Attacks on RSA. Boneh, Durfee and Frankel [6]
introduced several attacks on RSA with small public exponent e. Their attacks
make good use of the knowledge of the most significant bits (MSBs) or the
least significant bits (LSBs) of secret exponent d. After that, such partial key
exposure situations have been practically reported using side channel attacks,
cold boot attacks [14]. Therefore, estimating the security of RSA with partial
knowledge of the secret key has become increasingly important problem. See also
[15,16,22,23,28].

Blömer and May [4] improved the attacks using Coppersmith’s method to
solve modular equations [8,20]. Blömer and May’s work revealed that partial
key exposure RSA is vulnerable for larger public exponent e. Ernst et al. [13]
improved the attack to full size encryption exponent e using Coppersmith’s
method to find small roots of polynomials over the integers [9,12]. In addi-
tion, they proposed analogous attacks with full size public exponent e and small
secret exponent d. In this paper, we study the situation:

– the prime factors p, q are the same bit size, q < p < 2q,
– the public exponent e is full size, the bit length of e is log N ,
– the secret exponent d < Nβ is small, 0 < β ≤ 1,
– in addition to public keys (N, e), attackers know d0 which is (β − δ) log N the

most or the least significant bits of the secret exponent d with 0 ≤ δ ≤ β.

Partial key exposure situation with δ = β, when attackers know no infor-
mation of secret exponent d, is the same situation as Boneh and Durfee’s work
[5]. Therefore, the attack should always work when β < 1 − 1/

√
2. However,

Ernst et al.’s results [13] only achieved the Boneh and Durfee’s weaker bound
β < (7 − 2

√
7)/6 when δ = β.

At PKC 2009, Aono [1] improved the algorithm for the LSBs partial key expo-
sure attacks using Coppersmith’s method to solve modular equations
[8,20]. Aono used lattices which are not full rank and the basis matrices are not
triangular. The result covers Boneh and Durfee’s stronger bound β < 1 − 1/

√
2

when δ = β. However, the attack is not applicable to the MSBs partial key expo-
sure case. Sarkar, Gupta and Maitra [29] analyzed the MSBs partial key exposure
attacks using Coppersmith’s method to solve modular equations [8,20]. Though
their attack partially covers Ernst et al.’s bound, they cannot improve it. To con-
struct algorithms for the MSBs partial key exposure attacks that cover Boneh
and Durfee’s stronger bound remains an open problem.

Unravelled Linearization. Herrmann and May [18] introduced a new tech-
nique for lattice constructions, unravelled linearization. To solve nonlinear mod-
ular equations, consider the linear modular polynomials using linearization. In
addition, unravelled linearization makes use of the lost algebraic structure using
unravelling, which partially unravel the linearized variables in basis matrices.
This operation transform basis matrices which are not triangular to be trian-
gular and enables us to analyze the lattices which are not full rank easily. At
PKC 2010, Herrmann and May [19] gave an elementary proof for Boneh and
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Durfee’s attack to achieve the stronger bound β < 1 − 1/
√

2. They used unrav-
elled linearization and transformed Boneh and Durfee’s lattices to be full rank
with triangular basis matrices. Compared with original Boneh and Durfee’s proof
[5], the elegant technique enables us to extract appropriate sublattices easily. In
addition, several results [2,18,21,31] have been reported to improve the previous
results with the technique.

Collecting Helpful Polynomials. To maximize solvable root bounds, it is
crucial to select appropriate polynomials in lattice bases. To examine which
polynomials to be selected, May introduced the notion of helpful in his survey
[26]. They called the polynomials whose sizes of diagonals in the basis matrices
are smaller than the size of the modulus helpful polynomials. Helpful polynomials
reduce the determinant of the lattices and enable us to obtain better bounds.

At a glance, the notion is completely trivial. However, Takayasu and Kunihiro
[30] made use of the notion and provided the improved lattice constructions.
They claimed that as many helpful polynomials as possible should be selected in
lattice bases as long as the basis matrices are triangular. Based on the strategy,
they improved the algorithms to solve two forms of modular multivariate linear
equations [7,17]. The two algorithms were improved with full rank lattices with
triangular basis matrices. That means though the analyses of triangular basis
matrices are easy, that do not mean selections of appropriate lattice bases are
trivial. Takayasu and Kunihiro’s results [30] imply that the notion of helpful
enables us to determine the appropriate polynomial selections.

1.2 Our Contributions

In this paper, we use Coppersmith’s method to solve modular equations [8,20]
and propose a improved algorithms for partial key exposure attacks on RSA for
both the MSBs and the LSBs cases. Both our algorithms achieve Boneh and
Durfee’s stronger bound β < 1 − 1/

√
2 when δ = β. Since we consider bivariate

equations, our algorithms work under the assumption that polynomials obtained
by the LLL reduced bases are algebraically independent as in previous works
[1,4,5,13,29]. The assumption may be valid since few negative cases have been
reported.

For the MSBs partial key exposure attacks, this is the first result to cover
Boneh and Durfee’s stronger bound when δ = β.

Theorem 1. When we know the most significant (β − δ) log N bits of secret
exponent d, public moduli N can be factored in polynomial time in log N and
1/ε provided that

(i) δ ≤ 1 + β −
√

−1 + 6β − 3β2

2
− ε, β ≤ 1

2
,

(ii) δ ≤ τ

2
− τ2

3
+

1
6τ

· (τ − 2(β − δ))3

2 + 2δ − 4β
− ε, τ = 1 − 2β − 1

1 − 2
√

1 + δ − 2β
,

1
2

< β ≤ 9
16

.
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Fig. 1. Recoverable conditions for the
MSBs partial key exposure attacks.
Grey area represents the condition
established by Ernst et al. Our algo-
rithm works in the area left above of
the solid line.

