Estimation of Cyclostationary Codebooks for Kernel
Adaptive Filtering

S. Garcia-Vega, A.M. AlvareZ-Meza, and Germén Castellanos-Dominguez

Universidad Nacional de Colombia, Sede Manizales,
Signal Processing and Recognition Group
km 7 via al Magdalena, Colombia
{segarciave, amalvarezme, cgcastellanosd}@unal.edu.co
http://portal .manizales.unal.edu.co/gta/signal/

Abstract. A methodology based on kernel adaptive filtering termed DCKAF to
support prediction tasks over one-dimensional time-series is proposed. DCKAF
uses a linear combination of multiple codebooks to obtain the estimation from
an input-output nonlinear mapping. This methodology employs a vector quan-
tization based on statistic measures to check whether is necessary create a new
codebook, then the nearest codebook to the current input sample is found. After
that, codebooks are used to obtain the signal prediction at every instant, and evalu-
ates if the current sample is added as a codeword or not as in traditional quantized
kernel least mean square (QKLMS). Hence, DCKAF takes advantage of informa-
tion learned on previous iterations to improve the system accuracy. The proposed
methodology is tested on two one-dimensional time series and compared against
QKLMS in terms of prediction accuracy. Obtained results show that DCKAF
provides an effective way to predict time series improving prediction tasks.

1 Introduction

Nowadays, technological advances have allowed development of applications based on
kernel adaptive filtering (KAF) in fields where multiple interleaved stationary time se-
ries are assumed as cyclostationary, e.g., weather forecasting, rotating machinery anal-
ysis, etc. Particularly, adaptive filters are designed for sequential learning, so that their
free parameters must automatically adjust in response to cyclic variations within the
operating environment. Generally, to perform better estimations, KAF makes use of
input-output nonlinear mapping by minimizing a given instantaneous cost function, so
that their adaptive ability relies on the correction of error prediction at every iteration.

The least-mean-square (LMS) is the baseline adaptive filtering rule that minimizes
a Euclidean metric-based cost function. Some adaptive LMS-based methods had been
also developed (like Recursive Least-Squares and Extended Recursive Least-Squares).
Due to the knowledge of the cycles are practically not assured, accuracy on these L2-
based algorithms is not enough, especially, under highly non-stationary conditions (not
mentioning their high computational burden) [1]. To cope with this issue, generalized
filtering methods include testing for cyclostationarity [2,3]. However, achieved the com-
putational cost is also high and reached accuracy is still not good enough.

The KAF algorithms appear as another alternative transforming the input data into a
high-dimensional feature space, but via a Reproducing Kernel Hilbert Space (RKHS).
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These algorithms include different kernel LMS-based versions [1,4], kernel affine pro-
jection [5], etc. These online kernel learning methods compress the input space into a
single quantization vector, or codebook, that is actualized at every time instant, so that
its content permanently renews through the time. Hence, this memoryless codebook can
not take advantage of learned information from cyclically interleaved processes. Fur-
thermore, the KAF must learn each cyclic random structure as it were a new process,
thereby riding of salient information and reducing performed accuracy.

Here, we propose to build cyclostationary dynamic KAF codebooks, termed dynamic
codebooks estimation for kernel adaptive filtering (DCKAF), to support prediction tasks
of one-dimensional time-series. As online kernel learning method, we select the quan-
tized kernel least mean square (QKLMS) that has shown to perform high accuracy
under nonstationary conditions, at the same time, providing a moderate computational
cost [6]. However, contrary to the QKLMS, we generate multiple codebooks, which
encode the relevant interleaved random processes, to be further linearly combined for
cyclostationarity estimates. Namely, a convex combination of RKHSs is performed in a
KAF framework [7]. Obtained results of DCKAF testing, carried out on simulated and
real one-dimensional data, show an improved time series prediction accuracy with the
benefit of better data interpretability.

2 Estimation of Dynamic KAF Codebooks

Let u€R™ be a m-dimensional input vector related to the desired output signal d €
R through the continuous nonlinear input-output mapping f : R”™ — R. Provided a
sequence of input-output pairs {u;, d;} witht = 1,...,n€N, The proposed DCKAF
aims to find an approximation ;=3 p wp I (ut), so that each preceding codebook
is defined in the form:

