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Abstract. The Internet of Things is one of the next big changes in which
devices, objects, and sensors are getting linked to the semantic web.
However, the increasing availability of generated data leads to new inte-
gration problems. In this paper we present an architecture and approach
that illustrates how semantic sensor networks, semantic web technolo-
gies, and reasoning can help in real-world applications to automatically
derive complex models for analytics tasks such as prediction and diag-
nostics. We demonstrate our approach for buildings and their numerous
connected sensors and show how our semantic framework allows us to
detect and diagnose abnormal building behavior. This can lead to not
only an increase of occupant well-being but also to a reduction of en-
ergy use. Given that buildings consume 40% of the world’s energy use
we therefore also make a contribution towards global sustainability. The
experimental evaluation shows the benefits of our approach for buildings
at IBM’s Technology Campus in Dublin.

1 Introduction

With the development of embedded cyber physical systems and large computa-
tional resources in the cloud, the availability of sensor information continuously
increases towards the Internet of Things. Semantic Sensor Networks (SSN) play
an important role in this development as they provide a homogeneous seman-
tic layer for sensor information and simplify the detection and retrieval of data
[1,2]. This is key for connecting cloud-based analytic tasks that process this
data. However, advanced analytics need also knowledge of the system’s internal
processes. Diagnostics, for example, require hypotheses of the cause-effect rela-
tionships between sensors. SSN do not provide ways to model such aspects and
it is often necessary to add this information manually [3,4]. However, this can
turn into a very tedious task and prevent the exploitation of SSN for large scale
analytic applications.

Building automation systems (BAS) are one established example of large scale
sensor and control networks that contain thousands of devices in newer buildings.
Analyzing the data allows to improve the building’s energy consumption with
large environmental impact as buildings consume about 40% of the energy in
industrialized countries and are responsible for 36% of their CO2 emissions [5].
For large companies building energy management is done at enterprise scale
that enables them to monitor, analyze, report and reduce energy consumption
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across their building portfolio, including retail and office properties. However,
the integration of thousands of sensors of buildings in different locations, with
different systems and technologies is a challenging task.

This paper presents the architecture and approach of IBM’s Semantic Smart
Building Diagnoser. It allows to automatically derive complex analytic tasks in
buildings from a semantic sensor network model. With some small extensions to
the SSN ontology we are able to derive large models of the physical processes
within the building using solely semantics techniques such as SPARQL update.

The following section reviews the state of the art. Section 3 explains the archi-
tecture of our approach that is detailed in Section 4. We present the evaluation
of our approach at IBM’s Technology Campus in Dublin in Section 5. The paper
concludes with remarks on the lessons we learned.

2 State of the Art

The building automation domain has a long history with interoperability prob-
lems due to the diversity of systems and technologies [6]. The trend is to use
semantic web technologies to describe sensors and the observed context as states
and events [3,6,7]. Similar capabilities are provided by the domain independent
W3C Semantic Sensor Network (SSN) ontology [2], which will be explained in
Sec. 4.1. The benefit of these ontologies is that they provide a homogeneous
semantic model of sensors to backend systems that then can be agnostic of the
underlying technology. However, the approaches model sensors only as inter-
faces of the system and do not describe the processes within the system. This
information is important for many in-depth analytic tasks such as diagnosis.

An estimated 15% to 30% of energy in buildings could be saved if faults in the
BAS system and its operation could be detected in a timely manner [8]. Katipa-
mula and Brambley [9] provide an extensive review of the common approaches.
They classified them in three categories: physical model based approaches, data
driven approaches, and rule-based approaches. The first require physical mod-
els of the building components like boilers or chillers. These approaches can
diagnose faults precisely. However, the model development requires time and ex-
pertise and the models are difficult to adapt to different buildings. Data driven
approaches like [10] are solely based on the building’s sensor data. While this
makes them easily adaptable to different buildings their diagnostic capability
is limited to the detection of faults rather than their identification. Therefore,
rule-based approaches are most established and also used by IBM’s TRIRIGA
Environmental and Energy Management Software. The rules capture domain
knowledge of conditions for anomalies and their cause-effect relationships [11].
It was shown in [3,4] that the rules can also be executed directly on the semantic
model. This leads to a more integrated approach that simplifies the deployment.
However, it still requires data modeling engineers to create the diagnostic model.
Herein also lies its biggest limitation: as rules can detect predefined situations
only, they need to be manually adapted to each system by people with in-depth
knowledge of all potential cause-effect relationships.