Fig. 2. Recoverable condition for the
LSBs partial key exposure attacks.
Grey area represents the condition
established by Ernst et al. Aono’s algo-
rithm works in the area left above of
the broken line. Our algorithm works
in the area left above of the solid line.

We solve the same modular equations as Sarkar et al. [29], though Sarkar et al.’s
algorithm does not even cover Boneh and Durfee’s weaker bound. To the best of
our knowledge, this is the first result to analyze the basis matrices which are not
triangular for the MSBs partial key exposure attacks. Unravelled linearization
enables us to analyze algebraic structures of modular polynomials in detail.
Though we use the same polynomials as Sarkar et al. in lattice bases, we change
the selections. Figure 1 compares the solvable root bounds of our algorithm and
Ernst et al.’s algorithms [13]. When β ≤ 9/16 = 0.5625, our algorithm is superior
to the previous ones.

For the LSBs partial key exposure attacks, our algorithms cover Boneh and
Durfee’s stronger bound when δ = β and are superior to Aono’s algorithm [1].

Theorem 2. When we know the least significant (β − δ) log N bits of secret
exponent d, public moduli N can be factored in polynomial time in log N and
1/ε provided that

δ ≤ 1 + β −
√

−1 + 6β − 3β2

2
− ε, β ≤ 9 − √

21
12

.

We solve the same modular equations as Aono. First, we use unravelled lineariza-
tion and transform Aono’s basis matrices to be triangular. This transformation
reveals a bottleneck of Aono’s lattice constructions. We change polynomials in
lattice bases in order to make full use of algebraic structures of modular polyno-
mials. Figure 2 compares the solvable root bounds of our algorithm, Ernst et al.’s
algorithm [13], and Aono’s algorithm [1]. When β < (9−√

21)/12 = 0.36811 · · · ,
our algorithms are superior to the previous ones.
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1.3 Roadmap

The organization of this paper is as follows. In Sect. 2, we recall the RSA key
generation and formulate the MSBs and the LSBs partial key exposure attacks.
In Sect. 3, we introduce Coppersmith’s method to solve modular equations,
the technique and the strategy for the lattice constructions. In Sect. 4, we ana-
lyze the MSBs partial key exposure attack and prove Theorem1. In Sect. 5, we
analyze the LSBs partial key exposure attack and prove Theorem2.

2 Formulations of Partial Key Exposure Attacks

We recall that the RSA key generation is described as

ed = 1 + �φ(N),where φ(N) = (p − 1)(q − 1) = N − (p + q − 1).

In the MSBs partial key exposure case, we know d0 which is the most sig-
nificant bits of secret exponent d. We rewrite d = d0M + d1 with an integer
M := 2�δ log N�, d1 is the unknown part of d. In this case, we can easily calculate
an approximation to �, �0 = �(ed0 − 1)/N�. We rewrite � = �0 + �1. The size of
the unknown �1 is bounded by Nγ with γ = max{δ, β − 1/2}. This analysis is
written in [4] in detail. Again, looking at the RSA key generation,

e(d0M + d1) = 1 + (�0 + �1)(N − (p + q − 1)).

We consider the modular polynomial

fMSBs(x, y) = 1 + (�0 + x)(N + y) (mod e).

This polynomial has the roots (x, y) = (�1,−(p + q − 1)). Sizes of the roots are
bounded by X,Y where X := Nγ , Y := 3N1/2. We can factor the RSA modulus
N , if we can find the roots of fMSBs(x, y).

In the LSBs partial key exposure case, we know d0 which is the least sig-
nificant bits of secret exponent d. We rewrite d = d1M + d0 with an integer
M := 2�(β−δ) log N�, d1 is the unknown part of d. In this case, we cannot calcu-
late an approximation to �. Again, look at the RSA key generation,

e(d1M + d0) = 1 + �(N − (p + q − 1)).

We consider the modular polynomial

fLSBs(x, y) = 1 − ed0 + x(N + y) (mod eM).

This polynomial has the roots (x, y) = (�,−(p + q − 1)). Sizes of the roots are
bounded by X,Y where X := Nβ , Y := 3N1/2. We can factor the RSA modulus
N , if we can find the roots of fLSBs(x, y).
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3 Coppersmith’s Method to Solve Modular Equations

The Overview of the Method. At EUROCRYPT 1996, Coppersmith intro-
duced the lattice based method to solve modular univariate equations in polyno-
mial time. The method reveals several vulnerabilities of RSA cryptosystems. See
[10,11,25–27] for more information. This method can be heuristically extended
to bivariate cases with reasonable assumption. In this paper, we explain the
reformulation by Howgrave-Graham [20]. For bivariate polynomials h(x, y) =
∑

hiX ,iY xiXyiY , define a norm of the polynomials as ‖h(x, y)‖ :=
√∑

h2
iX ,iY

.
The following Howgrave-Graham’s lemma enables us to solve modular equations
by finding roots of polynomials over the integers.

Lemma 1 (Howgrave-Graham’s lemma [20]). Let h(x, y) be a bivariate
integer polynomial which consists of at most n monomials. Let W,m,X, Y be
positive integers. When the polynomial h(x, y) satisfies

1. h(x̄, ȳ) = 0 (mod Wm), where |x̄| < X, |ȳ| < Y ,
2. ‖h(xX, yY )‖ < Wm/

√
n.

Then h(x̄, ȳ) = 0 holds over the integers.

