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Abstract. The linear temporal logic of rewriting (LTLR) is a simple
extension of LTL that adds spatial action patterns to the logic, expressing
that a specific instance of an action described by a rewrite rule has been
performed. Although the theory and algorithms of LTLR for finite-state
model checking are well-developed [2], no theoretical foundations have
yet been developed for infinite-state LTLR model checking. The main
goal of this paper is to develop such foundations for narrowing-based
logical model checking of LTLR properties. A key theme in this paper is
the systematic relationship, in the form of a simulation with remarkably
good properties, between the concrete state space and the symbolic state
space. A related theme is the use of additional state space reduction
methods, such as folding and equational abstractions, that can in some
cases yield a finite symbolic state space.
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1 Introduction

This paper further develops previous efforts to use rewriting logic and narrowing
to perform symbolic model checking of infinite-state systems.1 Those efforts have
gradually increased the expressiveness of the properties that can be verified, first
focusing on reachability analysis [16] and then expanding the range to general
LTL formulas [1,6]. It is by now clear that state-based temporal logics are not
expressive enough to deal with properties involving events, such as message
sends and receives; and that the temporal logic of rewriting [14] is a perfect
match—at the level of property specification—for rewriting logic—at the level of
system specification—so that both can be used seamlessly as a tandem for model
checking. For finite-state systems, the authors have developed model checkers
that demonstrate the power and usefulness of this tandem of logics [2]. The
question asked and positively answered in this paper is: can properties of a
rewrite theory R expressed in the linear temporal logic of rewriting (LTLR) [14]
be model checked symbolically by narrowing under reasonable assumptions?
1 The temporal logics that can be verified by infinite-state model checking techniques
are generally less expressive than those supported by finite-state model checkers.
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The answer to this question is nontrivial, because of a difficulty which can
be best explained by briefly recalling how narrowing-based reachability analysis
and LTL model checking are performed for a rewrite theory R. For reachability
analysis, any non-variable term t, symbolically denoting a typically infinite set
of concrete state instances, can be narrowed to try to reach an instance of a
goal pattern term g. However, for LTL model checking, not all such terms t
denote states in the symbolic state space. The reason is that LTL formulas have
a set AP of state propositions, but for a symbolic term t such propositions
may not be defined: different term instances of t may satisfy different state
propositions. The solution proposed in [1,6] is to specialize t to most general
instances t1, . . . , tn for which all state propositions in AP are either true or
false. If the equations defining such propositions have the finite variant property,
this can be done by variant narrowing [1,6]. Therefore, narrowing-based LTL
model checking symbolically explores the state space of all such AP -instantiated
symbolic terms.

Suppose that we now want to perform not just LTL model checking but
symbolic LTLR model checking, and that our formula ϕ involves both state
propositions in AP and spatial action patterns. For example, a spatial action
pattern l(θ) can appear in ϕ, stating that a rule l : q −→ r has been performed
with an instantiation that further specializes the substitution θ. As part of the
model checking verification of ϕ we may reach a symbolic state t where we need
to check whether the action specified by l(θ) can be performed. This check will
succeed if t can be narrowed with a rule l and a substitution σ such that θ is
an instance of σ. However, σ can be incomparable to θ in general; that is, σ
may have instances for which this property holds, and other instances for which
it definitely fails. This is analogous to the lack of AP -instantiation discussed
above for narrowing-based LTL model checking. Let ACT be the set of spatial
action patterns we are using, so that, say, l(θ) ∈ ACT . Our problem is that
the symbolic transitions in the LTLR state space need to be ACT -instantiated,
while the symbolic states are AP -instantiated.

Lack of ACT -instantiations is a subtler problem than lack of AP -instantiation.
After all, state propositions in AP are equationally defined as Boolean predicates
in both their positive and negative cases, so that variant narrowing can automate
AP -instantiation. The problem of ACT -instantiation has to do with effectively
characterizing the negative cases in which an action pattern does not hold. This
turns out to be closely related to the problem of computing complement patterns
of a pattern term; e.g., for a pattern l(θ), terms u1, . . . , uk such that any ground
term is an instance of exactly one term in the set

{l(θ), u1, . . . , uk}.

Not all terms have such complements. For example, for an unsorted signature
with constant 0, unary operator s, and free binary operator f , the term f(x, x)
has no such complements. However, effective methods have been developed to
check when a term t has complements and to compute them (for example,
[8,9,12]). Under appropriate assumptions, they can provide a method to solve
the ACT -instantiation problem.
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Having identified conditions under which the state space for narrowing-based
LTRL model checking can be built, the rest of the paper develops the theoretical
foundations of narrowing-based LTLR model checking. A key theme in such
foundations is the systematic relationship between concrete and symbolic states.
This takes the form of a simulation relation from concrete to symbolic states
that preserves both state propositions and spatial action patterns. A related
theme is the use of additional state space reduction methods, such as folding
and equational abstractions, that can in some cases yield a finite symbolic state
space. How these foundations can be used in practice to prove nontrivial LTLR
properties of infinite-state systems is illustrated with a running example.

2 Preliminaries

Rewriting Logic. An order-sorted signature is a triple Σ = (S,≤, Σ) with
poset of sorts (S,≤) and operators Σ = {Σw,k}(w,k)∈S∗×S typed in (S,≤). The
set TΣ(X )s denotes the set of Σ-terms of sort s over X an infinite set of S-sorted
variables, and TΣ,s denotes the set of ground Σ-terms of sort s. We assume that
TΣ,s �= ∅ for each sort s in Σ. Positions in a term t represent tree positions when
t is parsed as a tree, and the replacement in t of a subterm at a position p by
another term u is denoted by t[u]p. A substitution σ : X → TΣ(X ) is a function
that maps variables to terms of the same sort, and is homomorphically extended
to TΣ(X ) in a natural way. The domain of σ is a finite subset dom(σ) ⊆ X , where
σx = x for any x /∈ dom(σ). The restriction of σ to Y ⊆ X is the substitution
σ|Y such that σ|Y (x) = σ(x) if x ∈ Y , and σ|Y (x) = x otherwise.

