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G. López-González, Nancy Arana-Daniel, and Eduardo Bayro-Corrochano

CINVESTAV - Unidad Guadalajara,
Av. del Bosque 1145, Colonia el Bajo, Zapopan, Jalisco, México
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Abstract. This paper presents the Quaternion Support Vector Machines for clas-
sification as a generalization of the real- and complex- valued Support Vector
Machines. In this framework we handle the design of kernels involving the Clif-
ford or quaternion product. The QSVM allows to change the metric involved
in the quaternion product. The application section shows experiments in pattern
recognition and colour image processing.
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1 Introduction

This paper presents the theory and application of the Quaternion Support Vector Ma-
chine (QSVM) and its use for applications in pattern classification and image process-
ing. This work is a continuation of a first works on the generalization of SVMs, see
[1,2].

In order to take advantage of certain geometric characteristics of the data and to avoid
the use of many binary output SVMs, we were motivated to develop in the Quaternion
Algebra framework SVM-based algorithms for classification. The quaternion algebra
framework allows us to express in a compact way a variety of functions of geometric
entities. By using the QSVM with one kernel (involving the quaternion product) we
obtain non-linear mappings reducing the complexity of the computation greatly.

The organization of this paper is as follows: Section 2 outlines the quaternion alge-
bra. Section 3 explains the kernel and sign functions. Section 4 introduces the Quater-
nion Support Vector Machines for Classification. Section 5 presents the use of QSVM
for applications. The last section is devoted to the conclusion.

2 Quaternion Algebra: An Outline

The quaternion algebra H was invented by W. R. Hamilton in 1843. It is an associative,
non-commutative, four-dimensional algebra

H= {q = s+ xi+ y j+ zk = s+q |s,x,y,z ∈ R}, (1)

where the orthogonal imaginary numbers i, j, and k obey the following multiplicative
rules: i2 = j2 =−1, k = i j =− ji → k2 =−1. The conjugate of a quaternion is given
by q̄ = s− xi− y j− zk. A quaternion in a polar representation is given by
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q = |q|eiφ ekψe jθ . (2)

Given two quaternions qa = sa + qa, qb = sb + qb, the quaternion anticonmmutative
product is given by

qc = sc +qc = qaqb = (sasb −qa ·qb)+ (saqb + sbqa +qb ×qa) (3)

3 Quaternion Kernel and Sign Functions

3.1 Kernel Functions

The kernel identity for linear classification is given by

K(xm,xn)I = xH
mxn. (4)

The next kernels are used for non linear classification. Polynomial quaternion based
kernel are formulated as an extension of the polynomial kernels for a real valued SVM
[3] as follows

K(xm,xn)I = (xH
mxn + c)d , (5)

where c ∈ H and d ∈ R is the power of the binomial, multiplied with itself d times via
the quaternion product.

The normalized Gaussian kernel is given by

g(xm,xn) =
1√
2πρ

exp
− ||xm−xn||2

2π2 ∈ R (6)

The Gaussian quaternion Gabor kernel function is

K(xm,xn)q = g(xm,xn)
(
cos(wT

0 xm)cos(wT
0 xn)+ cos(wT

0 xm)sin(wT
0 xn)i+

+sin(wT
0 xm)cos(wT

0 xn) j+ sin(wT
0 xm)sin(wT

0 xn)k
)
. (7)

where the variables w0, xm − xn stand for the the frecuency and space domains
respectively.

3.2 Sign Functions

The decision function of the QSVM reads

y = qsignm

[ l

∑
j=1

(α j ◦ y j)(k(x j,x)+ b)
]
. (8)

where m stands for the state valency, this is the number of classes considered for clas-
sification. The output y ∈ H can classify up to 24 classes. We can decide wich parts of
the labels y are we going to use. We regularly use the scalar part when m is equal to 2.
We use the scalar and first imaginary when m is equal to 4. And the pure quaternion for
state valency of 8, see figure 1 for this case.

