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Abstract. This paper presents the initial results concerning a new Radial Basis 
Function Artificial Neural Network (RBFNN) architecture for pattern classifi-
cation. Performance of the new architecture is demonstrated with different data 
sets. Its efficiency is also compared with different classification methods  
reported in literature: Multilayer Perceptron, Standard Radial Basis Neural 
Networks, KNN and Minimum Distance classifiers, showing a much better per-
formance. Results are only given for problems using two features. 

1 Introduction 

Pattern classification is a main problem in pattern recognition. It consists on assigning 
a given pattern ܺ ൌ ሾݔଵ, ,ଶݔ … , ௡ሿ்ݔ  to one of ݌ classes ܥ௞, ݇ ൌ 1,2, … ,  by means ݌
of a mathematical tool called classifier. Examples of patterns that need to be classified 
are images, sounds, odours, and so on. The term pattern is used in many references, 
for example in  [1], [2]. Multilayer and Radial Basis Function Neural Networks are 
two of the most often used tools for pattern classification, being used for classification 
and regression mostly in non-linearly separable situations [3], [4], [5] and for making 
predictions [6] and [7]. They are considered as machine learning techniques also pro-
viding discriminant function measurement vectors [8]. RBFNN are one of the most 
known techniques to define separating functions for solving classification problems in 
multi-dimensional spaces [9].  

Usually, training of a RBFNN involves three steps: 1) finding the number of cen-
troids needed to define the clusters to group the training samples, 2) specifying the 
clusters widths, and 3) adjusting the weights of output neuron of the network. The 
architecture of a RBFNN consists of three layers: an input layer, a hidden layer which 
uses radially symmetric functions such as a Gaussian kernels [10]; at this stage unsu-
pervised learning (K-means algorithm) is used [1], [2], [10], [11] to define the hidden 
neurons, and an output layer with a linear node (case of two classes) that allows  
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calculating the weighted sum of the outputs from the hidden layer [6], [10] to com-
pute the index class for an input pattern. One disadvantage when training any machine 
learning method is that when using a large and possibly noisy data could result in a 
poor learning. Also, overlapping of patterns classes will tend to severally affect accu-
racy of training and generalization [6] and [10]. 

To alleviate these problems, in this paper we present the first results concerning a 
new architecture for a RBFNN. One main advantage of our proposal is that the radial 
basis functions are completely automatically generated with no human intervention. 
The proposed training method ensures precise clustering of the training patterns, dras-
tically reducing the training error and also increasing the generalization capability of 
the trained NN. Although the proposal is applicable to the ݊-dimensional case, in this 
paper only the two dimensional case is discussed. It is worth mentioning that in the 
general case training of the proposed RBFNN is 2௡. 

The rest of the paper is organized as follows: in Section 2 the new architecture of 
RBFNN is presented. Section 3 is focused on describing the adopted training algo-
rithm. Illustrative results of the functioning of the proposal and a comparison of its 
performance with other reported methods is provided in Section 4. Finally, Section 5 
presents conclusions and directions for further work. 

2 Proposed Architecture 

As shown in Fig. 1, the proposed RBFNN architecture is composed of three layers 
and a decision function. As we will soon see, this new architecture and its associated 
training algorithm will allow efficiently classifying ݊-dimensional patterns to one of ݌ classes, ܥ௞, ݇ ൌ 1,2, … ,   .,݌

 

 

Fig. 1. The proposed architecture of a RBFNN for pattern classification 
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Input Layer: This layer receives ݊-dimensional vectors of the form: 

 ܺ ൌ ൬௫భڭ௫೙൰ א Թ (1) 

 
and sends them directly to all the nodes of the next layer, the clustering layer. 
 
Clustering Layer: This layer has two functions. During training it is used to partition 
the set of training vectors: ܺଵ, ܺଶ, … , ܺெ (some of them belonging to class ܥଵ, others 
to class ܥଶ, and so on) into a set of groups in such a way that each group contains 
only patterns belonging to the same class. As we will see, each group has the form of 
a hyper-rectangle; in the 2-bidimensional the form of a rectangle. The method adopted 
to get this partition was recently introduced in [12]. During classification this layer is 
used to computing the distances of an input pattern to each of the rectangles. 
 
Agglutinating Layer: This layer contains ݌ neurons. Neuron ݇ has the function to 
select from all the hyper-rectangles of class ݇ the rectangle to which the input pattern 
is closer. For this, neuron ݇ performs the following operation: 

௞ݏ ൌ ሧ൛ݕ௞,ଵ, ,௞,ଶݕ … , ௞,௡ೖൟ௡ೖݕ
௝ୀଵ  (2) 

In this case the symbol ڀ stands for the maximum of a set of numbers.  
 
Decision Function: As can be seen from Fig. 1, this decision function takes the ݌ 
outputs from the agglutinating layer and computes the following operation: ݇ ൌ argmax௝ ൛ݏଵ, ,ଶݏ … ,  ௣ൟ (3)ݏ

Variable ݇ will contain the index of the class to which an unknown pattern ܺ should 
be classified after training. 

