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Abstract. A novel proposal for a compositional model for object recog-
nition is presented. The proposed method is based on visual grammars
and Bayesian networks. An object is modeled as a hierarchy of fea-
tures and spatial relationships. The grammar is learned automatically
from examples. This representation is automatically transformed into a
Bayesian network. Thus, recognition is based on probabilistic inference in
the Bayesian network representation. Preliminary results in recognition
of natural objects are presented. The main contribution of this work is a
general methodology for building object recognition systems which com-
bines the expressivity of a grammar with the robustness of probabilistic
inference.

1 Introduction

Most current object recognition systems are centered in recognizing certain type
of objects, and do not consider their structure. This implies several limitations:
(i) the systems are difficult to generalize to any type of object, (ii) they are not
robust to noise and occlusions, (iii) the model is difficult to interpret.

This paper proposes a model that achieves a compositional representation of
a visual object in order to perform object recognition tasks, based on a visual
grammar [4] and Bayesian networks (BNs) [8]. Thus, we propose the incorpora-
tion of a visual grammar in order to develop an understandable compositional
model so that from basic elements (obtained by a patch-based approach) it will
construct more complex forms by certain rules of composition defined in the
grammar, in order to achieve object recognition in a limited context (e.g. im-
ages of natural objects). In addition, a model expressed as a symbolic grammar
provides a transparent and understandable representation.

A Symbol-relation grammar (SR grammar) Gi is learned for each object class
ci, and then transformed automatically to a BN which incorporates the sym-
bols and relations as nodes, and the arcs represent the structure derived from
the grammar rules. Intermediate nodes in this BN structure are hidden, so we
learn the parameters of the model using the Expectation-Maximization algo-
rithm (EM). Once the structure and parameters of the BN are obtained, it can
be used for recognizing a class of object using probabilistic inference.
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We test our model in a pair of classes from Caltech-256 [5] and the ETH-80
dataset [6] obtaining competitive results in terms of precision and recall; but with
a significant reduction in the training and inference times. Also, fewer training
examples are required to achieve a competitive performance.

Next we present a brief review of alternative hierarchical/compositional ap-
proaches for object recognition and contrast them with our approach. Then we
describe in detail the proposed model, including the model building and recogni-
tion methods. We present experimental results in learning visual grammars for
several object classes, and then using these for recognition. We conclude with a
summary and directions for future work.

2 Related Work

There are several works using a hierarchical approach for object recognition
based on visual grammars [1,3,10,9]. In these studies, there is a clear consensus in
the usage of a certain kind of grammar to represent compositionally the terminal
elements (lexicon). However, they differ in what terminal elements to use and
how to handle the uncertainty in order to perform object recognition.

The proposed model differs in several aspects from previous work:

– It is based on a SR-grammar which incorporates spatial relationships.

– The grammar is induced automatically from example images.
– The terminal elements (visual lexicon) are patch-based and learned auto-

matically, so they can be used for different visual objects.
– The grammar is automatically transformed to a BN which provides a robust

and efficient technique for object recognition.

We consider the use of SR grammars because of the convenience of putting the
relationships in predicate logic, which is natural in this kind of grammar. Also,
it is desirable that the grammar is automatically learned from examples, for
greater generality; the grammar is independent of the lexicon definition used.
Finally, the transformation to a model that considers uncertainty must also be
automatic.

We use BNs to represent the information given by the grammar incorporating
uncertainty. Other studies use different schemas or even probabilistic grammars.
Bayesian networks have several advantages, such as preserving the structure
given by the grammar and providing efficient algorithms for parameter learning
and probabilistic inference.

3 Object Recognition Model

The proposed method compromises two phases: (i) model construction and trans-
formation to a BN (Fig. 1); and (ii) image pre-processing and object recognition
using probabilistic inference (Fig. 2). Next we describe each phase in detail.
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Fig. 1. Training phase. Starting with training images of several classes, we extract
features using a grid in each image and describing each patch with HoG +LBP features.
The lexicon is created by a clustering algorithm and several sets of rules are induced,
one per each class. The grammar is learned from the terminal elements obtained by
the lexicon. Finally the model is transformed to a BN, whose parameters are learned
from examples. The structure is given by the grammar obtained in the previous stage.

Fig. 2. Object recognition. The test image is described with patches and each patch
is labeled with the visual lexicon. After that, the algorithm evaluates subsets of those
terminal elements with similar structure to the grammar over the previously trained
BN in order to do inference. At the end, we obtain results by probabilistic inference in
the BN obtaining the probability of the presence of an object (for a specific class) in
each image.

