Skip to main content

Circadian Rhythms and Metabolism

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Metabolic Syndrome

Abstract

The circadian system relies on a master clock in the suprachiasmatic nucleus (SCN) of the hypothalamus, synchronizing a multitude of brain and peripheral oscillators that set physiological and metabolic functions in phase with the light-dark cycle. The SCN functions as a relay integrating environmental signals before sending appropriate neuronal and hormonal signals to the brain and peripheral tissues to control, among others, sleep/wake and feeding/fasting cycles. Studies show that the circadian system and metabolism are tightly interconnected. Peripheral oscillators in the liver and adipose tissue can be shifted by meal timing. In contrast, feeding signals do not affect the master clock under light-dark conditions, although nutritional cues affect its functioning under metabolic challenges, such as calorie restriction and high-fat diet. Circadian desynchronization, such as shift-work and chronic jet-lag, is now recognized as a determinant of metabolic disturbances. Therefore, chronotherapeutic approaches of daily dieting to avoid circadian misalignment are important for the management of obesity and type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010;72:517–49. https://doi.org/10.1146/annurev-physiol-021909-135821.

    Article  CAS  PubMed  Google Scholar 

  2. Ko CH, Takahashi JS. Molecular components of the mammalian circadian clock. Hum Mol Genet. 2006;15(Spec 2):R271–7. https://doi.org/10.1093/hmg/ddl207. 15/suppl_2/R271 [pii]

    Article  CAS  PubMed  Google Scholar 

  3. Hattar S, Kumar M, Park A, Tong P, Tung J, Yau KW, Berson DM. Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol. 2006;497(3):326–49. https://doi.org/10.1002/cne.20970.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Golombek DA, Rosenstein RE. Physiology of circadian entrainment. Physiol Rev. 2010;90(3):1063–102. https://doi.org/10.1152/physrev.00009.2009. 90/3/1063 [pii]

    Article  CAS  PubMed  Google Scholar 

  5. Harrington ME. The ventral lateral geniculate nucleus and the intergeniculate leaflet: interrelated structures in the visual and circadian systems. Neurosci Biobehav Rev. 1997;21(5):705–27. S0149-7634(96)00019-X [pii]

    Article  CAS  PubMed  Google Scholar 

  6. Brown TM, Coogan AN, Cutler DJ, Hughes AT, Piggins HD. Electrophysiological actions of orexins on rat suprachiasmatic neurons in vitro. Neurosci Lett. 2008;448(3):273–8. https://doi.org/10.1016/j.neulet.2008.10.058. S0304-3940(08)01459-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  7. Morin LP. Serotonin and the regulation of mammalian circadian rhythmicity. Ann Med. 1999;31(1):12–33.

    Article  CAS  PubMed  Google Scholar 

  8. Challet E. Interactions between light, mealtime and calorie restriction to control daily timing in mammals. J Comp Physiol B. 2010;180(5):631–44. https://doi.org/10.1007/s00360-010-0451-4.

    Article  PubMed  Google Scholar 

  9. Feillet CA, Mendoza J, Albrecht U, Pevet P, Challet E. Forebrain oscillators ticking with different clock hands. Mol Cell Neurosci. 2008;37(2):209–21. https://doi.org/10.1016/j.mcn.2007.09.010. S1044-7431(07)00221-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  10. Guilding C, Piggins HD. Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain? Eur J Neurosci. 2007;25(11):3195–216. https://doi.org/10.1111/j.1460-9568.2007.05581.x. EJN5581 [pii]

    Article  PubMed  Google Scholar 

  11. Shieh KR, Yang SC, Lu XY, Akil H, Watson SJ. Diurnal rhythmic expression of the rhythm-related genes, rPeriod1, rPeriod2, and rClock, in the rat brain. J Biomed Sci. 2005;12(1):209–17. https://doi.org/10.1007/s11373-004-8176-6.

    Article  CAS  PubMed  Google Scholar 

  12. Abe M, Herzog ED, Yamazaki S, Straume M, Tei H, Sakaki Y, Menaker M, Block GD. Circadian rhythms in isolated brain regions. J Neurosci. 2002;22(1):350–6. 22/1/350 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reick M, Garcia JA, Dudley C, McKnight SL. NPAS2: an analog of clock operative in the mammalian forebrain. Science. 2001;293(5529):506–9. https://doi.org/10.1126/science.1060699.

    Article  CAS  PubMed  Google Scholar 

  14. Kalsbeek A, Palm IF, La Fleur SE, Scheer FA, Perreau-Lenz S, Ruiter M, Kreier F, Cailotto C, Buijs RM. SCN outputs and the hypothalamic balance of life. J Biol Rhythms. 2006;21(6):458–69. https://doi.org/10.1177/0748730406293854. 21/6/458 [pii]

    Article  CAS  PubMed  Google Scholar 

  15. Sellix MT, Egli M, Poletini MO, McKee DT, Bosworth MD, Fitch CA, Freeman ME. Anatomical and functional characterization of clock gene expression in neuroendocrine dopaminergic neurons. Am J Physiol Regul Integr Comp Physiol. 2006;290(5):R1309–23. https://doi.org/10.1152/ajpregu.00555.2005. 00555.2005 [pii]

    Article  CAS  PubMed  Google Scholar 

  16. Gerhold LM, Horvath TL, Freeman ME. Vasoactive intestinal peptide fibers innervate neuroendocrine dopaminergic neurons. Brain Res. 2001;919(1):48–56. S0006-8993(01)02993-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  17. Silver R, LeSauter J, Tresco PA, Lehman MN. A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature. 1996;382(6594):810–3. https://doi.org/10.1038/382810a0.

