

E. Bayro-Corrochano and E. Hancock (Eds.): CIARP 2014, LNCS 8827, pp. 1030–1038, 2014.
© Springer International Publishing Switzerland 2014

An Efficient GPU-Based Implementation
of the R-MSF-Algorithm for Remote Sensing Imagery

David Castro-Palazuelos1,2,*, Daniel Robles-Valdez1, and Deni Torres-Roman1

1 Center for Advanced Research and Education of the National Polytechnic Institute of Mexico
CINVESTAV Unidad Guadalajara, Mexico

Avenida del Bosque #1145, Colonia el Bajío, 45019, Zapopan, Jalisco, México
2 Culiacan Technological Institute, Department of Electrical-Electronic Engineering,

Sinaloa, Mexico
dcastro@gdl.cinvestav.mx

Abstract. This paper presents an efficient real time implementation of the regu-
larized matched spatial filter algorithm (R-MSF-Algorithm) for remote sensing
(RS) imagery that employs the robust descriptive experiment design (DED) ap-
proach, using a graphics processing unit (GPU) as parallel architecture. The
achieved performance is significantly greater than initial requirement of two
image per second. The performance results are reported in terms of metrics as:
number of operations, memory requirements, execution time, and speedup,
which show the achieved improvements by the parallel version in comparison
with the sequential version of the algorithm.

Keywords: Remote sensing, GPU, real time implementation.

1 Introduction

Currently, sensor array signal processing (SP) for imaging radars have been focus of
great interest in many research works that now are available in [1, 2]. Such algorithms
are computationally expensive; consequently, the majority of the sequential imple-
mentations are not suitable to achieve real time or near real time. As many of the re-
quired operations needed by these algorithms are: correlation, convolution, filtering,
and matrix operations, parallelization technique and theory can be applied in order to
improve their performances [3]. The implementation of real time systems in the field
of high performance computing (HPC) is limited by the data dependencies of algo-
rithms to be implemented and the features of graphic processing unit (GPU) used [4].
Hence, the advent of the GPU with user-friendly programming environments has
allowed the employment of a GPU as parallel mathematical co-processor. In this doc-
ument, the proposed DED framework based on the matched spatial filter (MSF) SP
technique [2] are implemented (referred here as R-MSF-Algorithm). The R-MSF-
Algorithm is composed of three parts: the average, the array correlation function, and
the matched spatial filter (MSF). In addition, R-MSF-Algorithm is aimed to form a

* Corresponding author.

 An Efficient GPU-Based Implementation of the R-MSF-Algorithm 1031

low-resolution image to detect multi-targets on a given test scenario. The algorithm is
not fully parallelizable, however, there are some tasks (portions of code) that can be
benefit greatly by being mapped/ported to a GPU, which leads toward very attractive
speedups (real-time implementation). Three versions of the R-MSF-Algorithm were
implemented: the first one (Seq-CPU) was implemented over the programming envi-
ronment of Visual C++ (C++11) in a sequential way, the second one (One-Thread)
was implemented on a GPU using CUDA and a single thread, and the third one (Mul-
ti-Thread) was implemented on a GPU using CUDA and multiple-threads. This im-
plies challenges to map the algorithm on a GPU, which must be considered to achieve
the best possible performance. Using the strategy shown in this paper were obtained
speedup improvements of 15.5X to 22.5X (for image sizes of [128×128] to
[512×512]) for the tested scenarios.

The rest of paper is organized as follows: in Section 2, a background of NVIDIA
GPU devices and CUDA programming environment are presented. An analysis of the
robust descriptive experiment design related matched spatial filter method is intro-
duced, next, in Section 3. In Section 4, a parallelization of SP procedures is presented.
In Section 5, the GPU implementation is described. In Section 6, a performance anal-
ysis is provided. Finally, the paper is concluded in Section 7.