N
1= g ((fue - e i04) (1)
Jj=1

here, PEN is the number of codebooks extracted from the time series, w, R is the
weight associated to the p-th codebook ¢! ERNt-1*™ being NF_| €N the number of
codewords in ¢?_,, and of7, €R is the weight of the j-th codeword c!”7, €R™ in c?_,.
The function g(-, -) is a Mercer kernel mapping from the original feature space to a Re-
producing Kernel Hilbert Space (RKHS). Thus, a pairwise kernel-based similarity mea-

sure between two samples is calculated. The well-known Gaussian kernel is employed
A

to estimate pairwise sample relationship as g(D (+,-);0) = exp (793 (- ~)2/(202)),
where c€R™ is the kernel bandwidth and D(-,-)ER™ is a distance operator. Besides,
the weight associated to each codebook is computed using the following equation:

wp =g (Hf(ut) - E{ﬁ(cffl)}H ;UC) /> pep Wp, Where &(+) is the variance of its ar-
gument, and E{-} is the expected value. The general scheme of DCKAF is presented
in Algorithm 1, where ws€N is the window size, o, and o, are the kernel bandwidths,
ey > 0 is the quantization size, and 0 < ¢ < 1 is the codebook quantization. At the
beginning, the initial codebooks are built directly from the input time series at initial
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Algorithm 1. - DCKAF

Inputs: {u¢, d¢}, ws,0g.0¢,m€7,6,Cpg = {eq, ..., <Py bheaog={ay ..., apo}
Computation:
while {wy , dy } available do
1) Create a new codebook if necessary
itmax g ([|6(us) — BLe(D T s0c) 2 8
Ci =Cpiop = oy
else
Ct ={Ct,ushiap = {ag,mep 1}
end
2) Compute the weights of each codebook (wp)
3) Compute the adaptive filter output using Eq. (1)
4) Compute the prediction error: e = dy — f¢
*

5) Find the nearest codebook €} to the current input sample w ¢
p* = argmaxg ([[e(ue) — £{e(l)]10c)
6) Updating codebooks as in traditional QKLMS

* *
O N (T
; p
1<G<Ng_ 4
*
ifm(ut,cf ) > ey
* * * Lk * o
R N AN AR
*
where j* = arg max g (Hut — cP ‘J”:aq)
I p
1SGSNg 4
else . - " .
b =A{cl Jugrial =[af ,mey]
end if

end while

time t,,€N using a sliding window of size ws X o;, where 0 < o; < 1 is an over-
lapping interval expressed in percentage. Thus, we get a data representation matrix
dy € R ws(1-ot) XS Then, the formulation for multiway spectral clustering is applied
over matrix dy. This spectral clustering technique is a weighted kernel principal com-
ponent analysis (WKPCA) approach based on primal-dual least-squares support vector
machine (LS-SVM) [8]. Afterwards, the initial codebooks Cy with their corresponding
coefficients vy are obtained. Thus, the computation stage evaluates if a new codebook
is created with the current sample w, or if this sample is added to an existing codebook.
Then the weights associated to each codebook (w,,) are computed to obtain the output
of adaptive filter as a linear combination of codebooks. Thereafter, the nearest codebook
cl " to the current input sample w, is found, and evaluates if the current sample is added
as a codeword or not as in traditional QKLMS [6].

3 Experimental Set-up and Results

DCKAF is tested as a suitable method to support prediction tasks under cyclostationary
conditions in KAF. To this end, our methodology stored the previously learned results
and take advantage of this information to improve the prediction accuracy. So, a predic-
tion task based on DCKAF can be summarized as follow: i) initialization, here the free
parameters are fixed and the initial codebooks are computed from the initial time (¢,,),
ii) model selection, the codebook nearest to the current sample is chosen as the best
codebook, then the current sample is assigned or discarded on this codebook, iii) out-
put of the adaptive filter, on this stage, the prediction is carried out taking into account
the information available in all codebooks. For concrete testing, system performance is
validated in terms of system accuracy.
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3.1 Databases

Two time series are used to test the proposed DCKAF methodology in terms of predic-
tion accuracy. That is, Lorenz system and Santa Fe time-series. These two time series
were chosen because both consist of a non-repeating pattern complex where the pre-
diction accuracy can be affected by sudden changes on the signal. Firstly, we select
the Lorenz System that is a dynamical system of a chaotic flow, noted for its butterfly
shape, described by the following set of differential equations: z=c(y — x), y=—xz +
yx — 1y, z=xy — Bz. Two set of parameters are considered, and using these two pa-
rameter sets we generate two time series H 1 and H 2, which we concatenate to create a
non-stationary time series with rapid transition as in [9]. Secondly, we use a data set ob-
tained from the Santa Fe time-series competition'. Specifically, the Data Set A is used,
which is an univariate time record of a single observed quantity, measured in a physics
laboratory experiment. This data set is predictable on the shortest time, but has global
events that can be harder to predict (sudden decay of the oscillations).