3 Operation of the New Neural Network 

Operation of the proposed neural network architecture is performed into two stages: 
training and testing. Each of these two stages is next explained in detail. 
 
Training: Given a training set ሼܺଵ, ܺଶ, … , ܺெሽ and its corresponding set of labels ݇ ൌ 1,2, … ,  :vectors belong ܯ of the classes to which the ݌
 

1. Cluster all ܯ patterns by means of the algorithm introduced in [12]. In two 
dimensions, this step gives as a result a set of rectangles as depicted, for ex-
ample, in Fig 2(b). 

2. For each hyper-rectangle, take its center and assign to it a Gaussian kernel of 
the form (Fig. 2(c)): 
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ሺܺሻܩ ൌ exp ൭െ ฮܺ െ ௝ଶߪ௝ฮଶ2ߤ ൱ (4) 

 
Spread ߪ௝ଶ of the Gaussian is defined in terms of the dimensions of the cor-
responding box (Fig. 2(c)). If ݀ is the dimension of the box, then ߪ௝ଶ ൌ ݀. 

3. Take the ݊௞ outputs of the ݇ class and connect them directly to a max neu-
ron as specified by equation (2). For an example refer to Fig. 2(d). 

4. Finally, take the ݌ outputs of the agglutinating layer and connect them di-
rectly to the function that performs the decision operation given by equation 
(3). For an example, refer to Fig. 2(e). 

 

Fig. 2. (a) Set of patterns belonging to two classes; (b) Boxes generated by the first step of the 
training algorithm; (c) Centres and spreads of corresponding Gaussians; (d) Generation of the 
second and third layers of the Neural Network; (e) Generation of the output function. 

Testing: Given a pattern ܺ to be assigned to one ݌ given classes ܥ௞, ݇ ൌ 1,2, … ,  :݌
 

1. Present the pattern to the input of the already trained neural network. 
2. Compute all the values ݕ௞,௡ೖ at the outputs of the neurons of the clustering 

layer using equation (4). 
3. Compute all the ݌ values ݏ௞, ݇ ൌ 1,2, … , -at the outputs of the agglutinat ݌

ing layer using equation (2). 
4. Finally, compute the value at the output of the decision function by using 

equation (3). 

The integer value obtained at this stage is the class to which pattern ܺ is assigned. 
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4 Design Example 

To better appreciate the designing of the proposed neural network, let us take the set 
of patterns belonging to two classes ܥଵ and ܥଶ shown in Fig. 2(a). We can see that 
these patterns are non-linearly separable which is known to represent a challenge for 
many classifiers. By applying the first step of the training procedure described in the 
previous section we get the set of four boxes shown in Fig. 2(b).  

Following step two of the training procedure, we obtain the four Gaussian kernels: ݕଵ,ଵ ൌ ,ଵߤሺܩ ଵ,ଶݕ ,ሻߪ ൌ ,ଶߤሺܩ ଶ,ଵݕ ,ሻߪ ൌ ,ଷߤሺܩ ଶ,ଶݕ ሻ andߪ ൌ ,ସߤሺܩ -ሻ. For this exߪ
ample, the sigma ߪ for the four Gaussians is the same due to all their boxes have the 
same size (Fig. 2(c)). 

Now by applying the third step of the training procedure, we connect Gaussians 1 
and 3 to first max neuron of agglutinating layer as shown in Fig. 2(d) and Gaussians 2 
and 4 to second max neuron of this same layer as shown again in Fig. 2(d). Finally, 
we connect the outputs of the two neurons of the agglutinating layer to the decision 
neuron as shown in Fig. 2(e). 

5 Results and Comparison 

In this section we test the efficiency of the proposed architecture. We also compare its 
performance with several known classification paradigms. For this we use the six 2-
dimensional sets of patterns shown in Figs. 3(a), 3(c), 3(e), 3(g), 3(i), and 3(k). 

Figures 3(b), 3(d), 3(f), 3(h), 3(j), and 3(l) shows the corresponding rectangles for 
each of the six problems generated by the first step of the training procedure. 
Table 1 shows the efficiency of the proposed RBFNN architecture compared with the 
classical RFFNN architecture. 

The first column of this table depicts the name of each of the problems and the 
number of points used for testing. Columns 3 to 12 show the classification errors with 
six arrangements of the classical RBFNN with 10, 20, 40, 60, 80, and 100 clusters.  

As can be seen from columns 3, 5, 7, 9, 11, and 13 the training error tends to de-
crease as the number of clusters increases. However from columns 4, 6, 8, 10, 12, and 
14 we appreciate that the average testing error is more or less the same and it is above 
10%. From columns 16 and 17 we see that the training and testing errors produced by 
our proposal are very small, 1.02% and 1.9%, respectively. So far, our proposal per-
forms much better than the standard RBFNN. 