The operation ”◦” is defined as

(α j ◦y j) = < α j >s< y j >s +< α j >i< y j >i i+< α j > j< y j > j j+< α j >k< y j >k k,

simply one consider the multiplications of the corresponding coefficients of the quater-
nion basis.
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4 Quaternion Support Vector Machines for Classification

For the case of the Quaternion SVM for classification we represent the data set in the
quaternion algebra H, where a quaternion is given by a four dimensional entity q =
s+xi+y j+zk. Each data ith-vector has quaternion entries xi = [qi1,qi2, ...,qiD]

T , where
qi j ∈ H and D is the dimension of this input vector. Thus the ith-vector dimension
is D×4. Each data ith-vector xi ∈ H

D of the N data vectors will be associated with
a one quaternion at the output as follows: [xi1, xi2, ...,xi j , ...,xiD], where each output
yi = yis + yii + yi j + yik ∈ {±1± i± j± k} or can be even increase from 24 to m× 24

according the equation (8): y= qsignm[ f (x)]. Since the output is a quaternion, the m×24

classification problem is to separate these quaternion-valued samples into m×24 classes
by selecting a right function from the set of functions f (x) = w∗T x+ b, x,w ∈ H

D, b ∈
H

D. The optimal weight vector will be

w = [w1,w2, ...,wD]
T ∈H

D. (9)

Let us see in detail the last equation

f (x) = wHx+ b = [w∗
1,w

∗
2, ...,w

∗
D][x1,x2, ...,xD]+ b =

D

∑
i=1

w∗
i xi + b, (10)

where w∗
i xi corresponds to the quaternion product of two vectors, where w∗

i is the con-
jugated of the vector w.

We introduce now a structural risk functional similar to the real valued and complex
valued [5] SVM but now using quaternions ξi ∈H

D. For the quaternion valued SVM

min
1
2

w∗T w+C ·
l

∑
j=1

([ξ1 j,ξ2 j, ...ξD j])

sub ject to

Coe fs(yi j)Coe fs( f (xi j))≥ 1−Coe fs(ξi j), Coe fi(yi j)Coe fi( f (xi j))≥ 1−Coe fi(ξi j)

Coe f j(yi j)Coe f j( f (xi j))≥ 1−Coe f j(ξi j),Coe fk(yi j)Coe fk( f (xi j))≥ 1−Coe fk(ξi j)

Coe fs(ξi j)≥ 0,Coe fi(ξi j)≥ 0,Coe f j(ξi j)≥ 0,Coe fk(ξi j)≥ 0 j = 1, ..., l,

where the subindex i = 1, ...,D, each Coe f·(ξi j) extracts the real coefficient of the
multivector ξi j with respect to a quaternion basis vector, e.g. Coe fk(ξi j) extracts with
respect to the quaternion basis k.

The dual expression of this problem can be derived straightforwardly. Firstly let
us consider the expression of the orientation of optimal hyperplane. Since the wi =
[wi1,wi2, ...,wiD]

T , each of the wi j is given by the quaternion

wi j = wis +wiii+wi j j+wikk. (11)

Each component of these weights are computed as follows:

wis =
l

∑
j=1

(
(αis) j(yis) j

)
(xis) j , wii =

l

∑
j=1

(
(αii) j(yii) j

)
(xii) j, (12)

wi j =
l

∑
j=1

(
(αi j) j(yi j) j

)
(xi j) j, wki =

l

∑
j=1

(
(αik) j(yik) j

)
(xik) j .
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According the Wolfe dual programming [4] the dual form reads

LD = min
1
2
(wHw)−

l

∑
j=1

[
(α j1s +α j1i +α j1 jα j1k)+ ...+(α jDs +α jDi +α jD j +α jDk)

]
(13)

subject to aT ·1 = 0, where the entries of the vector a = [as,ai,a j,ak] are given by

aT
s =

[
[(α1s1)(y1s1), (α2s1)(y2s1), ..., (αDs1)(yDs1)], ..., [(α1sl)(y1sl), (α2sl)(y2sl), ..., (αDsl)(yDsl)]

]
,

aT
i =

[
[(α1i1)(y1i1), (α2i1)(y2i1), ..., (αDi1)(yDi1)], ..., [(α1il)(y1il), (α2il)(y2il), ..., (αDil)(yDil)]

]
,

aT
j =

[
[(α1 j1

)(y1 j1
), (α2 j1

)(y2 j1
), ..., (αD j1

)(yD j1
)], ..., [(α1 jl

)(y1 jl
), (α2 j l

)(y2 jl
), ..., (αD jl

)(yD jl
)]
]
,

aT
k =

[
[(α1k1)(y1k1), (α2k1)(y2k1), ..., (αDk1)(yDk1)], ..., [(α1kl

)(y1kl
), (α2kl

)(y2kl
), ..., (αDkl

)(yDkl
)]
]
, (14)

note that each data ith-vector, i = 1, ...N, has D quaternion entries and after the training
we take into account not N but l ith-vectors which is the number of the found support
vectors each one belonging to H