To solve bivariate equations, we should find two polynomials that satisfy
Howgrave-Graham’s lemma. We use lattices and the LLL algorithm to find such
low norm polynomials. Let b1, . . . ,bn be linearly independent k-dimensional
vectors. The lattice L(b1, . . . ,bn) spanned by the basis vectors b1, . . . ,bn is
defined as L(b1, . . . ,bn) = {∑n

j=1 cjbj : cj ∈ Z}. We call n the rank of the
lattice, and k the dimension of the lattice. When n = k, lattices are described as
full rank. The basis matrix of the lattice B is defined as the n×k matrix that has
basis vectors b1, . . . ,bn in each row. In this paper, we use only full rank lattices.
The determinant of a full rank lattice is computed by vol(L(B)) = |det(B)|.

In 1982, Lenstra, Lenstra and Lovász proposed the LLL algorithm [24], which
find short lattice vectors in polynomial time.

Proposition 1 (LLL algorithm [24]). Given k-dimensional basis vectors b1,
. . . ,bn, the LLL algorithm finds short lattice vectors v1,v2 that satisfy

‖v1‖ ≤ 2(n−1)/4(vol(L))1/n, ‖v2‖ ≤ 2n/2(vol(L))1/(n−1).

These norms are all Euclidean norms. The running time of the LLL algorithm
is O(n5k(log B)3) where log B represents the maximum input length.

To solve the modular equations h(x, y) = 0 (mod W ), we create n polynomi-
als h1(x, y), . . . , hn(x, y) that have the same roots as the original solutions mod-
ulo Wm with a positive integer m. We generate basis vectors b1, . . . ,bn whose
elements are the coefficients of the polynomials h1(xX, yY ), . . . , hn(xX, yY ),
respectively. The polynomials modulo Wm whose coefficients correspond to any
lattice vectors spanned by b1, . . . ,bn have the same roots as the original solu-
tions. If two polynomials p1(x, y) and p2(x, y) whose coefficients correspond to
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short lattice vectors v1,v2 satisfy Howgrave-Graham’s lemma, we can find the
roots over the integers. This operation can easily be done by computing the
Gröbner bases or resultant of p1(x, y), p2(x, y).

We should note that the polynomials p1(x, y) and p2(x, y) have no assur-
ance of algebraic independency. We assume that these polynomials are algebraic
independent, and the resultant will not vanish. This assumption might be valid,
since few negative cases have been reported.1

Unravelled Linearization. Boneh and Durfee [5] solved modular equations

fBD(x, y) := 1 + N(x + y) = 0 (mod e)

for small secret exponent attacks on RSA. They selected shift-polynomials

gBD1
[u,i] (x, y) := xu−ifBD(x, y)iem−i, for u = 0, 1, . . . , m, i = 0, 1, . . . , u,

gBD2
[u,j] (x, y) := yjfBD(x, y)uem−u, for u = 0, 1, . . . ,m, j = 0, 1, . . . , �(1 − 2β)u�,

in the lattice bases. The selection generates the basis matrix which is not tri-
angular. That means there are some shift-polynomials which have several new
monomials when added in the basis matrix. To avoid the situation, Herrmann
and May [19] use the linearization z := 1 + xy. The linearization reduces the
number of monomials of fBD(x, y). We partially apply the linearization to some
monomials and the basis matrix becomes triangular. This operation enables us
to compute the determinant of the lattice easily. See [19] for detailed analysis.

Collecting Helpful Polynomials. May [26] defined the notion of helpful
compared with sizes of diagonals and a size of a modulus. Helpful polynomi-
als contribute to the conditions for modular equations to be solved. Since each
polynomial may affect not only the diagonal but also several other diagonals in
our analyses, we cannot examine which polynomials to be selected with the pre-
vious definition of helpful polynomials. Therefore, we redefine the notion which
covers the previous definition.

Definition 1 (Helpful Polynomials). To solve equations with a modulus W ,
consider a basis matrix B. We add a new shift-polynomial h[i′,j′](x, y) and con-
struct a new basis matrix B+. We call h[i′,j′](x, y) a helpful polynomial, provided
that

det(B+)
det(B)

≤ Wm.

Conversely, if the inequality does not hold, we call h[i′,j′](x, y) an unhelpful poly-
nomial.
1 We should note that in Bernstein et al.’s [3] millions of experiments with very small

lattice dimension, the heuristic assumption fails in many cases. However, they pro-
pose the method to recover small solutions in such cases. See the paper for detailed
information.
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4 Partial Key Exposure Attack: The Most Significant
Bits Case

4.1 Previous Works

In the MSBs partial key exposure case, Ernst et al. [13] found the small roots of
polynomials over the integers

gEJMW1(x, y, z) = 1 − ed0M + ex + y(N + z),

or gEJMW2(x, y, z) = 1 − ed0M + ex + (�0 + y)(N + z),

to factor N . The polynomial gEJMW1(x, y, z) has the roots (x, y) = (−d1, �,−(p+
q−1)), and the polynomial gEJMW2(x, y, z) has the roots (x, y) = (−d1, �1,−(p+
q − 1)). Their algorithms work provided that

(1) γ ≤ 5
6 − 1

3

√
1 + 6β − ε,

(2) γ ≤ 3
16 − ε and β ≤ 11

16 ,

(3) γ ≤ 1
3 + 1

3β − 1
3

√
4β2 + 2β − 2 − ε and β ≥ 11

16 .

The condition (1) can be obtained by finding the roots of the polynomial gEJMW1

(x, y, z). The conditions (2), (3) can be obtained by finding the roots of the poly-
nomial gEJMW2(x, y, z) with γ = δ and γ = β −1/2, respectively. The condition
yields Boneh and Durfee’s weaker bound β < (7 − 2

√
7)/6 when δ = β.