310 J. Ploennigs, A. Schumann, and F. Lécué

Our approach combines the benefits of these three concepts to overcome their
disadvantages: it models high level physical processes in the systems to derive
diagnosis rules; it parameterizes the rules using data analytics and applies them
effectively during runtime. The strength of a semantic approach is that we can
use reasoning and semantic web techniques to automate this process for the
large scale sensor networks found in buildings such that the human modeling
and calibration effort is minimal.

3 Architecture

Figure 1 shows the architecture of the Semantic Smart Building Diagnoser. It
is designed to allow energy management of a global portfolio of buildings. The
individual building’s BAS are integrated via REST services that are usually
available and allow retrieving time series information and non-semantic text
labels for sensors. This data is enriched with additional semantic information in
different steps such that we can autonomously run different analytic processes
on the top layers that are agnostic of the underlying BAS. The process is divided
into an initialization phase, that creates the semantic model once, and a runtime
phase, that uses the semantic model to efficiently process online stream data.
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Fig. 1. Architecture of the approach

During the initialization phase we lift the usually non-semantic data to a
semantic representation in a domain ontology that specifies common semantic
types and physical processes in buildings as extension of the W3C SSN ontology
(Sec. 4.1). The lifting is composed of three steps. First, we create a SSN model
that describes the available sensors. The step is semi-automated by an internal
label mapping tool that maps the non-semantic BAS text labels to their seman-
tic equivalents in the domain ontology and asks a human for validation [12].
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From this homogeneous semantic representation we then automatically derive a
physical process model that expands the relationships between sensors (Sec. 4.2).
It allows us to automate individual analytic tasks based on sensor data from the
building by extending specific semantic information. For example, the diagnosis
model generator extends cause-effect relationships between sensors (Sec. 4.3).
The different semantic models are stored in a DB2RDF database for efficient
access during runtime.

The runtime environment is using the semantic version of IBM InfoSphere
Streams [13], which handles mixed time series and RDF data based stream pro-
cessing/reasoning in real-time. This hybrid setup is important as not all time
series data can be rendered in RDF for scalability reasons (Sec. 4.4). We enrich
the dataset with external information by linking, for example, additional expla-
nations of semantic types to DBpedia. Historical weather data and forecasts from
wunderground are used for diagnosis and energy predictions [14]. Room booking
information from IBM Notes is used to estimate and predict room occupancy. We
use this semantically-enriched dataset for the different analytic tasks (Sec. 4.4).
The individual steps of our approach are detailed in the following section.

4 Approach

We start by introducing a necessary extension to the SSN ontology that will
enable us to automatically derive the physical process model and a diagnostic
model.

4.1 Extended SSN Ontology

In the first step, we create a SSN representation for each BAS using an internal
label mapping tool [12]. The tool semi-automatically assigns the corresponding
semantic sensor type in our domain ontology to each BAS label using com-
mon structure, acronyms, and units in the textual descriptions (e. g. we extract
”Temperature Sensor in Room R1” from the label ”R1 Tmp”).

The resulting model is an extension of the Semantic Sensor Network (SSN)
skeleton ontology defined by the W3C incubator group [2]. SSN consolidates con-
cepts from various sensor network ontologies and was chosen because it provides
differentiated views on the aspects of sensing beyond the building domain. In
particular it uses the Stimulus-Sensor-Observation ontology design pattern [15].
The pattern separates the concepts of ssn:Sensor for physical devices taking
measurements in form of ssn:Observation and the actual changes that happen
in the environment, which is the ssn:Stimulus of the measurement. This sepa-
ration is important as it recognizes that: 1) stimuli occur in the environment
independently of the number and kind of sensors that observe them and 2) ob-
servations made by a sensor are not identical to stimuli as measurements can
be incorrect due to measurement noise, outliers, or sensor failures. We use the
following classes from the skeleton ontology:

– ssn:FeatureOfInterest: The monitored (diagnosed) system is defined as a Fea-
tureOfInterest. In the following we will use the shorter feature as synonym.
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Fig. 2. Extension to the SSN ontology

– ssn:Property : Properties are qualities of a Feature. They can be observed like
the air temperature of a room. In extension to the SSN, we define that prop-
erties may also be unobservable. Unobservable properties are often relevant
to correctly understand the physical processes within features. One example
is the inner energy of the room. The inner energy is the heat stored in the
air in the room. It is related to the air temperature, but not measurable.

– ssn:Sensor : A time series provided by a physical device or computational
method observing a property.

– ssn:Observation : Observations describe discrete states that are derived from
the sensor time series data. An observation state may be that an air tem-
perature is above 20 ◦C.

– ssn:Stimulus: A stimulus is an event or state of a property. A stimulus is not
identical with the observation made by a sensor, as the sensor itself may fail.

