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Abstract It is very unusual for a mathematical idea to disseminate into the society
at large. An interesting example is chaos theory, popularized by Lorenz’s butterfly
effect: “does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?” A
tiny cause can generate big consequences! Can one adequately summarize chaos
theory in such a simple minded way? Are mathematicians responsible for the
inadequate transmission of their theories outside of their own community? What is
the precise message that Lorenz wanted to convey? Some of the main characters of
the history of chaos were indeed concerned with the problem of communicating
their ideas to other scientists or non-scientists. I’ll try to discuss their successes and
failures. The education of future mathematicians should include specific training to
teach them how to explain mathematics outside their community. This is more and
more necessary due to the increasing complexity of mathematics. A necessity and a
challenge!

Introduction

In 1972, the meteorologist Edward Lorenz gave a talk at the 139th meeting of the
American Association for the Advancement of Science entitled “Does the flap of a
butterfly’s wings in Brazil set off a tornado in Texas?”. Forty years later, a google
search “butterfly effect” generates ten million answers. Surprisingly most answers
are not related to mathematics or physics and one can find the most improbable
websites related to movies, music, popular books, video games, religion, philoso-
phy and even Marxism! It is very unusual that a mathematical idea can disseminate
into the general society. One could mention Thom’s catastrophe theory in the
1970s, or Mandelbrot’s fractals in the 1980s, but these theories remained confined
to the scientifically oriented population. On the contrary, chaos theory, often
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presented through the butterfly effect, did penetrate the nonscientific population at a
very large scale. Unfortunately, this wide diffusion was accompanied with an
oversimplification of the main original ideas and one has to admit that the trans-
mission procedure from scientists to nonscientists was a failure. As an example, the
successful book The butterfly effect by Andy Andrews “reveals the secret of how
you can live a life of permanent purpose” and “shows how your everyday actions
can make a difference for generations to come” which is not exactly the message of
the founding fathers of chaos theory! In Spielberg’s movie Jurassic Park, Jeff
Goldblum introduces himself as a “chaotician” and tries (unsuccessfully) to explain
the butterfly effect and unpredictability to the charming Laura Dern; the message is
scientifically more accurate but misses the main point. If chaos theory only claimed
that the future is unpredictable, would it deserve the name “theory”? After all, it is
well known that “Prediction is very difficult, especially the future!”.1 A scientific
theory cannot be limited to negative statements and one would be disappointed if
Lorenz’s message only contained this well known fact.

The purpose of this talk is twofold. On the one hand, I would like to give a very
elementary presentation of chaos theory, as a mathematical theory, and to give
some general overview on the current research activity in this domain with an
emphasis on the role of the so-called physical measures. On the other hand, I would
like to analyze the historical process of the development of the theory, its successes
and failures, focusing in particular on the transmission of ideas between mathe-
matics and physics, or from Science to the general public. This case study might
give us some hints to improve the communication of mathematical ideas outside
mathematics or scientific circles. The gap between mathematicians and the general
population has never been so wide. This may be due to the increasing complexity of
mathematics or to the decreasing interest of the population for Science. I believe
that the mathematical community has the responsibility of building bridges.

A Brief History of Chaos from Newton to Lorenz

Determinism

One of the main pillars of Science is determinism: the possibility of prediction. This is
of course not due to a single person but one should probably emphasize the funda-
mental role of Newton. As he was laying the foundations of differential calculus and
unraveling the laws of mechanics, he was offering by the same token a tool enabling
predictions. Given a mechanical system, be it the solar system or the collection of
molecules in my room, one can write down a differential equation governing the
motion. If one knows the present position and velocity of the system, one should

1 See www.peterpatau.com/2006/12/bohr-leads-berra-but-yogi-closing-gap.html for an interesting
discussion of the origin of this quotation.

20 É. Ghys

http://www.peterpatau.com/2006/12/bohr-leads-berra-but-yogi-closing-gap.html


simply solve a differential equation in order to determine the future. Of course,
solving a differential equation is not always a simple matter but this implies at least
the principle of determinism: the present situation determines the future. Laplace
summarized this wonderfully in his “Essai philosophique sur les probabilités”
(Laplace, 1814):

We ought then to consider the present state of the universe as the effect of its previous state
and as the cause of that which is to follow. An intelligence that, at a given instant, could
comprehend all the forces by which nature is animated and the respective situation of the
beings that make it up, if moreover it were vast enough to submit these data to analysis,
would encompass in the same formula the movements of the greatest bodies of the universe
and those of the lightest atoms. For such an intelligence nothing would be uncertain, and
the future, like the past, would be open to its eyes.

The fact that this quotation comes from a book on probability theory shows that
Laplace’s view on determinism was far from naïve (Kahane 2008). We lack the
“vast intelligence” and we are forced to use probabilities in order to understand
dynamical systems.

Sensitivity to Initial Conditions

In his little book “Matter and Motion”, Maxwell insists on the sensitivity to initial
conditions in physical phenomena (Maxwell, 1876):

There is a maxim which is often quoted, that ‘The same causes will always produce the
same effects.’ To make this maxim intelligible we must define what we mean by the same
causes and the same effects, since it is manifest that no event ever happens more that once,
so that the causes and effects cannot be the same in all respects. […]
There is another maxim which must not be confounded with that quoted at the beginning of
this article, which asserts ‘That like causes produce like effects’. This is only true when
small variations in the initial circumstances produce only small variations in the final state
of the system. In a great many physical phenomena this condition is satisfied; but there are
other cases in which a small initial variation may produce a great change in the final state of
the system, as when the displacement of the ‘points’ causes a railway train to run into
another instead of keeping its proper course.