    Article  CAS  PubMed  Google Scholar 

  18. Li JD, Hu WP, Zhou QY. The circadian output signals from the suprachiasmatic nuclei. Prog Brain Res. 2012;199:119–27. https://doi.org/10.1016/B978-0-444-59427-3.00028-9. B978-0-444-59427-3.00028-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  19. Nagai K, Nishio T, Nakagawa H, Nakamura S, Fukuda Y. Effect of bilateral lesions of the suprachiasmatic nuclei on the circadian rhythm of food-intake. Brain Res. 1978;142(2):384–9. 0006-8993(78)90648-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  20. Williams KW, Elmquist JK. From neuroanatomy to behavior: central integration of peripheral signals regulating feeding behavior. Nat Neurosci. 2012;15(10):1350–5. https://doi.org/10.1038/nn.3217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Burdakov D, Luckman SM, Verkhratsky A. Glucose-sensing neurons of the hypothalamus. Philos Trans R Soc Lond B Biol Sci. 2005;360(1464):2227–35. https://doi.org/10.1098/rstb.2005.1763. L238W86787251W54 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ahima RS, Lazar MA. Adipokines and the peripheral and neural control of energy balance. Mol Endocrinol. 2008;22(5):1023–31. https://doi.org/10.1210/me.2007-0529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cedernaes J, Huang W, Ramsey KM, Waldeck N, Cheng L, Marcheva B, Omura C, Kobayashi Y, Peek CB, Levine DC, Dhir R, Awatramani R, Bradfield CA, Wang XA, Takahashi JS, Mokadem M, Ahima RS, Bass J. Transcriptional basis for rhythmic control of hunger and metabolism within the AgRP neuron. Cell Metab. 2019;29(5):1078–91. e1075. https://doi.org/10.1016/j.cmet.2019.01.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu B, Kalra PS, Farmerie WG, Kalra SP. Daily changes in hypothalamic gene expression of neuropeptide Y, galanin, proopiomelanocortin, and adipocyte leptin gene expression and secretion: effects of food restriction. Endocrinology. 1999;140(6):2868–75. https://doi.org/10.1210/endo.140.6.6789.

    Article  CAS  PubMed  Google Scholar 

  25. Steiner RA, Kabigting E, Lent K, Clifton DK. Diurnal rhythm in proopiomelanocortin mRNA in the arcuate nucleus of the male rat. J Neuroendocrinol. 1994;6(6):603–8.

    Article  CAS  PubMed  Google Scholar 

  26. Akabayashi A, Levin N, Paez X, Alexander JT, Leibowitz SF. Hypothalamic neuropeptide Y and its gene expression: relation to light/dark cycle and circulating corticosterone. Mol Cell Neurosci. 1994;5(3):210–8. https://doi.org/10.1006/mcne.1994.1025. S1044-7431(84)71025-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  27. Bechtold DA, Loudon AS. Hypothalamic clocks and rhythms in feeding behaviour. Trends Neurosci. 2013;36(2):74–82. https://doi.org/10.1016/j.tins.2012.12.007. S0166-2236(12)00222-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  28. Kim ER, Xu Y, Cassidy RM, Lu Y, Yang Y, Tian J, Li DP, Van Drunen R, Ribas-Latre A, Cai ZL, Xue M, Arenkiel BR, Eckel-Mahan K, Xu Y, Tong Q. Paraventricular hypothalamus mediates diurnal rhythm of metabolism. Nat Commun. 2020;11(1):3794. https://doi.org/10.1038/s41467-020-17578-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Balsalobre A, Damiola F, Schibler U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell. 1998;93(6):929–37. S0092-8674(00)81199-X [pii]

    Article  CAS  PubMed  Google Scholar 

  30. Yagita K, Tamanini F, van Der Horst GT, Okamura H. Molecular mechanisms of the biological clock in cultured fibroblasts. Science. 2001;292(5515):278–81. https://doi.org/10.1126/science.1059542. 292/5515/278

    Article  CAS  PubMed  Google Scholar 

  31. Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong HK, Oh WJ, Yoo OJ, Menaker M, Takahashi JS. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A. 2004;101(15):5339–46. https://doi.org/10.1073/pnas.0308709101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tahara Y, Kuroda H, Saito K, Nakajima Y, Kubo Y, Ohnishi N, Seo Y, Otsuka M, Fuse Y, Ohura Y, Komatsu T, Moriya Y, Okada S, Furutani N, Hirao A, Horikawa K, Kudo T, Shibata S. In vivo monitoring of peripheral circadian clocks in the mouse. Curr Biol. 2012;22(11):1029–34. https://doi.org/10.1016/j.cub.2012.04.009. S0960-9822(12)00396-X [pii]

    Article  CAS  PubMed  Google Scholar 

  33. Dibner C, Sage D, Unser M, Bauer C, d’Eysmond T, Naef F, Schibler U. Circadian gene expression is resilient to large fluctuations in overall transcription rates. EMBO J. 2009;28(2):123–34. https://doi.org/10.1038/emboj.2008.262.

    Article  CAS  PubMed  Google Scholar 

  34. Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS, Hogenesch JB. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell. 2002;109(3):307–20. S0092867402007225 [pii]

    Article  CAS  PubMed  Google Scholar 

  35. Gachon F, Olela FF, Schaad O, Descombes P, Schibler U. The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab. 2006;4(1):25–36. https://doi.org/10.1016/j.cmet.2006.04.015. S1550-4131(06)00155-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  36. Gimble JM, Sutton GM, Ptitsyn AA, Floyd ZE, Bunnell BA. Circadian rhythms in adipose tissue: an update. Curr Opin Clin Nutr Metab Care. 2011;14(6):554–61. https://doi.org/10.1097/MCO.0b013e32834ad94b.