2 NVIDIA GPU and CUDA

The GPUs devices are a large collection of multi-threaded cores, used to perform
concurrently some computations of the algorithms. The compute unified device
architecture (CUDA) of the NVIDIA company together with a graphic processor
unit (GPU) card mounted on a personal computer (PC) are used to perform a wide
variety of signal processing algorithms (SP), as: matrix addition, matrix subtraction,
matrix product, among others. Then, CUDA is a general purpose parallel computing
architecture, which, provide an application programming interface (API) based on
Python/Java/Fortran/C for the instruction set architecture (ISA) and an engine of a
GPU [5]. Hence, the CUDA C API environment allows to write programs in C as a
high-level programming language, this program is able to be executed on a CPU
(host) with the additional ability to run single input multiple thread (SIMT) code on
a GPU (device). The term SIMT refers to the model in which many threads are
running in parallel the same instructions at the same time, but with data specified by
that thread [5]. Therefore, the basic unit of parallelism in CUDA is the thread.
CUDA threads have their own program counter and registers. Furthermore, threads
share the stream (flow) instructions and execute instructions in parallel. Therefore,
CUDA devices can execute many threads simultaneously. Summarizing, a grid is a
collection of blocks (of 1, 2 or 3 dimensions), and a block is a collection of threads
(of 1, 2 or 3 dimensions). In this way, with CUDA is possible to launch multiple
blocks to perform a mathematical operation on a GPU. Furthermore, the compute
capability term is used by NVIDIA to describe the computational potential of a
GPU [5]. Furthermore, a kernel is a function (as a C function) that the designer
launch from the host and is executed on a GPU to perform some computation.
When a kernel is launched, a grid of blocks is created and the blocks are placed into
a queue to be executed by the GPU streaming multiprocessors (SMs).

1032 D. Castro-Palazuelos, D. Robles-Valdez, and D. Torres-Roman

3 Regularized Matched Spatial Filter Algorithm (R-MSF-
Algorithm)

In Fig. 1(a) is shown the multi-sensor imaging (MIR) radar system, which has the R-
MSF-Algorithm for RS imaging formation. The sensor array is composed of M sen-
sors, configured in a Y-shaped GeoSTAR [1] multi-sensor imaging radar geometry
(GeoSTAR MIR-Y), with 3 arms referenced beneath as A, B and C, with 8 equally
spaced sensors in each arm. Where, each sensor element receives signals at V (vertic-
al) and H (horizontal) polarizations for J pulse repetition times and Rr range gates.

(a)

(b)

Fig. 1. MIR radar system. (a) General diagram, and (b) Measurement data format

Each sensor delivers two measurements In-phase (Im) and Quadrature (Qm) (for
each pulse) as summarize in Fig. 1(b). Here, the first subindex j = 1, …, J indicates
the number of the snapshot corresponding to the jth transmitted pulse (where, J ≥
M+1 to form the full-rank sensor data covariance matrix Yr); the second subindex m
= 1, …, M = 24 corresponds to the mth sensor; the third and fourth subindexes corres-
pond to four cross polarization modes VV, VH, HV, and HH, respectively; the last
subindex r = 1, …, Rr corresponds to the range gate, see details in [2]. Once the mea-
surement data has been recorded according to the previously specified format, an
average of the four possible polarization modes measurements (VV, VH, HV, HH)
are performed to only has an average complex number (I-Q) by each sensor in each
PRT (J). The next step is to perform the following correlation function:

+

=

= ←Y u u() ()

1

1
.

J
j j

r r r
j

J
J

Averaged over Pulse Repetition Time for each range gate (1)

The superscript (+) means the Hermitian transpose, which is the transpose conju-
gate (*T). And, the corresponding real (Re{Yr}) and imaginary (Im{Yr}) parts of the
complex correlation coefficients become:

 () ()
= =

= +

 T T

I I Q QY u u u u() () () ()
() () () ()

1 1

1
Re{ }

J J
j j j j

r r r r r
j jJ

 (2)

 () ()
= =

= −

 () () () ()

() () () ()
1 1

1
Im{ } .

J J
j j j j

r r r r r
j jJ

T T
Q I I QY u u u u (3)

 An Efficient GPU-Based Implementation of the R-MSF-Algorithm 1033

The structure of the DED signal data correlation matrix Yr is shown in Fig. 2. The
matrix is composed of nine data blocks of 8-by-8 matrices, corresponding to correla-
tions of sensors between arms (see Fig. 2).

Fig. 2. Structure of the DED data correlation matrix Yr

The robust MSF method for RS image formation implies the computation of each
pixel of the image, employing the expression (4) that yields the MSF image of the
scene (for details see [1], [2])

1 2 1 21 2 (,) (,) 1 2

ˆ (,) ; where: 0 1; 0 1MSF q q r q qb q q q N q N
+

= ≤ ≤ − ≤ ≤ −arg Y arg (4)

(
)

1 2 1 2 1 2

1 2

(,) (1) () (1) () (2) () (2) ()

() () () ()

exp i2 (θ θ) ,exp i2 (θ θ) ,...