Notice that Maxwell seems to believe that “in great many cases” there is no
sensitivity to initial conditions. The question of the frequency of chaos in nature is
still at the heart of current research. Note also that Maxwell did not really describe
what we would call chaos today. Indeed, if one drops a rock from the top of a
mountain, it is clear that the valley where it will end its course can be sensitive to a
small variation of the initial position but it is equally clear that the motion cannot be
called “chaotic” in any sense of the word: the rock simply goes downwards and
eventually stops.
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Fear for Chaos

It is usually asserted that chaos was “discovered” by Poincaré in his famous memoir
on the 3-body problem (Poincaré 1890). His role is without doubt very important,
but maybe not as much as is often claimed. He was not the first to discover
sensitivity to initial conditions. However, he certainly realized that some mechan-
ical motions are very intricate, in a way that Maxwell had not imagined. Never-
theless chaos theory cannot be limited to the statement that the dynamics is
complicated: any reasonable theory must provide methods allowing some kind of
understanding. The following famous quotation of Poincaré illustrates his despair
when confronted by the complication of dynamics (Poincaré 1890):

When we try to represent the figure formed by these two curves and their infinitely many
intersections, each corresponding to a doubly asymptotic solution, these intersections form
a type of trellis, tissue, or grid with infinitely fine mesh. Neither of the two curves must ever
cut across itself again, but it must bend back upon itself in a very complex manner in order
to cut across all of the meshes in the grid an infinite number of times. The complexity of
this figure is striking, and I shall not even try to draw it. Nothing is more suitable for
providing us with an idea of the complex nature of the three-body problem, and of all the
problems of dynamics in general […].

One should mention that ten years earlier Poincaré had written a fundamental
memoir “Sur les courbes définies par des équations différentielles” laying the
foundations of the qualitative theory of dynamical systems (Poincaré 1881). In this
paper, he had analyzed in great detail the behavior of the trajectories of a vector
field in the plane, i.e. of the solutions of an ordinary differential equation in
dimension 2. One of his main results—the Poincaré-Bendixson theorem—implied
that such trajectories are very well behaved and converge to an equilibrium point or
to a periodic trajectory (or to a so-called “graphic”): nothing chaotic in dimension 2!
In his 1890 paper, he was dealing with differential equations in dimension 3 and he
must have been puzzled—and scared—when he realized the complexity of the
picture.

Taming Chaos

Hadamard wrote a fundamental paper on the dynamical behavior of geodesics on
negatively curved surfaces (Hadamard, 1898). He first observes that “a tiny change
of direction of a geodesic […] is sufficient to cause any variation of the final shape
of the curve” but he goes much further and creates the main concepts of the
so-called “symbolic dynamics”. This enables him to prove positive statements,
giving a fairly precise description of the behavior of geodesics. Of course,
Hadamard is perfectly aware of the fact that geodesics on a surface define a very
primitive mechanical system and that it is not clear at all that natural phenomena
could have a similar behavior. He concludes his paper in a cautious way:
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Will the circumstances we have just described occur in other problems of mechanics? In
particular, will they appear in the motion of celestial bodies? We are unable to make such
an assertion. However, it is likely that the results obtained for these difficult cases will be
analogous to the preceding ones, at least in their degree of complexity. […]
Certainly, if a system moves under the action of given forces and its initial conditions have
given values in the mathematical sense, its future motion and behavior are exactly known.
But, in astronomical problems, the situation is quite different: the constants defining the
motion are only physically known, that is with some errors; their sizes get reduced along the
progresses of our observing devices, but these errors can never completely vanish.

So far, the idea that some physical systems could be complicated and sensitive to
small variations of the initial conditions—making predictions impossible in practice
—remained hidden in very confidential mathematical papers known to a very small
number of scientists. One should keep in mind that by the turn of the century,
physics was triumphant and the general opinion was that Science would eventually
explain everything. The revolutionary idea that there is a strong conceptual limi-
tation to predictability was simply unacceptable to most scientists.

Popularization

However, at least two scientists realized that this idea is relevant in Science and
tried—unsuccessfully—to advertize it outside mathematics and physics, in “popular
books”.

In his widely circulated book Science and Method, Poincaré expresses the
dependence to initial conditions in a very clear way. The formulation is very close
to the butterfly slogan and even includes a devastating cyclone (Poincaré 1908):

Why have meteorologists such difficulty in predicting the weather with any certainty? Why
is it that showers and even storms seem to come by chance, so that many people think it
quite natural to pray for rain or fine weather, though they would consider it ridiculous to ask
for an eclipse by prayer? We see that great disturbances are generally produced in regions
where the atmosphere is in unstable equilibrium. The meteorologists see very well that the
equilibrium is unstable, that a cyclone will be formed somewhere, but exactly where they
are not in a position to say; a tenth of a degree more or less at any given point, and the
cyclone will burst here and not there, and extend its ravages over districts it would
otherwise have spared. If they had been aware of this tenth of a degree they could have
known it beforehand, but the observations were neither sufficiently comprehensive nor
sufficiently precise, and that is the reason why it all seems due to the intervention of chance.