The SSN ontology provides no means to model physical and cause-effect re-
lationships between sensors. Therefore, we have extended the SSN ontology in
[16] using the namespace phy by the concepts1 shown in Figure 2:

– phy:PhysicalProcess 2: The properties of many real world features are related
by physical processes. A phy:PhysicalProcess models this as directed relation-
ship of a source property (phy:hasInput) that influences a target property
(phy:hasOutput). We differentiate different process types that relate to com-
mon models used in control theory3. In the paper we will only use positive
and negative correlated properties. The influence is a phy:PosCorrProc if a
factor increases with its influence and it is a phy:NegCorrProc if it decreases
with an increase of the influence. The temperature we feel, for example, is
influenced by the inner energy in a room via a positive correlation process,
as it feels warmer when we increase the energy. The cooling system uses a
negative correlation process as it removes heat from this energy.

– phy:FeatureLink : Physical processes occur not only between properties with-
in the same feature, but, also between related features. A FeatureLink de-
notes such a relationship between features that are defined by the object

1 A complete version of the provided example and an extended one is available at
https: // www. dropbox. com/ s/ z369tzmn00f1jv9/ demopackage. zip .

2 Not to be confused with ssn:Process or dul:Process from DOLCE subset used by
SSN. The first describes the sensing process and the second an event in transition.

3 We use classes of linear time-invariant systems such as proportional, integral, deriva-
tive, or delay processes. This is similar to data flow models such as Matlab/Simulink.

https://www.dropbox.com/s/z369tzmn00f1jv9/demopackage.zip
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Fig. 3. Example input of the approach

property phy:linksFeature. They are, for instance, used to model spatial re-
lationships between two adjacent rooms connected by a wall.

– phy:Cause , phy:Effect : are subconcepts of ssn:Stimulus and describe the not
necessarily observed stimulus of a cause and the resulting effect.

– phy:Anomaly : is a subconcept of ssn:Observation that is used to describe
abnormal observations that should be diagnosed. An anomaly may be for
example a high room temperature.

– phy:ObservedCause : is another subconcept of ssn:Observation describing the
observable discrete states of potential causes of an anomaly. A cause for a
high temperature in a room may be an inactive cooling system.

We will later introduce additional object and annotation properties to model
the generic process knowledge in a domain ontology. In the following example
we use the namespace sb for this smart building domain ontology.

Example 1 (Semantic Input)
We illustrate the approach with the running example of a single office room
{Room}4 shown in Figure 3. It is separated from to the outside by a wall.
The room contain sensors for air temperature {TempSensor} and occupancy
{OccupancySensor}. A virtual sensor {OutsideTempSensor} links to the outside
temperature retrieved from wunderground.com. The room also contains a cooling
system with actuator {CoolingActuator} and setpoint {CoolingSetpointValue}.
The setpoint value is automatically decreased if the room is occupied to save cool-
ing energy if it is unoccupied.

We map the sensors in the example from Figure 3 to our domain ontology.
It contains concepts for the sensors sb:TemperatureSensor , sb:OccupancySensor ,
sb:CoolingActuatorValue, and sb:CoolingSetpointValue � ssn:Sensor . The sen-
sors observe the corresponding room properties sb:Temperature, sb:Occupancy ,
sb:Cooling , sb:CoolingSetpoint �ssn:Property . In addition we define sb:Energy�
ssn:Property for the unobservable property of a rooms inner energy. The rooms
are instances of sb:Room and the environment of sb:Outside which are both fea-
tures, thus sb:Room , sb:Outside � ssn:FeatureOfInterest.The locations are con-
nected by sb:Wall � ssn:FeatureLink .

Our aim is to determine which of the sensors, related to the room or its sur-
rounding, can localize the cause of an abnormally high temperature {TempHigh}.
Here we consider any sensor value abnormal that deviates by more than two de-
grees from the cooling set point of that room.

4 We denote by {c} � C an instance c, internalized as a concept {c} which is a special-
ization of C.

wunderground.com
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4.2 Deriving the Process Model

The SSN is automatically extended by the properties and processes within the
system. We do this in two steps. First, we create property instances for all fea-
ture instances, even if they are not observed as they may be involved in physical
processes. Second, we connect these property instances by processes. The neces-
sary knowledge about the properties and processes is modeled on concept level
in the domain ontology using annotation properties. As the same domain on-
tology is used by all buildings, this modeling effort needs to be done only once.
For example, our smart building ontology contains concepts for 62 sensor and
18 properties as well as 53 process annotations (see footnote 1). This will enable
us in Sec. 5.1 to create several thousand property and process instances for the
IBM Technology Campus Dublin.

