
A Cross-Platform Benchmark Framework
for Mobile Semantic Web Reasoning Engines

William Van Woensel, Newres Al Haider, Ahmad Ahmad, and Syed S.R. Abidi

NICHE Research Group, Faculty of Computer Science,
Dalhousie University, Halifax, Canada

{william.van.woensel,newres.al.haider,ahmad.ahmad,raza.abidi}@dal.ca

Abstract. Semantic Web technologies are used in a variety of domains
for their ability to facilitate data integration, as well as enabling expres-
sive, standards-based reasoning. Deploying Semantic Web reasoning pro-
cesses directly on mobile devices has a number of advantages, including
robustness to connectivity loss, more timely results, and reduced infras-
tructure requirements. At the same time, a number of challenges arise
as well, related to mobile platform heterogeneity and limited computing
resources. To tackle these challenges, it should be possible to benchmark
mobile reasoning performance across different mobile platforms, with
rule- and datasets of varying scale and complexity and existing reason-
ing process flows. To deal with the current heterogeneity of rule formats,
a uniform rule- and data-interface on top of mobile reasoning engines
should be provided as well. In this paper, we present a cross-platform
benchmark framework that supplies 1) a generic, standards-based Se-
mantic Web layer on top of existing mobile reasoning engines; and 2) a
benchmark engine to investigate and compare mobile reasoning perfor-
mance.

Keywords: Semantic Web, benchmarks, software framework, rule-based
reasoning, SPIN.

1 Introduction

By supplying a formal model to represent knowledge, Semantic Web technology
facilitate data integration as well as expressive rule-based reasoning over Web
data. For example, in the healthcare domain, the use of specialized, Semantic
Web medical ontologies facilitate data integration between heterogeneous data
sources [10], while Semantic Web reasoning processes are employed to realize
Clinical Decision Support Systems (CDSS) [21,6].

Reflecting the importance of reasoning in the Semantic Web, a range of rule
languages and reasoning engine implementations, using an assortment of
reasoning techniques, are available. Such reasoners range from Description Logic
(DL)-based reasoners relying on OWL ontology constraints [17] to general-
purpose reasoners, supporting a variety of rule languages (e.g., RuleML [7],

P. Mika et al. (Eds.) ISWC 2014, Part I, LNCS 8796, pp. 389–408, 2014.
c© Springer International Publishing Switzerland 2014



390 W. Van Woensel et al.

SWRL [20] and SPIN [24]) and relying on different technologies, including Prolog
(e.g., XSB1), deductive databases (e.g., OntoBroker2) and triple stores (e.g.,
Jena3). In general, rule-based reasoning techniques, as for instance used in de-
cision support systems, allow a clear separation between domain knowledge and
application logic. Consequently, domain knowledge can be easily edited, updated
and extended without the need to disrupt the underlying system.

Up until now, knowledge-centric reasoning systems are typically developed
for deployment as desktop or server applications. With the emergence of mobile
devices with increased memory and processing capabilities, a case can be made
for mobile reasoning systems. In fact, mobile RDF stores and query engines are
already available, including RDF On the Go [25], AndroJena4, i-MoCo [32], and
systems such as MobiSem [33]. As such, a logical next step is to deploy rule-based
reasoning, an essential part of the Semantic Web, on mobile devices as well.

Deploying mobile reasoning processes, as opposed to relying on remote ser-
vices, has a number of advantages. In particular, local reasoning support allows
making timely inferences, even in cases where connectivity is lacking. This is es-
pecially important in domains such as healthcare, where non- (or too late) raised
alerts can negatively impact the patient’s health. Secondly, given the myriad of
data that can be collected about mobile users, privacy issues can play a role. A
mobile user could (rightly) be uncomfortable with sharing certain information
outside of the mobile device, for instance in context-aware [29] and mobile health
scenarios [2,19]. By deploying reasoning processes locally, no privacy-sensitive
data needs to be wirelessly communicated, while the advantages of rule-based
reasoning is still accessible to mobile apps.

Performing mobile reasoning gives rise to challenges as well, both related to
mobile device and platform heterogeneity as well as limited device capabilities.
Furthermore, it is clear that each system has its own particular requirements
regarding reasoning [13], which determine the complexity and scale of the rule-
and dataset, as well as the particular reasoning process flow. In light of mobile
device limitations, this makes it paramount to supply developers with the tools
to benchmark, under their particular reasoning setup, different mobile reason-
ing engines. This way, developers may accurately study the performance impact
of mobile deployment, and identify the best reasoning engine for the job. For
instance, this may inform architecture decisions where reasoning tasks are dis-
tributed across the server and mobile device based on their complexity [2]. In
addition, considering the fragmented mobile platform market (with systems in-
cluding Android, iOS, Windows Phone, BlackBerry OS, WebOS, Symbian, ..), it
should be straightforward to execute the same benchmark setup across multiple
mobile platforms.

Compounding the problem of mobile benchmarking, current freely and pub-
licly available mobile reasoning solutions support a variety of different rule and

1 http://xsb.sourceforge.net/
2 http://www.semafora-systems.com/en/products/ontobroker/
3 http://jena.sourceforge.net/
4 http://code.google.com/p/androjena/

http://xsb.sourceforge.net/
http://www.semafora-systems.com/en/products/ontobroker/
http://jena.sourceforge.net/
http://code.google.com/p/androjena/


A Mobile Benchmark Framework for Semantic Web Reasoning 391

data formats. In fact, the heterogeneity of rule languages is a general problem
among rule-based reasoners [26]. We also note that multiple Semantic Web rule
standards are currently available as well (e.g., RuleML, SWRL, SPIN). To avoid
developers having to re-write their rule- and dataset to suit each engine, a single
rule and data interface should be available. For our purposes, the most interest-
ing rule language is SPIN, a W3C Member Submission based on the SPARQL
query language. SPARQL is well-known and understood by most Semantic Web
developers, reducing the learning threshold compared to other alternatives.

In this paper, we present a cross-platform Benchmark Framework for mobile
Semantic Web reasoning engines. As its main goal, this framework aims to em-
power developers to investigate and compare mobile reasoning performance in
their particular reasoning setups, using their existing standards-based ruleset
and dataset. This framework comprises two main components:

– A generic, standards-based Semantic Web Layer on top of mobile rea-
soning engines, supporting the SPIN rule language. Behind the scenes, the
supplied ruleset (SPIN) and dataset (RDF) are converted to the custom rule
and data formats of the various supported reasoning engines.

– A Benchmark Engine that allows the performance of the different reason-
ing engines to be studied and compared. In this comparison, any existing
domain-specific rulesets and datasets of varying scale and complexity can be
tested, as well as different reasoning process flows.