In 1908 Poincaré was less scared by chaos than in 1890. He was no longer
considering chaos as an obstacle to a global understanding of the dynamics, at least
from the probabilistic viewpoint. Reading Poincaré’s papers of this period, with
today’s understanding of the theory, one realizes that he had indeed discovered the
role of what is called today physical measures (to be discussed later) which are at
the heart of the current approach. Unfortunately, none of his contemporaries could
grasp the idea—or maybe he did not formulate it in a suitable way—and one had to
wait for seventy years before the idea could be re-discovered!
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You are asking me to predict future phenomena. If, quite unluckily, I happened to know the
laws of these phenomena, I could achieve this goal only at the price of inextricable
computations, and should renounce to answer you; but since I am lucky enough to ignore
these laws, I will answer you straight away. And the most astonishing is that my answer
will be correct.

Another attempt to advertize these ideas outside mathematics and physics was
made by Duhem (1906) in his book The aim and structure of physical theory. His
purpose was to popularize Hadamard’s paper and he used simple words and very
efficient “slogans”:

Imagine the forehead of a bull, with the protuberances from which the horns and ears start,
and with the collars hollowed out between these protuberances; but elongate these horns
and ears without limit so that they extend to infinity; then you will have one of the surfaces
we wish to study. On such a surface geodesics may show many different aspects. There are,
first of all, geodesics which close on themselves. There are some also which are never
infinitely distant from their starting point even though they never exactly pass through it
again; some turn continually around the right horn, others around the left horn, or right ear,
or left ear; others, more complicated, alternate, in accordance with certain rules, the turns
they describe around one horn with the turns they describe around the other horn, or around
one of the ears. Finally, on the forehead of our bull with his unlimited horns and ears there
will be geodesics going to infinity, some mounting the right horn, others mounting the left
horn, and still others following the right or left ear. […] If, therefore, a material point is
thrown on the surface studied starting from a geometrically given position with a geo-
metrically given velocity, mathematical deduction can determine the trajectory of this point
and tell whether this path goes to infinity or not. But, for the physicist, this deduction is
forever unutilizable. When, indeed, the data are no longer known geometrically, but are
determined by physical procedures as precise as we may suppose, the question put remains
and will always remain unanswered.

Unfortunately the time was not ripe. Scientists were not ready for the message…
Poincaré and Duhem were not heard. The theory went into a coma. Not completely
though, since Birkhoff continued the work of Poincaré in a strictly mathematical
way, with no attempts to develop a school, and with no applications to natural
sciences. One should mention that Poincaré’s work had also some posterity in the
Soviet Union but this was more related to the 1881 “non chaotic” theory of limit
cycles (Aubin and Dahan Dalmedico 2002).

Later I will describe Lorenz’s fundamental article which bears the technical title
“Deterministic non periodic flow”, and was largely unnoticed by mathematicians
for about ten years (Lorenz, 1963). Lorenz gave a lecture entitled “Predictability:
does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?” which was
the starting point of the famous butterfly effect (Lorenz, 1972).

If a single flap of a butterfly’s wing can be instrumental in generating a tornado, so all the
previous and subsequent flaps of its wings, as can the flaps of the wings of the millions of
other butterflies, not to mention the activities of innumerable more powerful creatures,
including our own species.
If a flap of a butterfly’s wing can be instrumental in generating a tornado, it can equally well
be instrumental in preventing a tornado.
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This is not really different from Poincaré’s “a tenth of a degree more or less at
any given point, and the cyclone will burst here and not there”. However,
meanwhile, physics (and mathematics) had gone through several revolutions and
non-predictability had become an acceptable idea. More importantly, the world had
also gone through several (more important) revolutions. The message “each one of
us can change the world2” was received as a sign of individual freedom. This is
probably the explanation of the success of the butterfly effect in popular culture. It
would be interesting to describe how Lorenz’s talk reached the general population.
One should certainly mention the best seller Chaos: making a new science (Gleick
1987) (which was a finalist for the Pulitzer Prize). One should not minimize the
importance of such books. One should also emphasize that Lorenz himself
published a wonderful popular book The essence of chaos in 1993. Note that the
two main characters of the theory, Poincaré and Lorenz, wrote popular books to
make their researches accessible to a wide audience.

Lorenz’s 1963 Paper

Lorenz’s article is wonderful (Lorenz 1963). At first unnoticed, it eventually
became one of the most cited papers in scientific literature (more than 6,000 cita-
tions since 1963 and about 400 each year in recent years). For a few years, Lorenz
had been studying simplified models describing the motion of the atmosphere in
terms of ordinary differential equations depending on a small number of variables.
For instance, in 1960 he had described a system that can be explicitly solved using
elliptic functions: solutions were quasiperiodic in time (Lorenz 1960). His article
(Lorenz 1962) analyzes a differential equation in a space of dimension 12, in which
he numerically detects a sensitive dependence to initial conditions. His 1963 paper
lead him to fame.

In this study we shall work with systems of deterministic equations which are idealizations
of hydrodynamical systems.

After all, the atmosphere is made of finitely many particles, so one indeed needs
to solve an ordinary differential equation in a huge dimensional space. Of course,
such equations are intractable, and one must treat them as partial differential
equations. In turn, the latter must be discretized on a finite grid, leading to new
ordinary differential equations depending on fewer variables, and probably more
useful than the original ones.