D. Thus aT has the dimension: (D× l)× 24, the latter
multiplicand corresponds to the length of a quaternion of H.

In aT ·1 = 0, 1 denotes a vector of all ones, and all the Lagrange multipliers should
fulfil 0 ≤ (αis) j ≤C, 0 ≤ (αii) j ≤C, 0 ≤ (αi j) j ≤C, 0 ≤ (ik) j ≤C for i = 1, ...,D and
j = 1, ..., l.

And we can generalize this for non-linear classification as

LD =
1
2 ∑

m=s,i, j,k
∑

n=s,i, j,k

[aT
mKm,nan]−

l

∑
j=1

[
(α j1s +α j1i +α j1 jα j1k)+ ...+(α jDs +α jDi +α jD j +α jDk) (15)

where Km,n represents the part of the kernel result that correspond to the product of
the parts m and n, for example, the part of i and j is k. Please note that the order of
the products affect the result, just as the complex value SVM case, this kernels are not
commutative, with the exception of the Gaussian kernel.

As explained in [2] we can have a compact an easy representation if we are using the
Gaussian quaternion Gabor kernel, this will help for the programming of the algorithm.
After some algebraic manipulations, we can rewrite equation (13) as a compact equation
as follows

min
1
2

w∗T w+C ·
l

∑
j=1

[ξ1 j,ξ2 j, ...ξD j] =
1
2

a∗T Ha+C ·
l

∑
j=1

[ξ1 j,ξ2 j, ...ξD j] (16)

sub ject, to Coe fs(yi j)Coe fs( f (xi j))≥ 1−Coe fs(ξi j)

Coe fi(yi j)Coe fi( f (xi j))≥ 1−Coe fi(ξi j)

Coe f j(yi j)Coe f j( f (xi j))≥ 1−Coe f j(ξi j)

Coe fk(yi j)Coe fk( f (xi j))≥ 1−Coe fk(ξi j)

Coe fs(ξi j)≥ 0,Coe fi(ξi j)≥ 0,Coe f j(ξi j)≥ 0,Coe fk(ξi j)≥ 0, , j = 1, ..., l, (17)

where a is given by equation (4).
H is a positive semi-definite matrix which is the expected quaternion Gram matrix.

This matrix in terms of the matrices of the t-grade parts of 〈x∗x〉t is written as follows:
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H =

⎡

⎢
⎢
⎢
⎣

Hs Hi H j Hk

HT
i Hs H j Hk

HT
j HT

i Hs Hk

HT
k HT

j HT
i Hs

⎤

⎥
⎥
⎥
⎦
, (18)

note that the diagonal entries equal to Hs and since H is a symmetric matrix the lower
matrices are transposed. The optimal weight vector w is as given by equation 9.

The threshold b ∈ H
D
n can be computed by using KKT conditions with the Quater-

nion support vectors as follows

b =
[
b1b2b3 ...bD

]

=
[
(b1s + b1ii+ b1 j j+ b1kk)(b2s + b2ii+ b2 j j+ b2kk), ..., (19)

(bDs + bDii+ bD j j+ bDkk)
]

=
l

∑
j=1

(y j −w∗T x j)/l. (20)

5 Experimental Analysis and Applications

In this section we present three interesting experiments: solving the 3D XOR problem,
the 3D spiral problem and classification of image colours. Each data ith-vector has
quaternion entries xi = [qi1,qi2, ...,qiD]

T , where qi j ∈ H and D is the dimension of this
input vector.

3D XOR: Nonlinear Classification. We test with an extension of the XOR problem in
3D. The data ith-vector has one quaternion xi = [qi1] = [0,xi1,yi1,zi1] where D=1. After
training with 80 data vectors (10 for each quadrant), we get a 100 % efficiency using
8000 (1000 per quadrant) input quaternions non used during the training with 20% of
additive noise, i.e. in the range of ±1 a deviation of 0.4

3D Spiral: Nonlinear Classification Problem. We extended the well known 2-D spiral
problem to the 3-D space. This experiment should test whether the QSVM would be
able to separate five 1-D manifolds embedded in R