A rewrite theory is a formal specification of a concurrent system [13]. To
apply narrowing-based methods, we consider unconditional order-sorted rewrite
theories R = (Σ,E,R), where: (i) (Σ,E) is an equational theory with Σ an
order-sorted signature and E a set of equations, specifying the system’s states
as the initial algebra TΣ/E (i.e., each state is an E-equivalence class [t]E ∈ TΣ/E

of ground terms); and R is a set of unconditional rewrite rules of the form
l : q −→ r with label l and Σ-terms q, r ∈ TΣ(X )s, specifying the system’s
transitions as a one-step rewrite

t[l(θ)]p : [t[θq]p]E −→R [t[θr]p]E

from a state [t[θq]p]E ∈ TΣ/E containing a substitution instance θq of q to the
corresponding state [t[θr]p]E ∈ TΣ/E in which θq has been replaced by θr, where
t[l(θ)]p is called a one-step proof term.

We also require R = (Σ,E,R) being topmost for narrowing-based methods.
That is, there is sort State at the top of one of the connected component of
(S,≤) such that: (i) for each rule l : q −→ r ∈ R, both q and r have the top sort
State; and no operator in Σ has State or any of its subsorts as an argument sort.
This ensures that all rewrites with rules in R must take place at the top of the
term. In practice, many concurrent systems, including object-oriented systems
and communication protocols, can be specified by topmost rewrite theories [16].
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We can associate to R a corresponding Kripke structure for LTL model
checking. A Kripke structure is a 4-tuple K = (S,AP ,L,−→K) with S a set of
states, AP a set of atomic state propositions, L : S → P(AP) a state-labeling
function, and −→K ⊆ S ×S a total transition relation in which every state s ∈ S
has a next state s′ ∈ S with s −→K s′. A state proposition is defined as a term
of sort Prop, whose meaning is defined by equations using the auxiliary operator
|= : State Prop → Bool. By definition, p ∈ TΣ/E,Prop is satisfied on a state [t]E

iff (t |= p) =E true. We assume that sort Bool has two constants true and false
with true �=E false and any t ∈ TΣ,Bool is provably equal to either true or false.

Definition 1. Given R = (Σ,E,R) and a set AP ⊆ TΣ/E,Prop defined by E,
the corresponding Kripke structure is K(R)AP = (TΣ/E,State,AP ,LE ,−→R),2

where LE([t]E) = {p ∈ AP | (t |= p) =E true}.

Linear Temporal Logic of Rewriting. The linear temporal logic of rewriting
(LTLR) is a state/event extension of LTL with spatial action patterns [2]. An
LTLR formula ϕ may include spatial action patterns δ1, . . . , δn as well as state
propositions p1, . . . , pm, and therefore may describe properties involving both
states and events. Given a set of state propositions AP and a set of spatial
action patterns ACT , the syntax of LTLR is defined by

ϕ ::= p | δ | ¬ϕ | ϕ ∧ ϕ | ©ϕ | ϕUϕ,

where p ∈ AP and δ ∈ ACT . Other operators can be defined by equivalences,
e.g., ♦ϕ ≡ true Uϕ and �ϕ ≡ ¬♦¬ϕ.

Spatial action patterns describe properties of one-step rewrites by defining a
set of matching one-step proof terms. For example, a pattern l describes that a
rule with label l is applied, and a pattern l(θ) describes that a rule with label l
is applied and the related variable instantiation is a further instantiation of the
substitution θ [2,14]. In a similar way that state propositions of LTL are defined
by equations, the matching relation |= between a one-step proof term γ and a
spatial action pattern δ can be defined by equations using the auxiliary operator
|= : ProofTerm Action → Bool, where γ |= δ ⇐⇒ (γ |= δ) =E true.

The semantics of an LTLR formula is defined on a labeled Kripke structure
(LKS), an extension of a Kripke structure with transition labels [2,3]. An LKS
is a 5-tuple K̄ = (S,AP ,L,ACT ,−→K̄) with S a set of states, AP a set of state
propositions, L : S → P(AP) a state-labeling function, ACT a set of spatial
action patterns, and −→K̄ ⊆ S ×P(ACT )×S a total labeled transition relation.
A path (π, α) is a pair of functions π : N → S and α : N → P(ACT ) such
that π(i) α(i)−−−→K̄ π(i + 1), and (π, α)k denotes the suffix of (π, α) beginning at
position k such that (π, α)k = (π ◦ sk, α ◦ sk) with s the successor function.

We can associate to a rewrite theory R a corresponding LKS K̄(R)AP,ACT for
LTLR model checking, provided that the state propositions AP and the spatial
action patterns ACT are defined by its equations.
2 Since −→R needs to be total, we also assume that R is deadlock-free. Note that R
can be easily transformed into an equivalent deadlock-free theory [15].
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Definition 2. Given a rewrite theory R = (Σ,E,R), sets AP ⊆ TΣ/E,Prop and
ACT ⊆ TΣ/E,Action defined by E, the corresponding LKS is

K̄(R)AP,ACT = (TΣ/E,State,AP ,LE ,ACT ,−→K̄(R)AP,ACT
),

where LE([t]E) = {p ∈ AP | (t |= p) =E true}, and [t]E A−−→K̄(R)AP,ACT
[t′]E iff

γ : [t]E −→R [t′]E and A = {δ ∈ ACT | (γ |= δ) =E true}.