The bibliography in Lorenz’s article includes one article of Poincaré, but not the
right one! He cites the early 1881 “non chaotic” memoir dealing with 2 dimensional
dynamics. Lorenz seems indeed to have overlooked the Poincaré’s papers that we
have discussed above. Another bibliographic reference is a book by Birkhoff (1927)

2 Subtitle of a book by Bill Clinton (2007).
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on dynamical systems. Again, this is not “the right” reference since the “significant”
papers on chaos by Birkhoff were published later. On the occasion of the 1991
Kyoto prize, Lorenz gave a lecture entitled “A scientist by choice” in which he
discusses his relationship with mathematics (Lorenz 1991). In 1938 he was a
graduate student in Harvard and was working under the guidance of… Birkhoff “on
a problem in mathematical physics”. However he seems unaware of the fact that
Birkhoff was indeed the best follower of Poincaré. A missed opportunity? On the
other hand, Lorenz mentions that Birkhoff “was noted for having formulated a
theory of aesthetics”.

Lorenz considers the phenomenon of convection. A thin layer of a viscous fluid
is placed between two horizontal planes, set at two different temperatures, and one
wants to describe the resulting motion. The higher parts of the fluid are colder,
therefore denser; they have thus a tendency to go down due to gravity, and are then
heated when they reach the lower regions. The resulting circulation of the fluid is
complex. Physicists are very familiar with the Bénard and Rayleigh experiments.
Assuming the solutions are periodic in space, expanding in Fourier series and
truncating these series to keep only a small number of terms, Salzman had just
obtained an ordinary differential equation describing the evolution. Drastically
simplifying this equation, Lorenz obtained “his” differential equation:

dx
dt

¼ r xþ yð Þ; dy
dt

¼ �xzþ rz� y;
dz
dt

¼ xy� bz:

Here x represents the intensity of the convection, y represents the temperature
difference between the ascending and descending currents, and z is proportional to
the “distortion” of the vertical temperature profile from linearity, a positive value
indicating that the strongest gradients occur near the boundaries. Obviously, one
should not seek in this equation a faithful representation of the physical phenom-
enon. The constant σ is the Prandtl number. Guided by physical considerations,
Lorenz was lead to choose the numerical values r = 28, σ = 10, b = 8/3. It was a
good choice, and these values remain traditional today. He could then numerically
solve these equations, and observe a few trajectories. The electronic computer
Royal McBee LGP-30 was rather primitive: according to Lorenz, it computed
(only!) 1,000 times faster than by hand. The anecdote is well known (Lorenz 1991):

I started the computer again and went out for a cup of coffee. When I returned about an hour
later, after the computer had generated about two months of data, I found that the new
solution did not agree with the original one. […] I realized that if the real atmosphere
behaved in the same manner as the model, long-range weather prediction would be
impossible, since most real weather elements were certainly not measured accurately to
three decimal places.

Let us introduce some basic terminology and notation. For simplicity we shall
only deal with ordinary differential equations in Rn of the form dx

dt ¼ X xð Þ where x is
now a point in Rn and X is a vector field in Rn. We shall assume that X is transversal
to some large sphere, say xk k ¼ R, pointing inwards, which means that the scalar
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product x:X xð Þ is negative on this sphere. Denote by B the ball xk k�R. For any
point x in B, there is a unique solution of the differential equation with initial
condition x and defined for all t� 0. Denote this solution by /t xð Þ. The purpose of
the theory of dynamical systems is to understand the asymptotic behavior of these
trajectories when t tends to infinity. With this terminology, one says that X is
sensitive to initial conditions if there exists some d[ 0 such that for every �[ 0
one can find two points x, x′ in B with x� x0k k\� and some time t[ 0 such that
/t xð Þ � /t x0ð Þk k\d.
Lorenz’s observations go much further than the fact that “his” differential

equation is sensitive to initial conditions. He notices that these unstable trajectories
seem to accumulate on a complicated compact set, which is itself insensitive to
initial conditions and he describes this limit set in a remarkably precise way. There
exists some compact set K in the ball such that for almost every initial condition x,
the trajectory of x accumulates precisely on K. This attracting set K (now called the
Lorenz attractor) approximately resembles a surface presenting a “double” line
along which two leaves merge.

Thus within the limits of accuracy of the printed values, the trajectory is confined to a pair
of surfaces which appear to merge in the lower portion. […] It would seem, then, that the
two surfaces merely appear to merge, and remain distinct surfaces. […] Continuing this
process for another circuit, we see that there are really eight surfaces, etc., and we finally
conclude that there is an infinite complex of surfaces, each extremely close to one or the
other of the two merging surfaces.

Lorenz (1963)

Starting from an initial condition, the trajectory rapidly approaches this “two
dimensional object” and then travels “on” this “surface”. The trajectory turns
around the two holes, left or right, in a seemingly random way. Notice the analogy
with Hadamard’s geodesics turning around the horns of a bull. Besides, Lorenz
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studies how trajectories come back to the “branching line” where the two surfaces
merge, which can be parameterized by some interval [0,1]. Obviously, this interval
is not very well defined, since the two merging surfaces do not really come in
contact, although they coincide “within the limits of accuracy of the printed
values”. Starting from a point on this “interval”, one can follow the future trajectory
and observe its first return onto the interval. This defines a two to one map from the
interval to itself. Indeed, in order to go back in time and track the past trajectory of a
point in [0,1], one should be able to select one of the two surfaces attached to the
interval. On the figure the two different past trajectories seem to emanate from the
“same point” of the interval. Of course, if there are two past trajectories starting
from “one” point, there should be four, then eight, etc., which is what Lorenz
expresses in the above quotation. Numerically, the first return map is featured on
the left part of Figure, extracted from the original paper.

