Skip to main content

Non-alcoholic Fatty Liver Disease

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Metabolic Syndrome
  • 14 Accesses

Abstract

Obesity is associated with nonalcoholic fatty liver disease (NAFLD), cardiovascular disease (CVD), and type 2 diabetes mellitus (T2DM). In recent years, NAFLD has emerged as the most common liver disease, affecting 25% of the global population. NAFLD is characterized by the accumulation of excessive lipids within hepatocytes, insulin resistance, abdominal fat distribution, dyslipidemia, and high blood pressure. NAFLD is highly prevalent in the United States, and represents abnormalities ranging from hepatic steatosis to more severe forms of nonalcoholic steatohepatitis, which can induce cirrhosis, fibrosis, and hepatocellular carcinoma. NAFLD involves a reprogrammed hepatic metabolic machinery that leads to excessive lipid accumulation and imbalances in lipid metabolism and lipid catabolism in the liver. Hepatic lipid homeostasis is well elucidated as a complex processes, including cellular signaling and transcriptional pathways and genes associated with fatty acid (FA) uptake and oxidation and lipogenesis. This chapter discusses the definition, risk factors, and diagnosis of NAFLD. We also describe animal models used to study the disease, i.e., dietary and genetic models. Lastly, we discuss the current therapies for NAFLD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Younossi Z, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018;15(1):11–20.

    Article  PubMed  Google Scholar 

  2. Kim D, et al. Changing trends in etiology-based annual mortality from chronic liver disease, from 2007 through 2016. Gastroenterology. 2018;155(4):1154–63.e3.

    Article  PubMed  Google Scholar 

  3. Fan JG, Kim SU, Wong VW. New trends on obesity and NAFLD in Asia. J Hepatol. 2017;67(4):862–73.

    Article  PubMed  Google Scholar 

  4. Estes C, et al. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology. 2018;67(1):123–33.

    Article  CAS  PubMed  Google Scholar 

  5. Younossi Z, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology. 2019;69(6):2672–82.

    Article  PubMed  Google Scholar 

  6. Anstee QM, Targher G, Day CP. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol. 2013;10(6):330–44.

    Article  CAS  PubMed  Google Scholar 

  7. Younossi ZM, et al. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73–84.

    Article  PubMed  Google Scholar 

  8. Feijo SG, et al. The spectrum of non alcoholic fatty liver disease in morbidly obese patients: prevalence and associate risk factors. Acta Cir Bras. 2013;28(11):788–93.

    Article  PubMed  Google Scholar 

  9. White DL, Kanwal F, El-Serag HB. Association between nonalcoholic fatty liver disease and risk for hepatocellular cancer, based on systematic review. Clin Gastroenterol Hepatol. 2012;10(12):1342.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yang JD, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16(10):589–604.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yamamura S, et al. MAFLD identifies patients with significant hepatic fibrosis better than NAFLD. Liver Int. 2020;40(12):3018–30.

    Article  CAS  PubMed  Google Scholar 

  12. Eslam M, et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol. 2020;73(1):202–9.

    Article  PubMed  Google Scholar 

  13. Chalasani N, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology. 2012;142(7):1592–609.

    Article  PubMed  Google Scholar 

  14. Rich NE, et al. Racial and ethnic disparities in nonalcoholic fatty liver disease prevalence, severity, and outcomes in the United States: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2018;16(2):198–210 e2.

    Article  PubMed  Google Scholar 

  15. Wong RJ, Liu B, Bhuket T. Significant burden of nonalcoholic fatty liver disease with advanced fibrosis in the US: a cross-sectional analysis of 2011-2014 National Health and Nutrition Examination Survey. Aliment Pharmacol Ther. 2017;46(10):974–80.

    Article  CAS  PubMed  Google Scholar 

  16. Li J, et al. Prevalence of non-alcoholic fatty liver disease(Nafld) in Asia: a systematic review and meta-analysis of 195 studies and 1,753,168 subjects from 15 countries and areas. Gastroenterology. 2018;154(6):S1165.