3. For this application, we used
QSVM, this allows us to have quaternion inputs and outputs. The five functions were
generated as follows:

fi(t) = [xi(t),yi(t),zi(t)] = [zi ∗ cos(θ )∗ sin(θ ),zi ∗ sin(θ )∗ sin(θ ),zi ∗ cos(θ )](21)

for i = 1, ...,5. In Figure 1.b one can see that the problem is high non-linear separa-
ble. The data ith-vector has nine quaternion entries xi = [qi1], D=1. The QSVM uses
for training 50 input quaternions of each of the five functions, since these have three
coordinates we use simply the imaginary quaternion basis of the quaternion, namely
xi = xi(t)i+ yi(t) j+ zi(t) j ≡ [0,xi(t),yi(t),zi(t)]. The QSVM used the kernel given by
(7). Note that the QSVM indeed manage to separate the five classes.
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Support Vectors

Fig. 1. a) 8-state using pure quaternions H. b) 3D spiral with five classes. The marks represent
the support multivectors found by the CSVM. c) Quaternion sampling of a RGB image.

Fig. 2. a) The hyperplane with a bias varying [b0,b1,b2] QSVM colour classifier. b) The RGB
space [x,y,z], divided in 64 sub cubes x=1,2,3,4; y=a,b,c,d; z=α,β ,γ ,δ .

Colour Classification
The colour classification is a difficult task principally due two aspects: colour on a sur-
face is distributed not homogeneous and the recognition on of certain colour is intrinsi-
cally a human capacity dependent of the mud and culture of the observer. One can go
even more deep in the analysis of the human capacity for colour recognition similar as
the by other humans senses like touch, taste and smell. The problem becomes more dif-
ficult, if we want to build a sensor which mimics the human colour recognition capacity.
The task is to design a classifier for 64 colours which can be used for system for visual
impaired people, thus it makes no sense a device which classifies a bigger number of
distinct colours. Important was to assign to each class the name of certain colour which
is commonly accepted. We chose a QSVM with a input vector with D=64 quaternions
(sampling the colour image with a 8× 8 window, see Figure 1.c), with a identity ker-
nel which first compute in equation (8), the orientation of the optimal hyperplane data
∑l

j=1(α j ◦ y j)(x j,x) and the varies the bias b for four levels: b0, b1, b3, see Figure 2.a,
the idea here is to shift this hyperplane with the offsets dividing the 3D quadrants of the
RGB space in sub-cubes, thus we divide the RGB space in 8x23 cubes which yields 64
cubes for the clustering. The 4th valency state output will be y = qsign8( f (x)). Appar-
ently a simple approach, our classifier proof to be very efficient. The classifier depicted
in Figure 2.a has at the output a Winner Take All (WTA) to assign a colour according
the task in question. This 64 outputs of the classifier were index for 64 different colours
variations shown in Figure 2.b .

For the test of our classifier, we use it to recognize colors in diamonds and wood. We
select this kind of objects, because their surfaces have many variations in color. For the
diamond experiment we select 8 types and proceed to classify them. As we can see in
the Figure 3.a, the obtained color is similar to the one given by a human. For example,
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the last two are categorized as blue, and we can see that one is a combination of cyan
and blue, and the other a dark blue, so the WTA will be adjusted to give us a blue. The
only error is the fourth diamond, which is classified as an orange one, instead of the
expected yellow, however increasing the division of the colour scale, the classifier will
able to distinguish these different colours as well.

We repeat the same for wood type classification as shown in Figure 3.b. We can ob-
serve that similar kind of wood gave us the same color, like the second (special walnut)
and third (red mahogany), and the fourth (early american) and sixth (cherry). One in-
teresting detail is that only the clear colours have a component in blue, like the last two
(oak and maple).

Fig. 3. a) (upper row) diamond colour types and the classification results. b) (lower row) wood
colour types and the classification results.

6 Conclusions

This paper generalizes the real valued SVM to the quaternion valued SVM and it is used
for classification. The QSVM accepts multiple multivector inputs like a MIMO archi-
tecture, that allows us to have multi-class applications. A key feature is that the QSVM
formulation allows to change the metric involved in the quaternion product. The appli-
cation section shows experiments in pattern recognition and colour image processing.
The extension of the real valued SVM to the Quaternion SVM appears promising par-
ticularly by using high dimensional geometric primitives for geometric computing and
their applications like graphics, augmented reality, robot vision and humanoids.
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