    Article  PubMed  Google Scholar 

  37. Lamia KA, Storch KF, Weitz CJ. Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci U S A. 2008;105(39):15172–7. https://doi.org/10.1073/pnas.0806717105.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zvonic S, Ptitsyn AA, Conrad SA, Scott LK, Floyd ZE, Kilroy G, Wu X, Goh BC, Mynatt RL, Gimble JM. Characterization of peripheral circadian clocks in adipose tissues. Diabetes. 2006;55(4):962–70. 55/4/962 [pii]

    Article  CAS  PubMed  Google Scholar 

  39. Ando H, Yanagihara H, Hayashi Y, Obi Y, Tsuruoka S, Takamura T, Kaneko S, Fujimura A. Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue. Endocrinology. 2005;146(12):5631–6. https://doi.org/10.1210/en.2005-0771.

    Article  CAS  PubMed  Google Scholar 

  40. Sinha MK, Ohannesian JP, Heiman ML, Kriauciunas A, Stephens TW, Magosin S, Marco C, Caro JF. Nocturnal rise of leptin in lean, obese, and non-insulin-dependent diabetes mellitus subjects. J Clin Invest. 1996;97(5):1344–7. https://doi.org/10.1172/JCI118551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kalsbeek A, Fliers E, Romijn JA, La Fleur SE, Wortel J, Bakker O, Endert E, Buijs RM. The suprachiasmatic nucleus generates the diurnal changes in plasma leptin levels. Endocrinology. 2001;142(6):2677–85. https://doi.org/10.1210/endo.142.6.8197.

    Article  CAS  PubMed  Google Scholar 

  42. Cuesta M, Clesse D, Pevet P, Challet E. From daily behavior to hormonal and neurotransmitters rhythms: comparison between diurnal and nocturnal rat species. Horm Behav. 2009;55(2):338–47. https://doi.org/10.1016/j.yhbeh.2008.10.015. S0018-506X(08)00306-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  43. Otway DT, Frost G, Johnston JD. Circadian rhythmicity in murine pre-adipocyte and adipocyte cells. Chronobiol Int. 2009;26(7):1340–54. https://doi.org/10.3109/07420520903412368.

    Article  CAS  PubMed  Google Scholar 

  44. Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S, Vitaterna MH, Lopez JP, Philipson LH, Bradfield CA, Crosby SD, JeBailey L, Wang X, Takahashi JS, Bass J. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature. 2010;466(7306):627–31. https://doi.org/10.1038/nature09253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Teboul M, Guillaumond F, Grechez-Cassiau A, Delaunay F. The nuclear hormone receptor family round the clock. Mol Endocrinol. 2008;22(12):2573–82. https://doi.org/10.1210/me.2007-0521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lau P, Nixon SJ, Parton RG, Muscat GE. RORalpha regulates the expression of genes involved in lipid homeostasis in skeletal muscle cells: caveolin-3 and CPT-1 are direct targets of ROR. J Biol Chem. 2004;279(35):36828–40. https://doi.org/10.1074/jbc.M404927200.

    Article  CAS  PubMed  Google Scholar 

  47. Delezie J, Dumont S, Dardente H, Oudart H, Grechez-Cassiau A, Klosen P, Teboul M, Delaunay F, Pevet P, Challet E. The nuclear receptor REV-ERBalpha is required for the daily balance of carbohydrate and lipid metabolism. FASEB J. 2012;26(8):3321–35. https://doi.org/10.1096/fj.12-208751.

    Article  CAS  PubMed  Google Scholar 

  48. Yoon M. The role of PPARalpha in lipid metabolism and obesity: focusing on the effects of estrogen on PPARalpha actions. Pharmacol Res. 2009;60(3):151–9. https://doi.org/10.1016/j.phrs.2009.02.004. S1043-6618(09)00057-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  49. Oishi K, Shirai H, Ishida N. CLOCK is involved in the circadian transactivation of peroxisome-proliferator-activated receptor alpha (PPARalpha) in mice. Biochem J. 2005;386(Pt 3):575–81. https://doi.org/10.1042/BJ20041150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Grimaldi B, Bellet MM, Katada S, Astarita G, Hirayama J, Amin RH, Granneman JG, Piomelli D, Leff T, Sassone-Corsi P. PER2 controls lipid metabolism by direct regulation of PPARgamma. Cell Metab. 2010;12(5):509–20. https://doi.org/10.1016/j.cmet.2010.10.005. S1550-4131(10)00357-8 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. La Fleur SE, Kalsbeek A, Wortel J, Buijs RM. A suprachiasmatic nucleus generated rhythm in basal glucose concentrations. J Neuroendocrinol. 1999;11(8):643–52. jne373 [pii]

    Article  PubMed  Google Scholar 

  52. Kalsbeek A, Yi CX, La Fleur SE, Fliers E. The hypothalamic clock and its control of glucose homeostasis. Trends Endocrinol Metab. 2010;21(7):402–10. https://doi.org/10.1016/j.tem.2010.02.005. S1043-2760(10)00040-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  53. Cailotto C, van Heijningen C, van der Vliet J, van der Plasse G, Habold C, Kalsbeek A, Pevet P, Buijs RM. Daily rhythms in metabolic liver enzymes and plasma glucose require a balance in the autonomic output to the liver. Endocrinology. 2008;149(4):1914–25. https://doi.org/10.1210/en.2007-0816.

    Article  CAS  PubMed  Google Scholar 

  54. Yi CX, Serlie MJ, Ackermans MT, Foppen E, Buijs RM, Sauerwein HP, Fliers E, Kalsbeek A. A major role for perifornical orexin neurons in the control of glucose metabolism in rats. Diabetes. 2009;58(9):1998–2005. https://doi.org/10.2337/db09-0385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kreier F, Fliers E, Voshol PJ, Van Eden CG, Havekes LM, Kalsbeek A, Van Heijningen CL, Sluiter AA, Mettenleiter TC, Romijn JA, Sauerwein HP, Buijs RM. Selective parasympathetic innervation of subcutaneous and intra-abdominal fat – functional implications. The Journal of clinical investigation. 2002;110(9):1243–50. https://doi.org/10.1172/JCI15736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ulrich-Lai YM, Arnhold MM, Engeland WC. Adrenal splanchnic innervation contributes to the diurnal rhythm of plasma corticosterone in rats by modulating adrenal sensitivity to ACTH. Am J Physiol Regul Integr Comp Physiol. 2006;290(4):R1128–35. https://doi.org/10.1152/ajpregu.00042.2003.