    Article  Google Scholar 

  17. Wong VW, et al. Incidence of non-alcoholic fatty liver disease in Hong Kong: a population study with paired proton-magnetic resonance spectroscopy. J Hepatol. 2015;62(1):182–9.

    Article  PubMed  Google Scholar 

  18. Lin Y, et al. Age patterns of nonalcoholic fatty liver disease incidence: heterogeneous associations with metabolic changes. Diabetol Metab Syndr. 2022;14(1):181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hartleb M, et al. Non-alcoholic fatty liver and advanced fibrosis in the elderly: results from a community-based polish survey. Liver Int. 2017;37(11):1706–14.

    Article  CAS  PubMed  Google Scholar 

  20. Dufour J-F, et al. The global epidemiology of nonalcoholic steatohepatitis (NASH) and associated risk factors – a targeted literature review. Endocr Metabol Sci. 2021;3:100089.

    Article  CAS  Google Scholar 

  21. Mantovani A, et al. Complications, morbidity and mortality of nonalcoholic fatty liver disease. Metabolism. 2020;111S:154170.

    Article  PubMed  Google Scholar 

  22. Noureddin M, et al. NASH leading cause of liver transplant in women: updated analysis of indications for liver transplant and ethnic and gender variances. Am J Gastroenterol. 2018;113(11):1649–59.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rotman Y, et al. The association of genetic variability in patatin-like phospholipase domain-containing protein 3 (PNPLA3) with histological severity of nonalcoholic fatty liver disease. Hepatology. 2010;52(3):894–903.

    Article  CAS  PubMed  Google Scholar 

  24. Smagris E, et al. Inactivation of Tm6sf2, a gene defective in fatty liver disease, impairs lipidation but not secretion of very low density lipoproteins. J Biol Chem. 2016;291(20):10659–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kozlitina J, et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2014;46(4):352–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Holmen OL, et al. Systematic evaluation of coding variation identifies a candidate causal variant in TM6SF2 influencing total cholesterol and myocardial infarction risk. Nat Genet. 2014;46(4):345–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sookoian S, Pirola CJ. PNPLA3, the triacylglycerol synthesis/hydrolysis/storage dilemma, and nonalcoholic fatty liver disease. World J Gastroenterol. 2012;18(42):6018–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. BasuRay S, et al. The PNPLA3 variant associated with fatty liver disease (I148M) accumulates on lipid droplets by evading ubiquitylation. Hepatology. 2017;66(4):1111–24.

    Article  CAS  PubMed  Google Scholar 

  29. Yang A, et al. Dynamic interactions of ABHD5 with PNPLA3 regulate triacylglycerol metabolism in brown adipocytes. Nat Metab. 2019;1(5):560–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Teo K, et al. rs641738C>T near MBOAT7 is associated with liver fat, ALT and fibrosis in NAFLD: a meta-analysis. J Hepatol. 2021;74(1):20–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thangapandi VR, et al. Loss of hepatic Mboat7 leads to liver fibrosis. Gut. 2021;70(5):940–50.

    Article  CAS  PubMed  Google Scholar 

  32. Meroni M, et al. Mboat7 down-regulation by hyper-insulinemia induces fat accumulation in hepatocytes. EBioMedicine. 2020;52:102658.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Stancakova A, et al. Effects of 34 risk loci for type 2 diabetes or hyperglycemia on lipoprotein subclasses and their composition in 6,580 nondiabetic Finnish men. Diabetes. 2011;60(5):1608–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Petta S, et al. Glucokinase regulatory protein gene polymorphism affects liver fibrosis in non-alcoholic fatty liver disease. PLoS One. 2014;9(2):e87523.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Canesin G, et al. Heme-derived metabolic signals dictate immune responses. Front Immunol. 2020;11:66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chang PF, et al. Heme oxygenase-1 gene promoter polymorphism and the risk of pediatric nonalcoholic fatty liver disease. Int J Obes. 2015;39(8):1236–40.