Given an LTLR formula ϕ and an initial state s0 ∈ S, the satisfaction relation
K̄, s0 |= ϕ holds iff for each path (π, α) of K̄ beginning at s0, the path satisfaction
relation K̄, (π, α) |= ϕ holds, which is defined inductively as follows:

– K̄, (π, α) |= p iff p ∈ L(π(0))
– K̄, (π, α) |= δ iff δ ∈ α(0)
– K̄, (π, α) |= ¬ϕ iff K̄, (π, α) �|= ϕ
– K̄, (π, α) |= ϕ ∧ ϕ′ iff K̄, (π, α) |= ϕ and K̄, (π, α) |= ϕ′

– K̄, (π, α) |= ©ϕ iff K̄, (π, α)1 |= ϕ
– K̄, (π, α) |= ϕUϕ′ iff ∃k ≥ 0. K̄, (π, α)k |= ϕ′, ∀0 ≤ i < k. K̄, (π, α)i |= ϕ.

Example. We present a topmost rewrite theory R = (Σ,E,R) that specifies
Lamport’s bakery protocol for mutual exclusion of an unbounded number of
processes (adapted from [1,6]), and its corresponding LKS K̄(R)AP,ACT . Each
state of the system has the form n ; m ; [i1, d1] . . . [ik, dk], given by the operator
; ; : Nat Nat ProcSet → State, where n is the current number in the bakery’s

number dispenser, m is the number currently being served, and [i1, d1] . . . [ik, dk]
are a set of customer processes, each with a name il and in a mode dl. A mode
can be idle (not yet picked a number), wait(n) (waiting with number n), or
crit(n) (being served with number n). The behavior is specified by the following
topmost rewrite rules in the Maude language:

rl [wake]: N ; M ; [I,idle] PS => s N ; M ; [I,wait(N)] PS .

rl [crit]: N ; M ; [I,wait(M)] PS => N ; M ; [I,crit(M)] PS .

rl [exit]: N ; M ; [I,crit(M)] PS => N ; s M ; [I,idle] PS .

where natural numbers are modeled as multisets of s with the multiset union
operator (empty syntax) and the empty multiset 0 (e.g., 0 = 0, and 3 = s s s).

We are interested in verifying the liveness property “process 0 is eventually
served,” under the fairness assumption “if process 0 can eventually pick a number
forever, it must pick a number infinitely often,” expressed as the LTLR formula

(♦�enabled .wake(0) → �♦wake(0)) → ♦in.crit(0),

where the spatial action pattern wake(0) holds if the wake rule is applied for
process 0 (i.e., the variable I in the wake rule is matched to the term 0), the
state proposition enabled .wake(0) holds in a state where process 0 is idle, and
the state proposition in.crit(0) holds in a state where process 0 is being served
(see [1] for the mutual exclusion property).
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For the set of state propositions AP = {in.crit(0), enabled .wake(0)} and the
set of spatial action patterns ACT = {wake(0)}, we can construct the related
LKS K̄(R)AP,ACT for the bakery protocol specification R. For example, given
the initial state 0 ; 0 ; [0,idle], we obtain the infinite path in Fig. 1 within
K̄(R)AP,ACT that contains an infinite number of different states. Notice that
this system is infinite-state since: (i) the counters n and m are unbounded; and
the number of customer processes is unbounded.

Fig. 1. A path from 0 ; 0 ; [0,idle] in the LKS K̄(R)AP,ACT for the bakery protocol.

3 Narrowing-Based LTLR Model Checking

Narrowing [10,11] generalizes term rewriting by allowing free variables in terms
and by performing unification instead of matching. An E-unifier of t = t′ is
a substitution σ such that σt =E σt′ and dom(σ) ⊆ vars(t) ∪ vars(t′), and
CSUE(t = t′) denotes a complete set of E -unifiers in which any E-unifier ρ of
t = t′ has a more general substitution σ ∈ CSUE(t = t′), i.e., (∃η) ρ =E η ◦ σ.
We assume that there exists a finitary E-unification procedure to find a finite
complete set CSUE(t = t′) of E-unifiers (e.g., there exists a finitary E-unification
procedure if E has the finite variant property as explained in [5,7]).

Definition 3. Given a topmost rewrite theory R = (Σ,E,R), each rewrite rule
l : q −→ r ∈ R specifies a topmost narrowing step t �l,σ,R t′ (or t �R t′) iff
there exists an E-unifier σ ∈ CSUE(t = q) such that t′ = σr.

For LTL model checking we can associate to R = (Σ,E,R) a corresponding
logical Kripke structure N (R)AP [6]. The states of N (R)AP are AP -instantiated
elements of TΣ/E(X )

State
and its transitions are specified by �R. A state of

N (R)AP is not a concrete state, but a state pattern t(x1, . . . , xn) with logical
variables x1, . . . , xn, representing the set of all concrete states [θt]E that are its
ground instances. Such a logical Kripke structure N (R)AP can be considered as
an abstraction of the (possibly infinite) concrete system K(R)AP ; that is, for an
LTL formula ϕ and a state pattern t, we have:

N (R)AP , [t]E |= ϕ =⇒ (∀θ : X → TΣ) K(R)AP , [θt]E |= ϕ.

Generalizing such narrowing-based LTL model checking, this section presents
narrowing-based LTLR model checking for infinite-state systems.
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One-Step Proof Terms for Narrowing. Spatial action patterns for rewriting
define their matching one-step proof terms, representing the corresponding one-
step rewrites. For a topmost rewrite theory R = (Σ,E,R), one-step proof terms
have the form l(θ), indicating that a rule l : q −→ r ∈ R has been applied with
a substitution θ (at the top position of the term), where dom(θ) ⊆ vars(q) ∪
vars(r).

