

E. Bayro-Corrochano and E. Hancock (Eds.): CIARP 2014, LNCS 8827, pp. 706–713, 2014.
© Springer International Publishing Switzerland 2014

New Radial Basis Function Neural Network Architecture
for Pattern Classification: First Results

Humberto Sossa1, Griselda Cortés2, and Elizabeth Guevara1

1 Instituto Politécnico Nacional-CIC
Miguel Othón de Mendizábal S/N, Gustavo A. Madero, México, D.F.C.P. 07738

2 Tecnológico de Estudios Superiores de Ecatepec
Av. Tecnológico S/N, C.P. 55210. Col. Valle de Anáhuac

Ecatepec de Morelos, Estado de México
hsossa@cic.ipn.mx, griselda_cortes@tese.edu-mx,

eliza_uas@yahoo.com.mx

Abstract. This paper presents the initial results concerning a new Radial Basis
Function Artificial Neural Network (RBFNN) architecture for pattern classifi-
cation. Performance of the new architecture is demonstrated with different data
sets. Its efficiency is also compared with different classification methods
reported in literature: Multilayer Perceptron, Standard Radial Basis Neural
Networks, KNN and Minimum Distance classifiers, showing a much better per-
formance. Results are only given for problems using two features.

1 Introduction

Pattern classification is a main problem in pattern recognition. It consists on assigning
a given pattern ܺ ൌ ሾݔଵ, ,ଶݔ … , ௡ሿ்ݔ to one of ݌ classes ܥ௞, ݇ ൌ 1,2, … , by means ݌
of a mathematical tool called classifier. Examples of patterns that need to be classified
are images, sounds, odours, and so on. The term pattern is used in many references,
for example in [1], [2]. Multilayer and Radial Basis Function Neural Networks are
two of the most often used tools for pattern classification, being used for classification
and regression mostly in non-linearly separable situations [3], [4], [5] and for making
predictions [6] and [7]. They are considered as machine learning techniques also pro-
viding discriminant function measurement vectors [8]. RBFNN are one of the most
known techniques to define separating functions for solving classification problems in
multi-dimensional spaces [9].

Usually, training of a RBFNN involves three steps: 1) finding the number of cen-
troids needed to define the clusters to group the training samples, 2) specifying the
clusters widths, and 3) adjusting the weights of output neuron of the network. The
architecture of a RBFNN consists of three layers: an input layer, a hidden layer which
uses radially symmetric functions such as a Gaussian kernels [10]; at this stage unsu-
pervised learning (K-means algorithm) is used [1], [2], [10], [11] to define the hidden
neurons, and an output layer with a linear node (case of two classes) that allows

 New Radial Basis Function Neural Network Architecture for Pattern Classification 707

calculating the weighted sum of the outputs from the hidden layer [6], [10] to com-
pute the index class for an input pattern. One disadvantage when training any machine
learning method is that when using a large and possibly noisy data could result in a
poor learning. Also, overlapping of patterns classes will tend to severally affect accu-
racy of training and generalization [6] and [10].

To alleviate these problems, in this paper we present the first results concerning a
new architecture for a RBFNN. One main advantage of our proposal is that the radial
basis functions are completely automatically generated with no human intervention.
The proposed training method ensures precise clustering of the training patterns, dras-
tically reducing the training error and also increasing the generalization capability of
the trained NN. Although the proposal is applicable to the ݊-dimensional case, in this
paper only the two dimensional case is discussed. It is worth mentioning that in the
general case training of the proposed RBFNN is 2௡.

The rest of the paper is organized as follows: in Section 2 the new architecture of
RBFNN is presented. Section 3 is focused on describing the adopted training algo-
rithm. Illustrative results of the functioning of the proposal and a comparison of its
performance with other reported methods is provided in Section 4. Finally, Section 5
presents conclusions and directions for further work.

2 Proposed Architecture

As shown in Fig. 1, the proposed RBFNN architecture is composed of three layers
and a decision function. As we will soon see, this new architecture and its associated
training algorithm will allow efficiently classifying ݊-dimensional patterns to one of ݌ classes, ܥ௞, ݇ ൌ 1,2, … , .,݌

Fig. 1. The proposed architecture of a RBFNN for pattern classification

708 H. Sossa, G. Cortés, and E. Guevara

Input Layer: This layer receives ݊-dimensional vectors of the form:

 ܺ ൌ ൬௫భڭ௫೙൰ א Թ (1)

and sends them directly to all the nodes of the next layer, the clustering layer.