Lorenz system prediction: Here the DCKAF methodology is used to predict a Lorenz
time series. In this sense, as we explained previously, two set of parameters are consid-
ered, i.e., one with 0=10, y=28, B=8/3, another with 0=16, y=45.62, B=4, these
parameters were chosen in order to make our methodology comparable with the publi-
cations available in state of art [9]. To evaluate the versatility of DCKAF, 10 different
Lorenz time series were generated using the same two sets of parameters, and Gaussian
noise is added to the whole sequence using 10 different signal-to-noise ratio (SNR) to
each one of them.

The problem setting for Lorenz prediction is as follow: the previous five points
w=[d(t —5),...,d(t —1)] are used as the input vector (window size ws=>5) in
QKLMS algorithm, while the previous 25 points w;=[d(t — 25),...,d(t — 1)] are used
as the input vector (window size ws;=25) in DCKAF to predict the current value d;
which is the desired response. In the simulations, the step size is choose as n = 0.81,
the quantization size ¢;;=0.9, and the overlapping percentage 0,=20%, these values are
the same for both methodologies. Also, in case of DCKAF the initial time to compute
initial codebooks is fixed as t,,,=100, and the codebook quantization size is §=0.7. All
these parameters were fixed empirically. In addition, as proposed in [10], both required
kernel band-width values, o, and o, in section 2, are automatically computed by maxi-
mizing the variance of considered Gaussian kernel matrix as:

o* = arg max {&(g(50))}. )

Fig. 1 shows the system accuracy for a representative example using QKLMS and
DCKAF. On this particular example, our aim is to predict the Lorenz time-series shown
in Fig. 1(a). However, to make the prediction task more challenging, we added Gaus-
sian noise with SN R=6 to whole signal. The validation is carried out on the last 30%
of the signal, and the obtained signal using DCKAF is shown in Fig. 1(c), on this figure
there are three different colors (red, green, and blue) that represent each one of the three

! http://www-psych.stanford.edu/~andreas/Time-Series/SantaFe.html
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found codebooks, also, note that each color is associated to a particular signal behav-
ior. The prediction errors along time for QKLMS and DCKAF are shown in Fig. 1(b)
and Fig. 1(d), respectively.

Attained results in Fig. 1(d) shows that for this example the accuracy performance
is higher in DCKAF than in QKLMS, i.e., note that H2 (second lorenz time-series)
begin at iteration 3000 (see Fig. 1(a)) and the error in DCKAF decrease significantly
along time, however, in case of QKLMS (Fig. 1(b)), the error increase in a continuous
way. The reduction in prediction error for DCKAF (see Fig. 1(d)) can be attributed
to the linear combination of codebooks, since take advantage from previous learning
results, in contrast, QKLMS uses only one codebook to predict the signal, and this
could not be proper under non-stationary conditions. Also, it is important to highly that
in case of DCKAF the size on each codebook is adjusted adaptively, particularly in non-
stationary conditions while the accuracy performance is acceptable, indeed, DCKAF
adds codewords gradually to the codebooks on each step of the construction process and
additionally considers the inter-codebooks relationships. So, DCKAF can be considered
as a kernel adaptive filter that takes advantage of the information stored in all codebooks.
Finally, it is important to highly that all codewords available into a specific codebook
has identical statistical properties, i.e., each codebook encodes an unique dynamic.

The above results are a particular case that we choose to illustrate in a detailed man-
ner the performance of DCKAF in terms of prediction accuracy, however, 10 different
levels of SNR each one them with 10 different Lorenz time series were generated to
evaluate the general performance of our algorithm under noisy and non-stationary con-
ditions (as mentioned above). Fig. 1(e) and Fig. 1(f) shown the mean of relative errors
over different noisy conditions applied to the Lorenz time-series. The relative errors are
computed taking into account the last 30% of signal using the desired signal d with its
corresponding obtained signal f on this interval. Note that, on these figures, the red line
inside each box represents the median among the 10 relative errors obtained from the
prediction for each SNR level, the upper and lower limit on each box represents the
25th and 75th percentiles respectively, and the operators + are the outliers. The Lorenz
time-series employed on QKLMS are the same to the used in DCKAF.

The achieved results in Fig. 1(f), shows that DCKAF performance in terms of pre-
diction accuracy is higher than the obtained results in QKLMS (Fig. 1(e)). In general
terms, the obtained results are similar to the previous example, this fact proof that our
methodology is robust under noisy conditions, i.e., the performance of prediction ac-
curacy under different noisy conditions is very high (errors are under 2%), while the
prediction accuracy in QKLMS is significantly affected (errors are upper 3%). There
are some outliers in Fig. 1(f) (operator +), however, the prediction accuracy of these
Lorenz time-series are in the corresponding range of QKLMS, which means that the
prediction is still acceptable in comparison to QKLMS results.