Sarkar et al. [29] solved the modular equation fMSBs(x, y) = 0 to factor N .
To solve the modular equation, they used shift-polynomials

gMSBs1
[u,i] (x, y) := xu−ifMSBs(x, y)iem−i,

gMSBs2
[u,j] (x, y) := yjfMSBs(x, y)uem−u.

Both shift-polynomials modulo em have the same roots as the original solutions,
that is, gMSBs1

[u,i] (�1,−(p+q−1)) = 0 (mod em) and gMSBs2
[u,j] (�1,−(p+q−1)) = 0

(mod em). They selected shift-polynomials

gMSBs1
[u,i] (x, y) for u = 0, 1, . . . , �m/4γ�, i = 0, 1, . . . ,max{m,u},

gMSBs2
[u,j] (x, y) for u = 0, 1, . . . ,m, i = 1, 2, . . . , u,

in the lattice bases. This selection generates triangular basis matrices with diag-
onals XuY iem−i for gMSBs1

[u,i] (x, y), and XuY u+jem−u for gMSBs2
[u,j] (x, y). The con-

dition for the algorithm to work is the same as (2) of Ernst et al.’s condition.

4.2 Our Lattice Constructions

In this section, we explain our improved lattice constructions. At first, we con-
sider the case for β ≤ 1/2.
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For Smaller d. To solve the modular equation fMSBs(x, y) = 0, we use the
same shift-polynomials gMSBs1

[u,i] (x, y), gMSBs2
[u,j] (x, y) as Sarkar et al. However, we

change the selections. To construct the basis matrix, we use shift-polynomials

gMSBs1
[u,i] (x, y) for u = 0, 1, . . . ,m, i = 0, 1, . . . , u,

gMSBs2
[u,j] (x, y) for u = 0, 1, . . . ,m, j = 1, 2, . . . , �2(β − γ)m + (1 + 2γ − 4β)u�,

in the lattice bases. The selections of shift-polynomials generate basis matrices
which are not triangular. However, we partially apply the linearization z =
1+(�0 +x)y and the basis matrices can be transformed into triangular. The size
of the root for the linearized variable z is bounded by Z := 3N1/2+β . In general,
we reveal the following property.

Lemma 2. We define the polynomial order ≺ as

gMSBs1
[u,i] (x, y), gMSBs2

[u,j] (x, y) ≺ gMSBs1
[u′,i′] (x, y), gMSBs2

[u′,j′] (x, y), if u < u′,

gMSBs1
[u,i] (x, y) ≺ gMSBs2

[u′,j′] (x, y), if u = u′

gMSBs1
[u,i] (x, y) ≺ gMSBs1

[u′,i′] (x, y), if u = u′, i < i′,

gMSBs2
[u,j] (x, y) ≺ gMSBs2

[u′,j′] (x, y), if u = u′, j < j′.

Ordered in this way, the basis matrices become triangular with diagonals
Xu−�lMSBs(i)�Y i−�lMSBs(i)�Z�lMSBs(i)�em−i for gMSBs1

[u,i] (x, y), and

Xu−�lMSBs(u+j)�Y u+j−�lMSBs(u+j)�Z�lMSBs(u+j)�em−u for gMSBs2
[u,j] (x, y), where

lMSBs(k) := max
{

0,
k − 2(β − γ)m
2 + 2γ − 4β

}
.

The proof is written in the full version.
The linearization technique enables us to select shift-polynomials more flex-

ibly with the constraint for basis matrices to be triangular. Therefore, we can
eliminate some unhelpful polynomials and add helpful polynomials compared
with Sarkar et al.’s basis matrices. To maximize the solvable root bounds, our
collections of shift-polynomials are determined by the following lemma.

Lemma 3. When β ≤ 1/2, assume there are shift-polynomials gMSBs1
[u,i] (x, y) for

u = u′ +j′, . . . , m, i = u′ +j′ and gMSBs2
[u,j] (x, y) for u = u′ +1, . . . , u′ +j′ −1, j =

u′+j′−u in lattice bases. In this case, shift-polynomials gMSBs2
[u′,j′] (x, y) are helpful

polynomials when u′ = 0, 1, . . . , m, j′ = 1, . . . , �2(β − γ)+ (1+2γ − 4β)u�. Shift-
polynomials gMSBs2

[u′,j′] (x, y) are unhelpful polynomials when u′ = 0, 1, . . . ,m, j′ >

2(β − γ) + (1 + 2γ − 4β)u′.

Proof. Consider the basis matrix B. We add a new shift-polynomial gMSBs2
[u′,j′] (x, y)

and construct the basis matrix B+. The value det(B+)/det(B) can be computed
as

det(B+)
det(B)

= Y j′
Zu′

em−u′ ×
(

XY

Z

)m−u′
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≈ N
1
2 j′+( 1

2+β)u′+m−u′−(β−γ)(m−u′).

This value is smaller than the size of the modulus em ≈ Nm, when

j′ ≤ 2(β − δ)m + (1 + 2δ − 4β)u′.