Working by analogy, Lorenz compares this map to the (much simpler) following
one: f xð Þ ¼ 2x if 0� x� 1

2 and f xð Þ ¼ 2� 2x if 1
2 � x� 1 (right part of the Figure).

Nowadays the chaotic behavior of this “tent map” is well known, but this was much
less classical in 1963. In particular, the periodic points of f are exactly the rational
numbers with odd denominators, which are dense in [0,1]. Lorenz does not hesitate
to claim that the same property applies to the iterations of the “true” return
map. The periodic trajectories of the Lorenz attractor are “therefore” dense in
K. What an intuition! Finally, he concludes with a lucid question on the relevance
of his model for the atmosphere.

There remains the question as to whether our results really apply to the atmosphere. One
does not usually regard the atmosphere as either deterministic or finite, and the lack of
periodicity is not a mathematical certainty, since the atmosphere has not been observed
forever.

To summarize, this remarkable article contains the first example of a physically
relevant dynamical system presenting all the characteristics of chaos. Individual
trajectories are unstable but their asymptotic behavior seems to be insensitive to
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initial conditions: they converge to the same attractor. None of the above assertions
are justified, at least in the mathematical sense. How frustrating!

Surprisingly, an important question is not addressed in Lorenz’s article. The
observed behavior happens to be robust: if one slightly perturbs the differential
equation, for instance by modifying the values of the parameters, or by adding small
terms, then the new differential equation will feature the same type of attractor with
the general aspect of a branched surface. This property would be rigorously
established much later by Guckhenheimer and Williams.

Meanwhile, Mathematicians…

Lack of Communication Between Mathematicians
and Physicists?

Mathematicians did not notice Lorenz’s paper for more than ten years. The
mathematical activity in dynamical systems during this period followed an inde-
pendent and parallel path, under the lead of Smale. How can one understand this
lack of communication between Lorenz—the MIT meteorologist—and Smale—the
Berkeley mathematician? Obviously, during the 1960s the scientific community
had already reached such a size that it was impossible for a single person to master
mathematics and physics; the time of Poincaré was over. No bridge between
different sciences was available. Mathematicians had no access to the Journal of
Atmospheric Sciences.3

The Lorenz attractor looks like a butterfly

3 In order to find an excuse for not having noticed Lorenz paper, a famous mathematician told me
that Lorenz had published in “some obscure journal”!.
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Smale’s Axiom A

In 1959 Smale had obtained remarkable results in topology, around the Poincaré
conjecture in higher dimension. The main tool was Morse theory describing the
gradient of a (generic) function. The dynamics of such a gradient is far from
chaotic: trajectories go uphill and converge to some equilibrium point. Smale
initiated a grandiose program aiming at a qualitative description of the trajectories
of a generic vector field (on compact manifolds). His first attempt was amazingly
naïve (Smale 1960). He conjectured that a generic vector field has a finite number
of equilibrium points, a finite number of periodic trajectories, and that every
trajectory converges in the future (and in the past) towards an equilibrium or a
periodic trajectory. He was therefore proposing that chaos does not exist! Poincaré,
Hadamard or Birkhoff had already published counterexamples many years earlier!
Looking back at this period, Smale wrote (1998a, b):

It is astounding how important scientific ideas can get lost, even when they are aired by
leading scientific mathematicians of the preceding decades.

Smale realized soon by himself 4 that the dynamics of a generic vector field is
likely to be much more complicated than he had expected. He constructed a
counterexample to his own conjecture (Smale 1961). The famous horseshoe is a
simple example of a dynamical system admitting an infinite number of periodic
trajectories in a stable way.

In order to describe this example, I should explain a classical construction (due
to Poincaré). Suppose we start with a vector field X (in a ball in R

n, as above). It
may happen that one can find some n� 1 dimensional disc D, which is transverse
to X and which is such that the trajectory of every point x in D intersects D infinitely
often. In such a situation, one can define a map F : D ! D which associates to each
point x in D the next intersection of its trajectory with D. For obvious reasons, this
map is called the first return map. Clearly the description of the dynamics of
X reduces to the description of the iterates of F. Conversely, in many cases, one can
construct a vector field from a map F. It is often easier to draw pictures in D since it
is one dimension lower than B. In Smale’s example, D has dimension 2 and
corresponds to a vector field in dimension 3, like in Lorenz’s example. The map
F is called a horseshoe map since the image F Cð Þ of a square C does look like a
horseshoe as in the picture.

4 As if obeying Goethe’s dictum “Was du ererbt von deinen Vätern hast, erwirb es, um es zu
besitzen” (“That which you have inherited from your fathers, earn it in order to possess it.”).
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The infinite intersection \þ1
�1 Fi Cð Þ is a nonempty compact set K � D; and the

restriction of F to K is a homeomorphism. The intersection C \F Cð Þ consists of
two connected components C0 and C1. Smale shows that one can choose F in such
a way that for every bi-infinite sequence ai(with ai ¼ 0 or 1), there exists a unique
point x in K such that Fi xð Þ 2 Ci for every i. In particular, periodic points of
F correspond to periodic sequences ai; they are dense in K.

