
 

E. Bayro-Corrochano and E. Hancock (Eds.): CIARP 2014, LNCS 8827, pp. 167–174, 2014. 
© Springer International Publishing Switzerland 2014 

The Place Theory as an Alternative Solution  
in Automatic Speech Recognition Tasks 

José Luis Oropeza-Rodríguez1, Sergio Suárez-Guerra 1,  
and Mario Jiménez-Hernández2  

1 Computing Research Center, National Polytechnic Institute, 
Juan de Dios Batiz s/n, P.O. 07038, Mexico 

2 ESIME Zacatenco, National Polytechnic Institute, 
Av. Politécnico, P.O. 07038, Mexico 

{joropeza,ssuarez}@cic.ipn.mx, mjimenezh@ipn.mx 

Abstract. Recently the parametric representation using cochlea behavior has 
been used in different studies related with Automatic Speech Recognition 
(ASR). This paper shows how using an alternative solution reported in the state 
of the art solves the Lesser and Berkeley’s cochlea model in ASR tasks.  An 
approach that considers a new form to construct the bank filter in the parametric 
representation used to extract MFCC is proposed. Then  this distribution of the 
bank filter to have a new representation of the speech in frequency domain is 
used. It is important to indicate that MFCC parameters use Mel scale to create a 
bank filter. The cochlea behavior based on the theory  to create the central fre-
quencies of the bank filter was used, .The Mel scale function was substituted for  
our purpose.  A 98.5%  performance was reached, for a task that uses isolated 
digits pronounced by 5 different speakers in the Spanish language and  corpus 
SUSAS with neutral sound records with some advantages in comparison with 
MFCC was used. 

Keywords: Automatic Speech Recognition, Speech recognition, cochlea opera-
tion, place theory and bank filter component. 

1 Introduction 

For a long time Automatic Speech Recognition Systems have used parameters related 
with Cepstrum and Homomorphic Analysis of Speech [1], Linear Prediction  Coeffi-
cient  (LPC)  [2], Mel  Frequency  Cepstrum  Coefficients (MFCC) [3],  Perceptual  
Linear  Prediction  (PLP)[4].  One important aspect to mention is that cochlea proper-
ties have not been considered in the models mentioned above. However, recently 
works related with the application of the cochlea behavior in ASR systems can be 
found  because in recent years  researchers have been  emphasizing “human engineer-
ing”, that is, to adopt the processing strategies of the human auditory perception. The 
application of such human perceptual feature may improve ASR performance which 
has been established in  literature [5][6][7] [8][9][10]. In [10] an extraordinarily pre-
cise auditory model was used to extract the excitation dependent shapes of the delay 
trajectories and then t a set of features without any other spectral information were 
used to carry out speech recognition task under different noise conditions on the 
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TIMIT database. However, average recognition rates do not reach that of the MFCC 
features (except for very low noise SNRs), but the system behaves very stable under 
different noise conditions. In [9] they proposed a feature extraction method for ASR 
based on the differential processing strategy of the AVCN, PVCN and the DCN of the 
nucleus cochlear. The method utilized a zero-crossing with peak amplitudes (ZCPA) 
auditory model as a synchrony detector to discriminate the low frequency formants. 
They used HMM recognition  of isolated digits that showed improved recognition 
rates in clean and in non- stationary noise conditions than the existing auditory model. 
In [8] they employed a counterpart of the next physiological processing step in com-
parison with frequency decomposition and compression of amplitudes concepts.  A 
simplified model of short-term adaptation into MFCC feature extraction was incorpo-
rated.  The proposal mentioned above was compared with the structurally related 
RASTA, CMS and Wiener filtering and performs well in combination with Wiener 
filtering. Compared to the structurally related RASTA, the adaptation model provides 
superior performance on AURORA 2, and, if Wiener filtering is used prior to both 
approaches, on AURORA 3 as well. 