In order to define spatial action patterns for narrowing steps, we also need
to have an appropriate notion of one-step proof terms for narrowing. Consider a
topmost narrowing step t �l,σ,R t′ using a rule l : q −→ r. Intuitively, the rule
label l and the restriction of the substitution σ to the variables in the rule3 give
the one-step proof term for the narrowing step t �l,σ,R t′.

Definition 4. Given a topmost rewrite theory R = (Σ,E,R), for a topmost
narrowing step t �l,σ,R t′ using a rule l : q −→ r, its one-step proof term is
given by l(σ|vars(q)∪vars(r)), often denoted by l(σl).

The following lemma implies that a one-step proof term l(σl) for narrowing
faithfully captures its corresponding one-step proof terms l(θ) for rewriting, in
the sense that θ =E η ◦ σl for some substitution η. This lemma is adapted from
the soundness and completeness results of topmost narrowing in [16].

Lemma 1. Given a topmost rewrite theory R = (Σ,E,R), for a non-variable
term u and a substitution ρ, assuming no variable in u appears in the rules R:

(∃t′, θ) l(θ) : ρu −→R t′

⇐⇒ (∃u′, σ, η) u �l,σ,R u′ ∧ ρ|vars(u) =E (η ◦ σ)|vars(u)

where θ =E (η ◦ σ)|dom(θ) and t′ =E ηu′.

Proof. (⇒) Suppose that l(θ) : ρu −→R t′ for a topmost rule l : q −→ r, where
dom(θ) ⊆ vars(q) ∪ vars(r). Then, θq =E ρu and t′ = θr. Since no variable
in u appears in l : q −→ r, we have dom(θ) ∩ vars(u) = ∅. Thus, we can
define the substitution θ ∪ ρ|vars(u) with domain dom(θ) ∪ vars(u) such that
(θ ∪ ρ|vars(u))|dom(θ) = θ and (θ ∪ ρ|vars(u))|vars(u) = ρ|vars(u). Since θ ∪ ρ|vars(u)
is an E-unifier of q = u, there exist substitutions σ ∈ CSUE(u = q) and η′

satisfying (θ ∪ ρ|vars(u))|vars(q)∪vars(u) =E η′ ◦ σ with domain vars(q) ∪ vars(u).
Therefore, u �l,σ,R u′ for u′ = σr. Next, let η be the extended substitution
such that ηx = η′x if x ∈ vars(q) ∪ vars(u), and ηx = θx otherwise. Then,
ρ|vars(u) =E (η ◦ σ)|vars(u) and θ =E (η ◦ σ)|dom(θ), since dom(θ) ∩ vars(u) = ∅
and dom(θ) ⊆ vars(q) ∪ vars(r). Furthermore, t′ = θr =E (η ◦ σ)r = ηu′.
(⇐) Suppose that u �l,σ,R u′ and ρ|vars(u) =E (η ◦ σ)|vars(u). Then, for a
topmost rule l : q −→ r, σ ∈ CSUE(u = q) and u′ = σr. Since σu =E σq and
(vars(q)∪vars(r))∩vars(u) = ∅, we have l(σ|vars(q)∪vars(r)) : σu −→R u′. Thus,
we have l(η ◦ σ|vars(q)∪vars(r)) : (η ◦ σ)u −→R ηu′, where (η ◦ σ)u =E ρu, since
rewrites are stable under substitutions. ��
3 Since one-step proof terms for rewriting only contain variables in rules, we restrict
one-step proof terms for narrowing in the same way.
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Equational Definition of State/Event Predicates. The semantics of a
spatial action pattern can be defined by means of equations using the auxiliary
operator |= : ProofTerm Action → Bool [2]. By definition, δ ∈ TΣ/E,Action is
matched to a one-step proof term γ iff (γ |= δ) =E true. For a topmost rewrite
theory R, a one-step proof term l(θ) can be represented as a term

{′l : ′x1\θx1 ; . . . ; ′xm\θxm}

of sort ProofTerm using the operator { : } : Qid Substitution → ProofTerm,
where ′l, ′x1, . . . ,

′xm are quoted identifiers of sort Qid and ′x1\θx1; . . . ; ′xm\θxm

is a semicolon separated set of variable assignments. For the bakery example, a
topmost narrowing step from the term N ; N ; [0,idle] by the wake rule gives
the one-step proof term {’wake : ’N \ N ; ’M \ N ; ’I \ 0 ; ’PS \ none}.

For narrowing-based model checking we further require that there exists a
finitary E-unification procedure. If a spatial action pattern δ is identified by a
one-step proof term pattern uδ (i.e., (γ |= δ) =E true iff γ is an instance of
the pattern uδ),4 and if uδ has complement patterns u1, . . . , uk (i.e., any ground
one-step proof term is an instance of exactly one term in {uδ, u1, . . . , uk}), then
δ can be defined by the equations:

uδ |= δ = true, u1 |= δ = false, . . . , uk |= δ = false.

Because the right-hand sides are all constants, these equations have the finite
variant property [5], and therefore they provide a finitary E-unification algorithm
using variant narrowing [7]. This method can also be applied for “pattern-like”
state propositions (see below).

