Skip to main content

Part of the book series: Applied Condition Monitoring ((ACM,volume 1))

Abstract

The assessment of the thermal fatigue damage (crack initiation) and subsequent crack growth due to thermal stresses from turbulent mixing or vortices in industrial piping systems remains a demanding task, and much effort continues to be devoted to experimental, FEA and analytical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jones, I.S.: The frequency response model of thermal striping for cylindrical geometries. Fatigue and Fracture of Engineering Materials and Structures 20(6), 871–882 (1997)

    Article  Google Scholar 

  2. Heller, R.A.: Temperature response of an infinitely thick slab to random surface temperature. Mech. Res. Comm. 3, 379–385

    Google Scholar 

  3. Kamaya, M.: Crack growth under thermal fatigue loading (effect of stress gradient and relaxation), PVP2009-77547. In: Proceedings of the ASME 2009 Pressure Vessels and Piping Division Conference, July 26-30, Czech Republic, Prague (2009)

    Google Scholar 

  4. Jones, I.S., Lewis, M.W.: A frequency response method for calculating stress intensity factors due to thermal striping loads. Fatigue and Fracture of Engineering Materials and Structures 17(6), 709–720 (1994)

    Article  Google Scholar 

  5. Galvin, B.J., Graham, I.D., Jones, I.S., Rothwel, G.: A comparison between the finite element and frequency response method in the assessment of thermal striping damage. International Pressure Vessels and Piping 74, 205–212 (1997)

    Article  Google Scholar 

  6. Miller, A.G.: Crack propagation due to random thermal fluctuation: effect of temporal incoherence. International Journal of Pressure vessels and Piping 8, 15–24 (1980)

    Article  Google Scholar 

  7. Heller, R.A., Thangjitham, S.: Probabilistic Methods in Thermal Stress Analysis. In: Hetnarski, R.B. (ed.) Thermal Stress II, Elsevier Science Publishers B.V (1987)

    Google Scholar 

  8. Miller, A.G.: Equivalent strain range due to random thermal fluctuations: effect of spatial incoherence. International Journal of Pressure vessels and Piping 8, 105–130 (1980)

    Article  Google Scholar 

  9. Chellapandi, P., Chetal, S.C., Raj, B.: Thermal striping limits for components of sodium cooled fast spectrum reactors. Nuclear Engineering and Design 239, 2754–2765 (2009)

    Article  Google Scholar 

  10. Chapuliot, S., Gourdin, C., Payen, T., Magnaud, J.P., Monavon, A.: Hydro-thermal-mechanical analysis of thermal fatigue in a mixing tee. Nuclear Engineering and Design 235, 575–596 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasile Radu .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Radu, V. (2015). Introduction. In: Stochastic Modeling of Thermal Fatigue Crack Growth. Applied Condition Monitoring, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-12877-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12877-1_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12876-4

  • Online ISBN: 978-3-319-12877-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics