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Abstract. In this paper, we introduce a novel geometric voting scheme
that extends previous algorithms, like Hough transform and tensor vot-
ing, in order to tackle perceptual organization problems. Our approach
is grounded in three methodologies: representation of information using
Conformal Geometric Algebra, a local voting process, which introduce
global perceptual considerations at low level, and a global voting pro-
cess, which clusters salient geometric entities in the whole image. Since
geometric algebra is the mathematical framework of our approach, our
algorithm infers high-level geometric representations from tokens that
are perceptually salient in an image.

Keywords: Perceptual organization, Conformal Geometric Algebra,
Tensor voting, Hough transform.

1 Introduction

When humans look at a scene, our visual system extracts features that are
prominent, or attract our attention; this features are called salient structures
[1]. In computer vision systems, its extraction is useful for high-level activities
like object recognition, 3D reconstruction, or for taking decisions in perception
and action systems. In this way, perceptual organization consists in obtaining
meaningful representations from row data, and its principles for the human visual
system are stated in the Gestalt psychology theory [2], [3].

From the computer science perspective, a set of tokens with a common pro-
perty supports a specific structure; this is the idea behind voting schemes. For
example, Hough transform [4], [5], is a voting technique that produces analytic
representations of features in an image, and the voting procedure is implemented
as a counter in an accumulator cell. Similarly, in the tensor voting framework
[6] each token receives a vote from tokens within its neighbourhood. Magnitude
and orientation of the vote are codified in a tensor. The orientation represents
the normal of a token, while the magnitude of the vote is assigned by a voting
pattern defined according to Gestalt principles.

In this paper, we address the perceptual grouping problem by proposing a
novel voting scheme with a geometric approach. Our algorithm combines the
biological motivation of inferring salient structures that satisfy specific percep-
tual properties, and a geometric representation of them. Thus, it extends Hough
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transform by adding voting patterns, and including a local and global voting
process. In addition, it extends tensor voting scheme, since we codify geometric
entities, e.g. lines or circles, using multivectors of conformal geometric algebra,
instead of the normal of a token in a tensor. Furthermore, our voting scheme is
presented as a geometric computing process in which the voting is computed by
intersecting geometric elements.

The organization of the paper is as follows: Section 2 presents an introduction
to Conformal Geometric Algebra, the voting scheme and the corresponding com-
plexity analysis is presented on Section 3. Then, we show experimental results
in Section 4, followed by conclusions in Section 5.

2 Conformal Geometric Algebra

Conformal Geometric Algebra (CGA) allows the representation of geometric
entities and their properties, by embedding an euclidean space R

n in a higher
dimensional vector space Rn+1,1. Here, we summarize the construction of CGA,
for a detailed study see [7].

Let R
n+1,1 be a real vector space, which has associated a geometric algebra

Gn+1,1, then its vector basis satisfy: e2+ = 1, e2− = −1, and e2i = 1, for i =
1, . . . , n. In addition, the following properties are satisfied: e+ ·e− = 0, ei ·e+ = 0,
and ei · e− = 0, for i = 1, . . . , n.

Then, we define two null basis: e∞ = e− + e+, and e0 = 0.5(e− − e+), with
the properties: e20 = e2∞ = 0, and e∞ · e0 = −1.

The set of all null vectors in R
n+1,1 is called the null cone, and its intersection

with an hyperplane with normal e∞, and containing point e0, is a surface called
horosphere, defined as:

Nn
e = {xc ∈ R

n+1,1 : x2
c = 0, xc · e∞ = −1} . (1)

Now, all points that lie on the horosphere are called conformal points, repre-
sented by:

xc = xe + 0.5x2
ee∞ + e0 , (2)

where, xe ∈ R
n. In addition, three unit pseudoscalars are defined: Ie for Gn, E

that represents the Minkowski plane, and I for Gn+1,1:

Ie = e1e2 . . . en;E = e∞ ∧ e0; I = Ie ∧ E . (3)

Finally, Table 1 summarizes the representation of geometric entities in CGA
G3,1, where IPNS stands for inner-product null space, and OPNS stands for
outer-product null space.

3 Voting Scheme

Here, we present a geometric framework for automatic perceptual organization.
Its essential components can be summarized in three methodologies: to represent
information using CGA, a local voting process, which extract salient geometric
entities supported in a local neighbourhood, and a global voting process, which
clusters the output obtained by the local voting process.
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Table 1. Representation of geometric entities in CGA G3,1

Entity IPNS OPNS

Circle S = ce + 0.5(c2e − ρ2)e∞ + e0 S∗ = xc1 ∧ xc2 ∧ xc3

ρ = radius

Line l = nIe + e∞dHIe l∗ = e∞ ∧ xc2 ∧ xc3

n = xe1 − xe2

dH = xe1 ∧ xe2

Point Pair PP = S1 ∧ S2 PP ∗ = xc1 ∧ xc2

3.1 Representation of Information Using CGA

Let Rn be a real n-dimensional vector space; then, a token, denoted as t, is repre-
sented as a multivector of CGA Gn+1,1. In the same way, a perceptual structure
of Rn is represented as a geometric entity of CGA Gn+1,1, and it is denoted by F .
The possible combinations between tokens and perceptual structures can con-
stitute flags [8]. Then, a token t on a perceptual structure F satisfies: F · t = 0.
Consequently, a set of tokens {t1, t2, · · · , tn}, that satisfy F · t = 0, define a
minimum for:

1

N

N∑

i=1

Wi(a1, · · · , am)(F · ti)2F−2 , (4)

where Wi is a function that maps a set of parameters {a1, · · · , am} to a scalar
value, and acts like a weight for each flag F · ti.

Equation 4 suggests that we can estimate F using fitting techniques; even
though, we prefer to follow a geometric approach to construct F . In this way, we
solve non-linear cases of Equation 4, without using non-linear fitting techniques.

In this work, we consider an image as a vector space R
2. In addition, we re-

strict our treatment to the simplest token: the pixel, and we analyse two specific
perceptual structures: circle and line. Then, a pixel pi is represented as a confor-
mal point of CGA, and perceptual structures like circles and lines in the image,
are represented as elements of CGA G3,1, according to Table 1.

3.2 Local Voting

Let p0 and F be elements of CGA Gn+1,1; they represent a token and a perceptual
structure, respectively. In order to compute F , all tokens in the neighbourhood
of p0 must cast a vote.

Now, we introduce the fundamental difference between our voting scheme and
others; we propose that the vote of a token pi on p0 has two parts: geometric
structure, and perceptual saliency. Where geometric structure is represented by
a multivector of CGA Gn+1,1, and codifies properties like dimension, orientation,
direction, and scalar magnitude of a geometric entity; while perceptual saliency
is a function that codifies properties such as proximity, co-curvilinearity, and
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constancy of curvature. In this way, the vote cast by a token is not a number
that is sum on a geometric entity, but is a geometric entity itself.

Geometric Structure. Let p0 be the pixel that is receiving a vote, without
loss of generality, we set its euclidean coordinates to the origin. Then, the set of
pixels on the neighbourhood of p0 is defined as:

P0 = {pi : d0i < neighborhood size}, (5)

where d0i is the euclidean distance between pixels pi and p0. The coordinates of
pixel pi in the image are: (ui, vi), taking p0 as origin of the coordinate system.
Moreover, each pixel pi of P0, together with pixel p0 defines a point pair:

PP0i = (p0 ∧ pi)
∗
. (6)

In addition, each pixel on P0, together with point pair PP0i, define a pencil of
circles; where PP0i is the vertex of the pencil, and each circle is represented by:

S0ij = (p0 ∧ pi ∧ pj)
∗ ; pi, pj ∈ P0. (7)

Lemma 1. For a pencil of circles, in which all circles meet in two real base
points, the centers of the circles lie on a line.

Then, pixels p0, and pi support all circles S0ij ; using Lemma 1, we represent
all this circles by the equation of the line containing all centres:

li =
ui

|pie|e1 +
vi
|pie| +

|pie|
2

e∞ . (8)

Thus, li is the vote cast by pixel pi on pixel p0, since it codifies all possible circles
containing p0 and pi.

Perceptual Saliency. Now, we are going to assign a density value that repre-
sents the perceptual saliency of the geometric structure. In [6], a vector field is
proposed to codify perceptual properties according to Gestalt theory. Such vec-
tor field associates to each pixel, a direction vector and a saliency value. Since
we have already define the geometric structure of the vote, we are going to take
only the saliency value of a stick vector field.

Definition 1. A line with density, is a set of points together with a function,
that assigns a scalar value to each element of the set.

Using CGA G3,1, a line with density is represented by:

L = {pc : pc · lc = 0}, W : Rm → R . (9)

where pc and lc are a point, and a line, respectively, in conformal representation;
then, L is a set of conformal points and W is a function that assigns a value to
each element of set L.
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Thus, we map each point pi on P0 to a line li, and we obtain a set of lines
denoted as L0. After that, we assign a density value to each point of li using the
following function [6]:

W (u, v) = exp

(
−s2 + cρ2

σ2

)
, s =

θd

sin θ
, ρ =

2 sin θ

d
. (10)

In addition, we align the y-axis of the stick field with the point with coordinates
(u, v). Hence, we rotate the stick field an angle φ = tan−1 (−u/v), thus:

θ = tan−1

(
u cosφ− v sinφ

−u sinφ− v cosφ

)
, d =

√
u2 + v2 . (11)

Finally, the vote cast by a pair of pixels pi, and pj on p0, are lines with density
li, and lj respectively. The intersection of this lines, is a point that represents
the center of the circle passing through points p0, pi and pj. We calculate the
intersection using equation:

C0ij ∧ e∞ = (li ∧ lj)
∗ (12)

and the result, is a point with density:

W0ij = W (ui, vi) +W (uj , vj). (13)

Thus, the voting process consists in calculating the intersection of each pair of
lines in L0. After that, using the DBSCAN algorithm [9] we cluster the resulting
points, compute the mean of each cluster, and select the mean of the cluster
with maximum density.

3.3 Global Voting

The local voting process delivers a salient geometric structure for each pixel.
The global voting process consists in cluster this structures, which is done using
DBSCAN algorithm. Finally, we extract the mean of each cluster.

3.4 Complexity Analysis

The input to our algorithm is a binary image, with a set of k white pixels, and
the output is a set of r geometric entities in conformal representation.

The local voting step selects a white pixel, and define a set P0 using Equation
5. Let m be the size of set P0, then the computing of intersections takes O(m2);
their clustering is done with DBSCAN algorithm, implemented with R-trees
[10], and takes O(m lg(m)). In addition, extracting the mean of the cluster with
highest density takes O(m). Since local voting is executed for each white pixel
in the image, then the local voting step takes O(km2).

In addition, the global voting step takes as input a set of k geometric entities,
one for each pixel, and gives as output a set of r geometric entities. Clustering
with DBSCAN algorithm takes O(k lg(k)), and computing the mean of each
cluster takes O(k). Thus, our algorithm has a complexity of O(km2 + k lg(k)).
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3.5 Relationship with Hough Transform, Tensor Voting, and Fitting
Approaches

Our method is a flexible technique that extends previous voting schemes. Then,
changing some parameters in the local voting process we obtain equivalent results
to Hough transform, tensor voting, and fitting techniques. For example, if we set
the saliency field to a constant value, the output of our algorithm is equivalent to
that obtained by Hough transform, applied in a local neighbourhood. Moreover,
if the saliency is set with a stick field, the normal of the pixel is the unit vector
that goes from the pixel that receives the vote, to the center of the circle with
maximum density. Then, the result obtained by the local voting step is equivalent
to that obtained with tensor voting; and the global voting step should be replace
by a marching cubes algorithm as is done by the tensor voting framework.