On the other hand, the most important organ in human hearing is the cochlea and 
various  phenomenological  (as used by Ghitza where basilar membrane is modeled 
by a gammatone bank filter) and  physiological  models  have  been  proposed  for  a  
long time [11][12]. At same time MFCC have been used for different tasks of ASR 
and speech representation. This paper uses a physiological model proposed in litera-
ture instead of phenomenological models that have been used for same application. 
An important difference is that phenomenological models are based on bank filters, as 
EIH (Ensemble Interval Histogram Model was conceived by Ghitza) while physiolog-
ical models use fluid mechanics [13]; 

2 Characteristics and Generalities 

The cochlea is a long, narrow, fluid-filled tunnel which spirals through the temporal 
bone.  This  tunnel  is  divided  along  its  length  by  a  cochlear  partition  into  an  
upper compartment called scala vestibuli (SV) and lower compartment called scala 
timpani (ST).  At the apex of the cochlea, SV and ST are connected to each other by 
the helicotrema [14]. A set of models to represent the operation of the cochlea has 
been proposed [15][16][17][18]. In  mammals,  vibrations  of  the  stapes  set  up  a  
wave  with  a  particular  shape  on  the basilar  membrane.  The amplitude envelope 
of the wave is first increasing and then decreasing, and the position at the peak of the 
envelope is dependent on  the frequency of the stimulus [19]. The amplitude of the 
envelope is a two-dimensional function of distance from the stapes and frequency of 
stimulation The curve shown in Fig. 1 is a cross-section of the function for fixed fre-
quency.  Frequency responses analyzed by Von Békésy are shown in Fig. 1, where  
each part of the basilar membrane responds maximally to a certain frequency, and as 
the frequency increases so does the maximum place of the envelope. If low frequen-
cies excite the cochlea, the envelope is nearest to the apex, but if high frequencies 
excite it, the envelope is nearest to the base.  

This paper proposes an equation extracted from the fluid mechanical model to find 
a relationship between these frequencies and the place of the excitation into the coch-
lea. With that value a new distribution of the bank filter to extract parameters for ASR 
tasks is proposed.  
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Fig. 1. Wave displacement inside cochlea 

Let ( )321 ,, uuuu =   be the fluid velocity, p the pressure, and ρ the constant densi-

ty of the fluid. The mass of fluid in a fixed volume V can change only in response to 
fluid flux across the boundary of the volume. Thus [23],   
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Where S is the surface of V, and ( )321 ,, nnnn =    is the outward unit normal to V. 
After considering that the momentum of the fluid in a fixed domain V can change 

only in response to applied forces or to the momentum flux across the domain boun-
dary, and using the divergence theorem to convert surface integrals to volume inte-
grals, 2 is obtained: 

 
( ) =








∂
∂+•∇+

∂
∂

V i
i

i dV
x

p
uu

t

u
0ρρ  (2) 

After considering that V is arbitrary, fluid motions are of small amplitude and there 
is an irrotational flow, the following equations are shown: 
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Lesser and Berkley developed a model that combines these last two equations with 
the equation of a damped, forced harmonic oscillator and is considered one of the 
simplest of the cochlea models. They propose that each point of the basilar membrane 
is modeled as a simple damped harmonic oscillator with mass, damping, and stiffness 
that vary along the length of the membrane. Thus, the movement of any part of the 
membrane is assumed to be independent of the movement of neighboring parts of the 
membrane, as there is no direct lateral coupling. The deflection of the basilar mem-
brane, η (x, t), is specified by a model of a forced harmonic oscillator defined as  

 
( )( ) ( )( )ttxxpttxxpxk

t
xr

t
xm ,,,,,,)()()( 122

2

ηηηηη −=+
∂
∂+

∂
∂

 
 (4) 

Where axax exkexrxm 2910)(,300)(,1.0)( −− ===  . An analytical solution of this problem 
can be found using standard Fourier series [23]. Solutions of this form are looked for: 
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3 Auditory Model 

This paper proposes solving the Lesser and Berckley equation using the solution pro-
posed in [20]. This solution is related with the place theory of hearing, initially  
proposed by Von Békésy. To perform the analysis each section of the membrane is 
considered as a forced harmonic isolated oscillator , which is excited by an external 
force tjFe ω  that represents the driving force on each section of the basilar membrane 
and this force is produced by vibrations transmitted into the cochlea by the oval win-
dow. Two solutions are proposed related with the before mentioned equation. Firstly, 
the forced harmonic oscillator is represented by the following equation   
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Where m is the mass, Rm mechanical resistance and k is the damping constant. 
Considering that tjAe ωη = , then amplitude of the wave sound into the cochlea is 

represented by [20]. Secondly, a damped harmonic oscillator with the following equa-
tion is considered:                    
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Then, a solution is given by                                                

 ( )φωη β += − tAe t
0cos  (8) 