    Article  CAS  PubMed  Google Scholar 

  57. Oster H, Damerow S, Kiessling S, Jakubcakova V, Abraham D, Tian J, Hoffmann MW, Eichele G. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab. 2006;4(2):163–73.

    Article  CAS  PubMed  Google Scholar 

  58. Rosenfeld P, Van Eekelen JA, Levine S, De Kloet ER. Ontogeny of the type 2 glucocorticoid receptor in discrete rat brain regions: an immunocytochemical study. Brain Res. 1988;470(1):119–27.

    Article  CAS  PubMed  Google Scholar 

  59. Surjit M, Ganti KP, Mukherji A, Ye T, Hua G, Metzger D, Li M, Chambon P. Widespread negative response elements mediate direct repression by agonist-liganded glucocorticoid receptor. Cell. 2011;145(2):224–41. https://doi.org/10.1016/j.cell.2011.03.027. S0092-8674(11)00304-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  60. Oishi K, Amagai N, Shirai H, Kadota K, Ohkura N, Ishida N. Genome-wide expression analysis reveals 100 adrenal gland-dependent circadian genes in the mouse liver. DNA Res. 2005;12(3):191–202. https://doi.org/10.1093/dnares/dsi003. 12/3/191 [pii]

    Article  CAS  PubMed  Google Scholar 

  61. Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schutz G, Schibler U. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science. 2000;289(5488):2344–7. 8856 [pii]

    Article  CAS  PubMed  Google Scholar 

  62. Pevet P, Challet E. Melatonin: both master clock output and internal time-giver in the circadian clocks network. J Physiol Paris. 2011;105(4-6):170–82. https://doi.org/10.1016/j.jphysparis.2011.07.001. S0928-4257(11)00004-0 [pii]

    Article  PubMed  Google Scholar 

  63. Mulder H, Nagorny CL, Lyssenko V, Groop L. Melatonin receptors in pancreatic islets: good morning to a novel type 2 diabetes gene. Diabetologia. 2009;52(7):1240–9. https://doi.org/10.1007/s00125-009-1359-y.

    Article  CAS  PubMed  Google Scholar 

  64. Mühlbauer E, Gross E, Labucay K, Wolgast S, Peschke E. Loss of melatonin signalling and its impact on circadian rhythms in mouse organs regulating blood glucose. Eur J Pharmacol. 2009;606(1-3):61–71. https://doi.org/10.1016/j.ejphar.2009.01.029. S0014-2999(09)00098-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  65. Peschke E, Peschke D. Evidence for a circadian rhythm of insulin release from perifused rat pancreatic islets. Diabetologia. 1998;41(9):1085–92. https://doi.org/10.1007/s001250051034.

    Article  CAS  PubMed  Google Scholar 

  66. Bouatia-Naji N, Bonnefond A, Cavalcanti-Proenca C, Sparso T, Holmkvist J, Marchand M, Delplanque J, Lobbens S, Rocheleau G, Durand E, De Graeve F, Chevre JC, Borch-Johnsen K, Hartikainen AL, Ruokonen A, Tichet J, Marre M, Weill J, Heude B, Tauber M, Lemaire K, Schuit F, Elliott P, Jorgensen T, Charpentier G, Hadjadj S, Cauchi S, Vaxillaire M, Sladek R, Visvikis-Siest S, Balkau B, Levy-Marchal C, Pattou F, Meyre D, Blakemore AI, Jarvelin MR, Walley AJ, Hansen T, Dina C, Pedersen O, Froguel P. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat Genet. 2009;41(1):89–94. https://doi.org/10.1038/ng.277.

    Article  CAS  PubMed  Google Scholar 

  67. Caldelas I, Poirel VJ, Sicard B, Pevet P, Challet E. Circadian profile and photic regulation of clock genes in the suprachiasmatic nucleus of a diurnal mammal Arvicanthis ansorgei. Neuroscience. 2003;116(2):583–91. S0306452202006541 [pii]

    Article  CAS  PubMed  Google Scholar 

  68. Mrosovsky N, Edelstein K, Hastings MH, Maywood ES. Cycle of period gene expression in a diurnal mammal (Spermophilus tridecemlineatus): implications for nonphotic phase shifting. J Biol Rhythms. 2001;16(5):471–8.

    Article  CAS  PubMed  Google Scholar 

  69. Lambert CM, Weaver DR. Peripheral gene expression rhythms in a diurnal rodent. J Biol Rhythms. 2006;21(1):77–9. https://doi.org/10.1177/0748730405281843. 21/1/77 [pii]

    Article  PubMed  Google Scholar 

  70. Kalsbeek A, Verhagen LA, Schalij I, Foppen E, Saboureau M, Bothorel B, Buijs RM, Pevet P. Opposite actions of hypothalamic vasopressin on circadian corticosterone rhythm in nocturnal versus diurnal species. Eur J Neurosci. 2008;27(4):818–27. https://doi.org/10.1111/j.1460-9568.2008.06057.x. EJN6057 [pii]

    Article  PubMed  Google Scholar 

  71. Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M. Entrainment of the circadian clock in the liver by feeding. Science. 2001;291(5503):490–3. https://doi.org/10.1126/science.291.5503.490.

    Article  CAS  PubMed  Google Scholar 

  72. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000;14(23):2950–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kurumiya S, Kawamura H. Damped oscillation of the lateral hypothalamic multineuronal activity synchronized to daily feeding schedules in rats with suprachiasmatic nucleus lesions. J Biol Rhythms. 1991;6(2):115–27.