That is, Lemma 3 is proved. ��
We prove the bound (i) of Theorem1. We can rewrite the diagonals as
Xu′−�lMSBs(j′)�Y j′−�lMSBs(j′)�Z�lMSBs(j′)�em−min{u′,j′} for j′ = 0, 1, . . . , 2(1 −
β)m,u′ = 
lMSBs(j′)�, . . . , m. Ignoring low order terms of m, we compute the
dimension

n =
�2(1−β)m�∑

j′=0

m∑

u′=�lMSBs(j)�
1 =

(
1
2

+ 2(β − γ) +
1 + 2γ − 4β

2

)
m2,

and the determinant of the lattices det(B) = XsXY sY ZsZese where

sX =
�2(1−β)m�∑

j′=0

m∑

u′=�lMSBs(j)�
(u′ − 
lMSBs(j′)�)

=
(

1
6

+ (β − γ) +
1 + 2γ − 4β

6

)
m3,

sY =
�2(1−β)m�∑

j′=0

m∑

u′=�lMSBs(j)�
(j′ − 
lMSBs(j′)�)

= ((β − γ) + 2(β − γ)2 + (β − γ)(1 + 2γ − 4β) +
1 + 2γ − 4β

6

+
(1 + 2γ − 4β)2

6
)m3,

sZ =
�2(1−β)m�∑

j′=0

m∑

u′=�lMSBs(j′)�

lMSBs(j′)� =

(
1
6

+
1 + 2γ − 4β

6

)
m3,

se =
�2(1−β)m�∑

j′=0

m∑

u′=�lMSBs(j)�
(m − min{u′, j′})

=
(

1
3

+ (β − γ) +
1 + 2γ − 4β

6

)
m3,

We can find solutions of fMSBs(x, y) = 0 provided that (det(B))1/n < em,
that is,

2γ2 − 2(1 + β)γ + 2β2 − 2β + 1 > 0.
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This condition yields the bound

γ <
1 + β −

√
−1 + 6β − 3β2

2
.

It is clear that γ = max{δ, β − 1/2} = δ when β ≤ 1/2. Therefore, the bound (i)
of Theorem 1 is proved.

For Larger d. In the following, we briefly summarize the case for 1/2 < β ≤
9/16. The detailed analysis is written in the full version.

When β > 1/2, 2(β−γ)m+(1+2γ−4β)u < 0 for larger u > −2(β−γ)m/(1+
2γ−4β). Since we select shift-polynomials gMSBs1

[u,i] (x, y) for −2(β−γ)m/(1+2γ−
4β) < u ≤ m which are unhelpful polynomials and do not contribute for basis
matrices to be triangular, we should redefine collections of shift-polynomials. We
use shift-polynomials

gMSBs1
[u,i] (x, y) with u = 0, 1, . . . ,m, i = 0, 1, . . . ,min{u, t},

gMSBs2
[u,j] (x, y) with u = 0, 1, . . . ,m,

j = 1, 2, . . . ,min{�2(β − γ)m + (1 + 2γ − 4β)u�, t − u},

in the lattice bases. The parameter τ = t/m should be optimized later2. The
selections of shift-polynomials generate basis matrices which are not triangular.
However, we partially apply the linearization z = 1 + (l0 + x)y and the basis
matrices can be transformed into triangular. That means Lemma 2 holds.

We prove the bound (ii) of Theorem1. We can rewrite the diagonals as
Xu′−�lMSBs(j′)�Y j′−�lMSBs(j′)�Z�lMSBs(j′)�em−min{u′,j′} for j′ = 0, 1, . . . , t, u′ =

lMSBs(j)�, 
lMSBs(j)� + 1, . . . , m. Ignoring low order term of m, we compute
the dimension

n =
t∑

j′=0

m∑

u′=�lMSBs(j)�
1 = mt − 1

2
· (t − 2(β − γ)m)2

2 + 2γ − 4β
,

and the determinant of the lattices det(B) = XsXY sY ZsZese where

sX =
t∑

j′=0

m∑

u′=�lMSBs(j′)�
(u′ − 
lMSBs(j′)�)

=
m2t

2
− 1

6
· (t − 2(β − γ)m)3

(2 + 2γ − 4β)2
− sZ ,

sY + sZ =
t∑

j′=0

m∑

u′=�lMSBs(j′)�
j′

2 These collections and optimization of the parameter τ are based on the notion of
consecutive helpful polynomials defined in [30]. See the paper in detail.
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=
1
6

· t3 − 8(β − γ)3m3

2 + 2γ − 4β
+

t2

2

(
m − t − 2(β − γ)m

2 + 2γ − 4β

)

sZ =
t∑

j′=0

m∑

u′=�lMSBs(j′)�

lMSBs(j′)�

=
m

2
· (t − 2(β − γ)m)2

2 + 2γ − 4β
− 1

3
· (t − 2(β − γ)m)3

(2 + 2γ − 4β)2

se =
t∑

j′=0

m∑

u′=�lMSBs(j′)�
(m − min{u′, j′})

= −m

2
· (t − 2(β − γ)m)2

2 + 2γ − 4β
+

1
6

· (t − 2(β − γ)m)3

(2 + 2γ − 4β)2
+ m2t − mt2

2
+

1
6
t3

We can find solutions fMSBs(x, y) = 0 provided that (det(B))1/n < em, that is,

γτ − τ2

2
+

τ3

3
<

1
6

· (τ − 2(β − γ))3

2 + 2γ − 4β
.

Note that Sarkar et al.’s condition can be written as γτ − τ2/2 + τ3/3 < 0 with
τ = (1/4−γ)/γ. We can improve the result since τ −2(β−γ) > 0, 2+2γ−4β > 0
and the right hand side of the inequality is positive. To maximize the solvable
root bound, we set the parameter

τ = 1 − 2β − 1
1 − 2

√
1 + γ − 2β

and obtain the bound (ii) of Theorem1.

5 Partial Key Exposure Attack: The Least Significant
Bits Case

5.1 Previous Works

In the LSBs partial key exposure case, Ernst et al. [13] found the small roots of
polynomials over the integers

gEMJW3(x, y, z) = 1 − ed0 + eMx + y(N + z),

to factor N . The polynomial gEJMW3(x, y, z) has the roots (x, y) = (−d1, �,−(p+
q − 1)). Their algorithm works provided that

δ ≤ 5
6

− 1
3

√
1 + 6β − ε.