Clustering Layer: This layer has two functions. During training it is used to partition
the set of training vectors: ܺଵ, ܺଶ, … , ܺெ (some of them belonging to class ܥଵ, others
to class ܥଶ, and so on) into a set of groups in such a way that each group contains
only patterns belonging to the same class. As we will see, each group has the form of
a hyper-rectangle; in the 2-bidimensional the form of a rectangle. The method adopted
to get this partition was recently introduced in [12]. During classification this layer is
used to computing the distances of an input pattern to each of the rectangles.

Agglutinating Layer: This layer contains ݌ neurons. Neuron ݇ has the function to
select from all the hyper-rectangles of class ݇ the rectangle to which the input pattern
is closer. For this, neuron ݇ performs the following operation:

௞ݏ ൌ ሧ൛ݕ௞,ଵ, ,௞,ଶݕ … , ௞,௡ೖൟ௡ೖݕ
௝ୀଵ (2)

In this case the symbol ڀ stands for the maximum of a set of numbers.

Decision Function: As can be seen from Fig. 1, this decision function takes the ݌
outputs from the agglutinating layer and computes the following operation: ݇ ൌ argmax௝ ൛ݏଵ, ,ଶݏ … , ௣ൟ (3)ݏ

Variable ݇ will contain the index of the class to which an unknown pattern ܺ should
be classified after training.

3 Operation of the New Neural Network

Operation of the proposed neural network architecture is performed into two stages:
training and testing. Each of these two stages is next explained in detail.

Training: Given a training set ሼܺଵ, ܺଶ, … , ܺெሽ and its corresponding set of labels ݇ ൌ 1,2, … , :vectors belong ܯ of the classes to which the ݌

1. Cluster all ܯ patterns by means of the algorithm introduced in [12]. In two
dimensions, this step gives as a result a set of rectangles as depicted, for ex-
ample, in Fig 2(b).

2. For each hyper-rectangle, take its center and assign to it a Gaussian kernel of
the form (Fig. 2(c)):

 New Radial Basis Function Neural Network Architecture for Pattern Classification 709

ሺܺሻܩ ൌ exp ൭െ ฮܺ െ ௝ଶߪ௝ฮଶ2ߤ ൱ (4)

Spread ߪ௝ଶ of the Gaussian is defined in terms of the dimensions of the cor-
responding box (Fig. 2(c)). If ݀ is the dimension of the box, then ߪ௝ଶ ൌ ݀.

3. Take the ݊௞ outputs of the ݇ class and connect them directly to a max neu-
ron as specified by equation (2). For an example refer to Fig. 2(d).

4. Finally, take the ݌ outputs of the agglutinating layer and connect them di-
rectly to the function that performs the decision operation given by equation
(3). For an example, refer to Fig. 2(e).

Fig. 2. (a) Set of patterns belonging to two classes; (b) Boxes generated by the first step of the
training algorithm; (c) Centres and spreads of corresponding Gaussians; (d) Generation of the
second and third layers of the Neural Network; (e) Generation of the output function.

Testing: Given a pattern ܺ to be assigned to one ݌ given classes ܥ௞, ݇ ൌ 1,2, … , :݌

1. Present the pattern to the input of the already trained neural network.
2. Compute all the values ݕ௞,௡ೖ at the outputs of the neurons of the clustering

layer using equation (4).
3. Compute all the ݌ values ݏ௞, ݇ ൌ 1,2, … , -at the outputs of the agglutinat ݌

ing layer using equation (2).
4. Finally, compute the value at the output of the decision function by using

equation (3).

The integer value obtained at this stage is the class to which pattern ܺ is assigned.

710 H. Sossa, G. Cortés, and E. Guevara

4 Design Example

To better appreciate the designing of the proposed neural network, let us take the set
of patterns belonging to two classes ܥଵ and ܥଶ shown in Fig. 2(a). We can see that
these patterns are non-linearly separable which is known to represent a challenge for
many classifiers. By applying the first step of the training procedure described in the
previous section we get the set of four boxes shown in Fig. 2(b).

Following step two of the training procedure, we obtain the four Gaussian kernels: ݕଵ,ଵ ൌ ,ଵߤሺܩ ଵ,ଶݕ ,ሻߪ ൌ ,ଶߤሺܩ ଶ,ଵݕ ,ሻߪ ൌ ,ଷߤሺܩ ଶ,ଶݕ ሻ andߪ ൌ ,ସߤሺܩ -ሻ. For this exߪ
ample, the sigma ߪ for the four Gaussians is the same due to all their boxes have the
same size (Fig. 2(c)).