    Article  CAS  Google Scholar 

  37. Raffaele M, et al. Inhibition of Heme oxygenase antioxidant activity exacerbates hepatic steatosis and fibrosis in vitro. Antioxidants (Basel). 2019;8(8):277.

    Article  CAS  PubMed  Google Scholar 

  38. Canesin G, et al. Heme oxygenase-1 mitigates liver injury and fibrosis via modulation of LNX1/Notch1 pathway in myeloid cells. iScience. 2022;25(9):104983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mehta R, et al. The role of mitochondrial genomics in patients with non-alcoholic steatohepatitis (NASH). BMC Med Genet. 2016;17(1):63.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Anty R, et al. A new composite model including metabolic syndrome, alanine aminotransferase and cytokeratin-18 for the diagnosis of non-alcoholic steatohepatitis in morbidly obese patients. Aliment Pharmacol Ther. 2010;32(11–12):1315–22.

    Article  CAS  PubMed  Google Scholar 

  41. Yu SJ, et al. Visceral obesity predicts significant fibrosis in patients with nonalcoholic fatty liver disease. Medicine (Baltimore). 2015;94(48):e2159.

    Article  PubMed  Google Scholar 

  42. Chang Y, et al. Weight gain within the normal weight range predicts ultrasonographically detected fatty liver in healthy Korean men. Gut. 2009;58(10):1419–25.

    Article  CAS  PubMed  Google Scholar 

  43. Quek J, et al. Global prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in the overweight and obese population: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2023;8(1):20–30.

    Article  PubMed  Google Scholar 

  44. Polyzos SA, Kountouras J, Zavos C. Nonalcoholic fatty liver disease: the pathogenetic roles of insulin resistance and adipocytokines. Curr Mol Med. 2009;9(3):299–314.

    Article  CAS  PubMed  Google Scholar 

  45. Bugianesi E, et al. Insulin resistance in nonalcoholic fatty liver disease. Curr Pharm Des. 2010;16(17):1941–51.

    Article  CAS  PubMed  Google Scholar 

  46. Polyzos SA, et al. The potential adverse role of leptin resistance in nonalcoholic fatty liver disease a hypothesis based on critical review of the literature. J Clin Gastroenterol. 2011;45(1):50–4.

    Article  CAS  PubMed  Google Scholar 

  47. Amiri Dash Atan N, et al. Type 2 diabetes mellitus and non-alcoholic fatty liver disease: a systematic review and meta-analysis. Gastroenterol Hepatol Bed Bench. 2017;10(Suppl1):S1–7.

    PubMed  PubMed Central  Google Scholar 

  48. Golabi P, et al. The worldwide prevalence of non-alcoholic steatohepatitis (NASH) in patients with type 2 diabetes mellitus (DM). J Hepatol. 2018;68:S841.

    Article  Google Scholar 

  49. Powell EE, Wong VW, Rinella M. Non-alcoholic fatty liver disease. Lancet. 2021;397(10290):2212–24.

    Article  CAS  PubMed  Google Scholar 

  50. Ortiz-Lopez C, et al. Prevalence of prediabetes and diabetes and metabolic profile of patients with nonalcoholic fatty liver disease (NAFLD). Diabetes Care. 2012;35(4):873–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Serin Y, Acar Tek N. Effect of circadian rhythm on metabolic processes and the regulation of energy balance. Ann Nutr Metab. 2019;74(4):322–30.