When δ = β, the condition yields Boneh and Durfee’s weaker bound [5] β <
(7 − 2

√
7)/6.
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Blömer and May [4] consider LSBs key exposure attacks with small public
exponents e and full size secret exponents d. Though the situation is slightly
different from the one considered in this paper, their lattice construction provides
the same bound as Ernst et al.’s algorithm. Blömer and May solve the modular
equation fLSBs(x, y) = 0 to factor N . To solve the modular equation, they used
shift-polynomials

gLSBs1
[u,i] (x, y) := xu−ifLSBs(x, y)i(eM)m−i,

gLSBs2
[u,j] (x, y) := yjfLSBs(x, y)u(eM)m−u.

Both shift-polynomials modulo (eM)m have the same roots as the original solu-
tions, that is, gLSBs1

[u,i] (�,−(p+q−1)) = 0 (mod (eM)m), gLSBs2
[u,j] (�,−(p+q−1)) =

0 (mod (eM)m). They selected shift-polynomials

gLSBs1
[u,i] (x, y) with u = 0, 1, . . . ,m, i = 0, 1, . . . , u,

gLSBs2
[u,j] (x, y) with u = 0, 1, . . . ,m, j = 1, 2, . . . , �(1 − 2δ)m/2�,

in the lattice bases. This selections generate triangular basis matrices with diago-
nals XuY iem−i for gLSBs1

[u,i] (x, y), and XuY u+jem−u for gLSBs2
[u,j] (x, y). Their algo-

rithm works provided that δ ≤ 5
6 − 1

3

√
1 + 6β − ε. The bound corresponds to

Ernst et al.’s bound.
Aono [1] improved the attack and firstly achieved Boneh and Durfee’s stronger

bound [5]. To improve the bound, Aono considered the other modular polyno-
mial,

fLSBs1(x, y) = 1 + x(N + y) (mod e).

The roots of the polynomials are (x, y) = (�,−(p + q − 1)) which are the
same as fLSBs(x, y). To construct the basis matrix, Aono used shift-polynomials
gLSBs1
[u,i] , gLSBs2

[u,j] (x, y), and

gLSBs3
[u,k] (x, y) := ykfLSBs1(x, y)uem−uMm.

Shift-polynomials gLSBs3
[u,k] (x, y) modulo (eM)m have the same roots as the origi-

nal solutions, that is, gLSBs3
[u,k] (�,−(p + q − 1)) = 0 (mod (eM)m). Aono selected

shift-polynomials

gLSBs1
[u,i] (x, y) with u = 0, 1, . . . ,m, i = 0, 1, . . . , u,

gLSBs2
[u,j] (x, y) with u = 0, 1, . . . ,m, j = 1, 2, . . . , t,

gLSBs3
[u,k] (x, y) with u = 
t/(1 − 2β)� , 
t/(1 − 2β)� + 1, . . . , m,

k = t + 1, t + 2, . . . , �(1 − 2β)u�,
with t =

√
2(1 − 2β)(β − δ)m in the lattice bases. This selections of shift-

polynomials generate basis matrices which are not triangular. Aono bounded
the determinant of the lattice by computing Gram-Schmidt orthogonal bases.
The algorithm works provided that

2β2 − 3β + 2τ(β − δ) − δ + 1 > 0,
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when 1 + 2δ − 4β > 0. When δ = β, this yields Boneh and Durfee’s stronger
bound β < 1−1/

√
2. When 1+2δ−4β ≤ 0, Aono’s lattice construction becomes

the same as Blömer and May [4].

5.2 Our Observation of Aono’s Lattice Using Unravelled
Linearization

As we showed, the basis matrix constructed by Aono [1] is not triangular. How-
ever, we reveal that the basis matrix can be transformed into triangular with
linearization z = 1 + xy. The size of the root for the linearized variable z is
bounded by Z := 3N1/2+β .

Lemma 4. We define the polynomial order ≺ as

gLSBs1
[u,i] (x, y) ≺ gLSBs2

[u,j] (x, y) ≺ gLSBs3
[u,k] (x, y),

gLSBs1
[u,i] (x, y) ≺ gLSBs1

[u′,i′] (x, y), if u < u′ or u = u′, i < i′,

gLSBs2
[u,j] (x, y) ≺ gLSBs2

[u′,j′] (x, y), if u < u′ or u = u′, j < j′,

gLSBs3
[u,k] (x, y) ≺ gLSBs3

[u′,k′] (x, y), if u < u′ or u = u′, k < k′.

Ordered in this way, the basis matrix becomes triangular with diagonals XuY i ×
(eM)m−i for gLSBs1

[u,i] (x, y), XuY u+j(eM)m−u for gLSBs2
[u,j] (x, y), and Y kZu ×

em−uMm for gLSBs3
[u,k] (x, y).

The proof is written in the full version.

5.3 Our Lattice Constructions

In this section, we propose the improved algorithm for LSBs partial key exposure
attacks when 1+2δ−4β > 0. We change the shift-polynomials used in the lattice
bases. We use the shift-polynomial gLSBs1

[u,i] (x, y), and

gLSBs4
[u,k] (x, y) := ykfLSBs(x, y)u−�lLSBs(k)�fLSBs1(x, y)�lLSBs(k)�

×em−uMm−(u−�lLSBs(k)�),

where

lLSBs(k) = max
{

0,
k − 2(β − δ)m
1 + 2δ − 4β

}
.