Now by applying the third step of the training procedure, we connect Gaussians 1
and 3 to first max neuron of agglutinating layer as shown in Fig. 2(d) and Gaussians 2
and 4 to second max neuron of this same layer as shown again in Fig. 2(d). Finally,
we connect the outputs of the two neurons of the agglutinating layer to the decision
neuron as shown in Fig. 2(e).

5 Results and Comparison

In this section we test the efficiency of the proposed architecture. We also compare its
performance with several known classification paradigms. For this we use the six 2-
dimensional sets of patterns shown in Figs. 3(a), 3(c), 3(e), 3(g), 3(i), and 3(k).

Figures 3(b), 3(d), 3(f), 3(h), 3(j), and 3(l) shows the corresponding rectangles for
each of the six problems generated by the first step of the training procedure.
Table 1 shows the efficiency of the proposed RBFNN architecture compared with the
classical RFFNN architecture.

The first column of this table depicts the name of each of the problems and the
number of points used for testing. Columns 3 to 12 show the classification errors with
six arrangements of the classical RBFNN with 10, 20, 40, 60, 80, and 100 clusters.

As can be seen from columns 3, 5, 7, 9, 11, and 13 the training error tends to de-
crease as the number of clusters increases. However from columns 4, 6, 8, 10, 12, and
14 we appreciate that the average testing error is more or less the same and it is above
10%. From columns 16 and 17 we see that the training and testing errors produced by
our proposal are very small, 1.02% and 1.9%, respectively. So far, our proposal per-
forms much better than the standard RBFNN.

Table 2 shows the efficiency of the proposal compared with other three classical
classifiers: the minimum distance classifier, the KNN classifier and the well-used
MLP neural network. From this table we see that the minimum distance classifier has
the worst performance. This is a normal result considering the nature of the problems
involved in the analysis.

The MLP classifier performs much better than the minimum distance classifier.
This is also a normal result. On the other hand, we see that the KNN classifier exhi-
bits the best performance among the three, however our proposal provides the best
performance.

 New Radial Basis Function Neural Network Architecture for Pattern Classification 711

(a) Data set P1. Two

classes.

Training points: 52

(b) 23 boxes

generated by the

training stage

(c) Data set P2. Two

classes.

Training points: 124

(d) 16 boxes generated

by the training stage

(e) Data set P3. Three

classes.

Training points: 67

(f) 48 boxes generated

by the training stage

(g) Data set P4. Four

classes.

Training points: 139

(h) 37 boxes generated

by the training stage

(i) Data set P5. Two

classes.

Training points: 105

(j) 51 boxes generated

by the training stage

(k) Data set P6. Two

classes.

Training points: 330

(l) 42 boxes generated

by the training stage

Fig. 3. The six data sets used to test and compare the performance of the proposal

Table 1. Effectiveness of the proposed RBFNN compared with the standard RBFNN
architecture. Tt stands for training error, Ts for testing error, while ݇ is the number of
rectangles generated for each problem by the training procedure.

Problem and Number of clusters

Number of 10 20 40 60 80 100 New NN

Testing

points

% of error

 Tr Ts Tr Ts Tr Ts Tr Ts Tr Ts Tr Ts k Tr Ts

P1 189 0 28 0 21 0 25 0 25 0 25 0 25 23 0 2.6

P2 236 0 8.9 0 8.5 0 8.9 0 8.1 0 8.5 0 8.9 16 0 0.4

P3 271 0 22 0 17 0 14 0 14 0 14 0 14 37 2.99 0.7

P4 496 0 17 0 19 0 20 0 19 0 18 0 18 51 2.16 3.8

P5 500 16 18 1.9 16 3.8 15 1.9 8 1.9 8 1.9 8 48 0.95 3.8

P6 816 0 0.5 0 2.5 0 2.3 0 0.9 0 3.6 0 1.5 42 0 0.3

Tot Err 2.7 16 0.3 14 0.6 14 0.3 12 0.3 13 0.3 12 1.02 1.9

712 H. Sossa, G. Cortés, and E. Guevara

Table 2. Effectiveness of the proposed RBFNN compared with the minimum distance
classifier, the KNN classifier and the MLP trained with back-propagation rule. Tr is the training
error, Ts the testing error, K is the number of distances taken by the KNN classifier, m is the
number of hidden layers of the MLP, and k is the number of boxes generated for each problem
by the training procedure.