As mentioned in the introduction, effective methods have been developed to
check when a term t has complements and to compute such complement patterns,
not only in the free case [12], but also modulo AC and modulo permutative
theories [8,9]. Therefore, for unconditional rewrite theories with axioms B such
as those used in [8,9,12], we can determine if a one-step proof term pattern uδ

of δ has complements, compute such complement patterns, and define pattern
satisfaction of δ by equations. For example, consider the spatial action pattern
wake(0) in the bakery example (which holds if the variable I in the rule is
matched to 0). The positive case can be defined by the following equation, where
SUBST is a variable of sort Substitution:

eq {’wake : ’I \ 0; SUBST} |= wake(0) = true .

For the negative cases, wake(0) does not hold when the rule label is not ’wake
or the value of ’I is not 0. Therefore, they can be defined by the complement
patterns of 0 and ’wake as follows.

eq {’wake : ’I \ s J ; SUBST} |= wake(0) = false .

eq {’crit : SUBST} |= wake(0) = false .

eq {’exit : SUBST} |= wake(0) = false .

4 Many spatial action patterns, including l and l(θ), are identified in this way [2,14].
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The use of order-sorted signatures can greatly facilitate the existence of com-
plement patterns that may not exist in an unsorted setting. For example, the
unsorted term y + 0 + 0 for a signature with a constant 0, a unary s, and an
AC symbol + is shown not to have complements in [8], but can be easily shown
to have complements when the signature is refined to an order-sorted signature.
We illustrate this greater ease of computing complements by using the state
propositions in.crit(0) and enabled .wake(0), whose positive cases are defined by
the following equations, where PS is a variable of sort ProcSet:

eq N ; M ; [0,crit(K)] PS |= in.crit(0) = true .

eq N ; M ; [0,idle] PS |= enabled.wake(0) = true .

In order to define the negative cases we need to find the complement patterns
for [0,crit(K)] PS and [0,idle] PS. Using subsort relations, we can define
sort ModeIdleWait for idle and wait(n), ModeWaitCrit for wait and crit(n), and
ProcSet{N0Nat} for a set of processes with non-zero identifiers as follows:5

subsorts ModeIdle ModeWait < ModeIdleWait < Mode .

subsorts ModeWait ModeCrit < ModeWaitCrit < Mode .

subsorts N0Nat < Nat .

subsorts Proc{N0Nat} < ProcSet{N0Nat} Proc < ProcSet .

The negative cases for the above state propositions can then be defined by the
following equations, where the variable DIW has sort ModeIdleWait, DWC has sort
ModeWaitCrit, and NZPS has sort ProcSet{N0Nat}:

eq N ; M ; [0,DIW] NZPS |= in.crit(0) = false .

eq N ; M ; [0,DWC] NZPS |= enabled.wake(0) = false .

Narrowing-Based LKS. For a set AP = {p1, . . . , pn} of state propositions and
a set ACT = {δ1, . . . , δm} of spatial action patterns defined by the equations E,
we can also associate to a topmost rewrite theory R = (Σ,E,R) a corresponding
narrowing-based logical LKS N̄ (R)AP,ACT , where:

– each state of the LKS N̄ (R)AP,ACT is a term in which the truth of every state
proposition is decided into either true or false; and

– a transition of N̄ (R)AP,ACT is specified by a topmost narrowing step �R,
but further instantiated into possibly several transitions so that the truth bi

of each state proposition pi, 1 ≤ i ≤ n, and the truth bn+j of each spatial
action pattern δj , 1 ≤ j ≤ m, are decided into either true or false.

For the bakery example, given the logical initial state N ; N ; [0,idle], we obtain
within the logical LKS N̄ (R)AP,ACT the infinite path in Fig. 2, which captures
an infinite number of concrete paths in the concrete LKS K̄(R)AP,ACT starting
from each ground instance of N ; N ; [0,idle]. The narrowing-based logical LKS
N̄ (R)AP,ACT of a topmost rewrite theory R is formally defined as follows:

5 Generally, to define the negative cases for k ∈ N, we can define k + 2 subsorts
Nat0, . . . ,Natk,NkNat of sort Nat, where NkNat denotes a number greater than k.
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Definition 5. Given a topmost rewrite theory R = (Σ,E,R), and finite sets
AP = {p1, . . . , pn} ⊆ TΣ/E,Prop and ACT = {δ1, . . . , δm} ⊆ TΣ/E,Action defined
by its equations E, the narrowing-based logical LKS is

N̄ (R)AP,ACT = (N(R)AP ,AP ,LE ,ACT ,−→N̄ (R)),

where LE([t]E) = {p ∈ AP | (t |= p) =E true}, and:

– [t]E ∈ N(R)AP iff [t]E ∈ TΣ/E(X )
State

− X , and for every state proposition
p ∈ AP, either (t |= p) =E true or (t |= p) =E false.

– [t]E A−−→N̄ (R) [t′]E iff there exist a term u, a substitution ζ, and Boolean values
b1, . . . , bn+m ∈ {true, false} such that

t �l,σ,R u ∧ t′ = ζu, ∧ A = {δ ∈ ACT | (ζ(l(σl)) |= δ) =E true} ∧
ζ ∈ CSUE

(∧
1≤i≤n(u |= pi) = bi ∧

∧
1≤j≤m(l(σl) |= δj) = bn+j

)

Fig. 2. A path from N ; N ; [0,idle] in the LKS K̄(R)AP,ACT for the bakery protocol.

A narrowing-based LKS N̄ (R)AP,ACT captures any behavior of the related
concrete LKS K̄(R)AP,ACT , in terms of a simulation relation. In the following
definition we extend the usual notion of a simulation for Kripke structures to
one for LKSs, which also takes into account spatial action patterns.