By realizing this framework as a cross-platform solution, the same benchmarks
can be easily applied across different mobile platforms. The framework is im-
plemented in JavaScript using the PhoneGap5 development tool, which allows
mobile web apps to be deployed as native apps on a multitude of platforms (e.g.,
Android, iOS) . As a result, our framework allows benchmarking both JavaScript
and native systems. The framework further has an extensible architecture, allow-
ing new rule/data converters, reasoning flows and engines to be easily plugged
in. Finally, we present an example benchmark in an existing clinical decision
support scenario, to serve as a proof-of-concept and to investigate mobile rea-
soning performance in a real-world scenario. Our online documentation [31],
associated with the presented benchmark framework, links to the source code
and contains detailed instructions on usage and extension as well (these docs are
referenced throughout the paper).

This paper is structured as follows. In Section 2, we discuss relevant back-
ground. Section 3 elaborates on the Mobile Benchmark Framework architecture
and its main components. We continue by summarizing the measurement crite-
ria (Section 4) and how developers can use the framework (Section 5). Section 6
summarizes the results of the example benchmark. In Section 7, we present re-
lated work, and Section 8 presents conclusions and future work.

5 http://phonegap.com/

http://phonegap.com/


392 W. Van Woensel et al.

2 Background

2.1 Semantic Web Reasoning

An important aspect of the Semantic Web is reasoning, whereby reasoners may
exploit the assigned semantics of OWL data, as well as the added expressivity
given by domain-specific rules and constraints. Current semantic rule standards
include the Semantic Web Rule Language (SWRL) [20], Web Rule Language
(WRL) [3], Rule Markup/Modeling Language (RuleML) [7] and SPARQL Infer-
encing Notation (SPIN) [24]. In addition, many reasoning engines also introduce
custom rule languages (e.g., Apache Jena6). Clearly, this multitude of semantic
rule languages prevent the direct re-use of a single ruleset when benchmarking.
To tackle this problem, our benchmark framework supplies a generic Semantic
Web layer across the supported rule engines, supporting SPIN as the input rule
language.

SPIN (SPARQL Inferencing Notation) is a SPARQL-based rule- and con-
straint language. At its core, SPIN provides a natural, object-oriented way of
dealing with constraints and rules associated with RDF(S)/OWL classes. In the
object-oriented design paradigm, classes define the structure of objects (i.e., at-
tributes) together with their behavior, including creating / changing objects and
attributes (rules) as well as ensuring a consistent object state (constraints). Re-
flecting this paradigm, SPIN allows directly associating locally-scoped rules and
constraints to their related RDF(S)/OWL classes.

To represent rules and constraints, SPIN relies on the SPARQL Protocol
and RDF Query Language (SPARQL) [14]. SPARQL is a W3C standard with
well-formed query semantics across RDF data, and has sufficient expressivity to
represent both queries as well as general-purpose rules and constraints. Further-
more, SPARQL is supported by most RDF query engines and graph stores, and
is well-known by Semantic Web developers. This results in a low learning curve
for SPIN, and thus also facilitates the re-encoding of existing rulesets to serve as
benchmark input. In order to associate SPARQL queries with class definitions,
SPIN provides a vocabulary to encode queries as RDF triples, and supplies prop-
erties such as spin:rule and spin:constraint to link the RDF-encoded queries
to concrete RDF(S)/OWL classes.

2.2 Reasoning Engines

Below, we elaborate on the reasoning engines currently plugged into the Mobile
Benchmark Framework.

AndroJena7 is an Android-ported version of the well-known Apache Jena8
framework for working with Semantic Web data. In AndroJena, RDF data can
be directly loaded from a local or remote source into an RDF store called a
Model, supporting a range of RDF syntaxes.
6 https://jena.apache.org/
7 http://code.google.com/p/androjena/
8 https://jena.apache.org/

https://jena.apache.org/
http://code.google.com/p/androjena/
https://jena.apache.org/


A Mobile Benchmark Framework for Semantic Web Reasoning 393

Regarding reasoning, AndroJena supplies an RDFS, OWL and rule-based
reasoner. The latter provides both forward and backward chaining, respectively
based on the standard RETE algorithm [12] and Logic Programming (LP). In
addition, the reasoning engine supports a hybrid execution model, where both
mechanisms are employed in conjunction9,10. Rules are specified using a cus-
tom rule language (which resembles a SPARQL-like syntax), and are parsed and
passed to a reasoner object that is applied on a populated Model, which creates
an InfModel supplying query access to the inferred RDF statements. Afterwards,
new facts can be added to this InfModel; after calling the rebind method, the
reasoning step can be re-applied.

RDFQuery11 is an RDF plugin for the well-known jQuery12 JavaScript library.
RDFQuery attempts to bridge the gap between the Semantic Web and the regu-
lar Web, by allowing developers to directly query RDF (e.g., injected via RDFa
[18]) gleaned from the current HTML page. RDF datastores can also be popu-
lated directly with RDF triples.

In addition to querying, RDFQuery also supports rule-based reasoning. Con-
ditions in these rules may contain triple patterns as well as general-purpose
filters. These filters are represented as JavaScript functions, which are called for
each currently matching data item; based on the function’s return value, data
items are kept or discarded. The reasoning algorithm is ”näıve”, meaning rule
are executed in turn until no more new results occur13.

RDFStore-JS14 is a JavaScript RDF graph store supporting the SPARQL
query language. This system can be either deployed in the browser or a Node.js15
module, which is a server-side JavaScript environment.

Comparable to AndroJena (see Section 2.2), triples can be loaded into an RDF
store from a local or remote data source, supporting multiple RDF syntaxes.
Regarding querying, RDFStore-JS supports SPARQL 1.0 together with parts of
the SPARQL 1.1 specification. However, RDFStore-JS does not natively support
rule-based reasoning. To resolve this, we extended the system with a reasoning
mechanism that accepts rules as SPARQL 1.1 INSERT queries, whereby the
WHERE clause represents the rule condition and the INSERT clause the rule
result. This mechanism is näıve, executing each rule in turn until no more new
results are inferred (cfr. RDFQuery).

Nools16 is a RETE-based rule engine, written in JavaScript. Like RDFStore-JS,
this system can be deployed both on Node.js as well as in the browser.