We differentiate mandatory and optional properties. Mandatory properties
are characteristic physical properties of a FeatureOfInterest and need to be cre-
ated for each feature instance. Optional properties are not explicitly required by
a feature and are only created if they are observed by a sensor. We define these
relationships on concept level of the domain ontology using annotation proper-
ties. For example, we may not find a temperature sensor in each room, but, each
room has a temperature. Thus, we annotate the sb:Room class using the anno-
tation phy:requiresProperty to link to sb:Temperature as a mandatory property.
The cooling actuator on the other hand is not mandatory to a room as not all
rooms have a cooling unit. We annotate the sensor subclass sb:CoolingActuator
using the annotation phy:defaultObserved referring to the sb:Cooling property.
It specifies that a room only possesses a Cooling property if it also has a Coolin-
gActuator as sensor.

We use these annotation properties to create the property instances using
SPARQL 1.1 update (SPARUL). SPARUL is an extension of SPARQL that
does not only allow the search for specific RDF patterns, but also allows mod-
ifying and extending the RDF graph around such patterns. Figure 4 shows on
the top left and top right two SPARUL queries that create mandatory and
optional properties, respectively. The SPARUL blocks consist of a modification
pattern (INSERT) that is executed for each match of a search pattern (WHERE).
With the top left query #1 we search for instances of a feature class annotated
by phy:requiresProperty that refers to a mandatory property. For each instance
found we create an instance of the property using an unique URI that is com-
puted by the function UURI 5. The SPARUL query #2 for optional properties
works similarly and creates properties for these features that have a sensor of a
class with the phy:defaultObserved annotation.

In the second step, we connect the created properties by process instances. We
use again annotation properties to model the generic relationships on concept
level of the domain ontology and then use SPARUL to extend the specific SSN
instances. Please note, that physical processes may exist between properties of
the same feature (e. g. cooling reduces internal energy) as well as between prop-

5 The function UURI needs to compute the same unique URI for identical inputs such
that mandatory and optional properties extend each other.



Semantic Smart Building Diagnosis 315

INSERT { #1: Create mandatory properties
?newuri1 rdf:type ?propCls.
?newuri1 ssn:isPropertyOf ?feat.
?feat ssn:hasProperty ?newuri1.

} WHERE {
?feat a ?featCls.
?featCls phy:requiresProperty ?propCls.
BIND(UURI(?feat,?propCls) as ?newuri1).

}

INSERT { #2: Create optional properties
?newuri2 rdf:type ?propCls.
?newuri2 ssn:isPropertyOf ?feat.
?feat ssn:hasProperty ?newuri2.
?sensor ssn:forProperty ?newuri2.

} WHERE {
?sensor a ?sensCls.
?sensCls phy:defaultObserved ?propCls.
?sensor ssn:ofFeature ?feat.
BIND(UURI(?feat,?propCls) as ?newuri2).

}
INSERT { #3: Create internal processes
?newuri3 rdf:type ?proc.
?newuri3 phy:hasInput ?prop2.
?newuri3 phy:hasOutput ?prop1.

} WHERE {
?anno rdfs:subPropertyOf phy:hasIntInfl.
?anno phy:equalsProcess proc.
?propCls1 ?anno ?propCls2.
?prop1 a ?propCls1.
?prop1 phy:isPropertyOf ?feat1.
?feat1 phy:hasProperty ?prop2.
?prop2 a ?propCls2.
BIND(UURI(?prop1,?prop2) as ?newuri3).

}

INSERT { #4: Create external processes
?newuri4 rdf:type ?proc.
?newuri4 phy:hasInput ?prop2.
?newuri4 phy:hasOutput ?prop1.

} WHERE {
?anno rdfs:subPropertyOf phy:hasExtInfl.
?anno phy:equalsProcess proc.
?propCls1 ?anno ?propCls2.
?prop1 a ?propCls1.
?prop1 phy:isPropertyOf ?feat1.
?featL phy:linksFeature ?feat1.
?featL phy:linksFeature ?feat2.
?feat2 phy:hasProperty ?prop2.
?prop2 a ?propCls2.
BIND(UURI(?prop1,?prop2) as ?newuri4).

}

Fig. 4. SPARUL code to create the process model

erties of different features (e. g. two adjacent rooms exchange energy). Therefore,
we use two different annotation patterns to: i) describe internal process relation-
ships of properties within the same feature and ii) external process relationships
connecting properties of linked features. An internal process relationship is de-
tected by the SPARUL query #3 in Figure 4. It searches for two properties
of the same feature, whose classes are linked by an annotation property ?anno
that is a subproperty of phy:hasIntInfl . For each match it creates a physical pro-
cess of type ?proc. The type is specified by a property phy:equalsProcess of the
annotation ?anno. The SPARUL query #4 in Figure 4 uses a similar pattern,
but, searches for phy:hasExtInfl annotations as well as for properties of different
features that are linked by the phy:linksFeature property of a feature link.