3.1 Model Construction

Features Extraction and Lexicon. Patch description is performed with a
simple grid over each image and describing each region by using Local Binary
Patterns (LBP) and Histogram of Gradient (HoG) descriptors [2]. This descrip-
tion is applied for all the classes that will be processed in the training phase.
We use the k-means algorithm in order to label each patch to the centroid of
the corresponding cluster. The number of clusters (k) is selected according to
the number of classes; k � 50 when the number of the classes is greater than
10, otherwise k is fixed to 30. All the terminal elements constitute the Visual
lexicon. Each patch can be related to another patch with six spatial relationships
(Fig. 3). Note that the lexicon can be improved and this will not affect other
layers of our model.

Learning the Grammar. For our model, we need a grammar that allows us
to model the decomposition of a visual object into its parts and how they relate
with other parts. SR-grammars, which are described in [4], provide this type of
description.
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Fig. 3. The six spatial relationships used in our grammar. Above, Left, andOverlapped
(in four forms: Left, Above, -45◦ and +45◦). Each patch is labeled with an element
of the lexicon. Relationships with no adjacency between patches are not considered.
We use these relationships because they preserve the coherence when we subsume
two regions in another new one. The new non-terminal elements generated preserve
all the relationships from its children with other elements, and loose their internal
relationships.

The next step is to generate the rules that make up the grammar. Using
the training images, we search the most common relationships between visual
words obtained throughout the multiclass train set. Such relationships become
candidate rules to build the grammar. This is an iterative process where the
rules are subsumed and converted to a new non-terminal element of the grammar
(wci ∈ VN ), where VN is the set of non-terminal elements of the grammar. If we
repeat this process, the starting symbol of the grammar represents the object
that we want to recognize. Each wci is obtained by the formula:

wci = argmax
Ta,Tb,r

(
Fci (Rr,Ta,Tb) + max

cx∈C, cx �=ci
(d (Fcx (Rr,Ta,Tb) , Fci (Rr,Ta,Tb)))

)
(1)

where wci is the new non terminal element generated, Fci is defined as the
frequency of the rule R over the ci training dataset (in how many images the
rule appears). d is the euclidean distance and C is all the training set. Rr,Ta,Tb

is a rule holded by the spatial relationship r, and Ta, Tb ∈ VT

⋃
VN (Ta,Tb can

be terminal or non-terminal elements of the grammar). The stop criterion is a
frequency threshold for the rule (the rule needs to be found in at least Fci > n
images of the training set. n is usually fixed to a half of the training set). This
criterion avoids generating a highly complex grammar. As an example, the rule
Above(P1, P2) is subsumed into a new non-terminal element named NT1. The
rule obtained is: 1 : NT 0

1 →< {P 2
1 , P

2
2 }, {Above(P 2

1 , P
2
2 )} >. With this rule

generation method, circular productions are avoided (the BN generated would
have infinite structure).

Transformation of the Grammar. We transform the grammar into a BN,
using the following procedure. For every production rule, Y 0 → 〈M,R〉, we
produce the node Y 0 in the grammar and connect this node with all x ∈ M. For
every relationship r(a, b) ∈ R we produce the node r connected with its parents
a, b ∈ M. Furthermore, for every terminal node a ∈ VT we create a leaf node aE
with parent a representing the evidence and the associated CPT its uncertainty.

The transformation procedure is illustrated with the following example. If we
consider the next grammar:

G =(VN , VT , VR, S, P, R) ; VN = {NTR6C7C27, NTR5C33C7} ;

VT = {TermC7, TermC27} ;VR = {LAOverlaps, LBOverlapps} ; S = NTR5C33C7;

where the production rules are defined by P :
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1. NTR5C33C7 → 〈{NTR6C7C27, TermC7} , {LAOverlaps(NTR6C7C27, TermC7)}〉
2. NTR6C7C27 → 〈{TermC7, TermC27} , {LBOverlapps (TermC7, TermC27)}〉

The algorithm generates the structure of a Bayesian network illustrated in
Fig. 4a.

OR Rules. In some cases, there are several candidate rules to be considered in
our model. The choice of only one can represent a strict restriction (because other
positive structures would be missed). Thus we have included the OR production
in our grammar. The OR rule produces different ways for an object definition.
A simple example with two OR-rules is illustrated in Fig. 4b.

Fig. 4. a) Bayesian Network generated by the example grammar. Evidence is given only
to leaf nodes. Leaf nodes with two parents (in light-gray) represent relationship nodes.
Leaf nodes with only one parent (in white) represent evidence in terminal elements. b)
BN representing an Or-grammar with two rules.

Parameter Learning. Once the BN is obtained, its parameters are learned
initially with weights obtained from each rule. However we also have included
the Expectation Maximization (EM) algorithm applied over the intermediate
nodes in the BN in order to prevent overfitting with a validation set.