9 http://jena.apache.org/documentation/inference/#rules
10 Currently, we rely on the default configuration settings, which uses the hybrid exe-

cution model.
11 https://code.google.com/p/rdfquery/wiki/RdfPlugin
12 http://jquery.com
13 The engine had to be extended to automatically resolve variables in the rule result.
14 http://github.com/antoniogarrote/rdfstore-js
15 http://nodejs.org/
16 https://github.com/C2FO/nools

http://jena.apache.org/documentation/inference/#rules
https://code.google.com/p/rdfquery/wiki/RdfPlugin
http://jquery.com
http://github.com/antoniogarrote/rdfstore-js
http://nodejs.org/
https://github.com/C2FO/nools


394 W. Van Woensel et al.

In contrast to the two other evaluated JavaScript systems, Nools presents
a fully-fledged reasoning engine, supporting a non-näıve reasoning algorithm
(RETE). Also, as opposed to the other evaluated systems, Nools does not na-
tively support RDF. The engine is also used differently when performing reason-
ing. In case of Nools, a developer first supplies the rules, formulated using their
custom rule language, in the form of a flow. The supplied flow is afterwards com-
piled into an internal representation (whereby pre-compilation can be applied
to avoid repeating the compilation step each time). A session is an instance of
the flow, containing the RETE working memory in which new facts are asserted.
After creating and compiling the rule flow, the dataset is asserted in the session,
after which the asserted data is matched to the defined rules.

Summary. Despite the potential of mobile reasoning processes, we observe a
current lack of freely and publicly available mobile solutions. The above men-
tioned JavaScript engines were developed for use on either the server-side (using
an environment such as Node.js) or a desktop browser, which makes their perfor-
mance on mobile platforms uncertain. And similarly, while AndroJena represents
port to the mobile Android platform, it is unclear to what extent the reasoning
engine was optimized for mobile devices.

At the same time, our example benchmark (see Section 6), conducted in a
real-world clinical decision support scenario, shows that these reasoning engines
already have acceptable performance for small rule- and datasets. Moreover,
our Mobile Benchmark Framework empowers developers to cope with this un-
certainty of mobile performance, by allowing them to investigate the feasibility
of locally deploying particular reasoning tasks. We further note that, as mo-
bile device capabilities improve and demand for mobile reasoning deployment
increases, more mobile-optimized reasoning engines are likely to become avail-
able. Recent efforts from the literature to optimize mobile reasoning processes
in certain domains (i.e., context-awareness) have been already observed [29].

3 Mobile Benchmark Framework

In this section, we give an architecture overview of the Mobile Benchmark Frame-
work. The framework architecture comprises two main components: 1) a generic
Semantic Web layer, supplying a uniform, standards-based rule- and dataset
interface to mobile reasoning engines; and 2) a Benchmark Engine, to investi-
gate and compare mobile reasoning performance. Figure 1 shows the framework
architecture.

During benchmark execution, the particular benchmark rule- and dataset (en-
coded in SPIN and RDF, respectively) are first passed to the generic Semantic
Web layer. In this layer, a local component (called Proxy) contacts an external
Conversion Web service, to convert the given rules and data into the formats
supported by the plugged-in reasoning engines. In this Web service, conversion
is performed by custom converters, each of which supports a particular rule or
data format. Afterwards, the conversion results are returned to the Proxy and
passed on to the Benchmark Engine.



A Mobile Benchmark Framework for Semantic Web Reasoning 395

Fig. 1. Framework Architecture

In the Benchmark Engine, reasoning can be conducted using different process
flows, to better align the benchmarks with actual, real-world reasoning systems
(e.g., decision support). A particular reasoning flow is realized by invoking the
uniform interface methods (e.g., load data, execute rules) of the benchmarked
reasoning engine. Each mobile reasoning engine requires a plugin implementing
this interface, which translates method invocations to the underlying reasoning
engine. In case of native mobile reasoning engines, these plugins communicate
with the native engine code over the PhoneGap communication bridge.

In the sections below, we elaborate on the two main architecture components.

3.1 Semantic Web Layer

This layer supplies a single, standards-based rule- and dataset interface for frame-
work, allowing developers to cope with the heterogeneous rule- and dataset for-
mats. Currently, the layer respectively supports SPIN17 and RDF as input rule
and data formats.

The conversion functionality is accessed via an intermediate JavaScript com-
ponent called the Proxy, which comprises methods for rule and data conversion.
Behind the scenes, the Proxy contacts a RESTful Conversion Web service (de-
ployed on an external Web server) to perform the conversion tasks, thus intro-
ducing a layer of abstraction. We opted for a web service approach, since the
only currently available SPIN API is developed for Java (by TopBraid [23]). The
Conversion Web service utilizes the API to convert incoming SPIN rules into
an Abstract Syntax Tree (AST). This AST is then analyzed by plugged-in con-
verters, using the provided Visitor classes (Visitor design pattern), to convert
the SPIN rules into equivalent rules18 in other formats. In case data conversion
17 The input SPIN rules do not need to be RDF-encoded.
18 While only SPIN language features can be referenced in input rules, any (SPIN-

encoded) core inferences should be mappable to a target IF-THEN rule format.



396 W. Van Woensel et al.

is required as well, a data converter can utilize the Apache Jena library to deal
with incoming RDF data.

Below, we shortly elaborate on the currently developed converters. After-
wards, we discuss how the layer can be extended with new converters.

AndroJena (see Section 2.2) defines its own custom rule language, which
resembles a triple pattern-like syntax. As such, rule conversion to SPIN (which
relies on the likewise triple pattern-based SPARQL) is relatively straightforward.
Comparably, RDFQuery (see Section 2.2) utilizes triple patterns in rule def-
initions, facilitating rule conversion. To create the JavaScript filter functions,
function strings are generated and returned, which are evaluated (using the JS
eval command) by the JavaScript Proxy to obtain the actual function con-
structs. RDFStore-JS requires converting SPIN rules, which are represented
as CONSTRUCT queries19, to equivalent queries using the INSERT keyword
from SPARQL 1.1/Update [14].

As mentioned, Nools (see Section 2.2) is the only reasoning engine under
consideration without built-in Semantic Web support. At the same time however,
their generic rule language supports domain-specific extensions, by allowing rule
definitions to include custom data types (e.g., data type Message). These data
types can then be instantiated in the incoming dataset, and referenced in the
defined rules. To add Semantic Web support, we include custom RDFStatement,
RDFResource, RDFProperty and RDFLiteral data types into rule definitions,
and convert incoming SPIN rules to Nools rules referencing these data types. The
incoming RDF dataset is converted to instances of these custom data types, and
asserted as facts in the session.

Currently, the converters support SPIN functions representing primitive com-
parators (greater, equal, ..), as well as logical connectors in FILTER clauses.
Support for additional functions needs to be added to the respective converter
classes. More advanced SPARQL query constructs, such as (not-)exists, optional,
minus and union, are currently not supported, since it is difficult to convert them
to all rule engine formats, and they have not been required up until now by our
real-world test rule- and datasets (e.g., see example benchmark in Section 6).