Example 2 (Process Model Creation)
Let us consider that the following triples are defined in our domain ontology

sb:Room phy:requiresProperty sb:Energy .
sb:CoolingActuator phy:defaultObserved sb:Cooling .
phy:hasNegIntInfl rdfs:subPropertyOf sb:hasIntInfl .
phy:hasNegIntInfl phy:equalsProcess phy:PosCorrProc .
sb:Energy phy:hasNegIntInfl sb:Cooling .

and the following part from the SSN ontology of example 1 in RDF N3 syntax
:Room a sb:Room .
:CoolingActuator a sb:CoolingActuator .
:CoolingActuator ssn:ofFeature :Room.

The left top SPARUL query #1 in Figure 4 matches the room as ?feat =
:Room that instantiates class ?featCls = sb:Room and requires the property
class ?propCls = sb:Energy . A new unique URI ?newuri1 is computed for this
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Fig. 5. Conceptual level and process model for the example

match. The insert part then adds a new instance {?newuri1} � sb:Energy and
links it to :Room as ssn:isPropertyOf and ssn:hasProperty vice versa.

The top right SPARUL query #2 will match ?sensor = :CoolingActuator of
class ?sensCls = sb:CoolingActuator that links to ?propCls = sb:Cooling and
create a new instance of sb:Cooling under the URI ?newuri2.

The bottom left query #3 in Figure 4 matches these newly created properties
with ?prop1 =?newuri1 and ?prop2 =?newuri2 as their classes ?propCls1 =
sb:Energy and ?propCls2 = sb:CoolingActuator are linked by phy:hasNegIntInfl .
The query creates a new phy:hasNegIntInfl instance connecting the properties
as the annotation property links to the class via phy:equalsProcess .

In a similar way the relationships between all properties can be described.
We illustrate this in Figure 5a for the case of smart buildings. The generic do-
main knowledge was extracted from physical models such as [17]. The figure
shows that occupancy, temperature and energy are defined as mandatory prop-
erties for a room by phy:requiresProperty annotation properties. For the outside
only energy and temperature are mandatory as occupancy has a negligible in-
fluence on the temperature outside. The sensors define occupancy, temperature,
cooling setpoint and cooling as optional via the phy:defaultObserved annotation.



Semantic Smart Building Diagnosis 317

The phy:hasPosIntInfl and phy:hasNegIntInfl annotations define the positive and
negative correlation processes within a room. The temperature in the room is
positively influenced by the internal energy. The energy is increased by people
in the rooms and decreased by an active cooling system. The cooling system
actuates based on the room temperature and setpoint. A room also exchanges
energy with the outside and neighboring rooms depending on the temperature
difference at the wall. This is defined by a phy:hasPosExtInfl annotation property
between temperature and energy.

Applying this knowledge to our example in Figure 3 using the SPARUL queries
in Figure 4 results in the processes shown in Figure 5b. The added mandatory
properties by SPARUL query #1 are light gray. The optional properties and
the links between sensors and properties added by query #2 are dark gray.
The adaptation of the model is visible for the Outside feature, which does not
have properties for the cooling actuator, setpoint or occupancy as they were not
defined as mandatory. The internal processes added by query #3 are identical to
Figure 5a. To keep readability we replaced the process classes by solid and dashed
arrows representing positively and negatively correlated processes, respectively.
The external processes added by query #4 are highlighted by a double line.
After these four simple queries the SSN contains a semantic physical model that
describes the relationships between sensors in the whole building.

4.3 Generating the Diagnosis Model

The physical process model can be used for automating analytics. We illustrate
this for the task of extracting a diagnosis model for an anomaly of a sensor. The
diagnosis model defines hypotheses of potential causes for each anomaly. The
physical processes can be used to trace these cause-effect-relationships. We con-
sider sensors as potentially observing the cause of an anomaly, if the properties
they observe are either linked directly by a physical process to the anomaly or
via a sequence of unobserved properties linked by processes in the direction of
effect.