Definition 6. Given two LKS K̄i = (Si,AP ,Li,ACT ,−→K̄i
), i = 1, 2, a binary

relation H ⊆ S1×S2 is a simulation from K̄1 to K̄2 iff: (i) if s1 H s2, thenL1(s1) =
L2(s2), and if s1 H s2 and s1

A−−→K̄ s′
1, there exists s′

2 ∈ S2 such that s′
1 H s′

2 and
s2

A−−→K̄ s′
2. A simulation H is a bisimulation iff H−1 is also a simulation, and is

total iff for any s1 ∈ S1 there exists s2 ∈ S2 such that s1 H s2.

As expected, if an LKS K̄2 simulates K̄1, then each infinite path in K̄1 has a
corresponding path in K̄2, as shown in the following lemma.

Lemma 2. Given a simulation H from an LKS K̄1 to K̄2, if s1 H s2, then for
each path (π1, α) of K̄1 beginning at s1, there exists a corresponding path (π2, α)
beginning at s2 such that π1(i)H π2(i) for each i ∈ N.

Proof. We construct π2 by induction. Let π2(0) = s2. Clearly, π1(0)H π2(0).
Next, suppose that π1(k)H π2(k) for some k ∈ N. Since π1(k)H π2(k) and
π1(k) α(k)−−−−→K̄ π1(k + 1), there exists a state s′

2 such that π1(k + 1)H s′
2 and

π2(k) α(k)−−−−→K̄ s′
2. Then, we choose π2(k + 1) = s′

2. ��
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Suppose that s10 H s20 for a simulation H from K̄1 to K̄2. If there exists a coun-
terexample (π1, α1) in K̄1 starting from s10, then by the above lemma, there
exists a corresponding counterexample (π2, α2) in K̄2 starting from s20 such that
L1(π1(i)) = L2(π2(i)) and α1(i) = α2(i) for each i ∈ N. Therefore:

Corollary 1. Given a simulation H from an LKS K̄1 to K̄2, if s10 H s20, then
for any LTLR formula ϕ, K̄2, s

2
0 |= ϕ implies K̄1, s

1
0 |= ϕ. In particular, if H is

a bisimulation, then K̄2, s
2
0 |= ϕ iff K̄1, s

1
0 |= ϕ.

For a narrowing-based LKS N̄ (R)AP,ACT , each logical state is clearly related
to a concrete state in K̄(R)AP,ACT in terms of the E-subsumption relation. The
E-subsumption t �E t′ holds iff there exists a substitution σ with t =E σt′,
meaning that t′ is more general than t modulo E.

Lemma 3. Given a topmost rewrite theory R = (Σ,E,R) and sets AP and
ACT defined by E, �E is a total simulation from K̄(R)AP,ACT to N̄ (R)AP,ACT .

Proof. Suppose that [t]E A−−→K̄(R) [t′]E and t �E u for u ∈ N(R)AP . Given
AP = {p1, . . . , pn} and ACT = {δ1, . . . , δm}, fix b1, b2, . . . , bn+m ∈ {true, false}
such that bi =E (t′ |= pi) for 1 ≤ i ≤ n and bn+j =E (l(θ) |= δj) for 1 ≤ j ≤ m.
By definition, there is an one-step rewrite l(θ) : t −→R t′. By Lemma 1, there is
a narrowing step u �l,σ,R u′ such that t′ =E ηu′ and θ =E (η ◦ σ)|dom(θ). Thus,
there exists ζ ∈ CSUE(

∧
1≤i≤n(u′ |= pi) = bi ∧

∧
1≤j≤m(l(σl) |= δj) = bn+j).

By definition, [u]E A−−→N̄ (R) [ζu′]E . Notice that
∧

1≤i≤nη
(
(u′ |= pi) =E bi

)
and

∧
1≤j≤mη

(
(l(σl) |= δj) =E bn+j

)
. Therefore, η �E ζ, and t′ =E ηu �E ζu′. ��

By Corollary 1, this lemma implies that any LTLR formula ϕ satisfied in a
narrowing-based LKS N̄ (R)AP,ACT from a logical state t is also satisfied in the
concrete LKS K̄(R)AP,ACT from each ground instance of t.

In general, �E is not a bisimulation between K̄(R)AP,ACT and N̄ (R)AP,ACT .
For the bakery example, although 0 ; 0 ; [I,wait(0)] �E N ; M ; PS1 holds,
there exists the transition N ; M ; PS1

{wake(0)}−−−−−−−→N̄ (R) s N ; M ; PS2 [0,wait(N)],

in N̄ (R)AP,ACT with the substitution PS1\ PS2 [0,idle], but no corresponding
transition exists from 0 ; 0 ; [I,wait(0)] in K̄(R)AP,ACT . However, any finite
path in N̄ (R)AP,ACT can be instantiated to a corresponding concrete path in
K̄(R)AP,ACT (e.g., the above transition can be instantiated as the transition
0 ; 0 ; [0,idle] {wake(0)}−−−−−−−→K̄(R) s ; 0 ; [0,wait(0)] in K̄(R)AP,ACT ).

Lemma 4. For a finite path u1
A1−−→N̄ (R) · · · An−1−−−−→N̄ (R) un of N̄ (R)AP,ACT ,

there is t1
A1−−→K̄(R) · · · An−1−−−−→K̄(R) tn in K̄(R)AP,ACT with ti �E ui, 1 ≤

i ≤ n.

Proof. Since u1
A1−−→N̄ (R) u2, by definition, there are substitutions σ1 and ζ1

such that u1 �l1,σ1,R u′
2 by a topmost rule l1 : q1 → r1 ∈ R and u2 = ζ1u

′
2.