 ,exp i2 (θ θ)

q q x q y q x q y q

M x q M y q

u v u v

u v

π π

π

 = + +

 +

arg
 (5)

where, θx and θy are the directional cosines at a particular r from the range observation
domain r∈R , and N×N represents the dimension of the final obtained image. The R-
MSF-Algorithm is decomposed into three new small functions: the average method
(Av-Function), the cross-correlation matrix Yr algorithm (1)-(3) (Y-Function), and the
last for the matched spatial filter technique (4) (MSF-Function). An analysis of the
number of complex and arithmetic operations required by each of the implemented
algorithms is shown in Table 1 (where, Mult = Multiplication, and Add = Additions).

Table 1. Number of operations

Algorithm NumCom-
plexMult

NumCom-
plexAdd

NumArithme-
ticMult

NumArithmeti-
cAdd

NumTotalArith-
meticOperations

Av-Function /2 3 2 6 8

Y-Function 2 (+1/2) 2 (2 −1) 2 2 (2 +1) 2 2 (2 −1) 8 2

MSF-Function (2+) 2 (2−1) 2 4(2+) 2 2 2
(2 2+ −1)

2 2 (4 2+3 −1)

4 Parallelization of Some SP Procedures

This section describes how to implement the required basic matrix operations for the
R-MSF-Algorithm. From (2) and (3), two data u vectors (u(I)r = {u(I)r(1), u(I)r(2),…,

u(I)r(M)} and u(Q)r = {u(Q)r(1), u(Q)r(2),…, u(Q)r(M)}) are required to perform 4J multiplica-
tions of column vector by row vector, 4J+2 matrix additions, and 2 scalar matrix
multiplications. In addition, (5) are performed via off-line and previously stored in
memory, and this is composed by N2 arg vectors, where arg = {arg1, arg2, …, argM}.
Furthermore, in (4) N2 arg are provided to perform the N2 matrix operations of row

1034 D. Castro-Palazuelos, D. Robles-Valdez, and D. Torres-Roman

vector by a matrix multiplication followed by a row vector by column vector multipli-
cation. Hence, here is described the data dependencies of the following operations:
multiplication of column vector by row vector, row vector by a matrix multiplication,
and row vector by column vector multiplication. Thus, the concept of data depen-
dence can be explained as follows: given two sentences S and T, where S is executed
before T, also, there is a memory location that is referenced (read or write) by both
iterations in a nested loop L with (L1, L2). Then S(i1, i2) denotes the instance of S for a
iteration point (i1, i2), and T(j1, j2) the instance of T. Therefore, the distance from S(i1,
i2) to T(j1, j2) is defined to be the vector (j1 – i1, j2 – i2) where (i1, i2) and (j1, j2) are
the corresponding iteration points, respectively. Therefore, if an iteration of T depends
on an iteration of S, then the difference (=d j - i) between the two index values is

called dependence distance vectors for the nested loop (L) [6].

 (a)

(c)

(b)

Fig. 3. Pseudo-codes of some SP procedures. (a) Multiplication of column vector by row vec-
tor, (b) Complex multiplication of row vector by matrix, and (c) Image estimation of the scene.

In Fig. 3(a) a multiplication of column vector by row vector pseudo-code is listed.
The theory of dependence analysis proves that, there is no data dependency between
any iterations of the program, allowing to run simultaneously the both loops (i and k).
Next, Fig. 3(b) is listed the pseudo-code for complex multiplication of row vector by
matrix, and the dependence distance vector is d = (k-k) = (0), which, allows to execute
in a parallel way the loop of the index k. Furthermore, Fig3 (b) shows that the k index
iterations will produce a read and then a write on the same memory locations arg+Yreal
and arg+Yimag defined by (k), which shows that there is an associated dependency data
to the k index loop. Then, in Fig 3(c), a pseudo-code to perform the complex multipli-
cation of row vector by column vector is listed. In addition, Fig3 (c) shows that the k
index iterations will produce a read and then a write on the same memory locations
arg+Yargreal and arg+Yargimag defined by (k), which shows that there is an associated

 An Efficient GPU-Based Implementation of the R-MSF-Algorithm 1035

dependency data to the k index loop. Also, in the pseudo-code portion of the pixel
estimation in Fig. 3(c), shows that the sentence will not write or read on the same
memory location

MSFrealb̂ and
M SFimagb̂ defined by (q1, q2), hence, there are not associated

any data dependency to the index loops of q1 and q2, which allows to run at the same
time the both loops (q1 and q2). Finally, some matrix additions are required, if the ma-
trix addition operation is between two matrices, no data dependency exist. However, if
the matrix addition is between more of two matrices, then, a dependency associated to
the outer loop will appear.