Example 3 (Potential Causes of an Effect)
Consider the generation of diagnosis rules for the anomaly {TempHigh} �
phy:Anomaly that is observed by the room temperature sensor {TempSensor}
in our example. By tracing back the physical processes plotted in Figure 5b the
following potential causes can be identified:
– Observation {OccCause} � phy:ObservedCause of the {OccupancySensor}

is a potential cause since {Occupancy}, {Energy}, {Temperature} is a chain
of properties linked by physical processes in Figure 5b with {Occupancy}
and {Temperature} being the only properties observed by a sensor,

– {OutTempCause}observed by {OutsideTempSensor}is a phy:ObservedCause
since {OutsideTemp}, {Energy}, {Temperature} is a chain without other
observable properties,

– {CoolActCause} � phy:ObservedCause is observed by {CoolingActuator}
and a potential cause via the chain {Cooling}, {Energy}, {Temperature}.

There is no potential cause at the cooling setpoint value as {CoolingSetpoint} is
only connected through the already observed {Cooling} property.
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To implement the detection of process chains in SPARUL, we iteratively com-
bine a chain of two successive physical process instances by adding a new direct
process instance. We preserve the type of the process correlation as it is relevant
for the diagnosis. The occupancy sensor for example influences the energy by a
positive correlation process and the energy influences the temperature also pos-
itively. From these two successive positive correlation processes it follows that
the occupancy influences also the temperature by a positive correlation via the
energy. Thus, we can add a new positive process that connects the occupancy
to the temperature. In a similar way, we can combine any successive positive
and negative correlation process by a negative one and two negative ones neu-
tralize each other to one positive correlation process. The SPARUL code #5 of
Figure 6 shows an example for a process chain with positive and negative cor-
relation. It filters observable properties. Three similar SPARUL queries replace
other combinations of positive and negative correlation processes.

INSERT { #5: Combine process chains
?newuri5 rdf:type phy:NegCorrProc.
?newuri5 phy:hasInput ?prop1.
?newuri5 phy:hasOutput ?prop3.

} WHERE {
?proc1 a phy:PosCorrProc.
?proc2 a phy:NegCorrProc.
?proc1 phy:hasInput ?prop1.
?proc1 phy:hasOutput ?prop2.
?proc2 phy:hasInput ?prop2.
?proc2 phy:hasOutput ?prop3.
FILTER NOT EXISTS

{?prop2 ssn:forProperty ?anyDP}
BIND(UURI(?prop1,?prop3) as ?newuri5).

}

INSERT { #6: Create potential causes
?newuri6 rdf:type phy:ObservedCause.
?abnom phy:hasPotCause ?newuri6.
?newuri6 ssn:observedBy ?sensor2.

} WHERE {
?abnom a phy:Anomaly.
?abnom ssn:observedBy ?sensor1.
?sensor1 ssn:forProperty ?prop1.
?proc1 phy:hasOutput ?prop1.
?proc1 a phy:PhysicalProcess.
?proc1 phy:hasInput ?prop2.
?sensor2 ssn:forProperty ?prop2.
BIND(UURI(?sensor2) as ?newuri6).

}

Fig. 6. SPARUL code to create diagnosis rules

Example 4 (Process Chains)
From example 3, we can combine the process chain {Occupancy}, {Energy},
{Temperature} of only positive correlation processes by a direct positive correla-
tion process linking {Occupancy} to {Temperature}. The chain {OutsideTemp},
{Energy}, {Temperature} also contains only positive correlation processes and
can be combined into a new positive correlation process between {OutsideTemp}
and {Temperature}. The chain {Cooling}, {Energy}, {Temperature} contains
one negative and one positive correlation process that can be combined into one
negative correlation process between {Cooling} and {Temperature}.

The above approach creates direct process links between the influencing prop-
erties. This enables us to directly link potential causes of an anomaly with the
SPARUL code #6 in Figure 6. The query first looks for anomalies defined in the
ontology. It then identifies the property of the sensor that observed the anomaly.
For each observable property that is connected by a physical process to the for-
mer property, a potential cause observation is created for the observing sensor.
This cause state is then assigned to the anomaly as potential cause.

We utilize the semantic type of processes to narrow down the nature of the
potential cause. For example, if the anomaly is characterized by a sb:High state,
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then a cause that is connected by a positive correlation process is probably also
sb:High. If the cause is connected by a negative correlation process it is probably
sb:Low . This is implemented by modifying query #6 for the different cases.

Example 5 (Cause Classification)
The anomaly {TempHigh} is defined as sb:High in our input SSN. Using the
semantic information of the direct link processes in example 4 it can be derived
that {OccCause} and {OutTempCause} should also be instance of sb:High as the
linking processes are positively correlated. Only {CoolActCause} is an instances
of sb:Low as it is linked by a negative correlation process.