More importantly, Smale shows that his example is structurally stable. Let us
come back to a vector field X defined in some ball in R

n and transversal to the
boundary. One says that X is structurally stable if every vector field X′ which is
close enough to X (say in the C1 topology) is topologically conjugate to X: there is a
homeomorphism h of B sending trajectories of X to trajectories of X′. Andronov and
Pontryagin (1937) had introduced this concept in 1937 but in a very simple context,
certainly not in the presence of an infinite number of periodic trajectories. The proof
that the horseshoe map defines a structurally stable vector field is rather elementary.
It is based on the fact that a map F′ from D to itself close enough to F is also
described by the same infinite sequences ai:

Smale published this result in the proceedings of a workshop organized in the
Soviet Union in 1961. Anosov tells us about this “revolution” in Anosov (2006).

The world turned upside down for me, and a new life began, having read Smale’s
announcement of ‘a structurally stable homeomorphism with an infinite number of periodic
points’, while standing in line to register for a conference in Kiev in 1961. The article is
written in a lively, witty, and often jocular style and is full of captivating observations. […]
[Smale] felt like a god who is to create a universe in which certain phenomena would occur.

Afterwards the theory progressed at a fast pace. Smale quickly generalized the
horseshoe; see for instance (Smale 1966). Anosov proved in 1962 that the geodesic
flow on a manifold of negative curvature is structurally stable (Anosov 1962)5. For
this purpose, he created the concept of what is known today as Anosov flows.
Starting from the known examples of structurally stable systems, Smale cooked up
in 1965 the fundamental concept of dynamical systems satisfying the Axiom A and
conjectured that these systems are generic and structurally stable. Smale’s (1967)

5 Surprisingly, he does not seem to be aware of Hadamard’s work. It would not be difficult to
deduce Anosov’s theorem from Hadamard’s paper.
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article “Differential dynamical systems” represents an important step for the theory
of dynamical systems (Smale 1967), a “masterpiece of mathematical literature”
according to Ruelle. But, already in 1966, Abraham and Smale found a counter-
example to this second conjecture of Smale: Axiom A systems are indeed struc-
turally stable but they are not generic (Smale 1966, Abraham and Smale 1968).

Lorenz’s Equation Enters the Scene

Lorenz’s equation pops up in mathematics in the middle of the 1970s. According to
Guckenheimer, Yorke mentioned to Smale and his students the existence of Lorenz’s
equation, which did not fit well with their approach. The well-known 1971 paper by
Ruelle and Takens (1971) still proposed Axiom A systems as models for turbulence,
but in 1975 Ruelle observed that “Lorenz’s work was unfortunately overlooked”
(Ruelle 1976a). Guckenheimer and Lanford were among the first people to have
shown some interest in this equation (from a mathematical point of view)
(Guckenheimer 1976; Lanford 1977). Mathematicians quickly adopted this new
object which turned out to be a natural counterexample to Smale’s conjecture on the
genericity of Axiom A systems. It is impossible to give an exhaustive account of all
their work. By 1982 an entire book was devoted to the Lorenz’s equation, although it
mostly consisted of a list of open problems for mathematicians (Sparrow 1982).

Bowen’s review article is interesting at several levels (Bowen, 1978). Smale’s
theory of Axiom A systems had become solid and, although difficult open questions
remained, one had a rather good understanding of their dynamics. A few “dark
swans” had appeared in the landscape, like Lorenz’s examples, destroying the naïve
belief in the genericity of Axiom A systems. However mathematicians were trying
to weaken the definition of Axiom A in order to leave space to the newcomer
Lorenz. Nowadays, Axiom A systems seem to occupy a much smaller place than
one thought at the end of the 1970s. The Axiom A paradigm had to abandon its
dominant position… According to (Anosov 2006):

Thus the grandiose hopes of the 1960s were not confirmed, just as the earlier naive
conjectures were not confirmed.

For a more detailed description of the “hyperbolic history” one can also read the
introduction of (Hasselblatt 2002), or (Ghys 2010). See also “What is… a horse-
shoe” by one of the main actors of the field (Shub 2005).

Lorenz’s Butterfly as Seen by Mathematicians

In order to understand Lorenz’s butterfly from a mathematical point of view,
Guckhenheimer and Williams (1979) introduced a “geometrical model” in 1979.
Remember that Lorenz had observed that “his” dynamics seems to be related to the
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iterates of a map f from an interval to itself, even though this interval and this map
were only defined “within the limits of accuracy of the printed values”. The main
idea of Guckenheimer and Williams is to start from a map f of the interval and to
construct some vector field in 3-space whose behavior “looks like” the observed
behavior of the original Lorenz equation. The question of knowing if the
constructed vector field, called the geometric Lorenz model, is actually related to
the original Lorenz equation was not considered as important. After all, the original
Lorenz equation was a crude approximation of a physical problem and it was
unclear whether it was connected with reality, and moreover mathematicians in this
group were not really concerned with reality!