Since σu1 =E σq1 and u2 = ζ1u
′
2 = (ζ1 ◦ σ1)r1, (ζ1 ◦ σ1)u1 −→R u2. Similarly,

(ζ2 ◦ σ2)u2 −→R u3, etc. By composing them, (ζn−1 ◦ σn−1 ◦ · · · ◦ ζ2 ◦ σ2 ◦ ζ1 ◦
σ1)u1 −→R · · · −→R (ζn−1◦σn−1)un−1 −→R un. Let ρ be a ground substitution
instantiating every variable in the path. Then, (ρ◦ζn−1◦σn−1◦· · ·◦ζ2◦σ1)u1 −→R
· · · −→R (ρ ◦ ζn−1 ◦ σn−1)un−1 −→R ρun gives the desired path. ��
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Recall that counterexamples of safety properties are characterized by finite
sequences [4]. Therefore, the above lemma guarantees that N̄ (R)AP,ACT does
not generate spurious counterexamples for safety properties, since any finite
counterexample in N̄ (R)AP,ACT has a corresponding real counterexample in
K̄(R)AP,ACT . Together with Corollary 1 and Lemma 3, we have:

Theorem 1. Given a topmost rewrite theory R = (Σ,E,R), and finite sets AP
and ACT defined by E, for a safety LTLR formula ϕ and a pattern t ∈ N(R)AP :
N̄ (R)AP,ACT , [t]E |= ϕ ⇐⇒ (∀θ : X → TΣ) K̄(R)AP,ACT , [θt]E |= ϕ.

4 Abstract Narrowing-Based LTLR Model Checking

A narrowing-based LKS N̄ (R)AP,ACT often has an infinite number of logical
states (e.g., Fig. 2). For narrowing-based LTL model checking, the paper [1] has
proposed two abstraction methods to reduce an infinite narrowing-based Kripke
structure, namely, folding abstractions and equational abstractions. This section
extends those abstraction techniques to narrowing-based LTLR model checking
for trying to reduce an infinite narrowing-based LKS to a finite one.

Folding Abstractions. Given a transition system A = (A,−→A) with a set
of states A and a transition relation −→A ⊆ A2, we can reduce it by collapsing
each state a into a previously seen state b, while traversing A from a set of initial
states I ⊆ A, whenever b is more general than a according to a folding relation
a � b [6]. For a set of states B ⊆ A, let PostA(B) = {a ∈ A | ∃b ∈ B. b −→A a}
(i.e., the successors of B) and Post∗

A(B) =
⋃

i∈N
(PostA)i(B).

Definition 7. Given A = (A,−→A) and a folding relation � ⊆ A2, the folding
abstraction of A from I ⊆ A is Reach�

A(I) = (Post∗
A�(I), −→Reach

�
A(I)

), where:

Post∗
A�(I) =

⋃
i∈N

Post i
A�(I) and −→Reach

�
A(I)

=
⋃

i∈N
−→�

A,i such that:

Post0A�(I) = I, −→�
A,0= ∅,

Postn+1
A� (I) = {a ∈ PostA(PostnA�(I)) | ∀l ≤ n ∀b ∈Post lA�(I). a �� b},

−→�
A,n+1 = {(a, a′) ∈ PostnA�(I) ×

⋃

0≤i≤n+1

PostiA�(I) | ∃b ∈ PostA(a). b � a′}.

For the bakery example, using theE-subsumption �E as a folding relation, we have
the finite folding abstraction Reach�E

N̄ (R)AP,ACT
({N ; N ; [0,idle][s,idle]}) of

N̄ (R)AP,ACT from the initial state N ; N ; [0,idle][s,idle] in Fig. 3.
If a folding relation � is a total simulation from A to A, then Reach�

A(I)
simulates the reachable subsystem ReachA(I) = (Post∗

A(I),−→A ∩Post∗
A(I)2)

that only contains reachable states from I (i.e., � is a total simulation from
ReachA(I) to Reach�

A(I)) [1]. Indeed, �E for a topmost rewrite theory R is
a total simulation from N̄ (R)AP,ACT to N̄ (R)AP,ACT (which can be proved
in a similar way to Lemma 3). Therefore, �E defines a total simulation from
ReachN̄ (R)AP,ACT

(I) to Reach�E

N̄ (R)AP,ACT
(I). Consequently, by Corollary 1:



Infinite-State Model Checking of LTLR Formulas Using Narrowing 125

Fig. 3. A folding abstraction for the bakery protocol using the folding relation �E ,
where a double-headed arrow denotes a “folded” transition.

Theorem 2. For an LTLR formula ϕ and a pattern t ∈ N(R)AP , we have that
Reach�E

N̄ (R)AP,ACT
({[t]E}), [t]E |= ϕ implies N̄ (R)AP,ACT , [t]E |= ϕ.

For the bakery example, the liveness property ♦in.crit(0) under the fairness
assumption ♦�enabled .wake(0) → �♦wake(0) holds in the folding abstrac-
tion Reach�E

N̄ (R)AP,ACT
({N ; N ; [0,idle][s,idle]}) of Fig. 3, because any infi-

nite paths continuously staying in the first row violate the fairness assumption.
Hence, this property is also satisfied for any related concrete system.

Equational Abstractions. In general, a folding abstraction of a narrowing-
based LKS is not finite. For the bakery example, there exists an infinite path
within the folding abstraction from N ; N ; [0,idle] IS in Fig. 4, which keeps
incrementing the number of processes with instantiations. To further reduce an
infinite logical state space, we can apply equational abstractions to eventually
obtain a finite abstract narrowing-based LKS for LTLR model checking.