Extensibility. To plugin a new data- or rule-format, developers create a new
converter class. Each converter class implements a uniform rule- (or data-) con-
version interface, which accepts the incoming SPIN rules / RDF data and re-
turns Strings in the correct rule / data format. Each converter class also defines
a unique identifier for the custom format, since conversion requests to the Web
service specify the target format via its unique identifier.

New converter classes need to be listed (i.e., package and class name) in a
configuration file, which is read by the Web service to dynamically load converter
class definitions. As such, converters can be easily plugged in without requiring
alterations to the web service code. Our online documentation [31] contains more
detailed instructions on developing new converters.

19 http://www.w3.org/Submission/2011/SUBM-spin-modeling-20110222/
#spin-rules-construct

http://www.w3.org/Submission/2011/SUBM-spin-modeling-20110222/#spin-rules-construct
http://www.w3.org/Submission/2011/SUBM-spin-modeling-20110222/#spin-rules-construct


A Mobile Benchmark Framework for Semantic Web Reasoning 397

3.2 Benchmark Engine

The Benchmark Engine performs benchmarks on mobile reasoning engines un-
der particular reasoning setups, with the goal of investigating and comparing
reasoning performances. Below, we first discuss currently supported reasoning
setups; afterwards, we elaborate on the extensibility of this component.

Reasoning setups comprise the particular process flows via which reasoning
may be executed. By supporting different setups (and allowing new ones to be
plugged in), benchmarks can be better aligned to real-world reasoning systems.
From our work in clinical decision support, we identified two general process
flows:

Frequent Reasoning: In the first flow, the system stores all health measure-
ments and observations (e.g., heart rate, symptoms), collectively called clinical
facts, in a data store. To infer new clinical conclusions, frequent reasoning is ap-
plied to the entire datastore, comprising all collected clinical facts together with
the patient’s baseline clinical profile (e.g., including age, gender and ethnicity).
Concretely, this entails loading a reasoning engine with the entire datastore each
time a certain timespan has elapsed, and executing the relevant ruleset.

Incremental Reasoning: In the second flow, the system implements clinical
decision support by applying reasoning each time a new clinical fact is entered.
In this case, the reasoning engine is loaded with an initial baseline dataset,
containing the patient’s clinical profile and historical (e.g., previously entered)
clinical facts. Afterwards, the engine is kept in memory, whereby new facts are
dynamically added to the reasoning engine. After each add operation, reasoning
is re-applied to infer new clinical conclusions20.

It can be observed that the Frequent Reasoning process flow reduces respon-
siveness to new clinical facts, while also incurring a larger performance overhead
since the dataset needs to be continuously re-loaded. Although the Incremental
Reasoning flow improves upon responsiveness, it also incurs a larger consistent
memory overhead, since the reasoning engine is continuously kept in memory.
The most suitable flow depends on the requirements of the domain; for instance,
Incremental Reasoning is a better choice for scenarios where timely (clinical)
findings are essential. The Benchmark Engine enables developers to perform mo-
bile reasoning benchmarking using process flows that are most suitable for their
setting. We note that additional flows can be plugged in as well, as mentioned
at the end of this Section.

In addition, the particular reasoning engine may dictate a particular process
flow as well (see Section 2.2). For instance, in case of RDFQuery, RDFStore-JS
and AndroJena, the data is first loaded into the engine and rules are subse-
quently executed (LoadDataExecuteRules). For Nools, rules are first loaded into
the engine to compile the RETE network, after which the dataset is fed into the
network and reasoning is performed (LoadRulesDataExecute).

20 An algorithm is proposed in [16] to optimize this kind of reasoning, which is imple-
mented by the reasoning engine presented in [29].



398 W. Van Woensel et al.

We note that the former type of process flow (i.e., Frequent and Incremen-
tal Reasoning) indicates the reasoning timing, and is chosen based on domain
requirements; while the latter flow type defines the operation ordering, and is
determined by the employed reasoning engine21. For a single benchmark, the rea-
soning setup thus comprises a combination of two flows of each type. Figures 2/A
and B illustrate the possible setups for our current reasoning engines.

Fig. 2. (A) Frequent Reasoning and (B) Incremental Reasoning process flow (RDF-
Query, RDFStore-JS, AndroJena)

Figure 2/A shows Frequent Reasoning (FR) and Incremental Reasoning (IR)
for LoadDataExecuteRules (RDFQuery, RDFStore-JS and AndroJena), and Fig-
ure 2/B shows the same for LoadDataRulesExecute (Nools). For both diagrams,
Frequent Reasoning entails going through the entire diagram each time a partic-
ular timespan has elapsed (time event). For Incremental reasoning, the system
traverses the diagram from start to finish at startup time, and proceeds (from
the indicated place) each time a new fact is received (receive signal event).

As mentioned, the Benchmark Engine is implemented in JavaScript and de-
ployed as a native mobile app using the PhoneGap cross-platform development
tool. We chose Android as the deployment platform since, to our knowledge, the
only (publicly and freely available) native mobile reasoning engine (AndroJena,
see Section 2.2) runs on that platform.

Extensibility. In the Benchmark Engine, each reasoning setup is represented
by a JavaScript object. Its runBenchmark method invokes operations from the
uniform reasoning engine interface (e.g., load data, execute rules) to realize its
21 We also note that, for LoadRulesDataExecute, the Execute Rules step is separated

into two steps.



A Mobile Benchmark Framework for Semantic Web Reasoning 399

particular process flows. The object is added to a folder called setups and listed
in a mapping.json file, which maps combinations of process flows (e.g., Frequen-
tReasoning, LoadDataExecuteRules) to their corresponding setup object.

A new mobile reasoning engine is plugged into the Benchmark Engine by writ-
ing a JavaScript ”plugin” object. This object implements the uniform interface
invoked by reasoning setups (see above) and translates method invocations to
the underlying engine. In addition, each object specifies a unique engine ID, the
rule- and dataformat accepted by the engine, as well as the process flow dictated
by the engine (see Section 3.2). Each plugin object is put in a separate file and
folder, both named after the reasoning engine id.

To insert native reasoning engines, developers implement the plugin on the
native platform (e.g., Android), likewise implementing the uniform engine in-
terface and specifying the aforementioned information. The Benchmark Engine
comprises a native part (see Figure 1) to manage these plugins. In addition,
developers add a dummy JavaScript plugin object for the engine, indicating the
unique engine ID. Behind the scenes, the Benchmark Engine replaces this dummy
object by a proxy component that implements communication with the native
plugin. This setup is illustrated in the Benchmark Engine part of Figure 1.