4.4 Discretisation and Diagnosis

To use our diagnosis model it is necessary to discretize the sensor time series val-
ues. For scalability reason, we only extract abnormal observations. An anomaly
is detected if predefined rules are violated. These rules define a normal opera-
tion range and we classify observations as sb:High if they are above this range
and sb:Low if they are below it. For example, all room temperatures higher 22 ◦C
are assigned to the observation instance sb:TempHigh by adding the property
ssn:observationSamplingTime with the current time. The same applies to poten-
tial causes, which are assigned to corresponding sb:High or sb:Low observation in-
stances if the current sensor value is above or below an upper and lower threshold.
These limits are determined fromhistorical data using a statistical model [14]. The
model learns from historical anomaly-free time series data what the data range is
under normal circumstances. It bases on the intuition that a cause of an anomaly
is also characterized by abnormal values in comparison to the anomaly-free data.
The discretization allows for a fast diagnosis using SPARQL query#7 in Figure 7.

SELECT { #7: Diagnose
?abnom ?cause ?time.

} WHERE {
?abnom a phy:Anomaly.
?abnom phy:hasPotCause ?cause.
?abnom ssn:observationSamplingTime ?time.
?cause ssn:observationSamplingTime ?time.

}

Fig. 7. SPARQL code to query diagnosis results

5 Experiments

We tested the accuracy and scalability of our approach using real-world and
synthetic examples. All examples are described using the domain ontology in
Fig. 5a that we extended by more subconcepts to model BAS components and
related properties and processes (see footnote 1).

5.1 Results at IBM’s Technology Campus in Dublin

Our system is in-use for the IBM Technology Campus in Dublin. The site con-
sists of six buildings from different IBM divisions and operated by an external
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Table 1. Diagnosis results for different examples with: TP - true positives, TN - true
negatives, FP - false positives, FN - false negatives in % of anomalies

(a) Real office building.

TP TN FP FN
Heating Issues 67.95 32.05 0.00 0.00
Bad Isolation 89.58 1.62 0.10 8.70

(b) Running example.

TP TN FP FN
CoolFault 94.90 0.00 5.10 0.00
CoolFault (sem) 94.90 5.10 0.00 0.00
Occupancy 86.77 0.84 12.40 0.00
Occupancy (sem) 86.77 8.93 4.30 0.00
WindOpen 89.69 0.00 10.31 0.00
WindOpen (sem) 89.69 0.00 10.31 0.00

contractor. The buildings provide more than 3,500 sensors. Mapping sensors to
the SSN representation and defining the features took more than a day in a
first manual approach. We now use an internal label mapping tool that does
this in a few minutes. Afterwards the Smart Building Diagnoser is initialized
automatically as described above. A big benefit of our approach is the cover-
age of the resulting diagnostic rules that allows detecting and diagnosing many
new anomalies. The campus was formerly managed by the IBM TRIRIGA En-
vironmental and Energy Management Software that monitored 194 sensors with
300 rules. Our test system covers 2,411 sensors, with 1,446 effects and 47,284
potential cause observations linked via 10,029 processes.

We investigated deeper into a 3,500m2 office building on the campus to eval-
uate the diagnostic accuracy of the approach. The building contains 271 sensors
including temperature sensors and a heating system in most of the 100 rooms.
We defined as abnormal if the temperature falls two degrees below the setpoint.
The potential causes for the anomaly are a low outside temperature, neighboring
rooms with a low temperature, and an inactive heating system. We compared
the causes identified by our approach with feedback from the operator.

In the simulation 4% of the room temperature samples are abnormal. Table 1a
summarizes further results. The diagnoser shows that 67.95% of these cases
are related to an inactive heating system. All cases could be validated by the
operator by analyzing the data. He explained the behavior by the fact that the
building is only heated at night to utilize low electricity prices. In 89.58% of the
abnormal cases the diagnoser relates the outside temperature which the operator
largely confirmed to be the case. Only 8.7% of the cases that he identified could
not be retrieved by our approach. Most relevant for the operator was, that our
approach revealed that most of these cases occurred in 11 rooms with severe
isolation problems which were using an estimated 50% of the buildings heating
energy.

5.2 Benefits of a Semantic Diagnosis Model

We use a commercial building simulator [17] to evaluate the diagnostic accuracy
of the approach for the running example of a room with a cooling system. The
anomaly TempHot is detected if the room temperature rises above 22 ◦C. We
first run experiments testing the situation in the room without faults where the
cooling system controlled the room temperature without anomalies. We then
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defined temporarily break downs of the cooling system, high room occupancy,
or an air exchange through an open window. We simulated the room behavior
for a full year for a building in Athens to have a constantly high outside temper-
ature and applyed the introduced semantic diagnoser as well as a non-semantic
diagnoser. This non-semantic diagnoser has no information whether the cause
could be tracked back to a too high or to a too low sensor reading.