Table 2 shows the efficiency of the proposal compared with other three classical 
classifiers: the minimum distance classifier, the KNN classifier and the well-used 
MLP neural network. From this table we see that the minimum distance classifier has 
the worst performance. This is a normal result considering the nature of the problems 
involved in the analysis.  

The MLP classifier performs much better than the minimum distance classifier. 
This is also a normal result. On the other hand, we see that the KNN classifier exhi-
bits the best performance among the three, however our proposal provides the best 
performance. 
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(a) Data set P1. Two 

classes. 

Training points: 52 

(b) 23 boxes 

generated by the 

training stage 

(c) Data set P2. Two 

classes. 

Training points: 124 

(d) 16 boxes generated 

by the training stage 

 
(e) Data set P3. Three 

classes. 

Training points: 67 

(f) 48 boxes generated 

by the training stage 

(g) Data set P4. Four 

classes. 

Training points: 139 

(h) 37 boxes generated 

by the training stage 

  
(i) Data set P5. Two 

classes. 

Training points: 105 

(j) 51 boxes generated 

by the training stage 

(k) Data set P6. Two 

classes. 

Training points: 330 

(l) 42 boxes generated 

by the training stage 

Fig. 3. The six data sets used to test and compare the performance of the proposal 

Table 1. Effectiveness of the proposed RBFNN compared with the standard RBFNN 
architecture. Tt stands for training error, Ts for testing error, while ݇  is the number of 
rectangles generated for each problem by the training procedure.  

Problem and Number of clusters  

Number of 10 20 40 60 80 100 New NN 

Testing 

points 

% of error  

  Tr Ts Tr Ts Tr Ts Tr Ts Tr Ts Tr Ts k Tr Ts 

P1 189 0 28 0 21 0 25 0 25 0 25 0 25 23 0 2.6 

P2 236 0 8.9 0 8.5 0 8.9 0 8.1 0 8.5 0 8.9 16 0 0.4 

P3 271 0 22 0 17 0 14 0 14 0 14 0 14 37 2.99 0.7 

P4 496 0 17 0 19 0 20 0 19 0 18 0 18 51 2.16 3.8 

P5 500 16 18 1.9 16 3.8 15 1.9 8 1.9 8 1.9 8 48 0.95 3.8 

P6 816 0 0.5 0 2.5 0 2.3 0 0.9 0 3.6 0 1.5 42 0 0.3 

Tot Err 2.7 16 0.3 14 0.6 14 0.3 12 0.3 13 0.3 12  1.02 1.9 
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Table 2. Effectiveness of the proposed RBFNN compared with the minimum distance 
classifier, the KNN classifier and the MLP trained with back-propagation rule. Tr is the training 
error, Ts the testing error, K is the number of distances taken by the KNN classifier, m is the 
number of hidden layers of the MLP, and k is the number of boxes generated for each problem 
by the training procedure. 

Problem and 

number of 

testing points 

Minimum 

distance 

classifier 

 

KNN classifier 

 

MLP classifier 

 

New NN 

 

 % error  % error  % error  % error 

  Tr Ts K Tr Ts m Tr Ts k Tr Ts 

P1 189 21.2 20.6 4 0 12 2 17.3 25.4 23 0 2.6 

P2 236 47.6 50.4 21 0 6.4 2 18,5 22 16 0 0.4 

P3 271 26.9 27.3 1 0 5.5 2 23.9 25.1 37 2.99 0.7 

P4 496 66.9 63.9 1 0 9.9 3 15.8 27.2 51 2.16 3.8 

P5 500 48.6 43 29 0 0 2 45.7 44 48 0.95 3.8 

P6 816 7.27 19 1 0 0.4 2 2.12 9.19 42 0 0.3 

Total Error 36.4 37.4  0 5.7  20.6 25.5  1.02 1.9 

6 Conclusions and Further Work 

This paper proposed a new RBF model for pattern classification. The proposal is ap-
plicable to problems with ݌ classes and ݊ features, although here only the results for 
problems with two features were presented.  

The new RBFNN architecture is composed of three layers and uses the clustering 
procedure introduced in [12] as an essential step for its training. 

One main advantage of the new RBFNN architecture is that is does not require that 
the user specifies the number of cluster into which the data have to be divided, the 
adopted method does this automatically. 

Another major advantage of the proposed RBFNN architecture is that its training is 
always performed in reduced finite number of iterations. 

From the experiments with six non-linearly separable problems we have seen that 
our proposal performs much better than the standard RBFNN architecture. We have 
also shown that it performs much better that other well-known classifiers: minimum 
distance classifier, KNN classifier and MLP classifiers. 

Further work comprises: 1) testing the efficiency of the proposal with problems 
with more than two features and in more realistic situations, 2) comparing with other 
classifiers such as support vector machines, and 3) testing with other kernels different 
from Gaussians, among others. 
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