Problem and

number of

testing points

Minimum

distance

classifier

KNN classifier

MLP classifier

New NN

 % error % error % error % error

 Tr Ts K Tr Ts m Tr Ts k Tr Ts

P1 189 21.2 20.6 4 0 12 2 17.3 25.4 23 0 2.6

P2 236 47.6 50.4 21 0 6.4 2 18,5 22 16 0 0.4

P3 271 26.9 27.3 1 0 5.5 2 23.9 25.1 37 2.99 0.7

P4 496 66.9 63.9 1 0 9.9 3 15.8 27.2 51 2.16 3.8

P5 500 48.6 43 29 0 0 2 45.7 44 48 0.95 3.8

P6 816 7.27 19 1 0 0.4 2 2.12 9.19 42 0 0.3

Total Error 36.4 37.4 0 5.7 20.6 25.5 1.02 1.9

6 Conclusions and Further Work

This paper proposed a new RBF model for pattern classification. The proposal is ap-
plicable to problems with ݌ classes and ݊ features, although here only the results for
problems with two features were presented.

The new RBFNN architecture is composed of three layers and uses the clustering
procedure introduced in [12] as an essential step for its training.

One main advantage of the new RBFNN architecture is that is does not require that
the user specifies the number of cluster into which the data have to be divided, the
adopted method does this automatically.

Another major advantage of the proposed RBFNN architecture is that its training is
always performed in reduced finite number of iterations.

From the experiments with six non-linearly separable problems we have seen that
our proposal performs much better than the standard RBFNN architecture. We have
also shown that it performs much better that other well-known classifiers: minimum
distance classifier, KNN classifier and MLP classifiers.

Further work comprises: 1) testing the efficiency of the proposal with problems
with more than two features and in more realistic situations, 2) comparing with other
classifiers such as support vector machines, and 3) testing with other kernels different
from Gaussians, among others.

Acknowledgements. Humberto Sossa would like to thank SIP-IPN and CONACYT
under Grants 20140776 and 155014 for economical support to carry out this research.
Griselda Cortés thanks Tecnológico de Estudios Superiores de Ecatepec for the sup-
port to pursue her doctoral studies.

 New Radial Basis Function Neural Network Architecture for Pattern Classification 713

References

1. Sanz, G.M., de la Cruz García, J.M.: Visión por computadora Imágenes digitales y aplica-
ciones, 2nd edn. Editorial Alfaomega (2008)

2. Cruz, P.P.: Inteligencia Artificial con Aplicaciones a la Ingeniería. Editorial Alfaomega
(2010)

3. Ritter, G.X., Laurentiu, I., Urcid, G.: Morphological perceptron with dendritic structure.
In: The 12th IEEE International Conference on Fuzzy System, pp. 1296–1301 (2003)

4. Ritter, G.X., Sussner, P.: Morphological perceptrons. Intelligent System and Semiotics, pp.
221–226 (1997)

5. Ritter, G.X., Urcid, G.: Lattice Algebra Approach to Single-Nueron Computation. IEEE
Transactions on Neural Networks 14(2), 282–295 (2003)

6. Skomorokhov, A.: Radial Basis Function Networks in A+. In: Proceedings of the Confe-
rence on APL 2002, vol. 32(4), pp. 198–213 (2002)

7. Sug, H.: An Empirical Improvement of the Accuracy of RBF Networks. In: Proceedings of
the Second International Conference on Interaction Sciences, ICIS 2009, pp. 708–712
(2009)

8. Bishop, C.M.: Neural Network for Pattern Reconigtion, 1st edn. Oxford University Press,
New York (2008)

9. Liu, J., Lampinen, J.: A Differential Evolution Based Incremental Training Method for
RBF Networks. In: Proceedings of the 7th Annual Conference on Genetic and Evolutio-
nary Computation, GECCO 2005, pp. 881–888 (2005)

10. Pandya, A.S., Macy, R.B.: Pattern Recognition With Neural Networks in C++. IEEE Press
(1995)

11. Principe, J.C., Euliano, N.R., Curt Lef, W.: Neural and Adaptive Systems Fundamentals
Through Simulations. In: Library of Congress Cataloging-in-Publication Data (2000)

12. Sossa, H., Guevara, E.: Efficient Training for dendrite morphological neural networks.
Neurocomputing 131, 132–142 (2014)

	New Radial Basis Function Neural Network Architecture for Pattern Classification: First Results
	1 Introduction
	2 Proposed Architecture
	3 Operation of the New Neural Network
	4 Design Example
	5 Results and Comparison
	6 Conclusions and Further Work
	References