    Article  CAS  PubMed  Google Scholar 

  74. Wakamatsu H, Yoshinobu Y, Aida R, Moriya T, Akiyama M, Shibata S. Restricted-feeding-induced anticipatory activity rhythm is associated with a phase-shift of the expression of mPer1 and mPer2 mRNA in the cerebral cortex and hippocampus but not in the suprachiasmatic nucleus of mice. Eur J Neurosci. 2001;13(6):1190–6. ejn1483 [pii]

    Article  CAS  PubMed  Google Scholar 

  75. Mistlberger RE. Neurobiology of food anticipatory circadian rhythms. Physiol Behav. 2011;104(4):535–45. https://doi.org/10.1016/j.physbeh.2011.04.015. S0031-9384(11)00174-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  76. Brown SA, Zumbrunn G, Fleury-Olela F, Preitner N, Schibler U. Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr Biol. 2002;12(18):1574–83. S0960982202011454 [pii]

    Article  CAS  PubMed  Google Scholar 

  77. Buhr ED, Yoo SH, Takahashi JS. Temperature as a universal resetting cue for mammalian circadian oscillators. Science. 2010;330(6002):379–85. https://doi.org/10.1126/science.1195262. 330/6002/379 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Saini C, Morf J, Stratmann M, Gos P, Schibler U. Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators. Genes Dev. 2012;26(6):567–80. https://doi.org/10.1101/gad.183251.111. gad.183251.111 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tahara Y, Otsuka M, Fuse Y, Hirao A, Shibata S. Refeeding after fasting elicits insulin-dependent regulation of Per2 and Rev-erbalpha with shifts in the liver clock. J Biol Rhythms. 2011;26(3):230–40. https://doi.org/10.1177/0748730411405958. 26/3/230 [pii]

    Article  CAS  PubMed  Google Scholar 

  80. Sato M, Murakami M, Node K, Matsumura R, Akashi M. The role of the endocrine system in feeding-induced tissue-specific circadian entrainment. Cell Rep. 2014;8(2):393–401. https://doi.org/10.1016/j.celrep.2014.06.015. S2211-1247(14)00483-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  81. Balsalobre A, Marcacci L, Schibler U. Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts. Curr Biol. 2000;10(20):1291–4. S0960-9822(00)00758-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  82. Crosby P, Hamnett R, Putker M, Hoyle NP, Reed M, Karam CJ, Maywood ES, Stangherlin A, Chesham JE, Hayter EA, Rosenbrier-Ribeiro L, Newham P, Clevers H, Bechtold DA, O’Neill JS. Insulin/IGF-1 drives PERIOD synthesis to entrain circadian rhythms with feeding time. Cell. 2019;177(4):896–909. e820. https://doi.org/10.1016/j.cell.2019.02.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ando H, Kumazaki M, Motosugi Y, Ushijima K, Maekawa T, Ishikawa E, Fujimura A. Impairment of peripheral circadian clocks precedes metabolic abnormalities in ob/ob mice. Endocrinology. 2011;152(4):1347–54. https://doi.org/10.1210/en.2010-1068.

    Article  CAS  PubMed  Google Scholar 

  84. Haynes WG, Morgan DA, Walsh SA, Mark AL, Sivitz WI. Receptor-mediated regional sympathetic nerve activation by leptin. J Clin Invest. 1997;100(2):270–8. https://doi.org/10.1172/JCI119532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111(3):305–17. S0092867402010498 [pii]

    Article  CAS  PubMed  Google Scholar 

  86. Honma KI, Honma S, Hiroshige T. Feeding-associated corticosterone peak in rats under various feeding cycles. Am J Physiol. 1984;246(5 Pt 2):R721–6.

    CAS  PubMed  Google Scholar 

  87. Le Minh N, Damiola F, Tronche F, Schutz G, Schibler U. Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J. 2001;20(24):7128–36. https://doi.org/10.1093/emboj/20.24.7128.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Canaple L, Rambaud J, Dkhissi-Benyahya O, Rayet B, Tan NS, Michalik L, Delaunay F, Wahli W, Laudet V. Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor alpha defines a novel positive feedback loop in the rodent liver circadian clock. Mol Endocrinol. 2006;20(8):1715–27. https://doi.org/10.1210/me.2006-0052.

    Article  CAS  PubMed  Google Scholar 

  89. Gervois P, Chopin-Delannoy S, Fadel A, Dubois G, Kosykh V, Fruchart JC, Najib J, Laudet V, Staels B. Fibrates increase human REV-ERBalpha expression in liver via a novel peroxisome proliferator-activated receptor response element. Mol Endocrinol. 1999;13(3):400–9. https://doi.org/10.1210/mend.13.3.0248.

    Article  CAS  PubMed  Google Scholar 

  90. Schmutz I, Ripperger JA, Baeriswyl-Aebischer S, Albrecht U. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev. 2010;24(4):345–57. https://doi.org/10.1101/gad.564110. 24/4/345 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu C, Li S, Liu T, Borjigin J, Lin JD. Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature. 2007;447(7143):477–81. https://doi.org/10.1038/nature05767.

    Article  CAS  PubMed  Google Scholar 

  92. Hirota T, Okano T, Kokame K, Shirotani-Ikejima H, Miyata T, Fukada Y. Glucose down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression in cultured Rat-1 fibroblasts. J Biol Chem. 2002;277(46):44244–51. https://doi.org/10.1074/jbc.M206233200.

    Article  CAS  PubMed  Google Scholar 

  93. Gu YZ, Hogenesch JB, Bradfield CA. The PAS superfamily: sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol. 2000;40:519–61. https://doi.org/10.1146/annurev.pharmtox.40.1.519.