Shift-polynomials gLSBs4
[u,k] (x, y) modulo (eM)m have the same roots as the orig-

inal solutions, that is, gLSBs4
[u,k] (�,−(p + q − 1)) = 0 (mod (eM)m). We selected

shift-polynomials

gLSBs1
[u,i] (x, y) with u = 0, 1, . . . ,m, i = 0, 1, . . . , u,

gLSBs4
[u,k] (x, y) with u = 0, 1, . . . ,m, k = 1, 2, . . . , �2(β − δ)m + (1 + 2δ − 4β)u�,
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in the lattice bases. Though the selections generate basis matrices which are not
triangular, we partially apply the linearization z = 1 + xy and the basis matrix
can be transformed into triangular. In general, we reveal the following property.

Lemma 5. We define the polynomial order ≺ as

gLSBs1
[u,i] (x, y) ≺ gLSBs4

[u,k] (x, y),

gLSBs1
[u,i] (x, y) ≺ gLSBs1

[u′,i′] (x, y), if u < u′ or u = u′, i < i′,

gLSBs4
[u,k] (x, y) ≺ gLSBs4

[u′,k′] (x, y), if u < u′ or u = u′, k < k′.

Ordered in this way, the basis matrix becomes triangular with diagonals XuY i ×
(eM)m−i for gLSBs1

[u,i] (x, y), and Xu−�lLSBs(k)�Y u−�lLSBs(k)�+kZ�lLSBs(k)� ×em−u

Mm−(u−�lLSBs(k)�) for gLSBs4
[u,k] (x, y).

The proof is written in the full version.
Lemmas 4, 5 clarify the point of our improvements. When lLSBs(k) = 0,

gLSBs4
[u,k] (x, y) = gLSBs2

[u,k] (x, y). When lLSBs(k) > 0, the diagonals of gLSBs4
[u,k] (x, y)

in our basis matrices are smaller than that of gLSBs3
[u,k] (x, y) in Aono’s basis matri-

ces with respect to powers of M . Therefore, we can improve the bound when
shift-polynomials gLSBs4

[u,k] (x, y) with lLSBs(k) > 0 are used.
To maximize the solvable root bounds, our collection of shift-polynomials is

determined by the following lemma.

Lemma 6. Assume that there are shift-polynomials gLSBs4
[u,k] (x, y) for (u, k) =

(u′ + 1, k′ + 1), (u′ + 2, k′ + 2), . . . , (m,m − u′ + k′) in B. Shift-polynomials
gLSBs4
[u′,k′] (x, y) are helpful polynomials when u′ = 0, 1, . . . ,m, k′ = 1, 2, . . . , �2(β −

δ)m + (1 + 2δ − 4β)u�. Shift-polynomials gLSBs4
[u′,k′] (x, y) are unhelpful polynomials

when u′ = 0, 1, . . . ,m, k′ > 2(β − δ)m + (1 + 2δ − 4β)u′.

Proof. Consider the basis matrix B. We add a new shift-polynomial gLSBs4
[u′,k′] (x, y)

and construct the basis matrix B+. The value det(B+)/det(B) can be com-
puted as

det(B+)
det(B)

= Y k′
Zu′

em−u′
Mm ×

(
1
M

)u′

≈ N
1
2k′+( 1

2+β)u′+m−u′+(β−δ)u′
.

This value is smaller than the size of the modulus (eM)m ≈ N (1+β−δ)m, when

j′ ≤ 2(β − δ)m + (1 + 2δ − 4β)u′.

That is, Lemma 6 is proved. ��
Note that Lemma 6 does not hold when 1 + 2δ − 4β < 0. Since our assumption
that there are shift-polynomials gLSBs4

[u,k] (x, y) for (u, k) = (u′ + 1, k′ + 1), (u′ +
2, k′ + 2), . . . , (m,m − u′ + k′) in B does not hold.
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We prove the bound of Theorem2. Ignoring low order terms of m, we compute
the dimension

n =
m∑

u=0

u∑

i=0

1 +
m∑

u=0

�2(β−δ)m+(1+2δ−4β)u�∑

k=1

1 =
(

1
2

+ 2(β − δ) +
1 + 2δ − 4β

2

)
m2,

and the determinant of the lattice det(B) = XsXY sY ZsZeseMsM where

sX =
m∑

u=0

u∑

i=0

(u − i) =
1
3
m3,

sY =
m∑

u=0

u∑

i=0

i +
m∑

u=0

�2(β−δ)m+(1+2δ−4β)u�∑

k=1

k

=
(

1
6

+ 2(β − δ)2 + (β − δ)(1 + 2δ − 4β) +
(1 + 2δ − 4β)2

6

)
m3,

sZ =
m∑

u=0

�2(β−δ)m+(1+2δ−4β)u�∑

k=1

u =
(

(β − δ) +
1 + 2δ − 4β

3

)
m3,

se =
m∑

u=0

u∑

i=0

(m − i) +
m∑

u=0

�2(β−δ)m+(1+2δ−4β)u�∑

k=1

(m − u)

=
(

1
3

+ (β − δ) +
1 + 2δ − 4β

6

)
m3,

sM =
m∑

u=0

u∑

i=0

(m − i) +
m∑

u=0

�2(β−δ)m+(1+2δ−4β)u�∑

k=1

(m − (u − 
lLSBs(k)�))

=
(

1
3

+ (β − δ) +
1 + 2δ − 4β

3

)
m3.

We can find solutions of fLSBs(x, y) = 0, fLSBs1(x, y) = 0 provided that
(det(B))1/n < (eM)m, that is,

2δ2 − 2(1 + β)δ + 2β2 − 2β + 1 > 0.

This condition yields the bound

δ <
1 + β −

√
−1 + 6β − 3β2

2
.