The following figure is reprinted from6 (Guckenheimer and Williams 1979)

This is a branched surface Σ embedded in space. One can define some dynamical
system f t (t� 0Þ on Σ whose trajectories are sketched on the figure: a point in Σ has a
future but has no past because of the two leaves which merge along an interval. The
first return map on this interval is the given map f from the interval to itself.
The dynamics of f tis easy to understand: the trajectories turn on the surface, either on
the left or on the right wing, according to the location of the iterates of the original
map f. So far, this construction does not yield a vector field. Guckhenheimer and
Williams construct a vector field X fð Þ in some ball B in R

3, transversal to the
boundary sphere, whose dynamics mimics f t. More precisely, denote by /t xð Þ the
trajectories of X fð Þ and by Λ the intersection \t� 0 /

t Bð Þ, so that for every point x in
B, the accumulation points of the trajectory /t xð Þ are contained inΛ. The vector field
X fð Þ is such that Λ is very close to Σ and that the trajectories /t xð Þ shadow f t. In
other words, for every point x in Λ, there is a point x′ in Σ such that /t xð Þ and f t x0ð Þ
stay at a very small distance for all positive times t� 0: This vector field X fð Þ is not
unique but is well defined up to topological equivalence, i.e. up to some homeo-
morphism sending trajectories to trajectories. This justifies Lorenz’s intuition,

6 Incidentally, this figure shows that the quality of an article does not depend on that of its
illustrations.
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according to which the attractor Λ behaves like a branched surface. Moreover, every
vector field in B which is close to X fð Þ is topologically conjugate to some X f 0ð Þ for
some map f ′ of the interval which is close to f. Furthermore, they construct explicitly
a two-parameter family of maps f a;bð Þ which represent all possible topological
equivalence classes. In summary, up to topological equivalence, the vector fields in
the neighborhood of X fð Þ depend on two parameters and are Lorenz like. This is the
robustness property mentioned above.

Hence, the open set in the space of vector fields of the form X fð Þ does not
contain any structurally stable vector field. If Smale had known Lorenz’s example
earlier, he would have saved time! Lorenz’s equation does not satisfy Axiom A and
cannot be approximated by an Axiom A system. Therefore any theory describing
generic dynamical systems should incorporate Lorenz’s equation.

As we have mentioned, the geometric models for the Lorenz attractor have been
inspired by the original Lorenz equation, but it wasn’t clear whether the Lorenz
equation indeed behaves like a geometric model. Smale chose this question as one
of the “mathematical problems for the next century” in 1998. The problem was
positively solved in Tucker (2002). For a brief description of the method used by
Tucker, see for instance (Viana 2000).

The Concept of Physical SRB Measures

Poincaré

The main method to tackle the sensitivity to initial conditions uses probabilities.
This is not a new idea. As mentioned earlier, Laplace realized that solving differ-
ential equations requires a “vast intelligence” that we don’t have… and suggested
developing probability theory in order to get some meaningful information. In his
“Science and method”, Poincaré gives a much more precise statement. Here is an
extract of the chapter on “chance”:

When small differences in the causes produce great differences in the effects, why are the
effects distributed according to the laws of chance? Suppose a difference of an inch in the
cause produces a difference of a mile in the effect. If I am to win in case the integer part of
the effect is an even number of miles, my probability of winning will be ½. Why is this?
Because, in order that it should be so, the integer part of the cause must be an even number
of inches. Now, according to all appearance, the probability that the cause will vary
between certain limits is proportional to the distance of those limits, provided that distance
is very small.

This chapter contains much more information about Poincaré’s visionary idea
and one can even read some proofs between the lines… In modern terminology,
Poincaré considers a vector field X in a ball B in R

n, as before. Instead of
considering a single point x and trying to describe the limiting behavior of /t xð Þ, he
suggests choosing some probability distribution μ in the ball B and to study its
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evolution /t
Fl under the dynamics. He then gives some arguments showing that if

μ has a continuous density, and if there is “a strong sensitivity to initial conditions”,
the family of measures /t

Fl should converge to some limit ν which is independent
of the initial distribution μ.7 Even though individual trajectories are sensitive to
initial conditions, the asymptotic distribution of trajectories is independent of the
initial distribution, assuming that this initial distribution has a continuous density.
Amazingly, none of his contemporaries realized that this was a fundamental
contribution. This may be due to the fact that Poincaré did not write this idea in a
formalized mathematical paper but in a popular book. One would have to wait for
about seventy years before this idea could surface again.

Lorenz

We have seen that the 1972 conference of Lorenz on the butterfly emphasized the
sensitivity to initial conditions and that this idea eventually reached the general
public. However, this conference went much further:

More generally, I am proposing that over the years minuscule disturbances neither increase
nor decrease the frequency of occurrence of various weather events such as tornados; the
most they may do is to modify the sequence in which these events occur.

This is the real message that Lorenz wanted to convey: the statistical description
of a dynamical system could be insensitive to initial conditions. Unfortunately, this
idea is more complicated to explain and did not become as famous as the “easy”
idea of sensitivity to initial conditions.

Sinai, Ruelle, Bowen

Mathematicians also (re)discovered this idea in the early 1970s, gave precise
definitions and proved theorems. A probability measure ν in the ball B, invariant by
/t, is an SRB measure (for Sinai-Ruelle-Bowen), also called a physical measure, if,
for each continuous function u : B ! R, the set of points x such that

lim
T!1

1
T

ZT

0

u /t xð Þð Þdt ¼
Z

B

udm

7 I may be exaggerating because of my excessive worship of Poincaré, but it seems to me that, in
modern terminology, Poincaré explains that the limiting probability ν is absolutely continuous on
instable manifolds and may not be continuous on stable manifolds.