    Article  CAS  PubMed  Google Scholar 

  94. Rutter J, Reick M, Wu LC, McKnight SL. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science. 2001;293(5529):510–4. https://doi.org/10.1126/science.1060698.

    Article  CAS  PubMed  Google Scholar 

  95. Yu J, Auwerx J. The role of sirtuins in the control of metabolic homeostasis. Ann N Y Acad Sci. 2009;1173(Suppl 1):E10–9. https://doi.org/10.1111/j.1749-6632.2009.04952.x. NYAS4952 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell. 2008;134(2):329–40. https://doi.org/10.1016/j.cell.2008.07.002. S0092-8674(08)00879-9 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 2008;134(2):317–28. https://doi.org/10.1016/j.cell.2008.06.050. S0092-8674(08)00837-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  98. Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005;1(1):15–25. https://doi.org/10.1016/j.cmet.2004.12.003. S1550-4131(04)00009-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  99. Um JH, Yang S, Yamazaki S, Kang H, Viollet B, Foretz M, Chung JH. Activation of 5′-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2. J Biol Chem. 2007;282(29):20794–8. https://doi.org/10.1074/jbc.C700070200.

    Article  CAS  PubMed  Google Scholar 

  100. Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Alvarez JG, Egan DF, Vasquez DS, Juguilon H, Panda S, Shaw RJ, Thompson CB, Evans RM. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science. 2009;326(5951):437–40. https://doi.org/10.1126/science.1172156. 326/5951/437 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ramanathan C, Kathale ND, Liu D, Lee C, Freeman DA, Hogenesch JB, Cao R, Liu AC. mTOR signaling regulates central and peripheral circadian clock function. PLoS Genet. 2018;14(5):e1007369. https://doi.org/10.1371/journal.pgen.1007369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Challet E, Pevet P, Vivien-Roels B, Malan A. Phase-advanced daily rhythms of melatonin, body temperature, and locomotor activity in food-restricted rats fed during daytime. J Biol Rhythms. 1997;12(1):65–79.

    Article  CAS  PubMed  Google Scholar 

  103. Mendoza J, Graff C, Dardente H, Pevet P, Challet E. Feeding cues alter clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice exposed to a light/dark cycle. J Neurosci. 2005;25(6):1514–22. https://doi.org/10.1523/JNEUROSCI.4397-04.2005. 25/6/1514 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Challet E, Losee-Olson S, Turek FW. Reduced glucose availability attenuates circadian responses to light in mice. Am J Physiol. 1999;276(4 Pt 2):R1063–70.

    CAS  PubMed  Google Scholar 

  105. Castillo MR, Hochstetler KJ, Tavernier RJ Jr, Greene DM, Bult-Ito A. Entrainment of the master circadian clock by scheduled feeding. Am J Physiol Regul Integr Comp Physiol. 2004;287(3):R551–5. https://doi.org/10.1152/ajpregu.00247.2004.

    Article  CAS  PubMed  Google Scholar 

  106. Lamont EW, Diaz LR, Barry-Shaw J, Stewart J, Amir S. Daily restricted feeding rescues a rhythm of period2 expression in the arrhythmic suprachiasmatic nucleus. Neuroscience. 2005;132(2):245–8. https://doi.org/10.1016/j.neuroscience.2005.01.029. S0306-4522(05)00133-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  107. Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y, Turek FW, Bass J. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 2007;6(5):414–21. https://doi.org/10.1016/j.cmet.2007.09.006. S1550-4131(07)00266-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  108. Mendoza J, Pevet P, Challet E. High-fat feeding alters the clock synchronization to light. J Physiol. 2008;586(Pt 24):5901–10. https://doi.org/10.1113/jphysiol.2008.159566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mendoza J, Clesse D, Pevet P, Challet E. Food-reward signalling in the suprachiasmatic clock. J Neurochem. 2010;112(6):1489–99. https://doi.org/10.1111/j.1471-4159.2010.06570.x. JNC6570 [pii]

    Article  CAS  PubMed  Google Scholar 

  110. Wang TA, Yu YV, Govindaiah G, Ye X, Artinian L, Coleman TP, Sweedler JV, Cox CL, Gillette MU. Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons. Science. 2012;337(6096):839–42. https://doi.org/10.1126/science.1222826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Challet E, Pevet P, Malan A. Intergeniculate leaflet lesion and daily rhythms in food-restricted rats fed during daytime. Neurosci Lett. 1996;216(3):214–8. S0304394096130123 [pii]

    Article  CAS  PubMed  Google Scholar 

  112. Saderi N, Cazarez-Marquez F, Buijs FN, Salgado-Delgado RC, Guzman-Ruiz MA, del Carmen BM, Escobar C, Buijs RM. The NPY intergeniculate leaflet projections to the suprachiasmatic nucleus transmit metabolic conditions. Neuroscience. 2013;246:291–300. https://doi.org/10.1016/j.neuroscience.2013.05.004. S0306-4522(13)00415-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  113. Guan XM, Hess JF, Yu H, Hey PJ, van der Ploeg LH. Differential expression of mRNA for leptin receptor isoforms in the rat brain. Mol Cell Endocrinol. 1997;133(1):1–7. S0303-7207(97)00138-X [pii]

    Article  CAS  PubMed  Google Scholar 

  114. Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol. 2006;494(3):528–48. https://doi.org/10.1002/cne.20823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yi CX, van der Vliet J, Dai J, Yin G, Ru L, Buijs RM. Ventromedial arcuate nucleus communicates peripheral metabolic information to the suprachiasmatic nucleus. Endocrinology. 2006;147(1):283–94. https://doi.org/10.1210/en.2005-1051.

