
Rapid Deployment of a RESTful Service
for Data Collected by Oceanographic

Research Cruises

Linyun Fu1(&) and Robert A. Arko2

1 Tetherless World Constellation,
Rensselaer Polytechnic Institute, Troy, NY, USA

ful2@rpi.edu
2 Lamont-Doherty Earth Observatory,

Columbia University, Palisades, NY, USA
arko@ldeo.columbia.edu

Abstract. The Rolling Deck to Repository (R2R) program has the mission to
capture, catalog, and describe the underway environmental sensor data from US
oceanographic research vessels and submit the data to public long-term archives.
Information about vessels, sensors, cruises, datasets, people, organizations,
funding awards, logs, reports, etc. is published online as Linked Open Data,
accessible through a SPARQL endpoint. In response to user feedback, we are
developing a RESTful service based on the Elda open-source Java package to
facilitate data access. Our experience shows that constructing a simple portal
with limited schema elements in this way can significantly reduce development
time and maintenance complexity compared to PHP or Servlet based
approaches.

Introduction. The Rolling Deck to Repository (R2R) program addresses the need for
consistent preservation and dissemination of environmental sensor data routinely
acquired by oceanographic research vessels in the U.S. academic fleet. R2R collects
information about each expedition that includes vessel identifier and operator; cruise
identifier, project title, and research program; port stops and dates; science party
names, institutions, and roles; funding agency and award identifier; sensor identifier,
classification, manufacturer, and model; cruise reports and event logs; and file
manifests.

R2R publishes content as Linked Data [1] using the D2RQ1 software package,
which transforms content from a SQL database to RDF resources in a virtual triple
store. Content is mapped to community-standard controlled vocabularies where these
are available online as RDF with stable URIs, such as the NERC Vocabulary Server.2

For example, one vessel called “Atlantis” is assigned the identifier <http://
data.rvdata.us/id/vessel/33AT> and is described with the following tri-
ples, encoded in Turtle format for the sake of simplicity.

1 D2RQ. http://d2rq.org/d2r-server.
2 NERC Vocabulary Server (NVS), Version 2.0. http://vocab.nerc.ac.uk/.

© Springer International Publishing Switzerland 2014
V. Presutti et al. (Eds.): ESWC Satellite Events 2014, LNCS 8798, pp. 209–212, 2014.
DOI: 10.1007/978-3-319-11955-7_20

http://d2rq.org/d2r-server
http://vocab.nerc.ac.uk/


The Linked Data API3 was developed in response to a requirement from Web
developers that Linked Data in the RDF data structure should be accessible in a way
that is familiar to them, namely through RESTful services [2], in addition to through
SPARQL endpoints. The Linked Data API achieves this goal by defining a proxy layer
on top of existing SPARQL endpoints that (1) translates HTTP requests into SPARQL
queries, and (2) renders the returned results as required by the request sender using
content negotiation, suffixes and parameters.

The first part, HTTP-request-to-SPARQL-query translation, is done by modules
called selectors, whereas the second part, rendering, is done by viewers and formatters.
Selectors, viewers and formatters are usually grouped together to form endpoints.
Unlike SPARQL endpoints which accept SPARQL queries, Linked Data API
endpoints accept HTTP requests. Figure 1 shows some important classes along with
relationships among them in Linked Data API, created with COE [3].

Note that only part of the whole Linked Data API ontology is shown in Fig. 1 for
the sake of simplicity. For example, we do not show the formatter class in the Figure
because it deals with the detailed representation of the returned Web page in response
to an HTTP request and is not the focus of this paper. We also omit the rdfs:
Literal valued api:base property of the api:API class here because it is best
illustrated, and will be shown through a detailed example in the next section.

The HTTP request pattern that an endpoint accepts is encoded in its api:uri-
Template field, and specification for selecting resources is encoded in terms of api:
select, api:where, api:orderBy, etc.