5 GPU Implementation

As previously mentioned in the introduction section, three versions of the R-MSF-
Algorithm were implemented: Seq-CPU, OneThread, and MultiThread. These versions
were implemented onto a PC with the following features: i7-2600K (3.4 GHz) with 4
cores, 12GB RAM (random access memory), and a Tesla C2075 GPU with 448 CUDA
cores (14 multiprocessors x 32 CUDA cores), 1.15GHz clock rate, 65536 bytes of
constant memory, 49152 bytes of shared memory, 32768 register per block,1536 max-
imum number of threads per multiprocessor, 1024 maximum number of threads per
block, 1024x1024x64 maximum sizes of each dimension of a block, and
65535x65535x65535 maximum sizes of each dimension of a grid. Fig. 4(a) illustrates
that the Av-Function algorithm was implemented using a single CUDA kernel named
here as Average_Kernel; the Y-Function algorithm was implemented using three
CUDA kernels: Vec_Mult_Kernel, Sum_Matrix_Kernel, and Yr_Kernel. In addition,
the MSF-Function algorithm was implemented employing two steps: the first one per-
forms the computation of the arguments (5) (previously stored in memory), and the
second one performs the computation of each pixel of the output image (4), called here
as psi_Kernel (CUDA kernel).

(a)

(b)

Fig. 4. GPU implementation. (a) GPU as parallel mathematical co-processor (master/slave as
communication model) , (b) . Memory requirements for the R-MSF-Algorithm with J = {25,
26, …, 75}, M = 24 and N = {27, 28, …, 211}.

Hence, a GPU is employed as a mathematical co-processor of the CPU, where the
CPU (host) is the master and a GPU (device) is the slave (see Fig. 4(a)). Therefore, the
algorithm execution is as follows: Average_Kernel performs the average of the four
possible polarization modes measurements (IjmVVr, IjmVHr, IjmHVr, IjmHHr and QjmVVr,

1036 D. Castro-Palazuelos, D. Robles-Valdez, and D. Torres-Roman

QjmVHr, QjmHVr, QjmHHr) to obtain a complex number (I-Q) by each sensor in each PRT
(J). Then, Vec_Mult_Kernel performs the required calculation of the four multiplica-
tions of column vector by a row vector, thereby, the J matrices with dimensions of
[M×M] are obtained. Next, Sum_Matrix_Kernel performs the matrix addition of the J
matrices that were obtained above, thus, four matrices with size of [M×M] are ob-
tained. Therefore, Yr_Kernel performs two matrix additions and two average calcula-
tions of the I and Q parts, correspondingly, thereby, two matrices with length of
[M×M] are produced (I and Q matrices of Yr). Finally, psi_Kernel performs multiplica-
tions of row vector by a matrix and multiplications of row vector by a column vector
required to define each pixel value of the output image of dimension [N×N]. Once the
R-MSF-Algorithm has been implemented, an analysis of memory requirements was
performed to know the behavior of the memory re-size for different values of J (J ≥ M
+ 1, number of PRTs), M (number of sensors), and N (image dimension) (see Fig.
4(b)). From (4), it follows that the parameter N has the greatest influence over the
growth of memory requirement, as shown in Fig. 4(b). For example: if J =25, M =24
and N = {128, 256, 512}, hence, the total memory requirements were 19804032 bytes,
77606784 bytes, and 308817792 bytes, respectively.

6 Performance Analysis

The execution time of a task is defined as the amount of time required by the R-MSF-
Algorithm to accomplish this task. Hence, when N = 128 the average execution times
achieved by each algorithm versions were: 2.7146ms by the MultiThread version,
47.4840ms by the Seq-CPU version, and 1549.8419ms by OneThread version. Then,
when N = 256, the average execution times achieved by each algorithm versions were:
8.8912ms by the MultiThread version, 183.2489ms by the Seq-CPU version, and
6035.2695ms by the OneThread version.