Furthermore, for a set of tokens, if we use a fitting method to estimate the
must likely geometric structure, by minimizing Equation 4, we will face non-
linearity problems, and a bias due to outliers. Using our geometric approach,
we take out the outlier pixels using a saliency field, and compute the geometric
structure using the rest of the points.

4 Experimental Analysis

In this section we present a set of experiments designed to work as a proof-of-
concept.

4.1 Experiments with Synthetic Images

Experiment 1: Input with an incomplete geometric entity. Figure 1(a) shows a
set of pixels that lie on a circle; using our algorithm we are able to recover the
equation that describe the circle, with sub-pixel error.

Experiment 2: Input with noise. Figure 1(b) shows an image that contains a
complete circle, to which we add a 7% of noise, that is, each pixel has a 0.07
probability of becoming an erroneous site. After applying our algorithm, we
obtain the equation of the circle with sub-pixel error. Noise is removed due to
the saliency field used in the local voting step.

Experiment 3. Input with occluded geometric entities. Figure 1(c) shows an
image that contains a set of lines that are occluded by a circle. The output of
our algorithm is a set of 5 equations, one for each line and one for the circle, as
Figure 1(g) shows. In this case, the global voting step of our algorithm, allows to
relate the pixels that lie on the same geometric entity, even though they are in
opposite sides of an image, or some pixels are occluded by other element. Lines
and circles are found with sub-pixel error.

Experiment 4. Input with illusory contours. Figure 1(d) shows the Kanizsa
square: four incomplete circles are shown, and a square can be seen in the image,
even thought is not explicitly draw. After applying Canny edge detector, our
algorithm extracts the equations of the 4 circles, and the equations of the lines
that describe the illusory contours of the Kanizsa square.
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(a) Input image
for Experiment 1.

(b) Input image
for Experiment 2.

(c) Input image
for Experiment 3.

(d) Input image
for Experiment 4.

(e) Output im-
age for Experi-
ment 1.

(f) Output im-
age for Experi-
ment 2.

(g) Output im-
age for Experi-
ment 3.

(h) Output image
for Experiment 4.

Fig. 1. Results obtained by CGAV with synthetic images

(a) Input image for Ex-
periment 5.

(b) Input image for Ex-
periment 6.

(c) Input image for Ex-
periment 7.

(d) Output image for
Experiment 5.

(e) Output of CGAV for
Experiment 6.

(f) Output of CGAV for
Experiment 7.

Fig. 2. Results obtained for images with real objects

4.2 Experiments with Images with Real Objects

Figures 2(a), 2(b), and 2(c) are images with real objects. We apply a pre-
processing step, which consist in a Canny edge detector and a mean filter, and
after that, we use our algorithm to extract salient geometric structures.

Figure 2(d) shows the output for Experiment 5, our algorithm extracts salient
geometric entities, so that we obtain a description of the scene using 3 circles and
5 lines. Since input image uses 470 pair of coordinates to describe the scene, we
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have obtained a data compression ratio of 39 : 1 approximately. We note that the
flag, which contour in the image looks like a non-linear curve, is describe by an
expansion of spherical wavelets [8]. A similar result is obtained in Experiments
6 and 7, where Figures 2(e), and 2(f) shows how our algorithm makes a non-
uniform sampling with circles and lines, in order to describe a non-linear curve.
This behaviour is similar to algorithms like marching spheres [11], or marching
cubes [12].

5 Conclusion

The algorithm presented, is a voting scheme that unifies several approaches in
a single geometric framework. The results show the ability of our algorithm to
generate high-level geometric representations of salient features in images, even
though they present incomplete or noise data, illusory contours, or non-linear
surfaces. Work in future will focus on the generalization to other geometric
entities, the design of perceptual fields, and the generalization of this approach
to higher dimensions.
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