More detailed instructions on developing Benchmark Engine extensions can
be found in our online documentation [31].

4 Measurement Criteria
The Mobile Benchmark Framework allows studying and comparing the following
metrics:
– Data and rule loading times: Time needed to load data and rules (if nec-

essary) into the reasoning engine. Data loading time is commonly used in
database benchmarks [9] as well as Semantic Web benchmarks [15,5]. Note
that this time does not include converting the initial standards-based rule-
and dataset to native formats.

– Reasoning times: Time needed to execute the rules on the dataset and infer
new facts. Typically, database benchmarks capture the query response time
as well, including Semantic Web benchmarks [15,4].

Ideally, and especially on mobile devices, these performance criteria would
include memory consumption as well. However, it is currently not technically
possible to automatically measure this criterium for all reasoning engines. An-
droid Java heap dumps accurately measure the memory consumption of Android
engines, but can only measure the entire memory size of the natively deployed
web app (comprising the JavaScript reasoning engines). The Chrome DevTools
remote debugging support22 can only be employed to record heap allocations
inside the mobile Chrome browser, and furthermore needs to be invoked manu-
ally. Other works also cite the accurate measuring of in-memory repository sizes
as a difficult problem [15].
22 https://developers.google.com/chrome-developer-tools/docs/

remote-debugging

https://developers.google.com/chrome-developer-tools/docs/remote-debugging
https://developers.google.com/chrome-developer-tools/docs/remote-debugging


400 W. Van Woensel et al.

Some related works also investigate completeness and soundness of inferenc-
ing [15]. This criterium was presented in the context of OWL constraint-based
reasoning, which typically serves to enrich data access where incomplete infer-
ences may already be acceptable. In rule-based systems (e.g., (clinical) decision
support systems), inferencing completeness is often a hard requirement. That
said, each reasoning engine plugin in our framework outputs any inferred facts,
allowing developers to check inferencing completeness.

Other works focus on benchmarking performance for reasoning types such as
large joins, Datalog recursion and default negation [26]. Although these bench-
marks are certainly useful, the goal of the Mobile Benchmark Framework is not
to measure performance for such specific reasoning types, but instead to facili-
tate mobile reasoning benchmarking given a particular existing reasoning setup;
including rule- and datasets and reasoning process flows.

Finally, we do not measure rule- and dataset conversion performance. The goal
of the Semantic Web layer is to provide a uniform rule- and data-interface to
facilitate benchmarking; the layer will not be included in actual mobile reasoning
deployments.

5 Usage

This section gives a birds-eye view of how developers can utilize the framework.
More detailed deployment and usage instructions for the framework, including
the Conversion Web service, are available in our online documentation [31].

To perform benchmarks, developers provide a configuration file that speci-
fies the reasoning setup and engine to be used, the number of runs, as well as
the benchmark dataset and ruleset. By performing multiple runs of the same
benchmark and calculating average execution times, the impact of background
OS processes is minimized. Below, we show the configuration for our example
benchmark (see Section 6):

{
processFlow : ’frequent_reasoning’,

// options: frequent_reasoning, incremental_reasoning
engine : ’AndroJena’,

nrRuns : 20,

ruleSet : {
path : "res/rules/af/benchmark.spin-rules",
format : ’SPIN’ // options: SPIN, native

},

// in case of ’incremental reasoning’: include ’baseline’
// & ’single-item’ config under dataSet
dataSet : {

path : "res/data/af/25/benchmark.nt",



A Mobile Benchmark Framework for Semantic Web Reasoning 401

format : ’RDF’, // options: RDF, native
syntax : ’N-TRIPLE’

// options: RDF/XML, N-TRIPLE, TURTLE, TTL, N3, RDF/XML-ABBREV
}

}

This configuration indicates the process flow (processFlow) and reasoning en-
gine (engine) to be used in the benchmark, as well as the number of benchmark
runs (nrRuns). The ruleset and dataset can either be provided respectively in
SPIN / RDF or native format (i.e., the engine’s natively supported format). In
the non-native case, the framework automatically contacts the Semantic Web
layer on-the-fly for conversion to the engine’s native format. Alternatively, a
script is available to convert rules and data beforehand, ruling out the need for
connecting to the Web service during benchmarking.

6 Example Benchmark

In this section, we present an example benchmark that serves as a proof-of-
concept of our Mobile Benchmark Framework. As an added goal, this benchmark
aims to indicate the performance of the presented mobile reasoning engines for a
real-world reasoning task, namely an existing clinical decision support scenario.
Importantly, we note that the goal of this section is not to exhaustively compare
the performance of the plugged-in mobile reasoning engines23.

Below, we shortly elaborate on the benchmark domain (including the data-
and ruleset), and indicate the utilized hardware. Afterwards, we summarize the
benchmarking results.

6.1 Benchmark Domain

The benchmark data and ruleset are taken from ongoing work on the Integrated
Management Program Advancing Community Treatment of Atrial Fibrillation
(IMPACT-AF) project [22]. IMPACT-AF aims to provide web- and mobile-based
clinical decision support tools for primary care providers and patients, with the
goal of better managing Atrial Fibrillation (AF). To improve the timeliness of
clinical alerts and increase robustness to connectivity loss, this project includes
outfitting a mobile app, used by patients to enter health measurements and
observed symptoms, with local reasoning support.

The mobile ruleset, employed in this benchmark, represents part of the com-
puterized guidelines for the treatment of Atrial Fibrillation, given by the Cana-
dian Cardiovascular Society [8] and European Society of Cardiology [11]. The
ruleset encompasses a total of 10 rules. An AF patient’s dataset comprises
health factors related to AF, including clinically relevant personal info (e.g.,
age, gender) and health measurements (e.g., blood pressure), as well as AF-
specific symptoms and the International Normalized Ratio (INR). Collectively,
23 A second paper, performing such a comparison for the same domain, is currently

under review.



402 W. Van Woensel et al.

we refer to these data items as clinical facts. We generated benchmark datasets
containing the above described clinical data, whereby clinical facts were created
based on ranges encompassing both clinically normal values as well as abnormal
ones. With the goal of investigating mobile reasoning scalability, our benchmarks
consider a sequence of datasets, each containing an increasing amount of data.
Each dataset triggers 40-50% of the rules.

The rule- and dataset of this benchmark, as well as instructions on how to run
it, can be found in the online documentation [31] (for the latter, see the Usage
part).