Santa Fe time-series prediction: This time-series is used to evaluate the DCKAF versa-
tility under non-stationary conditions. The aim is to predict the figure shown in Fig. 2(a).
This signal is a time series concatenated two times. The problem setting for Santa Fe
time-series prediction is as follow: for both QKLMS and DCKAF, the previous forty
points u;=[d(t — 40), ..., d(t — 1)] are used as the input vector (window size w;=40),
to predict the current value d; which is the desired response, the step size is empirically
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Fig. 1. Lorenz time-series prediction

fixed as n=0.9, the quantization size e;;=0.9, and the overlapping percentage 0;=20%.
In case of DCKAF the initial time is t¢,,=170, and the codebooks quantization size is
0=0.7. The required kernel band-width values o, and o, are automatically computed
using (2).

Fig. 2 shows the system accuracy using QKLMS and DCKAF. Similar as in Fig. 1,
our aim is to predict the Santa Fe time-series shown in Fig. 2(a) (concatenated signal).
The validation is carried out on the last 30% of the signal. The obtained results in terms
of prediction error for both QKLMS and DCKAF are shown in Fig. 2(b) and Fig. 2(d),
respectively. The obtained signal using DCKAF is shown in Fig. 2(c).

Obtained results in Fig. 2 confirm that our algorithm is robust against non-stationary
conditions, i.e., prediction error in DCKAF (Fig. 2(d)) is better than QKLMS (Fig. 2(b)),
in this sense, note that prediction error in DCKAF decreases along the time, which
is a clear indication that the linear combination used by DCKAF improves the sys-
tem accuracy. Remember that, signal in Fig. 2(a) is composed by the concatenation of
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Fig. 2. Santa Fe time-series prediction

one Santa Fe time-series, that is, one from iteration 1 to 1000 and another from itera-
tion 1001 to 2000 (both Santa Fe time-series are exactly the same), therefore there are
mainly 3 segments in Fig. 2(a), the first one is between 0 to 186 and 1001 to 1186,
the second one is between 187 to 613 and 1187 to 1613, and the third one is between
614 to 1000 and 1614 to 2000. Finally, each color show in signal reconstruction us-
ing DCKAF (Fig. 2(c)) represents one different codebook. Note that DCKAF identify
exactly the same codebook sequence on each segment, e.g., on the last segment (614
to 1000 and 1614 to 2000), when the sample number 614 arrives, the algorithm does
not known this dynamic and therefore a new codebook is created (magenta color), af-
ter that another codebook is created (cyan color) because on this point a new dynamic
is identified, and so on. Then when the same segment appears again at iteration 1614,
the algorithm does not create a new codebook because this dynamic it was previously
learned at iteration 614, and therefore the codebook represented by the magenta color
is employed once again. Additionally, note that when magenta codebook is used by
second time (iteration 1614), the error prediction is reduced significantly (Fig. 2(d))
in comparison when this codebook was employed by first time (iteration 614), which
means that DCKAF take advantage of the information stored on previous codebooks,
while QKLMS in non-stationary conditions forgets the previous learning results and
re-learning the input-output mapping when system switch to a new state, and conse-
quently the prediction error in QKLMS is higher than DCKAF. The attained results
with DCKAF are promising, however, the computational burden in DCKAF is higher
than QKLMS, because employs a cost function considering all the previous states to
obtain a better prediction.
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4 Conclusions and Future Work

Here, a methodology based on kernel adaptive filtering to support prediction tasks on
one-dimensional time-series was presented. To this end, the proposed methodology uses
a linear combination of codebooks to obtain the estimation from an input-output nonlin-
ear mapping. After that, a vector quantization based on statistic measures is employed
to check whether a new codebook must be created. Our methodology takes advantage
of information learned on previous states to improve the system accuracy. The ob-
tained results in terms of system accuracy show DCKAF is a suitable tool to predict
one-dimensional time series under noisy and non-stationary conditions. Particularly,
attained results in Santa Fe time-series exhibits how DCKAF take advantage of the in-
formation stored on previous codebooks. The above demonstrates that using multiple
codebooks with particular statistical properties, improves the prediction tasks.

As future work proposed DCKAF should be tested in multi-dimensional time series
to validate its accuracy and stability for prediction tasks. Moreover, other algorithms
based on kernel adaptive filtering must be tested using DCKAF. Finally, a methodology
to tuning free parameters should be designed.
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