(a)

(b)

(c)

Fig. 5. Execution time by each R-MSF-Algorithm with J = {25, 26,…, 75}, M = 24, and N =
{128, 256, 512} for 100 iterations. (a) OneThread version, (b) Seq-CPU version, and (c)
MultiThread version.

 An Efficient GPU-Based Implementation of the R-MSF-Algorithm 1037

Furthermore, with N = 512, the average execution times achieved were:
23971.644ms by the OneThread version, 732.5262ms by the Seq-CPU version, and
33.1519ms by the MultiThread version. In addition, Fig. 5(a) to Fig. 5(c) show the
general behavior of execution time of the three deployed versions when J = {25, 26, ...
, 75}, M = 24, N = {27, 28, 29}, respectively. The latter shows that the parameter that
most influences the execution time is N. The speedup (Sp) metric [7] of a parallel
computation that employ p processing elements is defined as the rate: Sp = T1 / Tp,
where T1 is the required execution time to perform the computation of the algorithm on
one processing element (best sequential version, Seq-CPU), and Tp is the required ex-
ecution time to perform the computation of the algorithm on p processing elements
(MultiThread version). Therefore, the speedup metric shows the speed gain of the pa-
rallel computation of the algorithm over the sequential algorithm computation.

Fig. 6. Speedup with J = {25, 26,…, 75}, M = 24, and N = {128, 256, 512} for 100 iterations

Hence, the achieved average speedup by the MultiThread version was: 17.57 for N
= 128, 20.6187 for N = 256, and 22.0969 for N = 512. In addition, Fig. 6 shows the
speedup general behavior of the deployed algorithm when J = {25, 26, ... , 75}, M =
24, N = {27, 28, 29}, respectively.

7 Conclusions

This paper presents an efficient real time implementation of the R-MSF-Algorithm
that is employed to solve the remote sensing imaging problems. The improvement of
the execution time was achieved by transformation of some code segments and
mapped on a GPU in a parallel way. Therefore, the parallelized implementation is
highly scalable on multi-processors and for different: number of sensors (M), number
of pulse repetition times (J), and different image sizes [N × N]. The MultiThread
version achieved excellent speedups of 15.5X and 22.5X (for image sizes of [128 ×
128], [256 × 256] and [512 × 512]), allowing to obtain 50, 22 and 6 images per
second respectively. Furthermore, the GPU parallelized implementation is portable
across others GPU architectures.

1038 D. Castro-Palazuelos, D. Robles-Valdez, and D. Torres-Roman

References

1. Tanner, A.B., et al.: Initial Results of the Geosynchronous Synthetic Thinned Aperture Ra-
diometer (GeoSTAR). In: IEEE Inern. Symposium on Geoscience and Remote Sensing,
IGARSS 2006, pp. 3951–3954. IEEE (2006), ISBN 0-7803-9510-7/06

2. Shkvarko, Y., Espadas, V., Castro, D.: Descriptive Experiment Design Optimization of
GeoSTAR Configured Multisensor Imaging Radar. In: 4th International Radio Electronics
Forum (IREF 2011), Kharkov, Ukraine, vol. I, pp. 76–81 (October 2011)

3. Ponomaryov, V.I.: Real-time 2D–3D filtering using order statistics based algorithms. Jour-
nal Real-Time Image Processing 1, 173–194 (2007)

4. Hwu, W.: GPU Computing Gems Emerald Edition, 1st edn. Morgan Kaufmann (2011)
5. NVIDIA, CUDA C Programming Guide, version 6.0 (2014)
6. Banerjee, U.: Loop Transformations for Restructuring Compilers: The Foundations, 1993th

edn. Springer (January 31, 1993)
7. Moldovan, D.I.: Parallel Processing, From Applications to System. Morgan Kaufmann Pub-

lishers, San Mateo California, U.S.A.

	An Efficient GPU-Based Implementation of the R-MSF-Algorithm for Remote Sensing Imagery
	1 Introduction
	2 NVIDIA GPU and CUDA
	3 Regularized Matched Spatial Filter Algorithm (R-MSF-Algorithm)
	4 Parallelization of Some SP Procedures
	5 GPU Implementation
	6 Performance Analysis
	7 Conclusions
	References