6.2 Hardware

The benchmarks were performed on a Samsung Galaxy SIII (model number GT-
I9300), with a 1.4GHz quad-core processor, 1GB RAM and 16GB storage. The
installed Android OS was version 4.3 (Jelly Bean) with API level 18.

6.3 Results

In Section 3.2, we described two main process flows to realize mobile reasoning,
including Incremental Reasoning and Frequent Reasoning. Below, we separately
summarize and discuss the results for each process flow.

Frequent Reasoning. Table 1 shows the average loading and reasoning times
for each engine and for increasing dataset sizes. Each run of this flow involves
loading the reasoning engine with the entire dataset (load column) and then
executing the rules (execute column); the total column shows the total time of
each run.

We note that for Nools, loading times also include loading the rules into the
engine24, in order to build the internal RETE network (data loading time is
shown separately between parenthesis). For some engines, the reasoning step
includes creating rule objects as well; since this rule creation step turned out
to be trivial (never exceeding 50 ms), these times were added to the overall
reasoning times.

Incremental Reasoning. In Table 2, we again summarize average loading
and reasoning times for increasing sizes of the dataset. In this process flow, the
reasoning engine is initially loaded with a baseline dataset (typically at startup
time). As baseline dataset, we employed the dataset containing 25 clinical facts
(1673 triples). A single run of this flow involves loading an additional fact into
the engine (load column) and performing the execution step (execute column).
The total column shows the total time of a single run. We refer to Table 1 for
times on the initial loading of the baseline dataset.

24 This time remains constant for increasing dataset sizes.



A Mobile Benchmark Framework for Semantic Web Reasoning 403

Table 1. Frequent Reasoning: Loading & Reasoning times for increasing dataset sizes
(ms)

#triples

RDFQuery RDFStore-JS Nools AndroJena

load exec total load exec total load exec total load exec total

137 95 154 249 196 985 1181 8411 (560) 52 8463 94 104 198

393 230 506 736 750 1523 2273 9256 (1245) 88 9344 160 138 298

713 362 1165 1527 1269 1479 2748 10061 (2521) 78 10139 439 466 905

1673 673 6294 6967 2468 1606 4074 14707 (7399) 58 14765 560 3205 3765

3273 1348 36603 37951 4269 2145 6414 25580 (18731) 64 25644 1036 24921 25957

4873 1680 106212 107892 5592 2496 8088 49465 (41845) 358 49823 1509 79699 81208

Table 2. Loading & Reasoning times for a single fact (ms)

RDFQuery RDFStore-JS Nools AndroJena

load 42 8 22 16

execute 5941 1677 19 3426

total 5983 1685 41 3442

6.4 Discussion

In this section, we shortly discuss the benchmark results summarized above for
each reasoning process flow.

Frequent Reasoning. Table 1 shows the Nools data loading time is problematic
for larger (> 713 triples) datasets (the rule loading time is constant and averages
ca. 7-8s). Regarding loading times, especially RDFQuery and AndroJena perform
well (< 1s) for medium datasets (< 3273 triples), whereby AndroJena has the
best loading performance overall.

At the same time, we note that AndroJena and RDFQuery, while perform-
ing well for smaller datasets, have a very problematic reasoning performance
for larger datasets (≥ 1673 triples). Nools has by far the best reasoning perfor-
mance, only exceeding 100ms for the largest dataset. Reasoning performance for
RDFStore-JS remains reasonable, rising steadily as the datasets increase in size.

From the total times, we observe that RDFStore-JS is the most scalable
solution for this particular process flow, performing best for larger datasets (>
1673 triples). AndroJena is the better solution for smaller datasets (≤ 1673
triples).

It can be observed that the domain datasets are relatively small scale. Inside
this limited scale however, the benchmark already identified clear differences in
engine performance for increasing dataset sizes. For larger datasets, problematic
mobile performance may for instance point the developer towards a distributed
solution, combining local and server-side reasoning.

Also, we note the ruleset was not optimized to suit the employed rea-
soning mechanisms (e.g., RETE, Logic Programming) or dataset composition.



404 W. Van Woensel et al.

Investigating the effects of the various potential optimizations is beyond the
scope of this paper, and will be considered in future work.

Incremental Reasoning. Table 2 shows that, as expected from the discussion
above, Nools has by far the best performance in this reasoning step, with almost
negligible reasoning times compared to the other engines. In contrast, reasoning
times for the other three engines is comparable to their reasoning performance
for this dataset size in the first process flow.

Consequently, we observe that, once the initial data and rule loading is out
of the way, Nools has by far the best reasoning performance when incrementally
adding facts in this process flow. As noted in the previous section, Nools data
loading times for small datasets (≤ 713 triples) are still acceptable (while we
note that rule loading time will also decrease with the ruleset size). Therefore,
Nools is the best option for this flow in case of small datasets and rulesets, since
the low reasoning time makes up for the increased initialization time. In case
scalability is required, RDFStore-JS remains the best option.

Conclusion. The above results indicate that, as expected, the most suitable
engine depends on the target reasoning process flow, as well as the dataset (and
ruleset) scale. At the same time however, we observe that scalability represents
a serious issue for most mobile engines. We also note that, although taken from
an existing, real-world clinical decision support system, the utilized ruleset is
relatively straightforward, with for instance no rule chaining. If that had been
the case, näıve reasoning mechanisms (as employed by RDFStore-JS and RD-
FQuery) would likely have a larger disadvantage compared to the fully-fledged
AndroJena and Nools engines. If anything, this again indicates the importance
of a Mobile Benchmark Framework that allows easily performing benchmarks
with the particular rule- and dataset from the target use case.

7 Related Work

The Lehigh University Benchmark (LUBM) [15] supplies a set of test queries
and a data generator to generate datasets, both referencing a university ontol-
ogy. In addition, a test module is provided for carrying out data loading and
query testing. This work aims to benchmark data loading and querying over
large knowledge base systems featuring OWL / RDF(S) reasoning. The Univer-
sity Ontology Benchmark (UOBM) [27] builds upon this work, and extends it
to support complete OWL-DL inferencing and improve scalability testing. Sim-
ilarly, the Berlin SPARQL benchmark (BSBM) [5] supplies test queries, a data
generator and test module for an e-commerce scenario. In this case, the goal is
to compare performance of native RDF stores with SPARQL-to-SQL rewriters,
and to put the results in relation with RDBMS.

The focus of the works presented above differs from our work, which is on the
cross-platform benchmarking of mobile, rule-based Semantic Web reasoners; and
facilitating such benchmarks by providing a uniform interface across different,
natively supported rule- and data formats.