Fig. 1. Part of Linked Data API ontology (The full ontology is online at http://purl.org/linked-
data/api/vocab#). Prefixes used: rdfs: http://www.w3.org/2000/01/rdf-schema# api: http://purl.
org/linked-data/api/vocab#

3 Linked Data API Specification. https://code.google.com/p/linked-data-api/wiki/Specification.

210 L. Fu and R.A. Arko

http://purl.org/linked-data/api/vocab
http://purl.org/linked-data/api/vocab
http://www.w3.org/2000/01/rdf-schema
http://purl.org/linked-data/api/vocab
http://purl.org/linked-data/api/vocab
https://code.google.com/p/linked-data-api/wiki/Specification


Once implemented as a software package, this API enables Linked Data publishers
or proxy builders to create their RESTful service by writing a configuration file
containing only the definition of an api:API instance. The api:API instance is
recognized upon invocation of the HTTP request, and the RESTful service backed by
the software performs the translation and rendering jobs according to the api:API
instance definition. We will show in the next section how we define this instance along
with one of its associated endpoints and the endpoint’s selector to create our RESTful
service for the R2R dataset.

Configuration of the RESTful Service. Figure 2 shows how the api:API instance is
defined in our application. It talks to the SPARQL endpoint located at http://
data.rvdata.us/sparql, as its api:sparqlEndpoint value indicates. Here
we just show one Linked Data API endpoint of this instance, namely spec:list-
VesselsByLabelContains. This endpoint is responsible for listing all the
resources in the dataset that have a certain substring in their rdfs:label fields.

The spec:listVesselsByLabelContains endpoint deals with HTTP
requests matching the pattern base:/vessels?labelContains={text}, as its
api:uriTemplate field indicates. The base prefix is the api:base value of the
spec:api, so this endpoint responds to requests such as http://r2r.tw.rpi.
edu/standalone/r2r/vessels?labelContains=Atlantis. This end-
point uses a selector to fulfill its duty in a way that is encoded as api:where and
api:orderBy values. These values are simply the WHERE clause and the ORDER BY
clause in a SPARQL query. The actual query submitted to the SPARQL endpoint is as
follows.

Fig. 2. Part of R2R Linked Data API Configuration. In addition to the prefixes used in Fig. 1, we
have: spec: http://r2r.tw.rpi.edu/spec/r2r#

Rapid Deployment of a RESTful Service for Data 211

http://r2r.tw.rpi.edu/spec/r2r


The endpoint received a result for this SPARQL query, and creates a view with the
api:labelledDescribeViewer, as indicated by the api:defaultViewer
value of the spec:api. The viewer returns the graph created from a DESCRIBE query
for each query result, supplemented by labels for linked resources. The final Web page
rendered byElda,4which is one implementation of theLinkedDataAPI, is shown in Fig. 3.

Conclusion. The Elda approach for creating RESTful services enables Semantic Web
engineers to reach a broad community of Web developers. It requires minimal coding
to write a configuration file in Turtle (or other RDF formats) and expose a triple store in
a RESTful way, thus enabling construction and maintenance of a Linked Data-driven
Web portal in a lightweight manner.

Acknowledgements. This research is funded by the U.S. National Science Foundation via the
Rolling Deck to Repository (R2R) program and the Ocean Data Interoperability Platform
(ODIP), working collaboratively with the U.S. University-National Oceanographic Laboratory
System (UNOLS) Office.

References

1. Bizer, Christian, Heath, Tom, Berners-Lee, Tim: Linked data - the story so far. Int. J. Semant.
Web Inf. Syst. 5(3), 1–22 (2009)

2. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly, Sebastopol (2007). ISBN
978-0-596-52926-0

3. Hayes, P., Eskridge, T.C., Mehrotra, M., Bobrovnikoff, D., Reichherzer, T., Saavedra, R.:
COE: tools for collaborative ontology development and reuse. In: Knowledge Capture
Conference (KCAP) (2005)

Fig. 3. HTML response to the HTTP request base:/vessels?label
Contains=Atlantis

4 Elda: the linked-data API in Java. http://www.epimorphics.com/web/tools/elda.html.

212 L. Fu and R.A. Arko

http://www.epimorphics.com/web/tools/elda.html

	Rapid Deployment of a RESTful Service for Data Collected by Oceanographic Research Cruises
	Abstract
	Acknowledgements
	References