Given a rewrite theory R = (Σ,E,R), by adding a set of equations G such
that true �=E∪G false, we define an equational abstraction R/G = (Σ,E ∪ G,R)
[15]. It specifies the quotient abstraction N̄ (R/G)AP ,ACT by the equivalence
relation ≡G on states, namely, [t]E ≡G [t′]E iff t =E∪G t′. Provided that a set
of state propositions AP and a set of spatial action patterns ACT are defined
by E, the condition true �=E∪G false ensures that any two states with t =E∪G t′

satisfy the same set of state propositions. Similarly, any two one-step proof terms
with l(σl) =E∪G l′(σl′) satisfy the same set of spatial action patterns.

Similar to the cases of LTL model checking [1,15], an equational abstraction
N̄ (R/G)AP,ACT simulates the narrowing-based LKS N̄ (R)AP,ACT .

Lemma 5. Given a topmost rewrite theory R = (Σ,E,R), finite sets AP and
ACT defined by E, and a set G of equations, if true �=E∪G false, then there
exists a total simulation from N̄ (R)AP,ACT to N̄ (R/G)AP,ACT .
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Fig. 4. An infinite path in the folding abstraction for the bakery protocol with an
unbounded number of processes, where IS stands for a set of idle processes.

Proof. Let HG = {([t]E , [t]E∪G) | t ∈ N(R)AP}. Suppose that [t]E A−−→N̄ (R) [t′]E
and t =E∪G u. By definition, there are σ and ζ such that t �l,σ,R t′′ by a
rule l : q −→ r ∈ R and t′ = ζt′′, where σ ∈ CSUE(t = q), t′′ = σr, and
ζ ∈ CSUE(

∧
1≤i≤n(t′′ |= pi) = bi ∧

∧
1≤j≤m(l(σl) |= δj) = bn+j) for some

b1, . . . , bn+m ∈ {true, false}, given AP = {p1, . . . , pn} and ACT = {δ1, . . . , δm}.
Since σ ∈ CSUE(t = q), ∃σ′ ∈ CSUE∪G(u = q) such that σ =E∪G σ′. Then,
u �l,σ′,R/G u′ using the same rule l : q −→ r, where u′ = σ′r =E∪G σr = t′′.
Notice that (t′′ |= pi) =E∪G (u′ |= pi) and (l(σl) |= δj) =E∪G (l(σ′

l) |= δj).
Thus, ∃ζ ′ ∈ CSUE∪G(

∧
1≤i≤n(u′ |= pi) = bi ∧

∧
1≤j≤m(l(σ′

l) |= δj) = bn+j)
with ζ =E∪G ζ ′. Thus, [u]E∪G

A−−→N̄ (R/G) [ζ ′u′]E∪G, where ζ ′u′ =E∪G ζt′′ = t′.
Since true �=E∪G false, [t′]E and [ζ ′u′]E∪G satisfy the same state propositions.
Therefore, HG is a total simulation from N̄ (R)AP,ACT to N̄ (R/G)AP,ACT . ��

For the bakery example, by adding the following equations that collapses extra
waiting processes with non-zero identifiers, where ICPS denotes a set of idle or
crit processes, and WP3 denotes zero or at most three wait processes:

eq [NZ,D] = [D] . --remove non-zero identifiers

eq s s s N M ; M ; ICPS WP3 [wait(s N M)] [wait(s s N M)]

= s s N M ; M ; ICPS WP3 [wait(s N M)] .

we have the folded abstract narrowing-based LKS in Fig. 5, provided with the
extra spatial action pattern wake that holds if the wake rule is applied.

We can easily see that there is a counterexample of the property ♦in.crit(0)
under ♦�enabled .wake(0) → �♦wake(0) in which the wake rule is continuously
applied forever, which is impossible if there is a finite number of processes.
Assuming the extra fairness assumption �♦¬wake, the property ♦in.crit(0) is
now satisfied since any infinite paths staying in the first column forever violate
♦�enabled .wake(0) → �♦wake(0), and any paths staying in a self loop forever
violate �♦¬wake. Consequently, under the fairness assumptions, ♦in.crit(0) is
satisfied for an unbounded number of processes.
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Fig. 5. An folded equational abstraction for the bakery protocol.

5 Related Work and Conclusions

A number of infinite-state model checking methods have been developed based
on symbolic and abstraction techniques; see [1,6] for an overview and comparison
with narrowing-based model checking. To the best of our knowledge, our work
proposes the first symbolic model checking method to verify LTLR properties
of infinite-state systems. For finite-state systems the paper [2] presents various
model checking algorithms for LTLR properties. LTLR is a sublogic of TLR∗

that generalizes the state-based logic CTL∗ (see [14] for related work). On the
topic of complement patterns, the most closely related work is [8,9,12]. We plan
to use their ideas, as well as ongoing work by Skeirik and Meseguer on the
concept of B-linear terms in order-sorted signatures, which are pattern terms
whose syntactic structure guarantees the existence of complements modulo B, to
automate the full equational definition of satisfaction of spatial action patterns.

In conclusion, this work should be understood as a contribution that increases
the expressive power of infinite-state model checking methods. Specifically, the
expressive power of narrowing-based infinite-state logical model checking has
been extended form LTL to LTLR, allowing temporal properties that can use
both state propositions and spatial action patterns. This extension is nontrivial
because of the need for building a symbolic transition system where states are
AP -instantiated and transitions are ACT -instantiated.
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All the necessary theoretical foundations are now in place for embarking into
a future implementation of a narrowing-based LTLR model checker in Maude in
the spirit of the similar LTL tool described in [1]. As done in [1], for the LTLR
tool we will be able to rely on the extensive body of work on efficient LTLR
model checking algorithms described in [2]. Beyond these goals, the integration
of constraints and SMT solving within the planned narrowing-based LTLR model
checker, as well as the study of more flexible “stuttering” AP/ACT -simulations,
are also exciting possibilities.
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