The Butterfly Effect 35



has nonzero Lebesgue measure. This set of points is called the basin of ν and
denoted by B(ν). Sinai, Ruelle and Bowen (Sinai 1972; Ruelle 1976b; Bowen 1978)
proved that this concept is indeed relevant in the case of Axiom A dynamics. If X is
such a vector field in some ball B, there is a finite number of SRB measures ν1,…,νk
such that the corresponding basins B(ν1),…,B(νk) cover B, up to a Lebesgue neg-
ligible set. Of course, the proof of this important theorem is far from easy but its
general structure follows the lines sketched in Poincaré paper…

In summary, the existence of SRB measures is the right answer to the
“malediction” of the sensitivity to initial conditions. In the words of Lorenz, “the
frequency of occurrence of various weather events such as tornados” could
be insensitive to initial conditions. If for example the ball B represents the phase
space of the atmosphere and u : B ! R denotes the temperature at a specific point
on the Earth, the average 1

T

R T
0 u /t xð Þð Þdt simply represents the average temperature

in the time interval [0,T]. If there is an SRB measure, this average converges toR
udm, independently of the initial position x (at least in the basin of ν). The task of

the forecaster changed radically: instead of guessing the position of /t xð Þ for a large
t, he or she tries to estimate an SRB measure. This is a positive statement about
chaos as it gives a new way of understanding the word “prevision”. It is unfor-
tunate that such an important idea did not reach the general population. Poor
Brazilian butterflies! They are now unable to change the fate of the world!

The quest for the weakest conditions that guarantee the existence of SRB
measures is summarized in the book (Bonatti et al. 2005). This question is fun-
damental since, as we will see, one hopes that “almost all” dynamical systems admit
SRB measures.

The geometric Lorenz models are not Axiom A systems, hence are not covered
by the works of Sinai, Ruelle and Bowen. However, it turns out that the Lorenz
attractor supports a unique SRB measure (Bunimovich 1983; Pesin 1992). Lorenz
was right!

Palis

The history of dynamical systems seems to be a long sequence of hopes… quickly
abandoned. A non chaotic world, replaced by a world consisting of Axiom A
systems, in turn destroyed by an abundance of examples like Lorenz’s model. Yet,
mathematicians are usually optimists, and they do not hesitate to remodel the world
according to their present dreams, hoping that their view will not become obsolete
too soon. Palis (1995, 2005, 2008) proposed such a vision in a series of three
articles. He formulated a set of conjectures describing the dynamics of “almost all”
vector fields. These conjectures are necessarily technical, and it would not be useful
to describe them in detail here. I will only sketch their general spirit.

The first difficulty—which is not specific to this domain—is to give a meaning to
“almost all” dynamics. The initial idea from the 1960s was to describe an open
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dense set in the space of dynamical systems, or at least, a countable intersection of
open dense sets, in order to use Baire genericity. Yet, this notion has proved to be
too strict. Palis uses a concept of “prevalence” whose definition is technical but
which is close in spirit to the concept of “full Lebesgue measure”. Palis finiteness
conjecture asserts that in the space of vector fields on a given ball B, the existence of
a finite number of SRB measures whose basins cover almost all the ball is a
prevalent property.

Currently, the Lorenz attractor serves as a model displaying phenomena that are
believed be characteristic of “typical chaos”, at least in the framework of mathe-
matical chaos. Even so, the relevance of the Lorenz model to describe meteoro-
logical phenomena remains largely open (Robert 2001).

Communicating Mathematical Ideas?

In Poincaré’s time, the total number of research mathematicians in the world was
probably of the order of 500. Even in such a small world, even with the expository
talent of Poincaré as a writer, we have seen that some important ideas could not
reach the scientific community. The transmission of ideas in the theory of chaos,
from Poincaré to Palis has not been efficient. In the 1960s we have seen that the
Lorenz equation took ten years to cross America from the east coast to the west
coast, and from physics to mathematics. Of course, the number of scientists had
increased a lot. In our 21st century, the size of the mathematical community is even
bigger (*50,000 research mathematicians?) and the physical community is much
bigger. Nowadays, the risk is not only that a good idea could take ten years to go
from physics to mathematics: there could be tiny subdomains of mathematics that
do not communicate at all. Indeed, very specialized parts of mathematics that look
tiny for outsiders turn out to be of a respectable size, say of the order of 500, and
can transform into “scientific bubbles”. As Lovász (2006) writes in his “Trends in
Mathematics: How they could Change Education?”:

A larger structure is never just a scaled-up version of the smaller. In larger and more
complex animals an increasingly large fraction of the body is devoted to ‘overhead’: the
transportation of material and the coordination of the function of various parts. In larger and
more complex societies an increasingly large fraction of the resources is devoted to non-
productive activities like transportation information processing, education or recreation. We
have to realize and accept that a larger and larger part of our mathematical activity will be
devoted to communication.

Of course, this comment does not only apply to mathematics but to Science in
general and to the society at large. Nowadays, very few university curricula include
courses on communication aimed at mathematicians. We need to train mediators
who can transport information at all levels. Some will be able to connect two
different areas of mathematics, some will link mathematics and other sciences, and
some others will be able to communicate with the general public. It is important that
we consider this kind of activity as a genuine part of scientific research and that it
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could attract our most talented students, at an early stage of their career. We should
not only rely on journalists for this task and we should prepare some of our
colleagues for this noble purpose. We have to work together and to improve
mathematical communication. We should never forget that a mathematical giant
like Poincaré took very seriously his popular essays and books, written for many
different audiences.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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