    Article  CAS  PubMed  Google Scholar 

  52. Adamovich Y, et al. Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides. Cell Metab. 2014;19(2):319–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jacobi D, et al. Hepatic Bmal1 regulates rhythmic mitochondrial dynamics and promotes metabolic fitness. Cell Metab. 2015;22(4):709–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rudic RD, et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2004;2(11):e377.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Marcheva B, et al. Disruption of the CLOCK components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature. 2010;466(7306):627–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Perumpail BJ, et al. Clinical epidemiology and disease burden of nonalcoholic fatty liver disease. World J Gastroenterol. 2017;23(47):8263–76.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yang J, et al. Sleep factors in relation to metabolic dysfunction-associated fatty liver disease in middle-aged and elderly Chinese. J Clin Endocrinol Metab. 2022;107(10):2874–82.

    Article  PubMed  Google Scholar 

  58. Langin D, Arner P. Importance of TNFalpha and neutral lipases in human adipose tissue lipolysis. Trends Endocrinol Metab. 2006;17(8):314–20.

    Article  CAS  PubMed  Google Scholar 

  59. Kim CW, et al. Sleep duration and quality in relation to non-alcoholic fatty liver disease in middle-aged workers and their spouses. J Hepatol. 2013;59(2):351–7.

    Article  PubMed  Google Scholar 

  60. Fouhy F, et al. Composition of the early intestinal microbiota: knowledge, knowledge gaps and the use of high-throughput sequencing to address these gaps. Gut Microbes. 2012;3(3):203–20.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Le Roy T, et al. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut. 2013;62(12):1787–94.

    Article  PubMed  Google Scholar 

  62. Henao-Mejia J, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482(7384):179–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Leung C, et al. The role of the gut microbiota in NAFLD. Nat Rev Gastroenterol Hepatol. 2016;13(7):412–25.

    Article  CAS  PubMed  Google Scholar 

  64. Kirpich IA, Marsano LS, McClain CJ. Gut-liver axis, nutrition, and non-alcoholic fatty liver disease. Clin Biochem. 2015;48(13–14):923–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wahlstrom A, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016;24(1):41–50.

    Article  PubMed  Google Scholar 

  66. Sayin SI, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of Tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 2013;17(2):225–35.

    Article  CAS  PubMed  Google Scholar 

  67. Staley C, Khoruts A, Sadowsky MJ. Contemporary applications of fecal microbiota transplantation to treat intestinal diseases in humans. Arch Med Res. 2017;48(8):766–73.

    Article  PubMed  Google Scholar 

  68. Arab JP, et al. Bile acids and nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives. Hepatology. 2017;65(1):350–62.

    Article  PubMed  Google Scholar 

  69. Jennifer Gallacher SM. Practical diagnosis and staging of nonalcoholic fatty liver disease: a narrative review. Hepatology. 2018;3:108. https://doi.org/10.33590/emj/10314271.

    Article  Google Scholar 

  70. Tahan V, et al. Serum gamma-glutamyltranspeptidase distinguishes non-alcoholic fatty liver disease at high risk. Hepato-Gastroenterology. 2008;55(85):1433–8.

    CAS  PubMed  Google Scholar 

  71. Dyson JK, Anstee QM, McPherson S. Non-alcoholic fatty liver disease: a practical approach to diagnosis and staging. Frontline Gastroenterol. 2014;5(3):211–8.

    Article  CAS  PubMed  Google Scholar 

  72. Borrelli A, et al. Role of gut microbiota and oxidative stress in the progression of non-alcoholic fatty liver disease to hepatocarcinoma: current and innovative therapeutic approaches. Redox Biol. 2018;15:467–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Giboney PT. Mildly elevated liver transaminase levels in the asymptomatic patient. Am Fam Physician. 2005;71(6):1105–10.

    PubMed  Google Scholar 

  74. Brunt EM, et al. Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings. Hepatology. 2011;53(3):810–20.

    Article  CAS  PubMed  Google Scholar 

  75. Jacobs A, et al. An overview of mouse models of nonalcoholic steatohepatitis: from past to present. Curr Protoc Mouse Biol. 2016;6(2):185–200.