Equation 9 shows that the amplitude for each section of the membrane depends of 
the frequency ω   in the applied force. The amplitude has a maximum when the de-
nominator has its minimum value and this occurs at a specific frequency excitation 
called resonance frequency. This is defined by the values of mass and stiffness, when 
the frequency ω   of the applied force is equal to )(/)( xmxk  it is said that the system is 
resonant in amplitude and obtains the maximum value of the basilar membrane dis-
placement. This last equation can be expressed as a function of frequency and dis-

tance, if considering that fπω 2=  thus, this is possible using our purpose  Literature 
does  not find an equal relationship  [20]. 
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4 Experiments and Results 

From the  last  equation    a  computational  model was developed to  obtain the  dis-
tance  where   the  maximum  displacement  of the  basilar  membrane  to  a  specific  
excitation frequency of the system occurs, which depends of the physical characteris-
tics of the basilar membrane. The following procedure describes the computational 
model of the cochlea using this propose [21]. It’s important to mention that the  
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maximum response of the pressure curve used in [20]was obtained.  Firstly, 5 speak-
ers pronounced 10 digits from 0 to 9; Spanish digits were used as a workbench that is 
“cero, uno, dos, tres, cuatro, cinco, seis, siete, ocho and nueve”.  LPC, MFCC, CLPC 
were used and our coefficients named EPCC (Earing Perception Cepstrum Coeffi-
cients),  obtaining better percent correct recognition in some tasks using them in com-
parison with others representations mentioned above. HTK Hidden Markov Model 
Toolkit were used as training and recognition software;  our new parameters were 
added into HSigp.c file, contained inside HTK http://htk.eng.cam.ac.uk, and used  in 
task of ASR employing HTK.  

 
PROCEDURE DESCRIPTION 

 Obtain speech signal, realize preprocessing (It 

includes pre-emphasis, segmentation, window-

ing and feature extraction), for each sentence. 

  The feature extraction, used the same procedure 

as MFCC but filter bank is constructed follow-

ing the next steps. 

o Take the minimal and maximal frequen-

cy where filter bank are going to be con-

structed. 

o Calculate maximal and minimal distance 

from the stapes of the cochlea, nearer to 

start implies high frequencies, farthest 

implies low frequencies. 

o Determine a set of distances equally 

spaced 

o Determine the frequency related with 

these distances, this represents the cen-

ter of the filter bank.  

o Construct filter bank with frequency cen-

ter obtained from the analysis of the 

Neely model using values in table 1. 

 Follow the same steps to obtain MFCC, 

multiply spectral representation from 

Fourier Transform with filter bank, cal-

culate energy by bands using logarithm, 

and finally, apply discrete cosine trans-

form. 

 Obtain a new set of coefficients for each 

speech signal. 

 Train the ASR and proceed with recogni-

tion task using the new parameters.  

 
 

This first experiment used a database that contains only digits in the Spanish lan-
guage. The  characteristics  of the  samples  were  frequency  sample  11025,  8  bits  
per  sample, PCM  coding,  mono-estereo.  The evaluation of the experiment proposed 
involved 5 people  (3  men and  2  women)  with 300  speech sentences to  recognize  
for  each one ( 100 for training task and 200 for recognition task were used). About  
1500  speech  sentences  extracted  from  5  speakers  individually were taken, and the 
Automatic Speech Recognition using Hidden Markov Models was trained with 4  
(2 states with information and 2 dummies to connection with another chain), 5 (3 
states with information and 2 dummies to connection with another chain) and 6 states 
(4 states with information and 2 dummies to connection with another chain). Also,  3 
Gaussian Mixture for each state in the chain Markov were employed. The parameters 
extracted of the speech signal were 39 (13 MFCC, 13 delta and 13 energy coeffi-
cients) When  using MFCC or our proposal, they are used to train the Hidden Markov 
Model. Table 1 contains results obtained in percentage when  using LPC, CLPC, 
MFCC and our parametric representation as parameters to training. Table 2 shows 
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results using also Delta and Acceleration coefficients. It is important to remember that 
HTK give us results in two forms: by sentence and by words http://htk.eng.cam.ac.uk. 
Table 3 contains results obtained in percentage when  using LPC, CLPC and MFCC, 
DELTA, ACCELERATION AND THIRD DIFFERENTIAL. The headings in table 1, 
2 and 3 represent the number of states used for each HMM used in the experiments. 