Table 1b illustrates the results. In case of the cooling system break down the
room heats slowly to the higher outside temperature. The approach correctly
detects 94.9% of the cases when the anomaly TempHot occurs together with a
cooling break down. The non-semantic approach has a high false positive rate of
5.1% as it assigns also cases when the cooling actuator is active. The semantic
diagnoser knows that the actuator value has to be low and correctly refuses
other cases. In the scenario of a high occupancy, the room temperature increases
due to a large group of people. 86.77% of the cases are correctly identified by
both approaches. However, the non-semantic diagnosis approach has again a
higher false positive rate: 12.4% compared to 4.3% of the semantic approach. It
avoids assigning situations with low room occupancy. If the window is open the
room temperature quickly adjusts to the outside temperature. In this scenario
both approaches have the same true positive rate of 89.69% and the same false
positive rate of 10.31%. The latter cases occur when the effect of a high room
temperature still persists for a while after the window was closed.

These results demonstrate that the semantic diagnosis approach is not only
capable of correctly diagnosing different fault scenarios. The cooling fault and
occupancy scenario also shows that the semantic model provides additional infor-
mation and can exclude illegitimate causes. Further improvements are expected
by considering more specific types of processes including delays to further reduce
the false positive rate of delayed effects such as the already closed window. This
simple example illustrates already that semantic information benefits diagnosis.

5.3 Scalability

Finally, we investigated in the scalability of the approach using synthetic ex-
amples. For this we evaluated the performance of the approach for examples of
different size and reasoner configurations. We evaluated examples with up to 10
storeys with 100 rooms each arranged north and south of a long corridor. All
rooms are equipped with heating, cooling, lighting and ventilation systems.

For the example the number of created processes, observations, and triples
scales linearly with the number of sensors. It starts with 78 thousand triples for
55 sensors and reaches 20 million triples for the large example with 15 thousand
sensors. The small example contains 92 processes and 99 observations and the
large example has 70 thousand processes and 80 thousand observations.

Figure 8 shows the mean computational time on a PC with an Intel Xeon
X5690 processor for different reasoner configurations of the Jena framework.
The performance strongly depends on the reasoning capabilities of the model.
The micro OWL rules inference engine takes in mean 130minutes to apply the
SPARUL queries #1 to #7 to the large example with 15 thousand sensors. The
RDFS inferencer applies the same SPARUL rules in 85minutes. An OWL model



322 J. Ploennigs, A. Schumann, and F. Lécué
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Fig. 8. Computation times for the diagnosis model generation and diagnosis

with no additional entailment reasoning computes in 38minutes including the
required preprocessing of the necessary class subsumption by two additional
SPARUL queries. The reasoner spend in total 37% of the time for the combina-
tion of process chains with query #5 and 58% for identifying the potential causes
with query #6 in Figure 6. This is primarily related to the generality of query
#5, which creates many physical processes unneeded for the diagnosis purpose.
This significantly increases the search space for query #6. The best computation
time performance shows a procedural implementation of the SPARUL queries
#1 to #6 in Java. It benefits from a depth-first search in the graph model of
only the processes connected to an anomaly. Note that, the IBM campus model
computes in 55 s with the procedural implementation.

Please note that queries #1 to #6 are only executed once during the initial-
ization phase of the system. During runtime only the discretizer and query #7
are executed. They compute in less than a second for the IBM Campus.

6 Conclusion

We have shown that semantic techniques can be used for automating analytic
tasks in complex systems such as buildings. Specifically we have presented IBM’s
Semantic Smart Building Diagnoser which is the first of its kind that can auto-
matically derive diagnosis rules from the sensor network definition and behaviour
of a specific building. This allows not only for the diagnosis of smart building
problems that existing techniques cannot diagnose but also for easier adaptabil-
ity to other buildings.

Our approach was realized by using semantic techniques for: (i) integrating
heterogeneous data from different buildings, (ii) extending SSN for automating
the creation and configuration of physical models, and by (iii) automatically
deriving the diagnosis rules from the latter. The addition and extension of new
sensor types and processes is also straightforward given the annotation patterns
of our domain ontology.

Our experiments have shown that we can indeed efficiently identify the causes
of anomalies for real buildings. They also revealed that semantic information
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can even be used to improve the accuracy of the diagnosis result. Our approach
currently runs on IBM’s Technology Campus in Dublin and has provided several
insights for improving energy performance. Future deployments on further sites
are planned.
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