A Mobile Benchmark Framework for Semantic Web Reasoning 405

OpenRuleBench [26] is a suite of benchmarks for comparing and analyzing the
performance of a wide variety of rule engines, spanning 5 different technologies
and 11 systems in total. These benchmarks measure performance for types of
reasoning such as large joins and Datalog recursion, targeting engines deployed
on the desktop- and server-side. Instead, we focus on benchmarking Semantic
Web reasoners deployed on mobile platforms. Additionally, we supply the tools
for developers to benchmark their existing reasoning setup, including their rule-
and dataset and particular reasoning flow.

The Intelligent Mobile Platform (IMP) supplies context-aware services to
third-party mobile apps, and relies on the Delta Reasoner [29] to determine
current context and identify appropriate actions. To cope with the particular
requirements of context-aware settings, including the dynamicity of sensor data
and the necessity of push-based access to context data, the Delta Reasoner imple-
ments features such as incremental reasoning and continuous query evaluation.
However, this reasoner is currently not publicly available; and the integration of
this reasoner into the mobile IMP still seems a work in progress.

8 Conclusions and Future Work
In this paper, we introduced a Mobile Benchmark Framework for the investi-
gation and comparison of mobile Semantic Web reasoning engine performances.
This framework was realized as a cross-platform solution, meaning a particular
benchmark setup can be easily applied across mobile platforms. Furthermore,
there is a strong focus on extensibility, allowing new rule- and data converters,
reasoning process flows and engines to be plugged in. Throughout the paper, we
indicated where and how extensions can be made by third-party developers.

An important goal of the framework is to empower developers to bench-
mark different reasoning engines, using their own particular reasoning setups
and standards-based rule-and datasets. To that end, the framework comprises
two main components:

– A generic, standards-based Semantic Web Layer on top of mobile reason-
ing engines, supporting the SPIN rule language. Given a standards-based
ruleset (SPIN) and dataset (RDF), a conversion component returns this
rule- and dataset transformed into the custom formats supported by the
mobile reasoning engines.

– A Benchmark Engine that allows the performance of the different reason-
ing engines to be studied and compared. In this comparison, any domain-
specific rule- and dataset with varying scale and complexity can be tested,
as well as multiple reasoning process flows.

As a proof-of-concept, an example benchmark was performed using the frame-
work, based on an existing clinical decision support system. Additionally, this
benchmark aimed to measure the performance of mobile reasoning engines for
such a real-world reasoning setup; and thus study the feasibility of locally deploy-
ing reasoning processes at this point in time. Although most benchmarked rea-
soning engines were not optimized for mobile use, the benchmark showed these



406 W. Van Woensel et al.

engines already feature reasonable performance for limited rule- and datasets.
At the same time, we note scalability is certainly an issue, with the most efficient
overall execution times for Frequent Reasoning rising to ca. 8s for the largest
dataset (comprising 4873 triples). To support larger-scale setups, it is clear that
much more work is needed to optimize rule-based Semantic Web reasoners for
mobile deployment. Interest in performing such optimization has been observed
recently in the literature [29], and is likely to increase as demand for mobile
reasoning processes increases (e.g., from domains such as health care [1,2,19]).

Future work includes benchmarking mobile reasoning engines with rulesets
of increased complexity. Support for additional SPIN functions and more ad-
vanced SPARQL constructs should be added to the Semantic Web layer, as these
will likely be needed by such complex rulesets. Moreover, different optimization
techniques will be applied as well to systematically evaluate their impact on
performance. A number of relevant techniques can be utilized for this purpose,
for instance based on RETE [28] or borrowed from SPARQL query optimization
[30].

Currently, we are employing one of the mobile reasoning engines in the
IMPACT-AF mobile app (see Section 6.1), where it features sufficient perfor-
mance for the current rule- and dataset. As requirements for local reasoning
increase, it is possible we will investigate custom optimizations to these engines
for mobile deployment.

Acknowledgments. This research project is funded by a research grant from
Bayer Healthcare.

References

1. Abidi, S.R., Abidi, S.S.R., Abusharek, A.: A Semantic Web Based Mobile Frame-
work for Designing Personalized Patient Self-Management Interventions. In: Pro-
ceedings of the 1st Conference on Mobile and Information Technologies in Medicine,
Prague, Czech Republic (2013)

2. Ambroise, N., Boussonnie, S., Eckmann, A.: A Smartphone Application for Chronic
Disease Self-Management. In: Proceedings of the 1st Conference on Mobile and
Information Technologies in Medicine, Prague, Czech Republic (2013)

3. Angele, J., Boley, H., De Bruijn, J., Fensel, D., Hitzler, P., Kifer, M., Krum-
menacher, R., Lausen, H., Polleres, A., Studer, R.: Web Rule Language (2005),
http://www.w3.org/Submission/WRL/

4. Becker, C.: RDF Store Benchmarks with DBpedia comparing Virtuoso, SDB and
Sesame (2008),
http://wifo5-03.informatik.uni-mannheim.de/benchmarks-200801/

5. Bizer, C., Schultz, A.: The berlin sparql benchmark. International Journal on Se-
mantic Web and Information Systems-Special Issue on Scalability and Performance
of Semantic Web Systems (2009)

6. Blomqvist, E.: The use of semantic web technologies for decision support - a survey.
Semantic Web 5(3), 177–201 (2014)

http://www.w3.org/Submission/WRL/
http://wifo5-03.informatik.uni-mannheim.de/benchmarks-200801/


A Mobile Benchmark Framework for Semantic Web Reasoning 407

7. Boley, H., Tabet, S., Wagner, G.: Design rationale of RuleML: A markup language
for semantic web rules. In: Cruz, I.F., Decker, S., Euzenat, J., McGuinness, D.L.
(eds.) Proc. Semantic Web Working Symposium, pp. 381–402. Stanford University,
California (2001)

8. Canadian Cardiovascular Society: Atrial Fibrillation Guidelines,
http://www.ccsguidelineprograms.ca

9. Cattell, R.G.G.: An engineering database benchmark. In: The Benchmark Hand-
book, pp. 247–281 (1991),
http://dblp.uni-trier.de/db/books/collections/gray91.html#Cattell91

10. Cheung, K.H., Prud’hommeaux, E., Wang, Y., Stephens, S.: Semantic web for
health care and life sciences: a review of the state of the art. Briefings in Bioinfor-
matics 10(2), 111–113 (2009)

11. European Society of Cardiology: Atrial Fibrillation Guidelines,
http://www.escardio.org/guidelines-surveys/esc-guidelines/
guidelinesdocuments/guidelines-afib-ft.pdf