    Article  CAS  PubMed  Google Scholar 

  116. Yannielli PC, Molyneux PC, Harrington ME, Golombek DA. Ghrelin effects on the circadian system of mice. J Neurosci. 2007;27(11):2890–5. https://doi.org/10.1523/JNEUROSCI.3913-06.2007. 27/11/2890 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yi CX, Challet E, Pevet P, Kalsbeek A, Escobar C, Buijs RM. A circulating ghrelin mimetic attenuates light-induced phase delay of mice and light-induced Fos expression in the suprachiasmatic nucleus of rats. Eur J Neurosci. 2008;27(8):1965–72. https://doi.org/10.1111/j.1460-9568.2008.06181.x. EJN6181 [pii]

    Article  PubMed  Google Scholar 

  118. Balland E, Dam J, Langlet F, Caron E, Steculorum S, Messina A, Rasika S, Falluel-Morel A, Anouar Y, Dehouck B, Trinquet E, Jockers R, Bouret SG, Prevot V. Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab. 2014;19(2):293–301. https://doi.org/10.1016/j.cmet.2013.12.015. S1550-4131(14)00004-7 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Prosser RA, Bergeron HE. Leptin phase-advances the rat suprachiasmatic circadian clock in vitro. Neurosci Lett. 2003;336(3):139–42. S030439400201234X [pii]

    Article  CAS  PubMed  Google Scholar 

  120. Inyushkin AN, Bhumbra GS, Dyball RE. Leptin modulates spike coding in the rat suprachiasmatic nucleus. J Neuroendocrinol. 2009;21(8):705–14. https://doi.org/10.1111/j.1365-2826.2009.01889.x. JNE1889 [pii]

    Article  CAS  PubMed  Google Scholar 

  121. Grosbellet E, Gourmelen S, Pevet P, Criscuolo F, Challet E. Leptin normalizes photic synchronization in male ob/ob mice, via indirect effects on the suprachiasmatic nucleus. Endocrinology. 2015;156(3):1080–90. https://doi.org/10.1210/en.2014-1570.

    Article  CAS  PubMed  Google Scholar 

  122. Sage D, Ganem J, Guillaumond F, Laforge-Anglade G, Francois-Bellan AM, Bosler O, Becquet D. Influence of the corticosterone rhythm on photic entrainment of locomotor activity in rats. J Biol Rhythms. 2004;19(2):144–56.

    Article  CAS  PubMed  Google Scholar 

  123. Kiessling S, Eichele G, Oster H. Adrenal glucocorticoids have a key role in circadian resynchronization in a mouse model of jet lag. J Clin Invest. 2010;120(7):2600–9. https://doi.org/10.1172/JCI41192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Malek ZS, Sage D, Pevet P, Raison S. Daily rhythm of tryptophan hydroxylase-2 messenger ribonucleic acid within raphe neurons is induced by corticoid daily surge and modulated by enhanced locomotor activity. Endocrinology. 2007;148(11):5165–72. https://doi.org/10.1210/en.2007-0526.

    Article  CAS  PubMed  Google Scholar 

  125. Sack RL, Hughes RJ, Edgar DM, Lewy AJ. Sleep-promoting effects of melatonin: at what dose, in whom, under what conditions, and by what mechanisms? Sleep. 1997;20(10):908–15.

    Article  CAS  PubMed  Google Scholar 

  126. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, Eckel RH, Takahashi JS, Bass J. Obesity and metabolic syndrome in circadian Clock mutant mice. Science. 2005;308(5724):1043–5. https://doi.org/10.1126/science.1108750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Karlsson BH, Knutsson AK, Lindahl BO, Alfredsson LS. Metabolic disturbances in male workers with rotating three-shift work. Results of the WOLF study. Int Arch Occup Environ Health. 2003;76(6):424–30. https://doi.org/10.1007/s00420-003-0440-y.

    Article  PubMed  Google Scholar 

  128. Dochi M, Suwazono Y, Sakata K, Okubo Y, Oishi M, Tanaka K, Kobayashi E, Nogawa K. Shift work is a risk factor for increased total cholesterol level: a 14-year prospective cohort study in 6886 male workers. Occup Environ Med. 2009;66(9):592–7. https://doi.org/10.1136/oem.2008.042176. 66/9/592 [pii]

    Article  CAS  PubMed  Google Scholar 

  129. Spiegel K, Tasali E, Leproult R, Van Cauter E. Effects of poor and short sleep on glucose metabolism and obesity risk. Nat Rev Endocrinol. 2009;5(5):253–61. https://doi.org/10.1038/nrendo.2009.23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Tsai LL, Tsai YC, Hwang K, Huang YW, Tzeng JE. Repeated light-dark shifts speed up body weight gain in male F344 rats. Am J Physiol Endocrinol Metab. 2005;289(2):E212–7. https://doi.org/10.1152/ajpendo.00603.2004.

    Article  CAS  PubMed  Google Scholar 

  131. Bartol-Munier I, Gourmelen S, Pevet P, Challet E. Combined effects of high-fat feeding and circadian desynchronization. Int J Obes (Lond). 2006;30(1):60–7. https://doi.org/10.1038/sj.ijo.0803048.

    Article  CAS  PubMed  Google Scholar 

  132. Salgado-Delgado R, Angeles-Castellanos M, Buijs MR, Escobar C. Internal desynchronization in a model of night-work by forced activity in rats. Neuroscience. 2008;154(3):922–31. https://doi.org/10.1016/j.neuroscience.2008.03.066.

    Article  CAS  PubMed  Google Scholar 

  133. Grosbellet E, Zahn S, Arrive M, Dumont S, Gourmelen S, Pevet P, Challet E, Criscuolo F. Circadian desynchronization triggers premature cellular aging in a diurnal rodent. FASEB J. 2015;29(12):4794–803. https://doi.org/10.1096/fj.14-266817.