    Article  PubMed  Google Scholar 

  76. Ito M, et al. Longitudinal analysis of murine steatohepatitis model induced by chronic exposure to high-fat diet. Hepatol Res. 2007;37(1):50–7.

    Article  CAS  PubMed  Google Scholar 

  77. Speakman JR. Use of high-fat diets to study rodent obesity as a model of human obesity. Int J Obes. 2019;43(8):1491–2.

    Article  Google Scholar 

  78. Fakhoury-Sayegh N, et al. Characteristics of nonalcoholic fatty liver disease induced in Wistar rats following four different diets. Nutr Res Pract. 2015;9(4):350–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chen K, et al. Advancing the understanding of NAFLD to hepatocellular carcinoma development: from experimental models to humans. Biochim Biophys Acta Rev Cancer. 2019;1871(1):117–25.

    Article  CAS  PubMed  Google Scholar 

  80. Vonghia L, et al. CD4+ROR gamma t++ and Tregs in a mouse model of diet-induced nonalcoholic steatohepatitis. Mediat Inflamm. 2015;2015:239623.

    Article  Google Scholar 

  81. Lustig RH, Schmidt LA, Brindis CD. The toxic truth about sugar. Nature. 2012;482(7383):27–9.

    Article  CAS  PubMed  Google Scholar 

  82. Nomura K, Yamanouchi T. The role of fructose-enriched diets in mechanisms of nonalcoholic fatty liver disease. J Nutr Biochem. 2012;23(3):203–8.

    Article  CAS  PubMed  Google Scholar 

  83. Abe N, et al. Longitudinal characterization of diet-induced genetic murine models of non-alcoholic steatohepatitis with metabolic, histological, and transcriptomic hallmarks of human patients. Biol Open. 2019;8(5):bio041251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bray GA, Nielsen SJ, Popkin BM. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr. 2004;79(4):537–43.

    Article  CAS  PubMed  Google Scholar 

  85. Korinkova L, et al. Pathophysiology of NAFLD and NASH in experimental models: the role of food intake regulating peptides. Front Endocrinol (Lausanne). 2020;11:597583.

    Article  CAS  PubMed  Google Scholar 

  86. Corbin KD, Zeisel SH. Choline metabolism provides novel insights into nonalcoholic fatty liver disease and its progression. Curr Opin Gastroenterol. 2012;28(2):159–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lau JK, Zhang X, Yu J. Animal models of non-alcoholic fatty liver disease: current perspectives and recent advances. J Pathol. 2017;241(1):36–44.

    Article  PubMed  Google Scholar 

  88. Leclercq IA, et al. CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis. J Clin Invest. 2000;105(8):1067–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kirsch R, et al. Rodent nutritional model of non-alcoholic steatohepatitis: species, strain and sex difference studies. J Gastroenterol Hepatol. 2003;18(11):1272–82.

    Article  PubMed  Google Scholar 

  90. Machado MV, et al. Mouse models of diet-induced nonalcoholic steatohepatitis reproduce the heterogeneity of the human disease. PLoS One. 2015;10(5):e0127991.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Trak-Smayra V, et al. Pathology of the liver in obese and diabetic ob/ob and db/db mice fed a standard or high-calorie diet. Int J Exp Pathol. 2011;92(6):413–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yang SQ, et al. Obesity increases sensitivity to endotoxin liver injury: implications for the pathogenesis of steatohepatitis. Proc Natl Acad Sci U S A. 1997;94(6):2557–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Campfield LA, Smith FJ, Burn P. The OB protein (leptin) pathway – a link between adipose tissue mass and central neural networks. Horm Metab Res. 1996;28(12):619–32.

    Article  CAS  PubMed  Google Scholar 

  94. Sahai A, et al. Obese and diabetic db/db mice develop marked liver fibrosis in a model of nonalcoholic steatohepatitis: role of short-form leptin receptors and osteopontin. Am J Physiol Gastrointest Liver Physiol. 2004;287(5):G1035–43.