 

Table 1. LPC, CLPC and MFCC 
coefficients 

Table 2. LPC, CLPC, MFCC, DELTA 
AND ACCELERATION coefficients 

# STATES 4 5 6 

LPC SENTENCE 87.5 94 94 

CLPC SENTENCE 90 97.5 98.5 

MFCC SENTENCE 97.5 97 99 

OUR PROPOSAL 99.25 99.35 99.6 

LPC WORDS 87.94 94.47 94.47 

CLPC WORDS 90.45 97.99 98.99 

MFCC WORDS 97.99 97.49 99.5 

OUR PROPOSAL 99.35 99.45 99.75 
 

# STATES 4 5 6 

LPC SENTENCE 79 90.5 91.5 

CLPC SENTENCE 93 99 99 

MFCC SENTENCE 99 99 99 

OUR PROPOSAL 99.30 99.6 99.7 

LPC WORDS 79.4 99.4 91.96 

CLPC WORDS 93.47 99.5 99.5 

MFCC WORDS 99.5 99.5 99.5 

OUR PROPOSAL 99.45 99.75 99.8 

Table 3. LPC, CLPC, MFCC AND DELTA, ACCELERATION, DELTA, AND THIRD 
DIFFERENTIAL coefficients 

# STATES 4 5 6 # STATES 4 5 6 

LPC SENTENCE 77 89.5 89 LPC WORDS 77.39 89.95 89.45 

CLPC SENTENCE 89.5 99 99 CLPC WORDS 89.95 99.5 99.5 

MFCC SENTENCE 98.5 99 99 MFCC WORDS 98.99 99.5 99.5 

OUR PROPOSAL 99.4 99.6 99.8 OUR PROPOSAL 99.6 99.8 99.8 
 

Table 4. Results obtained using HTK, 
Susas Corpus and manual labeling 

Table 5. Results obtained using HTK, Susas 
Corpus and automatic labeling based in zero 
crossing and energy 

 MFCC EPCC 

sen-

tence 

word sen-

tence 

word 

boston1 91.84 92.06 90.2 90.84 

boston2 95.51 95.63 93.88 94.05 

boston3 96.73 96.83 92.65 92.86 

general1 96.73 96.83 95.51 95.24 

general2 94.29 94.44 93.06 93.25 

general3 93.47 93.65 94.69 94.84 

nyc1 91.84 92.06 93.06 92.86 

nyc2 91.02 91.27 89.8 90.08 

nyc3 95.92 96.03 90.2 90.48 
 

 MFCC EPCC 

sen-

tence 

word sen-

tence 

word 

boston1 93.47 93.47 91.43 91.43 

boston2 97.55 97.55 96.33 96.33 

boston3 99.18 99.18 97.14 97.14 

general1 95.92 95.92 95.1 95.1 

general2 95.92 95.92 92.24 92.24 

general3 91.84 91.84 89.8 89.8 

nyc1 93.88 93.88 95.51 95.51 

nyc2 98.37 98.37 97.96 97.96 

nyc3 97.14 97.14 90.2 90.48 
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Secondly, a corpus elaborated by J. Hansen at the University of Colorado Boulder 
was used. He has constructed database SUSAS (Speech Under Simulated and Actual 
Stress) http://catalog.ldc.upenn.edu/LDC99S78.  Only 9 speakers, with ages ranging 
from 22 to 76, named “boston1”, “boston2”, “boston3”, “general1”, “general2”, “gen-
eral3”, “nyc1”, “nyc2” and “nyc3”were used.  Normal corpus not under Stress sen-
tences contained into corpus were applied. The words were “brake, change, degree, 
destination, east, eight, eighty, enter, fifty, fix, freeze, gain, go, hello, help, histogram, 
hot, mark, nav, no, oh, on, out, point, six, south, stand, steer, strafe, ten, thirty, three, 
white, wide, & zero”. A total of 4410 files of speech were processed. Finally, Table 4 
and 5 show results when  using our proposal (Earing Perceptual Cepstrum Coeffi-
cients –EPCC-) the best representations used in the state of the art and in the last 
experiment versus MFCC in Susas corpus. The heading of each line in  tables 4 and 5 
represent each speaker of the Susas Corpus used in this experiment. 

5 Conclusions and Future Works 

As shown in this paper a new parameter for ASRs task has been described. They 
employ the functionality of the most important organ for humans and mammalians in 
hearing, the cochlea. At this moment all investigations are oriented to a set of models 
that use pronounced speech signals or frequency domain behavior, considering per-
ceptual effects in humans. However, they do not consider the function principle of the 
hearing phenomena that occurs in the inner ear. This proposal with the results ob-
tained has been integrated into the ASRs task satisfactorily to reach a performance of 
99.8% in digit task for the Spanish language and 93.36 in Susas Corpus. This demon-
strates the cochlea functionality for extracting information from the speech signal. It 
can be  compared with another database such as TIMIT to  test the robustness of the 
results.  
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