12. Forgy, C.L.: Rete: A fast algorithm for the many patterns/many objects match
problem. Artif. Intell. 19(1), 17–37 (1982)

13. Gray, J.: The Benchmark Handbook for Database and Transaction Systems. Mor-
gan Kaufmann (1993)

14. Group, W.S.W.: SPARQL 1.1 Overview, W3C Recommendation (March 21, 2013),
http://www.w3.org/TR/sparql11-overview/

15. Guo, Y., Pan, Z., Heflin, J.: Lubm: A benchmark for owl knowledge base systems.
Web Semantics: Science, Services and Agents on the World Wide Web 3(2), 158–
182 (2005)

16. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining views incremen-
tally. In: Proceedings of the 1993 ACM SIGMOD International Conference on
Management of Data, SIGMOD 1993, pp. 157–166. ACM, New York (1993),
http://doi.acm.org/10.1145/170035.170066

17. Haarslev, V., Möller, R.: Description of the racer system and its applications. In:
Goble, C.A., McGuinness, D.L., Möller, R., Patel-Schneider, P.F. (eds.) Description
Logics. CEUR Workshop Proceedings, vol. 49 (2001)

18. Herman, I., Adida, B., Sporny, M., Birbeck, M.: RDFa 1.1 Primer, 2nd edn (2013),
http://www.w3.org/TR/xhtml-rdfa-primer/

19. Hommersom, A., Lucas, P.J.F., Velikova, M., Dal, G., Bastos, J., Rodriguez, J.,
Germs, M., Schwietert, H.: Moshca - my mobile and smart health care assistant.
In: 2013 IEEE 15th International Conference on e-Health Networking, Applications
Services (Healthcom), pp. 188–192 (October 2013)

20. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: A Semantic Web Rule Language Combining OWL and RuleML. W3C
Member Submission (May 21, 2004), http://www.w3.org/Submission/SWRL/

21. Hussain, S., Raza Abidi, S., Raza Abidi, S.: Semantic web framework for knowledge-
centric clinical decision support systems. In: Bellazzi, R., Abu-Hanna, A., Hunter,
J. (eds.) AIME 2007. LNCS (LNAI), vol. 4594, pp. 451–455. Springer, Heidelberg
(2007), http://dx.doi.org/10.1007/978-3-540-73599-1_60

22. Integrated Management Program Advancing Community Treatment of Atrial Fib-
rillation: Impact AF, http://impact-af.ca/

23. Knublauch, H.: The TopBraid SPIN API (2014), http://topbraid.org/spin/api/
24. Knublauch, H., Hendler, J.A., Idehen, K.: SPIN - Overview and Motivation (2011),

http://www.w3.org/Submission/spin-overview/

http://www.ccsguidelineprograms.ca
http://dblp.uni-trier.de/db/books/collections/gray91.html#Cattell91
http://www.escardio.org/guidelines-surveys/esc-guidelines/guidelinesdocuments/guidelines-afib-ft.pdf
http://www.escardio.org/guidelines-surveys/esc-guidelines/guidelinesdocuments/guidelines-afib-ft.pdf
http://www.w3.org/TR/sparql11-overview/
http://doi.acm.org/10.1145/170035.170066
http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.w3.org/Submission/SWRL/
http://dx.doi.org/10.1007/978-3-540-73599-1_60
http://impact-af.ca/
http://topbraid.org/spin/api/
http://www.w3.org/Submission/spin-overview/


408 W. Van Woensel et al.

25. Le-Phuoc, D., Parreira, J.X., Reynolds, V., Hauswirth, M.: RDF On the Go: An
RDF Storage and Query Processor for Mobile Devices. In: 9th International Se-
mantic Web Conference, ISWC 2010 (2010)

26. Liang, S., Fodor, P., Wan, H., Kifer, M.: Openrulebench: An analysis of the per-
formance of rule engines. In: Proceedings of the 18th International Conference on
World Wide Web, pp. 601–610. ACM, New York (2009),
http://doi.acm.org/10.1145/1526709.1526790

27. Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., Liu, S.: Towards a complete owl ontol-
ogy benchmark. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp.
125–139. Springer, Heidelberg (2006), http://dx.doi.org/10.1007/11762256_12

28. Matheus, C.J., Baclawski, K., Kokar, M.M.: Basevisor: A triples-based inference
engine outfitted to process ruleml and r-entailment rules. In: Second International
Conference on Rules and Rule Markup Languages for the Semantic Web, pp. 67–74
(November 2006)

29. Motik, B., Horrocks, I., Kim, S.M.: Delta-reasoner: A semantic web reasoner for an
intelligent mobile platform. In: Proceedings of the 21st International Conference
Companion on World Wide Web, WWW 2012 Companion, pp. 63–72. ACM, New
York (2012), http://doi.acm.org/10.1145/2187980.2187988

30. Schmidt, M., Meier, M., Lausen, G.: Foundations of sparql query optimization. In:
Proceedings of the 13th International Conference on Database Theory, ICDT 2010,
pp. 4–33. ACM, New York (2010),
http://doi.acm.org/10.1145/1804669.1804675

31. Van Woensel, W.: Benchmark Framework Online Documentation (2014),
https://niche.cs.dal.ca/benchmark_framework/

32. Weiss, C., Bernstein, A., Boccuzzo, S.: I-MoCo: Mobile Conference Guide Storing
and querying huge amounts of Semantic Web data on the iPhone-iPod Touch. In:
Semantic Web Challenge 2008 (2008)

33. Zander, S., Schandl, B.: A framework for context-driven RDF data replication
on mobile devices. In: Proceedings of the 6th International Conference on Se-
mantic Systems, I-SEMANTICS 2010, pp. 22:1—-22:5. ACM, New York (2010),
http://doi.acm.org/10.1145/1839707.1839735

http://doi.acm.org/10.1145/1526709.1526790
http://dx.doi.org/10.1007/11762256_12
http://doi.acm.org/10.1145/2187980.2187988
http://doi.acm.org/10.1145/1804669.1804675
https://niche.cs.dal.ca/benchmark_framework/
http://doi.acm.org/10.1145/1839707.1839735

	A Cross-Platform Benchmark Framework for Mobile Semantic Web Reasoning Engines
	1
Introduction
	2
Background
	2.1
Semantic Web Reasoning
	2.2
Reasoning Engines

	3
Mobile Benchmark Framework
	3.1
Semantic Web Layer
	3.2
Benchmark Engine

	4
Measurement Criteria
	5
Usage
	6
Example Benchmark
	6.1
Benchmark Domain
	6.2
Hardware
	6.3
Results
	6.4
Discussion

	7
Related Work
	8
Conclusions and Future Work
	References