3.2 Object Recognition

For object recognition, an image is initially described with the visual lexicon.
Finding a valid configuration means to discover a relationship that has a match
with the grammar rule as represented in the BN. This match is converted to
evidence in the BN. If the complete grammar is found, there is a high probability
that the object learned with the grammar appears in the image.
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Fig. 5. Regions detected for a face example. The colored boxes are the terminal el-
ements detected and provided as evidence to the BN. Different colors are used for a
better differentiation only. In this case our model did not learn the whole face; instead
the model learned an object part. Thus, the grammar helps to detect parts of the
object. Best seen in color.

4 Results

To evaluate experimentally the proposed model, we consider the ETH-80 database
[6].1 We also tested the model using two classes of the Caltech-256 database [5].
The obtained model is tested using a different set of test images. Recognition
is evaluated based on the posterior probability given by probability propagation
in the BN. Examples from other categories are considered as negatives for this
evaluation.

Examples of detected objects for the faces category are illustrated in Fig. 5;
as we can see, the method discovered certain regions (terminal elements) that
are related to the specific category.

Recognition results are evaluated in terms of: Accuracy = TP+TN
TP+FP+TN+FN ,

Precision = TP
TP+FP , and Recall = TP

TP+FN . TP is the true positive, TN the
true negative, FP the false positive and FN the false negative rate in each
experiment. The model obtained for each class of object was evaluated with a
set of test images that include positive and negative examples. The negative
examples were obtained from the other classes for ETH-80 and clutter dataset
for Caltech-256. The results are summarized in the Tables 1 and 2. Although
these results are in general not superior to other methods in the state of the
art [7], we consider that they are promising as the proposed method provides
a general framework that still needs to be optimized. Nevertheless, there are
some important advantages of the proposed approach: It can be trained with a
few examples (20 per class), the training and the inference time is fast (around
0.2 seconds per image in inference for ETH database). The state of the art
methods require several hours for training whereas we require minutes for the
entire dataset. We evaluated the F-measure for ETH database (Fig. 6) and we
can see how the model stabilizes its results after 80 examples. Each line represents
one of the eight classes.

1 Note that we are more interested if the grammar can recover positive test examples,
because we want to know what the most invariant structure in each category is.



546 E. Ruiz and L.E. Sucar

Table 1. Recognition results of the model in ETH database. Positive examples are
obtained from the specified class and negative examples are obtained from the other
classes. The training and validation sets from each category are of 100 elements (80 for
training and 20 for validation). Time is for inference only. The models can be trained
in less than one hour (all of them) without optimization of the code.

Class Accuracy Precision Recall Time Num Examples
apple 82.9 82.69 83.22 2min 310
car 82.9 80.5 86.77 2min 310
cow 72.58 68.04 85.16 2min 310
cup 90.32 89.06 91.93 3min 310
dog 73.06 75.81 67.74 2min 310
horse 77.58 71.42 91.93 2min 310
pear 85.96 87.79 83.54 3min 310
tomato 87.58 91.75 82.58 2min 310

Fig. 6. Each line represents F-measure value for each class with different number of
training images. The model is stable with more than 80 examples. We think that the
fall for some classes around 60 examples was because the grammar was focusing on one
class and loosing performance in the others.

Table 2. Recognition results of the model in two categories for Caltech 256 database
(faces and motorbikes). Time is for inference. We do not expect a high accuracy in the
clutter category. However, the model learned the “structure” for the selected categories.

Class Accuracy Precision Recall Time Num Examples
motorbikes 89.2 89.4 89.1 3.5min 330
clutter 80.5 90.0 68.5 330

faces 90.7 79.8 97.7 4.5min 375
clutter 56.7 67.5 65.5 375

5 Conclusions and Future Work

A novel and general model for object recognition based on SR-grammars and
BNs was described. We have performed experiments with natural object classes
with promising results. The models can be learned with a few training examples,
and the method is very efficient in terms of training and inference times.
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The main contribution of this work is proposing a general methodology for de-
veloping object recognition systems that combines the richness and expressivity
of formal grammars and the robustness and efficiency of Bayesian networks. We
consider that this work contributes to the final goal of developing more general
vision systems, analogous to those developed for voice and language.

There are several avenues for future research: (i) Improve the or-rules includ-
ing a grammar book in order to reutilize rules discovered in other datasets (e.g.
part-objects) in order to increase the coverage over positive examples. (ii) Im-
prove the lexicon by using a flexible scheme including max pooling techniques
and multilabels for terminal elements. (iii) Evaluate the model with other classes
of objects or environments.
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