    Article  CAS  PubMed  Google Scholar 

  95. Pelleymounter MA, et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science. 1995;269(5223):540–3.

    Article  CAS  PubMed  Google Scholar 

  96. Wang B, Chandrasekera PC, Pippin JJ. Leptin- and leptin receptor-deficient rodent models: relevance for human type 2 diabetes. Curr Diabetes Rev. 2014;10(2):131–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pawlak M, Lefebvre P, Staels B. Molecular mechanism of PPAR alpha action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol. 2015;62(3):720–33.

    Article  CAS  PubMed  Google Scholar 

  98. Liss KHH, Finck BN. PPARs and nonalcoholic fatty liver disease. Biochimie. 2017;136:65–74.

    Article  CAS  PubMed  Google Scholar 

  99. Gao Q, et al. PPAR alpha-deficient Ob/Ob obese mice become more obese and manifest severe hepatic steatosis due to decreased fatty acid oxidation. Am J Pathol. 2015;185(5):1396–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Stec DE, et al. Loss of hepatic PPAR alpha promotes inflammation and serum hyperlipidemia in diet-induced obesity. Am J Phys Regul Integr Comp Phys. 2019;317(5):R733–45.

    CAS  Google Scholar 

  101. Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci. 2018;75(18):3313–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pei K, et al. An overview of lipid metabolism and nonalcoholic fatty liver disease. Biomed Res Int. 2020;2020:1.

    Google Scholar 

  103. Bence KK, Birnbaum MJ. Metabolic drivers of non-alcoholic fatty liver disease. Mol Metabol. 2020;50:50.

    Google Scholar 

  104. Rada P, et al. Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver? Cell Death Dis. 2020;11(9):802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wilson CG, et al. Hepatocyte-specific disruption of CD36 attenuates fatty liver and improves insulin sensitivity in HFD-fed mice. Endocrinology. 2016;157(2):570–85.

    Article  CAS  PubMed  Google Scholar 

  106. Cusi K, et al. Long-term pioglitazone treatment for patients with nonalcoholic steatohepatitis and prediabetes or type 2 diabetes mellitus: a randomized trial. Ann Intern Med. 2016;165(5):305–15.

    Article  PubMed  Google Scholar 

  107. Sanyal AJ, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010;362(18):1675–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chalasani N, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67(1):328–57.

    Article  PubMed  Google Scholar 

  109. Loomba R, et al. Clinical trial: pilot study of metformin for the treatment of non-alcoholic steatohepatitis. Aliment Pharmacol Ther. 2009;29(2):172–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Uygun A, et al. Metformin in the treatment of patients with non-alcoholic steatohepatitis. Aliment Pharmacol Ther. 2004;19(5):537–44.

    Article  CAS  PubMed  Google Scholar 

  111. Athyros VG, et al. Safety and efficacy of long-term statin treatment for cardiovascular events in patients with coronary heart disease and abnormal liver tests in the Greek Atorvastatin and Coronary Heart Disease Evaluation (GREACE) study: a post-hoc analysis. Lancet. 2010;376(9756):1916–22.

    Article  CAS  PubMed  Google Scholar 

  112. Kuchay MS, et al. Effect of Empagliflozin on liver fat in patients with type 2 diabetes and nonalcoholic fatty liver disease: a randomized controlled trial (E-LIFT trial). Diabetes Care. 2018;41(8):1801–8.

    Article  CAS  PubMed  Google Scholar 

  113. Armstrong MJ, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet. 2016;387(10019):679–90.

    Article  CAS  PubMed  Google Scholar 

  114. Schauer PR, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366(17):1567–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sanyal AJ, et al. Challenges and opportunities in drug and biomarker development for nonalcoholic steatohepatitis: findings and recommendations from an American Association for the Study of Liver Diseases-U.S. Food and Drug Administration Joint Workshop. Hepatology. 2015;61(4):1392–405.