Therefore, the bound of Theorem2 is proved.
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4. Blömer, J., May, A.: New partial key exposure attacks on RSA. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 27–43. Springer, Heidelberg (2003)

5. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than n0.292.
IEEE Trans. Inf. Theory 46(4), 1339–1349 (2000)

6. Boneh, D., Durfee, G., Frankel, Y.: An attack on RSA given a small fraction of the
private key bits. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514,
pp. 25–34. Springer, Heidelberg (1998)

7. Cohn, H., Heninger, N.: Approximate common divisors via lattices. In: ANTS-X,
2012. IACR Cryptology ePrint Archive, Report 2011/437 (2011). http://eprint.
iacr.org/2011/437

8. Coppersmith, D.: Finding a small root of a univariate modular equation. In:
Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 155–165. Springer,
Heidelberg (1996)

9. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring
with high bits known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol.
1070, pp. 178–189. Springer, Heidelberg (1996)

10. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. J. Cryptol. 10(4), 233–260 (1997)

11. Coppersmith, D.: Finding small solutions to small degree polynomials. In:
Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 20–31. Springer, Heidelberg
(2001)

12. Coron, J.-S.: Finding small roots of bivariate integer polynomial equations revis-
ited. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 492–505. Springer, Heidelberg (2004)

13. Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial key exposure attacks on
RSA up to full size exponents. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 371–386. Springer, Heidelberg (2005)

14. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold boot
attacks on encryption keys. In: Proceedings of the USENIX Security Symposium
2008, pp. 45–60 (2008)

15. Henecka, W., May, A., Meurer, A.: Correcting errors in RSA private keys. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 351–369. Springer, Heidelberg
(2010)

16. Heninger, N., Shacham, H.: Reconstructing RSA private keys from random key
bits. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 1–17. Springer,
Heidelberg (2009)

17. Herrmann, M., May, A.: Solving linear equations modulo divisors: on factoring
given any bits. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
406–424. Springer, Heidelberg (2008)

18. Herrmann, M., May, A.: Attacking power generators using unravelled linearization:
when do we output too much? In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol.
5912, pp. 487–504. Springer, Heidelberg (2009)

http://eprint.iacr.org/2011/437
http://eprint.iacr.org/2011/437


362 A. Takayasu and N. Kunihiro

19. Herrmann, M., May, A.: Maximizing small root bounds by linearization and appli-
cations to small secret exponent RSA. In: Nguyen, P.Q., Pointcheval, D. (eds.)
PKC 2010. LNCS, vol. 6056, pp. 53–69. Springer, Heidelberg (2010)

20. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, Michael J. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355,
pp. 131–142. Springer, Heidelberg (1997)

21. Kunihiro, N.: On optimal bounds of small inverse problems and approximate GCD
problems with higher degree. In: Gollmann, D., Freiling, F.C. (eds.) ISC 2012.
LNCS, vol. 7483, pp. 55–69. Springer, Heidelberg (2012)

22. Kunihiro, N., Honda, J.: RSA meets DPA: recovering RSA secret keys from noisy
analog data. IACR Cryptology ePrint Archive, Report 2014/513 (2014). http://
eprint.iacr.org/2014/513

23. Kunihiro, N., Shinohara, N., Izu, T.: Recovering RSA secret keys from noisy key
bits with erasures and errors. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013.
LNCS, vol. 7778, pp. 180–197. Springer, Heidelberg (2013)

24. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261, 515–534 (1982)

25. May, A.: New RSA vulnerabilities using lattice reduction methods. Ph.D. thesis,
University of Paderborn (2003)

26. May, A.: Using LLL-reduction for solving RSA and factorization problems: a survey
(2010). http://www.cits.rub.de/permonen/may.html

27. Nguyên, P.Q., Stern, J.: The two faces of lattices in cryptology. In: Silverman, J.H.
(ed.) CaLC 2001. LNCS, vol. 2146, pp. 146–180. Springer, Heidelberg (2001)

28. Paterson, K.G., Polychroniadou, A., Sibborn, D.L.: A coding-theoretic approach
to recovering noisy RSA keys. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 386–403. Springer, Heidelberg (2012)

29. Sarkar, S., Sen Gupta, S., Maitra, S.: Partial key exposure attack on RSA –
improvements for limited lattice dimensions. In: Gong, G., Gupta, K.C. (eds.)
INDOCRYPT 2010. LNCS, vol. 6498, pp. 2–16. Springer, Heidelberg (2010)

30. Takayasu, A., Kunihiro, N.: Better lattice constructions for solving multivariate
linear equations modulo unknown divisors. In: Boyd, C., Simpson, L. (eds.) ACISP.
LNCS, vol. 7959, pp. 118–135. Springer, Heidelberg (2013)

31. Takayasu, A., Kunihiro, N.: Cryptanalysis of RSA with multiple small secret expo-
nents. In: Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 176–191.
Springer, Heidelberg (2014)

32. Wiener, M.J.: Cryptanalysis of short RSA secret exponents. IEEE Trans. Inf. the-
ory 36(3), 553–558 (1990)

http://eprint.iacr.org/2014/513
http://eprint.iacr.org/2014/513
http://www.cits.rub.de/permonen/may.html

	Partial Key Exposure Attacks on RSA: Achieving the Boneh-Durfee Bound
	1 Introduction
	1.1 Background
	1.2 Our Contributions
	1.3 Roadmap

	2 Formulations of Partial Key Exposure Attacks
	3 Coppersmith's Method to Solve Modular Equations
	4 Partial Key Exposure Attack: The Most Significant Bits Case
	4.1 Previous Works
	4.2 Our Lattice Constructions

	5 Partial Key Exposure Attack: The Least Significant Bits Case
	5.1 Previous Works
	5.2 Our Observation of Aono's Lattice Using Unravelled Linearization
	5.3 Our Lattice Constructions

	References