    Article  CAS  PubMed  Google Scholar 

  134. Kaneko K, Yamada T, Tsukita S, Takahashi K, Ishigaki Y, Oka Y, Katagiri H. Obesity alters circadian expressions of molecular clock genes in the brainstem. Brain Res. 2009;1263:58–68. https://doi.org/10.1016/j.brainres.2008.12.071. S0006-8993(09)00003-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  135. Cha MC, Chou CJ, Boozer CN. High-fat diet feeding reduces the diurnal variation of plasma leptin concentration in rats. Metabolism. 2000;49(4):503–7. S0026-0495(00)80016-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  136. Yanagihara H, Ando H, Hayashi Y, Obi Y, Fujimura A. High-fat feeding exerts minimal effects on rhythmic mRNA expression of clock genes in mouse peripheral tissues. Chronobiol Int. 2006;23(5):905–14. https://doi.org/10.1080/07420520600827103. M6X0146501105014 [pii]

    Article  CAS  PubMed  Google Scholar 

  137. Eckel-Mahan KL, Patel VR, de Mateo S, Orozco-Solis R, Ceglia NJ, Sahar S, Dilag-Penilla SA, Dyar KA, Baldi P, Sassone-Corsi P. Reprogramming of the circadian clock by nutritional challenge. Cell. 2013;155(7):1464–78. https://doi.org/10.1016/j.cell.2013.11.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Otway DT, Mantele S, Bretschneider S, Wright J, Trayhurn P, Skene DJ, Robertson MD, Johnston JD. Rhythmic diurnal gene expression in human adipose tissue from individuals who are lean, overweight, and type 2 diabetic. Diabetes. 2011;60(5):1577–81. https://doi.org/10.2337/db10-1098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Fukagawa K, Sakata T, Yoshimatsu H, Fujimoto K, Uchimura K, Asano C. Advance shift of feeding circadian rhythm induced by obesity progression in Zucker rats. Am J Physiol. 1992;263(6 Pt 2):R1169–75.

    CAS  PubMed  Google Scholar 

  140. Mistlberger RE, Lukman H, Nadeau BG. Circadian rhythms in the Zucker obese rat: assessment and intervention. Appetite. 1998;30(3):255–67. S0195-6663(97)90134-3 [pii]. https://doi.org/10.1006/appe.1997.0134.

    Article  CAS  PubMed  Google Scholar 

  141. Kudo T, Akiyama M, Kuriyama K, Sudo M, Moriya T, Shibata S. Night-time restricted feeding normalises clock genes and Pai-1 gene expression in the db/db mouse liver. Diabetologia. 2004;47(8):1425–36. https://doi.org/10.1007/s00125-004-1461-0.

    Article  CAS  PubMed  Google Scholar 

  142. Sans-Fuentes MA, Diez-Noguera A, Cambras T. Light responses of the circadian system in leptin deficient mice. Physiol Behav. 2010;99(4):487–94. https://doi.org/10.1016/j.physbeh.2009.12.023. S0031-9384(09)00410-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  143. Grosbellet E, Gourmelen S, Pevet P, Criscuolo F, Challet E. Leptin normalizes photic synchronization in male ob/ob mice, via indirect effects on the suprachiasmatic nucleus. Endocrinology. 2015:en20141570. https://doi.org/10.1210/en.2014-1570.

  144. Grosbellet E, Dumont S, Schuster-Klein C, Guardiola-Lemaitre B, Pevet P, Criscuolo F, Challet E. Circadian phenotyping of obese and diabetic db/db mice. Biochimie. 2016;124:198–206. https://doi.org/10.1016/j.biochi.2015.06.029. S0300-9084(15)00208-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  145. Chellappa SL, Gordijn MC, Cajochen C. Can light make us bright? Effects of light on cognition and sleep. Prog Brain Res. 2011;190:119–33. https://doi.org/10.1016/B978-0-444-53817-8.00007-4. B978-0-444-53817-8.00007-4 [pii]

    Article  PubMed  Google Scholar 

  146. Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, Leblanc M, Chaix A, Joens M, Fitzpatrick JA, Ellisman MH, Panda S. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012;15(6):848–60. https://doi.org/10.1016/j.cmet.2012.04.019. S1550-4131(12)00189-1 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Reid KJ, Baron KG, Zee PC. Meal timing influences daily caloric intake in healthy adults. Nutr Res. 2014;34(11):930–5. https://doi.org/10.1016/j.nutres.2014.09.010. S0271-5317(14)00195-X [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Colles SL, Dixon JB, O’Brien PE. Night eating syndrome and nocturnal snacking: association with obesity, binge eating and psychological distress. Int J Obes (Lond). 2007;31(11):1722–30. https://doi.org/10.1038/sj.ijo.0803664.

    Article  CAS  PubMed  Google Scholar 

  149. Striegel-Moore RH, Rosselli F, Wilson GT, Perrin N, Harvey K, DeBar L. Nocturnal eating: association with binge eating, obesity, and psychological distress. Int J Eat Disord. 2010;43(6):520–6. https://doi.org/10.1002/eat.20735.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Lowden A, Moreno C, Holmback U, Lennernas M, Tucker P. Eating and shift work – effects on habits, metabolism and performance. Scand J Work Environ Health. 2010;36(2):150–62. 2898 [pii]

    Article  PubMed  Google Scholar 

  151. Chou TC, Scammell TE, Gooley JJ, Gaus SE, Saper CB, Lu J. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J Neurosci. 2003;23(33):10691–702. 23/33/10691 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Challet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Grosbellet, E., Challet, E. (2023). Circadian Rhythms and Metabolism. In: Ahima, R.S. (eds) Metabolic Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-319-12125-3_32-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12125-3_32-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12125-3

  • Online ISBN: 978-3-319-12125-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Circadian Rhythms and Metabolism
    Published:
    15 September 2023

    DOI: https://doi.org/10.1007/978-3-319-12125-3_32-2

  2. Original

    Circadian Rhythms and Metabolism
    Published:
    16 June 2015

    DOI: https://doi.org/10.1007/978-3-319-12125-3_32-1