    Article  PubMed  Google Scholar 

  116. Belfort R, et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med. 2006;355(22):2297–307.

    Article  CAS  PubMed  Google Scholar 

  117. National Institute for Health and Care Excellence. Non-alcoholic fatty liver disease: assessment and management. National Institute for Health and Care Excellence (NICE), London, UK: 2016.

    Google Scholar 

  118. Promrat K, et al. Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis. Hepatology. 2010;51(1):121–9.

    Article  CAS  PubMed  Google Scholar 

  119. Lincoff AM, et al. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus – a meta-analysis of randomized trials. JAMA. 2007;298(10):1180–8.

    Article  CAS  PubMed  Google Scholar 

  120. Loke YK, Singh S, Furberg CD. Long-term use of thiazolidinediones and fractures in type 2 diabetes: a meta-analysis. Can Med Assoc J. 2009;180(1):32–9.

    Article  Google Scholar 

  121. Karimian G, et al. Vitamin E attenuates the progression of non-alcoholic fatty liver disease caused by partial hepatectomy in mice. PLoS One. 2015;10(11):e0143121.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Bugianesi E, et al. A randomized controlled trial of metformin versus vitamin E or prescriptive diet in nonalcoholic fatty liver disease. Am J Gastroenterol. 2005;100(5):1082–90.

    Article  CAS  PubMed  Google Scholar 

  123. Cohen DE, Anania FA, Chalasani N. An assessment of statin safety by hepatologists. Am J Cardiol. 2006;97(8a):77c–81c.

    Article  CAS  PubMed  Google Scholar 

  124. Abraldes JG, et al. Addition of simvastatin to standard therapy for the prevention of variceal rebleeding does not reduce rebleeding but increases survival in patients with cirrhosis. Gastroenterology. 2016;150(5):1160–1170 e3.

    Article  CAS  PubMed  Google Scholar 

  125. Armstrong MJ, et al. Glucagon-like peptide 1 decreases lipotoxicity in non-alcoholic steatohepatitis. J Hepatol. 2016;64(2):399–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ito D, et al. Comparison of Ipragliflozin and pioglitazone effects on nonalcoholic fatty liver disease in patients with type 2 diabetes: a randomized, 24-week, open-label, active-controlled trial. Diabetes Care. 2017;40(10):1364–72.

    Article  CAS  PubMed  Google Scholar 

  127. Fakhry TK, et al. Bariatric surgery improves nonalcoholic fatty liver disease: a contemporary systematic review and meta-analysis. Surg Obes Relat Dis. 2019;15(3):502–11.

    Article  PubMed  Google Scholar 

  128. Esquivel CM, et al. Laparoscopic sleeve gastrectomy resolves NAFLD: another formal indication for bariatric surgery? Obes Surg. 2018;28(12):4022–33.

    Article  PubMed  Google Scholar 

  129. Aller R, et al. Effect on liver enzymes of biliopancreatic diversion: 4 years of follow-up. Ann Nutr Metab. 2015;66(2–3):132–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

JHC is supported by NRF-2021R1I1A2041463 and KGM5392212, and SFK is supported by the American Heart Association 20SFRN35210662

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sangwon F. Kim or Jang Hyun Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kim, S.F., Choi, J.H. (2023). Non-alcoholic Fatty Liver Disease. In: Ahima, R.S. (eds) Metabolic Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-319-12125-3_36-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12125-3_36-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12125-3

  • Online ISBN: 978-3-319-12125-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Non-alcoholic Fatty Liver Disease
    Published:
    19 September 2023

    DOI: https://doi.org/10.1007/978-3-319-12125-3_36-2

  2. Original

    Non-alcoholic Fatty Liver Disease
    Published:
    15 July 2015

    DOI: https://doi.org/10.1007/978-3-319-12125-3_36-1